数式・記号の英語の読み方とLaTeXの書き方を以下のリストに示します。
Math | Pronunciation | LaTeX |
---|---|---|
$\dfrac{1}{2}$ | one over two | \dfrac |
$1.2$ | one point two | . |
$\therefore$ | therefore | \therefore |
$\because$ | because | \because |
$\forall x$ | for all $x$ | \forall |
$\exists x$ | for some $x$ | \exists |
$p \wedge q$ | $p$ and $q$ | \wedge |
$p \vee q$ | $p$ or $q$ | \vee |
$\neg p$ | not $p$ | \neg |
$p \rightarrow q$ | $p$ implies $q$ | \rightarrow |
$p \Rightarrow q$ | if $p$ then $q$ | \Rightarrow |
$p \leftrightarrow q$ | $p$ is equivalent to $q$ | \leftrightarrow |
$p \Leftrightarrow q$ | $p$ if and only if [iff] $q$ | \Leftrightarrow |
$a^\prime$ | $a$ prime | ^\prime |
$a^{\prime\prime}$ | $a$ double prime | ^{\prime\prime} |
$\bar{a}$ | $a$ bar | \var |
$\widetilde{a}$ | $a$ tilde | \widetilde |
$\hat{a}$ | $a$ hat | \hat |
$a^*$ | $a$ star | ^* |
$\pm a$ | plus or minus $a$ | \pm |
$\lvert a\rvert$ | absolute value of $a$ | \lvert \rvert |
$a^2$ | $a$ square | ^2 |
$a^3$ | $a$ cube | ^3 |
$a^n$ | $a$ to the $n$ [$n$th (power)] | ^n |
$a_n$ | $a$ sub $n$ | _n |
$\sqrt{a}$ | square root of $a$ | \sqrt |
$\sqrt[3]{a}$ | cube root of $a$ | \sqrt[3] |
$\sqrt[n]{a}$ | $n$th root of $a$ | \sqrt[n] |
$a \approx b$ | $a$ is approximately equal to $b$ | \approx |
$a \le b$ | $a$ is greater then or equal to $b$ | \le |
$a \ge b$ | $a$ is less then or equal to $b$ | \ge |
$a \times b$ | $a$ times $b$ | \times |
$a \cdot b$ | $a$ times $b$ | \cdot |
$a \div b$ | $a$ by $b$ | \div |
$a \,/\, b$ | $a$ by $b$ | / |
$a:b$ | the ratio of $a$ to $b$ | : |
$(a + b)c$ | $a$ plus $b$ in parentheses times $c$ | |
$(a + b)(a - b)$ | $a$ plus $b$ times $a$ minus $b$ | |
$n!$ | $n$ factorial | ! |
$_nP_r$ | permutation of $n$ things (taken) $r$ at a time | _nP_r |
$_nC_r$ | combination of $n$ things (taken) $r$ at a time | _nC_r |
$a \equiv b \pmod{n}$ | $a$ is congruent to $b$ modulo $n$ | \equiv \pmod |
$a \vert b$ | $a$ is a divisor of $b$ | \vert |
$\vec{a}$ | vector $a$ | \vec |
\(\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}\) | $m$ times $n$ matrix $a$ one one to $a$ $m$ $n$ | \begin{pmatrix} \cdots \vdots \ddots |
$\left( a_{ij} \right)$ | matrix $a$ $i$ $j$ | _{ij} |
$\det A$ | determinant of $A$ | \det |
$\lvert A\rvert$ | determinant of $A$ | \lvert \rvert |
$A^{-1}$ | inverse of $A$ | ^{-1} |
$A^t$ | transpose of $A$ | ^t |
$\mathrm{adj}\, A$ | adjoint of $A$ | \mathrm{adj}\, |
$\mathrm{tr}\, A$ | trace of $A$ | \mathrm{tr}\, |
$A \bigotimes B$ | Kronecker product (tensor product) of $A$ $B$ | \bigotimes |
\(\{x\,\vert\,C\}\) | set of $x$ satisfying $C$ | { \,\vert\, } |
\(\{x_n\}\) | sequence $x$ sub $n$ | {} |
$x_1, x_2, \ldots$ | $x$ one $x$ two and so on | \ldots |
$x \in \mathbb{Z}$ | $x$ is an element of $\mathbb{Z}$ | \in \mathbb |
$\mathbb{Z} \ni x$ | $\mathbb{Z}$ contains $x$ | \mathbb \ni |
$A \subset B$ | $A$ is contained in $B$, $A$ is a subset of $B$ | \subset |
$A \supset B$ | $A$ contains $B$ | \supset |
$A \varsubsetneqq B$ | $A$ is properly contained in $B$ | \varsubsetneqq |
$A \cup B$ | $A$ union $B$ | \cup |
$A \cap B$ | $A$ intersection $B$ | \cap |
$\emptyset$ | empty set | \emptyset |
$\dim A$ | dimension of $A$ | \dim |
$\ln x$ | natural logarithm of $x$ | \ln |
$\Re z$ | real part of $z$ | \Re |
$\Im z$ | imaginary part of $z$ | \Im |
\(\lim_{n\to\infty} x_n\) | limit of $x_n$ as $n$ tends to [approaches] infinity | \lim \to \infty |
$x_n \to -\infty \;(n\to\infty)$ | $x_n$ tends to minus infinity as $n$ tends to [approaches] infinity | \to \infty |
$x_1 + \cdots + x_n$ | the sum of the x's from sub one to sub $n$ | \cdots |
\(\sum_{k=1}^k x_k\) | sum of $x_k$ k equals one to $n$ | \sum |
\(\prod_{k=1}^k x_k\) | product of $x_k$ k equals one to $n$ | \prod |
$f: X \to Y$ | function $f$ mapping $X$ into $Y$ | \to |
$f: x \mapsto x$ | function $f$ mapping $x$ to $y$ | \mapsto |
$f \vert E$ | $f$ restricted on $E$ | \vert |
$\mathrm{Im}\,f$ | image of $f$ | \mathrm{Im}\, |
$\mathrm{Ker}\,f$ | kernel of $f$ | \mathrm{Ker}\, |
$f \circ g$ | $f$ composition $g$ | \circ |
$f * g$ | $f$ convolution $g$ | * |
$f \sim g$ | $f$ is equivalent to $g$ | \sim |
$\lVert x\rVert$ | norm of $x$ | \lVert \rVert |
$\dfrac{dy}{dx}$ | $d$ $y$ over [by] $d$ $x$ | d |
$\dfrac{d^2y}{dx^2}$ | $d$ two $y$ over [by] $d$ $x$ square | d^2 |
$\dfrac{\partial z}{\partial x}$ | round $d$ $z$ over round $d$ $x$ | \partial |
$\varphi(x)$ | phi of $x$ | \varphi |
$\nabla \cdot f$ | nabla dot $f$ | \nabla \cdot |
$\Delta f$ | Laplacian of $f$ | \Delta |
$\int y \,dx$ | integral $y$ $d$ $x$ | \int \,dx |
$\int_a^b y \,dx$ | integral from $a$ to $b$ of $y$ $d$ $x$ | \int \,dx |
$\iint f(x,y) \,dxdy$ | double integral of $f$ of $x$ $y$ | \iint \,dxdy |
$\iint_E f(x,y) \,dxdy$ | double integral over $E$ of $f$ of $x$ $y$ | \iint \,dxdy |
$f \bot g$ | $f$ is orthogonal to $g$ | \bot |
$P(E)$ | probability of $E$ | P() |
$P(E|F)$ | probability of $E$ under the condition [when] $F$ | P(|) |
\(\bigcup\limits_{k=1}^{n} E_k\) | union of $E_k$ $k$ running from one to $n$ | \bigcup\limits |
\(\bigcap\limits_{k=1}^{n} E_k\) | intersection of $E_k$ $k$ running from one to $n$ | \bigcap\limits |
参考
記号を描くと似ている記号とそのLaTeXコマンドを表示するツール http://detexify.kirelabs.org/classify.html