晴耕雨読

work in the field in fine weather and stay at home reading when it is wet

数学・数式・記号などの英語の読み方

The pronunciations of mathematical symbols are given in the list below.

Math Pronunciation LaTeX
$\dfrac{1}{2}$ one over two \dfrac
$1.2$ one point two .
$\therefore$ therefore \therefore
$\because$ because \because
$\forall x$ for all $x$ \forall
$\exists x$ for some $x$ \exists
$p \wedge q$ $p$ and $q$ \wedge
$p \vee q$ $p$ or $q$ \vee
$\neg p$ not $p$ \neg
$p \rightarrow q$ $p$ implies $q$ \rightarrow
$p \Rightarrow q$ if $p$ then $q$ \Rightarrow
$p \leftrightarrow q$ $p$ is equivalent to $q$ \leftrightarrow
$p \Leftrightarrow q$ $p$ if and only if [iff] $q$ \Leftrightarrow
$a’$ $a$ prime
$a’’$ $a$ double prime ’’
$\bar{a}$ $a$ bar \var
$\widetilde{a}$ $a$ tilde \widetilde
$\hat{a}$ $a$ hat \hat
$a^*$ $a$ star ^*
$\pm a$ plus or minus $a$ \pm
$\lvert a\rvert$ absolute value of $a$ \lvert \rvert
$a^2$ $a$ square ^2
$a^3$ $a$ cube ^3
$a^n$ $a$ to the $n$ [$n$th (power)] ^n
$a_n$ $a$ sub $n$ _n
$\sqrt{a}$ square root of $a$ \sqrt
$\sqrt[3]{a}$ cube root of $a$ \sqrt[3]
$\sqrt[n]{a}$ $n$th root of $a$ \sqrt[n]
$a \approx b$ $a$ is approximately equal to $b$ \approx
$a \le b$ $a$ is greater then or equal to $b$ \le
$a \ge b$ $a$ is less then or equal to $b$ \ge
$a \times b$ $a$ times $b$ \times
$a \cdot b$ $a$ times $b$ \cdot
$a \div b$ $a$ by $b$ \div
$a \,/\, b$ $a$ by $b$ /
$a:b$ the ratio of $a$ to $b$ :
$(a + b)c$ $a$ plus $b$ in parentheses times $c$  
$(a + b)(a - b)$ $a$ plus $b$ times $a$ minus $b$  
$n!$ $n$ factorial !
$_nP_r$ permutation of $n$ things (taken) $r$ at a time _nP_r
$_nC_r$ combination of $n$ things (taken) $r$ at a time _nC_r
$a \equiv b \pmod{n}$ $a$ is congruent to $b$ modulo $n$ \equiv \pmod
$a|b$ $a$ is a divisor of $b$ |
$\vec{a}$ vector $a$ \vec
$m$ times $n$ matrix $a$ one one to $a$ $m$ $n$ \begin{pmatrix} \cdots \vdots \ddots
$\left( a_{ij} \right)$ matrix $a$ $i$ $j$ _{ij}
$\det A$ determinant of $A$ \det
$\lvert A\rvert$ determinant of $A$ \lvert \rvert
$A^{-1}$ inverse of $A$ ^{-1}
$A^t$ transpose of $A$ ^t
$\mathrm{adj}\, A$ adjoint of $A$ \mathrm{adj}\,
$\mathrm{tr}\, A$ trace of $A$ \mathrm{tr}\,
$A \bigotimes B$ Kronecker product (tensor product) of $A$ $B$ \bigotimes
set of $x$ satisfying $C$ { \,|\, }
sequence $x$ sub $n$ {}
$x_1, x_2, …$ $x$ one $x$ two and so on
$x \in \mathbb{Z}$ $x$ is an element of $\mathbb{Z}$ \in \mathbb
$\mathbb{Z} \ni x$ $\mathbb{Z}$ contains $x$ \mathbb \ni
$A \subset B$ $A$ is contained in $B$, $A$ is a subset of $B$ \subset
$A \supset B$ $A$ contains $B$ \supset
$A \varsubsetneqq B$ $A$ is properly contained in $B$ \varsubsetneqq
$A \cup B$ $A$ union $B$ \cup
$A \cap B$ $A$ intersection $B$ \cap
$\emptyset$ empty set \emptyset
$\dim A$ dimension of $A$ \dim
$\ln x$ natural logarithm of $x$ \ln
$\Re z$ real part of $z$ \Re
$\Im z$ imaginary part of $z$ \Im
limit of $x_n$ as $n$ tends to [approaches] infinity \lim \to \infty
$x_n \to -\infty \;(n\to\infty)$ $x_n$ tends to minus infinity as $n$ tends to [approaches] infinity \to \infty
$x_1 + \cdots + x_n$ the sum of the x’s from sub one to sub $n$ \cdots
sum of $x_k$ k equals one to $n$ \sum
product of $x_k$ k equals one to $n$ \prod
$f: X \to Y$ function $f$ mapping $X$ into $Y$ \to
$f: x \mapsto x$ function $f$ mapping $x$ to $y$ \mapsto
$f | E$ $f$ restricted on $E$ |
$\mathrm{Im}\,f$ image of $f$ \mathrm{Im}\,
$\mathrm{Ker}\,f$ kernel of $f$ \mathrm{Ker}\,
$f \circ g$ $f$ composition $g$ \circ
$f * g$ $f$ convolution $g$ *
$f \sim g$ $f$ is equivalent to $g$ \sim
$\lVert x\rVert$ norm of $x$ \lVert \rVert
$\dfrac{dy}{dx}$ $d$ $y$ over [by] $d$ $x$ d
$\dfrac{d^2y}{dx^2}$ $d$ two $y$ over [by] $d$ $x$ square d^2
$\dfrac{\partial z}{\partial x}$ round $d$ $z$ over round $d$ $x$ \partial
$\varphi(x)$ phi of $x$ \varphi
$\nabla \cdot f$ nabla dot $f$ \nabla \cdot
$\Delta f$ Laplacian of $f$ \Delta
$\int y \,dx$ integral $y$ $d$ $x$ \int \,dx
$\int_a^b y \,dx$ integral from $a$ to $b$ of $y$ $d$ $x$ \int \,dx
$\iint f(x,y) \,dxdy$ double integral of $f$ of $x$ $y$ \iint \,dxdy
$\iint_E f(x,y) \,dxdy$ double integral over $E$ of $f$ of $x$ $y$ \iint \,dxdy
$f \bot g$ $f$ is orthogonal to $g$ \bot
$P(E)$ probability of $E$ P()
$P(E|F)$ probability of $E$ under the condition [when] $F$ P(|)
union of $E_k$ $k$ running from one to $n$ \bigcup\limits
intersection of $E_k$ $k$ running from one to $n$ \bigcap\limits

参考

記号を描くと似ている記号とそのLaTeXコマンドを表示するツール http://detexify.kirelabs.org/classify.html