Network Working Group                                          F. Cuervo
Request for Comments: 2885                                     N. Greene
Category: Standards Track                                Nortel Networks
                                                              C. Huitema
                                                   Microsoft Corporation
                                                               A. Rayhan
                                                         Nortel Networks
                                                                B. Rosen
                                                               J. Segers
                                                     Lucent Technologies
                                                             August 2000
                      Megaco Protocol version 0.8

Status of this Memo


This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

この文書は、インターネットコミュニティのためのインターネット標準トラックプロトコルを指定し、改善のための議論と提案を要求します。このプロトコルの標準化状態と状態への「インターネット公式プロトコル標準」(STD 1)の最新版を参照してください。このメモの配布は無制限です。

Copyright Notice


Copyright (C) The Internet Society (2000). All Rights Reserved.




This document is common text with Recommendation H.248 as redetermined in Geneva, February 2000. It must be read in conjunction with the Megaco Errata, RFC 2886. A merged document presenting the Megaco protocol with the Errata incorporated will be available shortly.

ジュネーブ、2000年2月に再決定としてこの文書では、それはMegacoの正誤表と併せて読まれなければならない勧告H.248と一般的なテキストで、組み込まエラッタとMegacoのプロトコルを提示するRFC 2886. Aマージされた文書は、間もなく利用可能になります。

The protocol presented in this document meets the requirements for a media gateway control protocol as presented in RFC 2805.

RFC 2805に示されたように、本書で提示プロトコルは、メディアゲートウェイ制御プロトコルのための要件を満たしています。



   1. SCOPE..........................................................6
   2. REFERENCES.....................................................6
   2.1 Normative references..........................................6
   2.2 Informative references........................................8
   3. DEFINITIONS....................................................9
   4. ABBREVIATIONS.................................................10
   5. CONVENTIONS...................................................11
   6. CONNECTION MODEL..............................................11
   6.1 Contexts.....................................................14
        6.1.1 Context Attributes and Descriptors....................15
        6.1.2 Creating, Deleting and Modifying Contexts.............15
   6.2 Terminations.................................................15
        6.2.1 Termination Dynamics..................................16
        6.2.2 TerminationIDs........................................17
        6.2.3 Packages..............................................17
        6.2.4 Termination Properties and Descriptors................18
        6.2.5 Root Termination......................................20
   7. COMMANDS......................................................20
   7.1 Descriptors..................................................21
        7.1.1 Specifying Parameters.................................21
        7.1.2 Modem Descriptor......................................22
        7.1.3 Multiplex Descriptor..................................22
        7.1.4 Media Descriptor......................................23
        7.1.5 Termination State Descriptor..........................23
        7.1.6 Stream Descriptor.....................................24
        7.1.7 LocalControl Descriptor...............................24
        7.1.8 Local and Remote Descriptors..........................25
        7.1.9 Events Descriptor.....................................28
        7.1.10 EventBuffer Descriptor...............................31
        7.1.11 Signals Descriptor...................................31
        7.1.12 Audit Descriptor.....................................32
        7.1.13 ServiceChange Descriptor.............................33
        7.1.14 DigitMap Descriptor..................................33
        7.1.15 Statistics Descriptor................................38
        7.1.16 Packages Descriptor..................................39
        7.1.17 ObservedEvents Descriptor............................39
        7.1.18  Topology Descriptor.................................39
   7.2 Command Application Programming Interface....................42
        7.2.1 Add...................................................43
        7.2.2 Modify................................................44
        7.2.3 Subtract..............................................45
        7.2.4 Move..................................................46
        7.2.5 AuditValue............................................47
        7.2.6 AuditCapabilities.....................................48
        7.2.7 Notify................................................49
        7.2.8 ServiceChange.........................................50
        7.2.9 Manipulating and Auditing Context Attributes..........54
        7.2.10 Generic Command Syntax...............................54
   7.3 Command Error Codes..........................................55
   8. TRANSACTIONS..................................................56
   8.1 Common Parameters............................................58
        8.1.1 Transaction Identifiers...............................58
        8.1.2 Context Identifiers...................................58
   8.2 Transaction Application Programming Interface................58
        8.2.1 TransactionRequest....................................59
        8.2.2 TransactionReply......................................59
        8.2.3 TransactionPending....................................60
   8.3 Messages.....................................................61
   9. TRANSPORT.....................................................61
   9.1 Ordering of Commands.........................................62
   9.2 Protection against Restart Avalanche.........................63
   10. SECURITY CONSIDERATIONS......................................64
   10.1 Protection of Protocol Connections..........................64
   10.2 Interim AH scheme...........................................65
   10.3 Protection of Media Connections.............................66
   11.  MG-MGC CONTROL INTERFACE....................................66
   11.1 Multiple Virtual MGs........................................67
   11.2 Cold Start..................................................68
   11.3 Negotiation of Protocol Version.............................68
   11.4 Failure of an MG............................................69
   11.5 Failure of an MGC...........................................69
   12. PACKAGE DEFINITION...........................................70
   12.1 Guidelines for defining packages............................71
        12.1.1 Package..............................................71
        12.1.2 Properties...........................................72
        12.1.3 Events...............................................72
        12.1.4 Signals..............................................73
        12.1.5 Statistics...........................................73
        12.1.6 Procedures...........................................73
   12.2 Guidelines to defining Properties, Statistics and Parameters
        to Events and Signals.......................................73
   12.3 Lists.......................................................74
   12.4 Identifiers.................................................74
   12.5 Package Registration........................................74
   13.  IANA CONSIDERATIONS.........................................74
   13.1 Packages....................................................74
   13.2 Error Codes.................................................75
   13.3 ServiceChange Reasons.......................................76
   A.1 Coding of wildcards..........................................77
   A.2 ASN.1 syntax specification...................................78
   A.3 Digit maps and path names....................................94
   B.1 Coding of wildcards..........................................95
   B.2 ABNF specification...........................................95
   C.1 General Media Attributes....................................107
   C.2 Mux Properties..............................................108
   C.3 General bearer properties...................................109
   C.4 General ATM properties......................................109
   C.5 Frame Relay.................................................112
   C.6 IP..........................................................113
   C.7 ATM AAL2....................................................113
   C.8 ATM AAL1....................................................114
   C.9 Bearer Capabilities.........................................116
   C.10 AAL5 Properties............................................123
   C.11 SDP Equivalents............................................124
   C.12 H.245......................................................124
   ANNEX D TRANSPORT OVER IP (NORMATIVE)...........................125
   D.1 Transport over IP/UDP using Application Level Framing.......125
        D.1.1 Providing At-Most-Once Functionality.................125
        D.1.2 Transaction identifiers and three-way handshake......126
                D.1.2.1 Transaction identifiers....................126
                D.1.2.2 Three-way handshake........................126
        D.1.3 Computing retransmission timers......................127
        D.1.4 Provisional responses................................128
        D.1.5 Repeating Requests, Responses and Acknowledgements...128
   D.2  using TCP..................................................130
           D.2.1 Providing the At-Most-Once functionality..........130
           D.2.2 Transaction identifiers and three way handshake...130
           D.2.3 Computing retransmission timers...................131
           D.2.4 Provisional responses.............................131
           D.2.5 Ordering of commands..............................131
   ANNEX E BASIC PACKAGES..........................................131
   E.1 Generic.....................................................131
        E.1.1 Properties...........................................132
        E.1.2 Events...............................................132
        E.1.3 Signals..............................................133
        E.1.4 Statistics...........................................133
   E.2 Base Root Package...........................................133
        E.2.1 Properties...........................................134
        E.2.2 Events...............................................135
        E.2.3 Signals..............................................135
        E.2.4 Statistics...........................................135
        E.2.5 Procedures...........................................135
   E.3 Tone Generator Package......................................135
        E.3.1 Properties...........................................135
        E.3.2 Events...............................................136
        E.3.3 Signals..............................................136
        E.3.4 Statistics...........................................136
        E.3.5 Procedures...........................................136
   E.4 Tone Detection Package......................................137
        E.4.1 Properties...........................................137
        E.4.2 Events...............................................137
        E.4.3 Signals..............................................139
        E.4.4 Statistics...........................................139
        E.4.5 Procedures...........................................139
   E.5 Basic DTMF Generator Package................................140
        E.5.1 Properties...........................................140
        E.5.2 Events...............................................140
        E.5.3 Signals..............................................140
        E.5.4 Statistics...........................................141
        E.5.5 Procedures...........................................141
   E.6 DTMF detection Package......................................141
        E.6.1 Properties...........................................142
        E.6.2 Events...............................................142
        E.6.3 Signals..............................................143
        E.6.4 Statistics...........................................143
        E.6.5 Procedures...........................................143
   E.7 Call Progress Tones Generator Package.......................143
        E.7.1 Properties...........................................144
        E.7.2 Events...............................................144
        E.7.3 Signals..............................................144
        E.7.4 Statistics...........................................145
        E.7.5 Procedures...........................................145
   E.8 Call Progress Tones Detection Package.......................145
        E.8.1 Properties...........................................145
        E.8.2 Events...............................................145
        E.8.3 Signals..............................................145
        E.8.4 Statistics...........................................145
        E.8.5 Procedures...........................................146
   E.9 Analog Line Supervision Package.............................146
        E.9.1 Properties...........................................146
        E.9.2 Events...............................................146
        E.9.3 Signals..............................................147
        E.9.4 Statistics...........................................148
        E.9.5 Procedures...........................................148
   E.10 Basic Continuity Package...................................148
        E.10.1 Properties..........................................148
        E.10.2 Events..............................................148
        E.10.3 Signals.............................................149
        E.10.4 Statistics..........................................150
        E.10.5 Procedures..........................................150
   E.11 Network Package............................................150
        E.11.1 Properties..........................................150
        E.11.2 Events..............................................151
        E.11.3 Signals.............................................152
        E.11.4 Statistics..........................................152
        E.11.5 Procedures..........................................153
   E.12 RTP  Package...............................................153
        E.12.1 Properties..........................................153
        E.12.2 Events..............................................153
        E.12.3 Signals.............................................153
        E.12.4 Statistics..........................................153
        E.12.5 Procedures..........................................154
   E.13 TDM Circuit Package........................................154
        E.13.1 Properties..........................................155
        E.13.2 Events..............................................155
        E.13.3 Signals.............................................155
        E.13.4 Statistics..........................................156
        E.13.5 Procedures..........................................156
   A.1 Residential Gateway to Residential Gateway Call.............157
        A.1.1 Programming Residential GW Analog Line Terminations for
        Idle Behavior..............................................157
        A.1.2 Collecting Originator Digits and Initiating Termination
   Authors' Addresses..............................................168
   Full Copyright Statement........................................170

This document defines the protocol used between elements of a physically decomposed multimedia gateway. There are no functional differences from a system view between a decomposed gateway, with distributed sub-components potentially on more than one physical device, and a monolithic gateway such as described in H.246. This recommendation does not define how gateways, multipoint control units or integrated voice response units (IVRs) work. Instead it creates a general framework that is suitable for these applications. Packet network interfaces may include IP, ATM or possibly others. The interfaces will support a variety of SCN signalling systems, including tone signalling, ISDN, ISUP, QSIG, and GSM. National variants of these signalling systems will be supported where applicable.


The protocol definition in this document is common text with ITU-T Recommendation H.248. It meets the requirements documented in RFC 2805.

この文書に記載されているプロトコルの定義は、ITU-T勧告H.248と共通のテキストです。これは、RFC 2805で文書化要件を満たしています。

2.1 Normative references

ITU-T Recommendation H.225.0 (1998): "Call Signalling Protocols and Media Stream Packetization for Packet Based Multimedia Communications Systems".


ITU-T Recommendation H.235 (02/98): "Security and encryption for H-Series (H.323 and other H.245-based) multimedia terminals".


ITU-T Recommendation H.245 (1998): "Control Protocol for Multimedia Communication".

ITU-T勧告H.245(1998): "マルチメディア通信のための制御プロトコル"。

ITU-T Recommendation H.323 (1998): "Packet Based Multimedia Communication Systems".

ITU-T勧告H.323(1998): "パケットベースのマルチメディア通信システム"。

ITU-T Recommendation I.363.1 (08/96), "B-ISDN ATM Adaptation Layer specification: Type 1 AAL".

ITU-T勧告I.363.1(08/96)、 "B-ISDN ATMアダプテーションレイヤの仕様:タイプ1 AAL"。

ITU-T Recommendation I.363.2 (09/97), "B-ISDN ATM Adaptation Layer specification: Type 2 AAL".

ITU-T勧告I. 363.2(09/97)、 "B-ISDN ATMアダプテーションレイヤの仕様:タイプ2 AAL"。

ITU-T Recommendation I.363.5 (08/96), "B-ISDN ATM Adaptation Layer specification: Type 5 AAL".

ITU-T勧告I.363.5(08/96)、 "B-ISDN ATMアダプテーションレイヤの仕様:タイプ5 AAL"。

ITU-T Recommendation I.366.1 (06/98), "Segmentation and Reassembly Service Specific Convergence Sublayer for the AAL type 2".


ITU-T Recommendation I.366.2 (02/99), "AAL type 2 service specific convergence sublayer for trunking".

ITU-T勧告I.366.2(02/99)、 "トランキングのためのAALタイプ2サービス特定収束サブレイヤ"。

ITU-T Recommendation I.371 (08/96), "Traffic control and congestion control in B-ISDN".

ITU-T勧告I.371(08/96)、 "B-ISDNにおけるトラヒック制御と輻輳制御"。

ITU-T Recommendation Q.763 (09/97), "Signalling System No. 7 - ISDN user part formats and codes".

ITU-T勧告Q.763(09/97)、 "信号システム第7号 - ISDNユーザ部形式とコード"。

ITU-T Recommendation Q.765, "Signalling System No. 7 - Application transport mechanism".

ITU-T勧告Q.765、 "シグナリングシステム7号 - アプリケーション搬送機構"。

ITU-T Recommendation Q.931 (05/98): "Digital Subscriber Signalling System No. 1 (DSS 1) - ISDN User-Network Interface Layer 3 Specification for Basic Call Control".

ITU-T勧告Q.931(05/98): "デジタル加入者線信号システム第1号(DSS 1) - 基本呼制御のためのISDNユーザ・ネットワーク・インターフェイスレイヤ3仕様"。

ITU-T Recommendation Q.2630.1 (1999), "AAL Type 2 Signalling Protocol (Capability Set 1)".

ITU-T勧告Q.2630.1(1999)、 "AALタイプ2シグナリングプロトコル(能力セット1)"。

ITU-T Recommendation Q.2931 (10/95), "Broadband Integrated Services Digital Network (B-ISDN) - Digital Subscriber Signalling System No. 2 (DSS 2) - User-Network Interface (UNI) - Layer 3 specification for basic call/connection control".

ITU-T勧告Q.2931(95分の10)、「ブロードバンドサービス総合デジタル網(B-ISDN) - デジタル加入者シグナリングシステム2号(DSS 2) - ユーザネットワークインタフェース(UNI) - 基本的なレイヤ3仕様コール/接続制御」。

ITU-T Recommendation Q.2941.1 (09/97), "Digital Subscriber Signalling System No. 2 - Generic Identifier Transport".

ITU-T勧告Q.2941.1(09/97)、 "デジタル加入者シグナリングシステム2号 - 汎用識別子トランスポート"。

ITU-T Recommendation Q.2961 (10/95), "Broadband integrated services digital network (B-ISDN) - Digital subscriber signalling system no.2 (DSS 2) - additional traffic parameters".

ITU-T勧告Q.2961(95分の10)、 "広帯域統合サービスデジタル網(B-ISDN) - デジタル加入者シグナリングシステム番号2(DSS 2) - 追加のトラフィックパラメータ"。

ITU-T Recommendation Q.2961.2 (06/97), "Digital subscriber signalling system No. 2 - Additional traffic parameters: Support of ATM transfer capability in the broadband bearer capability information element."

ITU-T勧告Q.2961.2(06/97)、「デジタル加入者シグナリングシステム2号 - 追加トラフィックパラメータ:能力情報要素ベアラブロードバンドにおけるATM転送能力のサポート」

ITU-T Recommendation X.213 (11/1995), "Information technology - Open System Interconnection - Network service definition plus Amendment 1 (08/1997), Addition of the Internet protocol address format identifier".

ITU-T勧告X.213(1995分の11)、「情報技術 - 開放型システム間相互接続 - ネットワークサービス定義を加えた改正1(08/1997)、インターネットプロトコルアドレス形式識別子の追加」。

ITU-T Recommendation V.76 (08/96), "Generic multiplexer using V.42 LAPM-based procedures".

ITU-T勧告V.76(08/96)、 "V.42 LAPMベースの手順を使用して汎用マルチプレクサ"。

ITU-T Recommendation X.680 (1997): "Information technology-Abstract Syntax Notation One (ASN.1): Specification of basic notation".

ITU-T勧告X.680(1997): "情報技術 - 抽象構文記法1(ASN.1):基本的な表記法の仕様"。

ITU-T Recommendation H.246 (1998), "Interworking of H-series multimedia terminals with H-series multimedia terminals and voice/voiceband terminals on GSTN and ISDN".


Rose, M. and D. Cass, "ISO Transport Service on top of the TCP, Version 3", RFC 1006, May 1987.

ローズ、M.とD.キャス、 "ISOトランスポートサービスTCPの上、バージョン3"、RFC 1006、1987年5月。

Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", RFC 2234, November 1997.

クロッカー、D.、およびP. Overellは、 "構文仕様のための増大しているBNF:ABNF"、RFC 2234、1997年11月。

Handley, M. and V. Jacobson, "SDP: Session Description Protocol", RFC 2327, April 1998.

ハンドリー、M.およびV. Jacobson氏、 "SDP:セッション記述プロトコル"、RFC 2327、1998年4月。

Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402, November 1998.

ケント、S.とR.アトキンソン、 "IP認証ヘッダー"、RFC 2402、1998年11月。

Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998.

ケント、S.とR.アトキンソン、 "IPカプセル化セキュリティペイロード(ESP)"、RFC 2406、1998年11月。

2.2 Informative references

ITU-T Recommendation E.180/Q.35 (1998): "Technical characteristics of tones for the telephone service".

ITU-T勧告E.180 / Q.35(1998): "電話サービスのためのトーンの技術的特徴"。

CCITT Recommendation G.711 (1988), "Pulse Code Modulation (PCM) of voice frequencies".

CCITT勧告G.711(1988)、 "音声周波数の符号変調(PCM)をパルス"。

ITU-T Recommendation H.221 (05/99),"Frame structure for a 64 to 1920 kbit/s channel in audiovisual teleservices".

ITU-T勧告H.221(05/99)、「オーディオビジュアルテレサービス64 1920キロビット/秒チャネルのフレーム構造」。

ITU-T Recommendation H.223 (1996), "Multiplexing protocol for low bit rate multimedia communication".


ITU-T Recommendation Q.724 (1988): "Signalling procedures".

ITU-T勧告Q.724(1988): "シグナリング手順"。

Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980.

ポステル、J.、 "ユーザ・データグラム・プロトコル"、STD 6、RFC 768、1980年8月。

Postel, J., "Internet protocol", STD 5, RFC 791, September 1981.

ポステル、J.、 "インターネットプロトコル"、STD 5、RFC 791、1981年9月。

Postel, J., "TRANSMISSION CONTROL PROTOCOL", STD 7, RFC 793, September 1981.

ポステル、J.、 "伝送制御プロトコル"、STD 7、RFC 793、1981年9月。

Simpson, W., "The Point-to-Point Protocol", STD 51, RFC 1661, July 1994.

シンプソン、W.、 "ポイントツーポイントプロトコル"、STD 51、RFC 1661、1994年7月。

Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", RFC 1889, January 1996.

Schulzrinneと、H.、Casner、S.、フレデリック、R.とV. Jacobson氏、 "RTP:リアルタイムアプリケーションのためのトランスポートプロトコル"、RFC 1889、1996年1月。

Schulzrinne, H., "RTP Profile for Audio and Video Conferences with Minimal Control", RFC 1890, January 1996.

Schulzrinneと、H.、 "最小量のコントロールがあるオーディオとビデオ会議システムのためのRTPプロフィール"、RFC 1890、1996年1月。

Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401, November 1998.

ケント、S.とR.アトキンソン、「インターネットプロトコルのためのセキュリティー体系」、RFC 2401、1998年11月。

Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.

デアリング、S.とR. Hindenと、 "インターネットプロトコルバージョン6(IPv6)の仕様"、RFC 2460、1998年12月。

Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg, "SIP: Session Initiation Protocol", RFC 2543, March 1999.

ハンドリー、M.、Schulzrinneと、H.、学生はE.およびJ.ローゼンバーグ、 "SIP:セッション開始プロトコル"、RFC 2543、1999年3月。

Greene, N., Ramalho, M. and B. Rosen, "Media Gateway control protocol architecture and requirements", RFC 2805, April 1999.

グリーン、N.、Ramalho、M.およびB.ローゼン、 "メディアゲートウェイ制御プロトコルアーキテクチャおよび要件"、RFC 2805、1999年4月。


Access Gateway: A type of gateway that provides a User to Network Interface (UNI) such as ISDN.


Descriptor: A syntactic element of the protocol that groups related properties. For instance, the properties of a media flow on the MG can be set by the MGC by including the appropriate descriptor in a command.


Media Gateway (MG): The media gateway converts media provided in one type of network to the format required in another type of network. For example, a MG could terminate bearer channels from a switched circuit network (e.g., DS0s) and media streams from a packet network (e.g., RTP streams in an IP network). This gateway may be capable of processing audio, video and T.120 alone or in any combination, and will be capable of full duplex media translations. The MG may also play audio/video messages and performs other IVR functions, or may perform media conferencing.

メディアゲートウェイ(MG):メディアゲートウェイは、ネットワークの別のタイプに必要なフォーマットにネットワークの一種で提供されたメディアを変換します。例えば、MGは、回線交換ネットワークからベアラチャネルパケットネットワーク(例えば、RTPは、IPネットワーク内のストリーム)から(例えば、のDS0)およびメディアストリームを終了することができました。このゲートウェイは、単独でまたは任意の組み合わせでオーディオ、ビデオおよびT.120を処理することが可能であり得る、および全二重メディア翻訳することができるであろう。 MGは、オーディオ/ビデオメッセージを再生し、他のIVR機能を実行、またはメディア会議を行うことができることがあります。

Media Gateway Controller (MGC): Controls the parts of the call state that pertain to connection control for media channels in a MG.


Multipoint Control Unit (MCU): An entity that controls the setup and coordination of a multi-user conference that typically includes processing of audio, video and data.


Residential Gateway: A gateway that interworks an analogue line to a packet network. A residential gateway typically contains one or two analogue lines and is located at the customer premises.


SCN FAS Signalling Gateway: This function contains the SCN Signalling Interface that terminates SS7, ISDN or other signalling links where the call control channel and bearer channels are collocated in the same physical span.

SCN FASシグナリングゲートウェイ:この関数は、SS7、ISDNや呼制御チャネルおよびベアラチャネルは同一の物理的スパンで並置されている他のシグナリングリンクを終端するSCNシグナリングインタフェースを含んでいます。

SCN NFAS Signalling Gateway: This function contains the SCN Signalling Interface that terminates SS7 or other signalling links where the call control channels are separated from bearer channels.

SCN NFASシグナリングゲートウェイ:この機能は、SS7または呼制御チャネルをベアラチャネルから分離されている他のシグナリングリンクを終端するSCNシグナリングインタフェースを含んでいます。

Stream: Bidirectional media or control flow received/sent by a media gateway as part of a call or conference.


Trunk: A communication channel between two switching systems such as a DS0 on a T1 or E1 line.


Trunking Gateway: A gateway between SCN network and packet network that typically terminates a large number of digital circuits.



This recommendation defines the following terms.


ATM Asynchronous Transfer Mode BRI Basic Rate Interface CAS Channel Associated Signalling DTMF Dual Tone Multi-Frequency FAS Facility Associated Signalling GW GateWay IANA Internet Assigned Numbers Authority IP Internet Protocol ISUP ISDN User Part

ATM非同期転送モードBRI基本速度インターフェイスCASチャネル連携信号DTMFデュアルトーン多重周波数FAS施設連携信号GW GateWayのIANAインターネット割り当て番号機関IPインターネットプロトコルISUP ISDNユーザ部

MG Media Gateway MGC Media Gateway Controller NFAS Non-Facility Associated Signalling PRI Primary Rate Interface PSTN Public Switched Telephone Network QoS Quality of Service RTP Real-time Transport Protocol SCN Switched Circuit Network SG Signalling Gateway SS7 Signalling System No. 7



In this recommendation, "shall" refers to a mandatory requirement, while "should" refers to a suggested but optional feature or procedure. The term "may" refers to an optional course of action without expressing a preference.



The connection model for the protocol describes the logical entities, or objects, within the Media Gateway that can be controlled by the Media Gateway Controller. The main abstractions used in the connection model are Terminations and Contexts.


A Termination sources and/or sinks one or more streams. In a multimedia conference, a Termination can be multimedia and sources or sinks multiple media streams. The media stream parameters, as well as modem, and bearer parameters are encapsulated within the Termination.


A Context is an association between a collection of Terminations. There is a special type of Context, the null Context, which contains all Terminations that are not associated to any other Termination.


For instance, in a decomposed access gateway, all idle lines are represented by Terminations in the null Context.


          |Media Gateway                                         |
          | +-------------------------------------------------+  |
          | |Context                          +-------------+ |  |
          | |                                 | Termination | |  |
          | |                                 |-------------| |  |
          | |  +-------------+             +->| SCN Bearer  |<---+->
          | |  | Termination |   +-----+   |  |   Channel   | |  |
          | |  |-------------|   |     |---+  +-------------+ |  |
        <-+--->| RTP Stream  |---|  *  |                      |  |
          | |  |             |   |     |---+  +-------------+ |  |
          | |  +-------------+   +-----+   |  | Termination | |  |
          | |                              |  |-------------| |  |
          | |                              +->| SCN Bearer  |<---+->
          | |                                 |   Channel   | |  |
          | |                                 +-------------+ |  |
          | +-------------------------------------------------+  |
          |                                                      |
          |                                                      |
          |                    +------------------------------+  |
          |                    |Context                       |  |
          |  +-------------+   |              +-------------+ |  |
          |  | Termination |   | +-----+      | Termination | |  |
          |  |-------------|   | |     |      |-------------| |  |
        <-+->| SCN Bearer  |   | |  *  |------| SCN Bearer  |<---+->
          |  |   Channel   |   | |     |      |   Channel   | |  |
          |  +-------------+   | +-----+      +-------------+ |  |
          |                    +------------------------------+  |
          |                                                      |
          |                                                      |
          | +-------------------------------------------------+  |
          | |Context                                          |  |
          | |  +-------------+                +-------------+ |  |
          | |  | Termination |   +-----+      | Termination | |  |
          | |  |-------------|   |     |      |-------------| |  |
        <-+--->| SCN Bearer  |---|  *  |------| SCN Bearer  |<---+->
          | |  |   Channel   |   |     |      |   Channel   | |  |
          | |  +-------------+   +-----+      +-------------+ |  |
          | +-------------------------------------------------+  |
          | ___________________________________________________  |

Figure 1: Example of H.248 Connection Model


Figure 1 is a graphical depiction of these concepts. The diagram of Figure 1 gives several examples and is not meant to be an all-inclusive illustration. The asterisk box in each of the Contexts represents the logical association of Terminations implied by the Context.


The example below shows an example of one way to accomplish a call-waiting scenario in a decomposed access gateway, illustrating the relocation of a Termination between Contexts. Terminations T1 and T2 belong to Context C1 in a two-way audio call. A second audio call is waiting for T1 from Termination T3. T3 is alone in Context C2. T1 accepts the call from T3, placing T2 on hold. This action results in T1 moving into Context C2, as shown below.

以下の例では、コンテキスト間終端の再配置を示す、分解アクセスゲートウェイにコールウェイティングシナリオを達成する一つの方法の例を示しています。終端のT1とT2は、双方向の音声通話にコンテキストC1に属します。第二の音声通話が終了T3からT1を待っています。 T3は、Context C2に一人です。 T1は保留にT2を置く、T3からのコールを受け入れます。以下に示すようにT1でこのアクションの結果は、コンテキストC2に移動します。

          |Media Gateway                                         |
          | +-------------------------------------------------+  |
          | |Context C1                                       |  |
          | |  +-------------+                +-------------+ |  |
          | |  | Term. T2    |   +-----+      | Term. T1    | |  |
          | |  |-------------|   |     |      |-------------| |  |
        <-+--->| RTP Stream  |---|  *  |------| SCN Bearer  |<---+->
          | |  |             |   |     |      |   Channel   | |  |
          | |  +-------------+   +-----+      +-------------+ |  |
          | +-------------------------------------------------+  |
          |                                                      |
          | +-------------------------------------------------+  |
          | |Context C2                                       |  |
          | |                                 +-------------+ |  |
          | |                    +-----+      | Term. T3    | |  |
          | |                    |     |      |-------------| |  |
          | |                    |  *  |------| SCN Bearer  |<---+->
          | |                    |     |      |   Channel   | |  |
          | |                    +-----+      +-------------+ |  |
          | +-------------------------------------------------+  |

Figure 2: Example Call Waiting Scenario / Alerting Applied to T1


          |Media Gateway                                         |
          | +-------------------------------------------------+  |
          | |Context C1                                       |  |
          | |  +-------------+                                |  |
          | |  | Term. T2    |   +-----+                      |  |
          | |  |-------------|   |     |                      |  |
        <-+--->| RTP Stream  |---|  *  |                      |  |
          | |  |             |   |     |                      |  |
          | |  +-------------+   +-----+                      |  |
          | +-------------------------------------------------+  |
          |                                                      |
          | +-------------------------------------------------+  |
          | |Context C2                                       |  |
          | |  +-------------+                +-------------+ |  |
          | |  | Term. T1    |   +-----+      | Term. T3    | |  |
          | |  |-------------|   |     |      |-------------| |  |
        <-+--->| SCN Bearer  |---|  *  |------| SCN Bearer  |<---+->
          | |  |   Channel   |   |     |      |   Channel   | |  |
          | |  +-------------+   +-----+      +-------------+ |  |
          | +-------------------------------------------------+  |

Figure 3. Example Call Waiting Scenario / Answer by T1


6.1 Contexts

A Context is an association between a number of Terminations. The Context describes the topology (who hears/sees whom) and the media mixing and/or switching parameters if more than two Terminations are involved in the association.


There is a special Context called the null Context. It contains Terminations that are not associated to any other Termination. Terminations in the null Context can have their parameters examined or modified, and may have events detected on them.


In general, an Add command is used to add Terminations to Contexts. If the MGC does not specify an existing Context to which the Termination is to be added, the MG creates a new Context. A Termination may be removed from a Context with a Subtract command, and a Termination may be moved from one Context to another with a Move command. A Termination SHALL exist in only one Context at a time.

一般的には、Addコマンドは、コンテキストに終端を追加するために使用されます。 MGCは、終端が追加先となる既存のコンテキストを指定しない場合は、MGは新しいコンテキストを作成します。終了は減算コマンドを使用してコンテキストから除去することができる、および終了は、移動コマンドを使用して、別のコンテキストから移動させることができます。終了は、同時に複数のコンテキストに存在するものとします。

The maximum number of Terminations in a Context is a MG property. Media gateways that offer only point-to-point connectivity might allow at most two Terminations per Context. Media gateways that support multipoint conferences might allow three or more terminations per Context.


6.1.1 Context Attributes and Descriptors

The attributes of Contexts are:


. ContextID.

。 ContextID。

. The topology (who hears/sees whom). The topology of a Context describes the flow of media between the Terminations within a Context. In contrast, the mode of a Termination (send/receive/_) describes the flow of the media at the ingress/egress of the media gateway.

。トポロジー(聞く/誰見ています)。コンテキストのトポロジーは、コンテキスト内で終端間のメディアの流れについて説明します。対照的に、終端のモード(受信/ _ /送信)メディアゲートウェイの入口/出口でのメディアの流れについて説明します。

. The priority is used for a context in order to provide the MG with information about a certain precedence handling for a context. The MGC can also use the priority to control autonomously the traffic precedence in the MG in a smooth way in certain situations (e.g. restart), when a lot of contexts must be handled simultaneously.

。優先順位は、コンテキストの特定の優先取り扱いに関する情報とMGを提供するために、コンテキストのために使用されます。 MGCはまた、コンテキストの多くは、同時に扱わなければならないとき、(例えば、再起動します)特定の状況でのスムーズな方法で、自律的にMGにおけるトラフィックの優先順位を制御する優先順位を使用することができます。

. An indicator for an emergency call is also provided to allow a preference handling in the MG.


6.1.2 Creating, Deleting and Modifying Contexts

The protocol can be used to (implicitly) create Contexts and modify the parameter values of existing Contexts. The protocol has commands to add Terminations to Contexts, subtract them from Contexts, and to move Terminations between Contexts. Contexts are deleted implicitly when the last remaining Termination is subtracted or moved out.


6.2 Terminations

A Termination is a logical entity on a MG that sources and/or sinks media and/or control streams. A Termination is described by a number of characterizing Properties, which are grouped in a set of Descriptors that are included in commands. Terminations have unique identities (TerminationIDs), assigned by the MG at the time of their creation.


Terminations representing physical entities have a semi-permanent existence. For example, a Termination representing a TDM channel might exist for as long as it is provisioned in the gateway.


Terminations representing ephemeral information flows, such as RTP flows, would usually exist only for the duration of their use.


Ephemeral Terminations are created by means of an Add command. They are destroyed by means of a Subtract command. In contrast, when a physical Termination is Added to or Subtracted from a Context, it is taken from or to the null Context, respectively.


Terminations may have signals applied to them. Signals are MG generated media streams such as tones and announcements as well as line signals such as hookswitch. Terminations may be programmed to detect Events, the occurrence of which can trigger notification messages to the MGC, or action by the MG. Statistics may be accumulated on a Termination. Statistics are reported to the MGC upon request (by means of the AuditValue command, see section 7.2.5) and when the Termination is taken out of the call it is in.


Multimedia gateways may process multiplexed media streams. For example, Recommendation H.221 describes a frame structure for multiple media streams multiplexed on a number of digital 64 kbit/s channels. Such a case is handled in the connection model in the following way. For every bearer channel that carries part of the multiplexed streams, there is a Termination. The Terminations that source/sink the digital channels are connected to a separate Termination called the multiplexing Termination. This Termination describes the multiplex used (e.g. how the H.221 frames are carried over the digital channels used). The MuxDescriptor is used to this end. If multiple media are carried, this Termination contains multiple StreamDescriptors. The media streams can be associated with streams sourced/sunk by other Terminations in the Context.

マルチメディアゲートウェイは多重メディアストリームを処理することができます。例えば、勧告H.221は、ディジタル64キロビット/秒チャネルの数に多重化複数のメディアストリームのためのフレーム構造を記述しています。そのような場合は、以下のように接続モデルで処理されます。多重化ストリームの一部を運ぶすべてのベアラチャネルのために、終端があります。ソース/シンクデジタルチャンネルが別終端に接続されている終端は、多重終端と呼ばれます。この終了は、(H.221フレームが使用されるデジタルチャネル上で搬送される例えば方法)を用いる多重を記述する。 MuxDescriptorは、この目的のために使用されています。複数のメディアが搭載されている場合、この終了は、複数のStreamDescriptorsが含まれています。メディアストリームは、コンテキスト内の他の終端によってシンク/ソースストリームに関連付けることができます。

Terminations may be created which represent multiplexed bearers, such as an ATM AAL2. When a new multiplexed bearer is to be created, an ephemeral termination is created in a context established for this purpose. When the termination is subtracted, the multiplexed bearer is destroyed.

終端は、ATM AAL2として多重ベアラを表す生成されてもよいです。新しい多重ベアラを作成する場合は、短命終端は、この目的のために確立されたコンテキストで作成されます。終了が減算される場合、多重ベアラが破壊されます。

6.2.1 Termination Dynamics

The protocol can be used to create new Terminations and to modify property values of existing Terminations. These modifications include the possibility of adding or removing events and/or signals. The Termination properties, and events and signals are described in the ensuing sections. An MGC can only release/modify terminations and the resources that the termination represents which it has previously seized via, e.g., the Add command.

プロトコルは、新しい終端を作成したり、既存の終端のプロパティ値を変更するために使用することができます。これらの変更は、イベントおよび/または信号を追加または削除の可能性が挙げられます。終端プロパティ、イベント、および信号が続くセクションで説明されています。 MGCは/リリース終端し、それ以前に、例えば、Addコマンドを経由して押収した終了が表すリソースを変更することができます。

6.2.2 TerminationIDs

Terminations are referenced by a TerminationID, which is an arbitrary schema chosen by the MG.


TerminationIDs of physical Terminations are provisioned in the Media Gateway. The TerminationIDs may be chosen to have structure. For instance, a TerminationID may consist of trunk group and a trunk within the group.

物理的な終端ののTerminationIDsは、メディアゲートウェイでプロビジョニングされています。 TerminationIDsは、構造を有するように選択することができます。例えば、TerminationIDはトランクグループ及びグループ内のトランクから構成されてもよいです。

A wildcarding mechanism using two types of wildcards can be used with TerminationIDs. The two wildcards are ALL and CHOOSE. The former is used to address multiple Terminations at once, while the latter is used to indicate to a media gateway that it must select a Termination satisfying the partially specified TerminationID. This allows, for instance, that a MGC instructs a MG to choose a circuit within a trunk group.

ワイルドカードの二種類を使用してワイルドカード機構のTerminationIDsと共に使用することができます。 2つのワイルドカードはALLで、CHOOSE。後者は、それが部分的に指定されたTerminationIDを満たす終了を選択する必要があり、メディアゲートウェイに知らせるために使用される前者は、一度に複数の終端をアドレス指定するために使用されます。これは、MGCは、トランクグループ内の回路を選択するようにMGに指示していること、たとえば、ことができます。

When ALL is used in the TerminationID of a command, the effect is identical to repeating the command with each of the matching TerminationIDs. Since each of these commands may generate a response, the size of the entire response may be large. If individual responses are not required, a wildcard response may be requested. In such a case, a single response is generated, which contains the UNION of all of the individual responses which otherwise would have been generated, with duplicate values suppressed. Wildcard response may be particularly useful in the Audit commands.


The encoding of the wildcarding mechanism is detailed in Annexes A and B.


6.2.3 Packages

Different types of gateways may implement Terminations that have widely differing characteristics. Variations in Terminations are accommodated in the protocol by allowing Terminations to have optional Properties, Events, Signals and Statistics implemented by MGs.


In order to achieve MG/MGC interoperability, such options are grouped into Packages, and a Termination realizes a set of such Packages. More information on definition of packages can be found in section 12. An MGC can audit a Termination to determine which Packages it realizes.

MG / MGCの相互運用性を達成するために、そのようなオプションは、パッケージにグループ化され、そして終了は、そのようなパッケージのセットを実現します。パッケージの定義の詳細については、それが実現するパッケージを判断するには、終了を監査することができます部12アンMGCで見つけることができます。

Properties, Events, Signals and Statistics defined in Packages, as well as parameters to them, are referenced by identifiers (Ids). Identifiers are scoped. For each package, PropertyIds, EventIds,


SignalIds, StatisticsIds and ParameterIds have unique name spaces and the same identifier may be used in each of them. Two PropertyIds in different packages may also have the same identifier, etc.


6.2.4 Termination Properties and Descriptors

Terminations have properties. The properties have unique PropertyIDs. Most properties have default values. When a Termination is created, properties get their default values, unless the controller specifically sets a different value. The default value of a property of a physical Termination can be changed by setting it to a different value when the Termination is in the null Context. Every time such a Termination returns to the null Context, the values of its properties are reset to this default value.


There are a number of common properties for Terminations and properties specific to media streams. The common properties are also called the termination state properties. For each media stream, there are local properties and properties of the received and transmitted flows.


Properties not included in the base protocol are defined in Packages. These properties are referred to by a name consisting of the PackageName and a PropertyId. Most properties have default values described in the Package description. Properties may be read- only or read/write. The possible values of a property may be audited, as can their current values. For properties that are read/write, the MGC can set their values. A property may be declared as "Global" which has a single value shared by all terminations realizing the package. Related properties are grouped into descriptors for convenience.


When a Termination is Added to a Context, the value of its read/write properties can be set by including the appropriate descriptors as parameters to the Add command. Properties not mentioned in the command retain their prior values. Similarly, a property of a Termination in a Context may have its value changed by the Modify command. Properties not mentioned in the Modify command retain their prior values. Properties may also have their values changed when a Termination is moved from one Context to another as a result of a Move command. In some cases, descriptors are returned as output from a command.


The following table lists all of the possible Descriptors and their use. Not all descriptors are legal as input or output parameters to every command.


Descriptor Name Description


Modem Identifies modem type and properties when applicable. Mux Describes multiplex type for multimedia terminations (e.g. H.221, H.223, H.225.0) and Terminations forming the input mux. Media A list of media stream specifications (see 7.1.4). TerminationState Properties of a Termination (which can be defined in Packages) that are not stream specific. Stream A list of remote/local/localControl descriptors for a single stream. Local Contains properties that specify the media flows that the MG receives from the remote entity. Remote Contains properties that specify the media flows that the MG sends to the remote entity. LocalControl Contains properties (which can be defined in packages) that are of interest between the MG and the MGC. Events Describes events to be detected by the MG and what to do when an event is detected. EventBuffer Describes events to be detected by the MG when Event Buffering is active. Signals Describes signals and/or actions to be applied (e.g. Busy Tone) to the Terminations. Audit In Audit commands, identifies which information is desired. Packages In AuditValue, returns a list of Packages realized by Termination. DigitMap Instructions for handling DTMF tones at the MG. ServiceChange In ServiceChange, what, why service change occurred, etc. ObservedEvents In Notify or AuditValue, report of events observed. Statistics In Subtract and Audit, Report of Statistics kept on a Termination.

該当する場合モデムは、モデムの種類とプロパティを識別します。 MUXは、入力マルチプレクサを構成するマルチメディア終端(例えばH.221、H.223、H.225.0)と終端のために多重化タイプを記述する。メディアメディアストリーム仕様のリスト(7.1.4を参照)。特定のストリームされていません(パッケージで定義することができます)終了のTerminationStateプロパティ。単一ストリームのためのローカル/リモート/ローカル制御記述子のリストをストリーミング。地元メディアはMGがリモートエンティティから受信したフローを指定するプロパティが含まれています。リモートメディアはMGがリモートエンティティに送信するフロー指定するプロパティが含まれています。ローカル制御は、MGとMGCの間で注目されている(パッケージで定義することができます)のプロパティが含まれています。イベントは、MG、どのようなイベントが検出されたときに実行することによって検出されるイベントを記述します。 EventBufferはイベントバッファリングがアクティブなときにMGによって検出されるイベントを記述します。信号は、信号および/または終端に(例えばビジートーン)を適用すべきアクションを記述する。監査コマンドで監査は、所望される情報を識別する。 AuditValue内のパッケージは、終了によって実現パッケージのリストを返します。 MGでDTMFトーンを処理するためのDigitMap手順。サービス変更が発生した理由を、何のServiceChangeでのServiceChange、などがObservedEventsで通知するかAuditValue、観測されたイベントのレポート。減算および監査での統計は、統計のレポートは終了に続けました。

6.2.5 Root Termination

Occasionally, a command must refer to the entire gateway, rather than a termination within it. A special TerminationID, "Root" is reserved for this purpose. Packages may be defined on Root. Root thus may have properties and events (signals are not appropriate for root). Accordingly, the root TerminationID may appear in:


. a Modify command - to change a property or set an event . a Notify command - to report an event . an AuditValue return - to examine the values of properties implemented on root . an AuditCapability - to determine what properties of root are implemented . a ServiceChange - to declare the gateway in or out of service.

。 Aコマンドを変更 - プロパティを変更したり、イベントを設定します。 Aコマンドを通知 - イベントを報告します。 AuditValueリターン - ルート上に実装されたプロパティの値を調べます。 AuditCapability - ルートのプロパティが実装されているかを判断します。 ServiceChange - 中またはサービスのうち、ゲートウェイを宣言する。

Any other use of the root TerminationID is an error.



The protocol provides commands for manipulating the logical entities of the protocol connection model, Contexts and Terminations. Commands provide control at the finest level of granularity supported by the protocol. For example, Commands exist to add Terminations to a Context, modify Terminations, subtract Terminations from a Context, and audit properties of Contexts or Terminations. Commands provide for complete control of the properties of Contexts and Terminations. This includes specifying which events a Termination is to report, which signals/actions are to be applied to a Termination and specifying the topology of a Context (who hears/sees whom).


Most commands are for the specific use of the Media Gateway Controller as command initiator in controlling Media Gateways as command responders. The exceptions are the Notify and ServiceChange commands: Notify is sent from Media Gateway to Media Gateway Controller, and ServiceChange may be sent by either entity. Below is an overview of the commands; they are explained in more detail in section 7.2.


1. Add. The Add command adds a termination to a context. The Add command on the first Termination in a Context is used to create a Context.

1.追加します。 Addコマンドは、コンテキストに終了を追加します。コンテキスト内の最初の終了時にAddコマンドは、コンテキストを作成するために使用されます。

2. Modify. The Modify command modifies the properties, events and signals of a termination.


3. Subtract. The Subtract command disconnects a Termination from its Context and returns statistics on the Termination's participation in the Context. The Subtract command on the last Termination in a Context deletes the Context.


4. Move. The Move command atomically moves a Termination to another context.

4.移動します。 Moveコマンドは、アトミック別のコンテキストに解約を移動します。

5. AuditValue. The AuditValue command returns the current state of properties, events, signals and statistics of Terminations.

5. AuditValue。 AuditValueコマンドは、プロパティ、イベント、信号及び終端の統計の現在の状態を返します。

6. AuditCapabilities. The AuditCapabilities command returns all the possible values for Termination properties, events and signals allowed by the Media Gateway.

6. AuditCapabilities。 AuditCapabilitiesは、メディアゲートウェイによって許可された終了のプロパティ、イベント、および信号用のリターンすべての可能な値を命じます。

7. Notify. The Notify command allows the Media Gateway to inform the Media Gateway Controller of the occurrence of events in the Media Gateway.


8. ServiceChange. The ServiceChange Command allows the Media Gateway to notify the Media Gateway Controller that a Termination or group of Terminations is about to be taken out of service or has just been returned to service. ServiceChange is also used by the MG to announce its availability to an MGC (registration), and to notify the MGC of impending or completed restart of the MG. The MGC may announce a handover to the MG by sending it a ServiceChange command. The MGC may also use ServiceChange to instruct the MG to take a Termination or group of Terminations in or out of service.

8.のServiceChange。 ServiceChangeコマンドは、メディアゲートウェイは、終端の終了またはグループがサービスから取り出されようとしているか、単にサービスに返却されたメディアゲートウェイコントローラに通知することができます。 ServiceChangeは、MGC(登録)にその可用性を発表し、そしてMGの差し迫ったまたは完了し、再起動のMGCに通知するためにMGによって使用されます。 MGCはそれをのServiceChangeコマンドを送信することにより、MGへのハンドオーバを発表することがあります。 MGCはまた、中またはサービスのうち、終端の終了またはグループを取るためにMGに指示するのServiceChangeを使用することができます。

These commands are detailed in sections 7.2.1 through 7.2.8


7.1 Descriptors

The parameters to a command are termed Descriptors. A Descriptor consists of a name and a list of items. Some items may have values. Many Commands share common Descriptors. This subsection enumerates these Descriptors. Descriptors may be returned as output from a command. Parameters and parameter usage specific to a given Command type are described in the subsection that describes the Command.


7.1.1 Specifying Parameters

Command parameters are structured into a number of descriptors. In general, the text format of descriptors is DescriptorName=<someID>{parm=value, parm=value_.}.

コマンドパラメータは、記述子の数に構造化されています。一般的に、記述子のテキスト形式がDescriptorName = <someID> {PARM =値、PARM = VALUE_。}です。

Parameters may be fully specified, over-specified or under-specified:


1. Fully specified parameters have a single, unambiguous value that the command initiator is instructing the command responder to use for the specified parameter.


2. Under-specified parameters, using the CHOOSE value, allow the command responder to choose any value it can support.


3. Over-specified parameters have a list of potential values. The list order specifies the command initiator's order of preference of selection. The command responder chooses one value from the offered list and returns that value to the command initiator.


Unspecified mandatory parameters (i.e. mandatory parameters not specified in a descriptor) result in the command responder retaining the previous value for that parameter. Unspecified optional parameters result in the command responder using the default value of the parameter. Whenever a parameter is underspecified or overspecified, the descriptor containing the value chosen by the responder is included as output from the command.


Each command specifies the TerminationId the command operates on. This TerminationId may be "wildcarded". When the TerminationId of a command is wildcarded, the effect shall be as if the command was repeated with each of the TerminationIds matched.


7.1.2 Modem Descriptor

The Modem descriptor specifies the modem type and parameters, if any, required for use in e.g. H.324 and text conversation. The descriptor includes the following modem types: V.18, V.22, V.22bis, V.32, V.32bis, V.34, V.90, V.91, Synchronous ISDN, and allows for extensions. By default, no modem descriptor is present in a Termination.

モデム記述は、例えば、で使用するために必要なモデムのタイプおよびパラメータを、もしあれば、指定しますH.324とテキストの会話。 V.18、V.22、V.22bis、V.32、V.32bis、V.34、V.90、V.91、同期ISDN、および拡張することができます:記述子は以下のモデムの種類が含まれています。デフォルトでは、モデムの記述は終了中に存在しません。

7.1.3 Multiplex Descriptor

In multimedia calls, a number of media streams are carried on a (possibly different) number of bearers. The multiplex descriptor associates the media and the bearers. The descriptor includes the multiplex type:


. H.221 . H.223, . H.226, . V.76, . Possible Extensions

。 H.221。 H.223、。 H.226、。 V.76、。可能な拡張機能

and a set of TerminationIDs representing the multiplexed inputs, in order. For example:


Mux = H.221{ MyT3/1/2, MyT3/2/13, MyT3/3/6, MyT3/21/22}

MUX = H.221 {MyT3 / / 2/13 1/2、MyT3、MyT3 / 3/6 MyT3 / 22分の21}

7.1.4 Media Descriptor

The Media Descriptor specifies the parameters for all the media streams. These parameters are structured into two descriptors, a Termination State Descriptor, which specifies the properties of a termination that are not stream dependent, and one or more Stream Descriptors each of which describes a single media stream.


A stream is identified by a StreamID. The StreamID is used to link the streams in a Context that belong together. Multiple streams exiting a termination shall be synchronized with each other. Within the Stream Descriptor, there are up to three subsidiary descriptors, LocalControl, Local, and Remote. The relationship between these descriptors is thus:

ストリームはstreamIDでによって識別されます。 streamIDでは一緒に属しているコンテキスト内のストリームをリンクするために使用されます。終了を出る複数のストリームは、互いに同期されなければなりません。ストリーム記述子の中で、最大3つの子会社記述子、ローカル制御、へのローカル、リモートがあります。これらの記述子との間の関係は、このようです:

Media Descriptor TerminationStateDescriptor Stream Descriptor LocalControl Descriptor Local Descriptor Remote Descriptor


As a convenience a LocalControl, Local, or Remote descriptor may be included in the Media Descriptor without an enclosing Stream descriptor. In this case, the StreamID is assumed to be 1.


7.1.5 Termination State Descriptor

The Termination State Descriptor contains the ServiceStates property, the EventBufferControl property and properties of a termination (defined in Packages) that are not stream specific.


The ServiceStates property describes the overall state of the termination (not stream-specific). A Termination can be in one of the following states: "test", "out of service", or "in service". The "test" state indicates that the termination is being tested. The state "out of service" indicates that the termination cannot be used for traffic. The state "in service" indicates that a termination can be used or is being used for normal traffic. "in service" is the default state.

ServiceStatesプロパティは終端の全体的な状態を記述する(ストリーム特異的ではありません)。終了は、次のいずれかの状態になります「テスト」、「サービスのアウト」、または「サービスに」。 「テスト」状態は、終了がテストされていることを示しています。 「サービスのうち」状態は終了がトラフィックに使用することができないことを示しています。 「サービス中」状態は、終了を使用することができたり、通常のトラフィックに使用されていることを示します。 「サービスの」デフォルト状態です。

Values assigned to Properties may be simple values (integer/string/enumeration) or may be underspecified, where more than one value is supplied and the MG may make a choice: . Alternative Values: multiple values in a list, one of which must be selected . Ranges: minimum and maximum values, any value between min and max must be selected, boundary values included . Greater Than/Less Than: value must be greater/less than specified value . CHOOSE Wildcard: the MG chooses from the allowed values for the property


The EventBufferControl property specifies whether events are buffered following detection of an event in the Events Descriptor, or processed immediately. See section 7.1.9 for details.


7.1.6 Stream Descriptor

A Stream descriptor specifies the parameters of a single bi-directional stream. These parameters are structured into three descriptors: one that contains termination properties specific to a stream and one each for local and remote flows. The Stream Descriptor includes a StreamID which identifies the stream. Streams are created by specifying a new StreamID on one of the terminations in a Context. A stream is deleted by setting empty Local and Remote descriptors for the stream with ReserveGroup and ReserveValue in LocalControl set to "false" on all terminations in the context that previously supported that stream.


StreamIDs are of local significance between MGC and MG and they are assigned by the MGC. Within a context, StreamID is a means by which to indicate which media flows are interconnected: streams with the same StreamID are connected.


If a termination is moved from one context to another, the effect on the context to which the termination is moved is the same as in the case that a new termination were added with the same StreamIDs as the moved termination.


7.1.7 LocalControl Descriptor

The LocalControl Descriptor contains the Mode property, the ReserveGroup and ReserveValue properties and properties of a termination (defined in Packages) that are stream specific, and are of interest between the MG and the MGC. Values of properties may be underspecified as in section 7.1.1.


The allowed values for the mode property are send-only, receive-only, send/receive, inactive and loop-back. "Send" and "receive" are with respect to the exterior of the context, so that, for example, a stream set to mode=sendonly does not pass received media into the context. Signals and Events are not affected by mode.

モードプロパティの許容値は、送信専用され、受信専用、送信/受信、非アクティブとループバック。 「送信」とコンテキストの外部に対してある「受信」、ように、例えば、モードに設定されたストリームは= sendonlyのコンテキストに受信されたメディアを通過しません。シグナルとイベントモードの影響を受けません。

The boolean-valued Reserve properties, ReserveValue and ReserveGroup, of a Termination indicate what the MG is expected to do when it receives a local and/or remote descriptor.


If the value of a Reserve property is True, the MG SHALL reserve resources for all alternatives specified in the local and/or remote descriptors for which it currently has resources available. It SHALL respond with the alternatives for which it reserves resources. If it cannot not support any of the alternatives, it SHALL respond with a reply to the MGC that contains empty local and/or remote descriptors.


If the value of a Reserve property is False, the MG SHALL choose one of the alternatives specified in the local descriptor (if present) and one of the alternatives specified in the remote descriptor (if present). If the MG has not yet reserved resources to support the selected alternative, it SHALL reserve the resources. If, on the other hand, it already reserved resources for the Termination addressed (because of a prior exchange with ReserveValue and/or ReserveGroup equal to True), it SHALL release any excess resources it reserved previously. Finally, the MG shall send a reply to the MGC containing the alternatives for the local and/or remote descriptor that it selected. If the MG does not have sufficient resources to support any of the alternatives specified, is SHALL respond with error 510 (insufficient resources).

ご予約プロパティの値がFalseの場合、MGは、ローカル記述子(存在する場合)およびリモート記述子(存在する場合)に指定された選択肢の一つに指定された選択肢のいずれかを選択しないものとします。 MGは、まだ選択された代替をサポートするためのリソースを予約していない場合は、リソースを予約しないものとします。終端が(なぜならReserveValue及び/又は真に等しいReserveGroup先行交換)アドレス指定のために、他方で、それは既にリソースを予約した場合、それは以前に予約され、任意の余分のリソースを解放します。最後に、MGは、それが選択したローカルおよび/またはリモート記述子のための選択肢を含むMGCに返信を送信しなければなりません。 MGは、指定された選択肢のいずれかをサポートするための十分なリソースを持っていない場合は、エラー510(リソース不足)で応答しなければならないです。

The default value of ReserveValue and ReserveGroup is False.


A new setting of the LocalControl Descriptor completely replaces the previous setting of that descriptor in the MG. Thus to retain information from the previous setting the MGC must include that information in the new setting. If the MGC wishes to delete some information from the existing descriptor, it merely resends the descriptor (in a Modify command) with the unwanted information stripped out.

ローカル制御記述子の新しい設定が完全​​にMGのその記述子の以前の設定を置き換えます。したがって、以前の設定からの情報を保持するために、MGCは、新しい設定にその情報を含める必要があります。 MGCは、既存の記述子からいくつかの情報を削除したい場合は、それは単に取り除か不要な情報を(修正コマンドで)記述子を再送信します。

7.1.8 Local and Remote Descriptors

The MGC uses Local and Remote descriptors to reserve and commit MG resources for media decoding and encoding for the given Stream(s) and Termination to which they apply. The MG includes these descriptors in its response to indicate what it is actually prepared to support. The MG SHALL include additional properties and their values in its response if these properties are mandatory yet not present in the requests made by the MGC (e.g., by specifying detailed video encoding parameters where the MGC only specified the payload type).

MGCは、彼らが適用される指定されたストリーム(S)および終端用メディアのデコードやエンコードにMGのリソースを予約し、コミットするローカルおよびリモート記述子を使用しています。 MGは、実際にサポートする準備が何であるかを示すために、その応答でこれらの記述子を含んでいます。これらの特性はまだ(MGCのみペイロードタイプを指定された詳細なビデオ符号化パラメータを指定することによって、例えば、)MGCによって行われた要求に存在必須でない場合、MGは、その応答に追加のプロパティとその値を含まなければなりません。

Local refers to the media received by the MG and Remote refers to the media sent by the MG.


When text encoding the protocol, the descriptors consist of session descriptions as defined in SDP (RFC2327). In session descriptions sent from the MGC to the MG, the following exceptions to the syntax of RFC 2327 are allowed:

テキストプロトコルを符号化するときSDP(RFC2327)で定義されるように、記述子は、セッション記述から成ります。 MGにMGCから送られたセッション記述では、RFC 2327の構文に次の例外が許可されています。

. the "s=", "t=" and "o=" lines are optional, . the use of CHOOSE is allowed in place of a single parameter value, and . the use of alternatives is allowed in place of a single parameter value.

。 "Sの="、 "T =" 及び "O =" 行は、任意です。 CHOOSEの使用は、単一のパラメータ値の代わりに使用でき、そしてれます。代替の使用は、単一のパラメータ値の代わりに、許可されています。

When multiple session descriptions are provided in one descriptor, the "v=" lines are required as delimiters; otherwise they are optional in session descriptions sent to the MG. Implementations shall accept session descriptions that are fully conformant to RFC2327. When binary encoding the protocol the descriptor consists of groups of properties (tag-value pairs) as specified in Annex C. Each such group may contain the parameters of a session description.

複数のセッション記述は、1つの記述子で提供される場合、「V =」行は、区切り文字として必要とされます。そうでない場合は、MGに送られたセッション記述にはオプションです。実装はRFC2327に完全に準拠しているセッション記述を受け入れるもの。バイナリプロトコルを符号化する際記述子は、そのような各グループは、セッション記述のパラメータを含むことができる附属書Cに指定されているプロパティ(タグ値のペア)のグループから成ります。

Below, the semantics of the local and remote descriptors are specified in detail. The specification consists of two parts. The first part specifies the interpretation of the contents of the descriptor. The second part specifies the actions the MG must take upon receiving the local and remote descriptors. The actions to be taken by the MG depend on the values of the ReserveValue and ReserveGroup properties of the LocalControl descriptor.

以下は、ローカルおよびリモート記述子のセマンティクスを詳細に指定されています。仕様では、2つの部分からなります。最初の部分は、ディスクリプタの内容の解釈を指定します。第二部は、MGは、ローカルおよびリモート記述子を受信したときに取る必要があるアクションを指定します。 MGが取るべきアクションは、ローカル制御記述子のReserveValueとReserveGroupプロパティの値に依存します。

Either the local or the remote descriptor or both may be


. unspecified (i.e., absent), . empty, . underspecified through use of CHOOSE in a property value, . fully specified, or . overspecified through presentation of multiple groups of properties and possibly multiple property values in one or more of these groups.

。 (すなわち、存在しない)不特定。空の、 。 、プロパティの値にCHOOSEを使用してunderspecifiedさ。完全に指定、または。これらのグループの一つ以上のプロパティの複数のグループのプレゼンテーションと、おそらく複数のプロパティ値によってオーバースペック。

Where the descriptors have been passed from the MGC to the MG, they are interpreted according to the rules given in section 7.1.1, with the following additional comments for clarification: (a) An unspecified Local or Remote descriptor is considered to be a missing mandatory parameter. It requires the MG to use whatever was last specified for that descriptor. It is possible that there was no previously-specified value, in which case the descriptor concerned is ignored in further processing of the command.


(b) An empty Local (Remote) descriptor in a message from the MGC signifies a request to release any resources reserved for the media flow received (sent).


(c) If multiple groups of properties are present in a Local or Remote descriptor or multiple values within a group, the order of preference is descending.


(d) Underspecified or overspecified properties within a group of properties sent by the MGC are requests for the MG to choose one or more values which it can support for each of those properties. In case of an overspecified property, the list of values is in descending order of preference.


Subject to the above rules, subsequent action depends on the values of the ReserveValue and ReserveGroup properties in LocalControl.


If ReserveGroup is true, the MG reserves the resources required to support any of the requested property group alternatives that it can currently support. If ReserveValue is true, the MG reserves the resources required to support any of the requested property value alternatives that it can currently support.

ReserveGroupがtrueの場合、MGは、それが現在サポートできる要求されたプロパティ・グループの選択肢のいずれかをサポートするために必要なリソースを予約します。 ReserveValueがtrueの場合、MGは、それが現在サポートできる要求されたプロパティ値の選択肢のいずれかをサポートするために必要なリソースを予約します。

NOTE - If a Local or Remote descriptor contains multiple groups of properties, and ReserveGroup is true, then the MG is requested to reserve resources so that it can decode or encode the media stream according to any of the alternatives. For instance, if the Local descriptor contains two groups of properties, one specifying packetized G.711 A-law audio and the other G.723.1 audio, the MG reserves resources so that it can decode one audio stream encoded in either G.711 A-law format or G.723.1 format. The MG does not have to reserve resources to decode two audio streams simultaneously, one encoded in G.711 A-law and one in G.723.1. The intention for the use of ReserveValue is analogous.

注 - ローカルまたはリモート記述子はプロパティの複数のグループが含まれており、ReserveGroupがtrueの場合は、MGは、それが選択肢のいずれかに記載のメディア・ストリームをデコードやエンコードすることができるようにリソースを予約することが要求されます。それは1つのオーディオストリームをデコードできるように、例えば、ローカル記述子はG.711 Aのいずれかでエンコードされた性質の二つのグループ、1指定パケットG.711 A-lawのオーディオおよびその他のG.723.1オーディオ、MGの埋蔵資源が含まれている場合-law形式またはG.723.1形式。 MGは、同時にG.711 A-lawおよびG.723.1の1で符号化されたものを2つのオーディオストリームをデコードするためにリソースを予約する必要はありません。 ReserveValueの使用のために意図は似ています。

If ReserveGroup is true or ReserveValue is true, then the following rules apply.


. If the MG has insufficient resources to support all alternatives requested by the MGC and the MGC requested resources in both Local and Remote, the MG should reserve resources to support at least one alternative each within Local and Remote.

。 MGは、MGCによって要求されたすべての選択肢をサポートするための十分なリソースを持っており、MGCは、ローカルとリモートの両方のリソースを要求した場合、MGは、ローカルとリモートの内の少なくとも1つの選択肢それぞれをサポートするためのリソースを確保すべきです。

. If the MG has insufficient resources to support at least one alternative within a Local (Remote) descriptor received from the MGC, it shall return an empty Local (Remote) in response.

。 MGは、MGCから受信したローカル(リモート)の記述子内の少なくとも一つの選択肢をサポートするための十分なリソースを持っている場合、それは応答して、空のローカル(リモート)を返すものとします。

. In its response to the MGC, when the MGC included Local and Remote descriptors, the MG SHALL include Local and Remote descriptors for all groups of properties and property values it reserved resources for. If the MG is incapable of supporting at least one of the alternatives within the Local (Remote) descriptor received from the MGC, it SHALL return an empty Local (Remote) descriptor.

。 MGCは、ローカルおよびリモート記述子を含まMGCへの応答では、MGは、それがためのリソースを予約しプロパティとプロパティ値のすべてのグループのためのローカルおよびリモート記述子を含むものとします。 MGは、MGCから受信したローカル(リモート)記述子内の選択肢のうちの少なくとも一つをサポートできない場合は、空のローカル(リモート)の記述子を返します。

. If the Mode property of the LocalControl descriptor is RecvOnly or SendRecv, the MG must be prepared to receive media encoded according to any of the alternatives included in its response to the MGC.


. If ReserveGroup is False and ReserveValue is false, then the MG SHOULD apply the following rules to resolve Local and Remote to a single alternative each:

。 ReserveGroupがFalseであるとReserveValueがfalseの場合、MGは、単一の代替ごとにローカルおよびリモート解決するには、次の規則を適用する必要があります:

. The MG chooses the first alternative in Local for which it is able to support at least one alternative in Remote.

。 MGは、リモートで少なくとも一つの選択肢をサポートすることができたため現地での最初の選択肢を選択します。

. If the MG is unable to support at least one Local and one Remote alternative, it returns Error 510 (Insufficient Resources).

。 MGは、少なくとも1つのローカルおよびリモートの1つの代替をサポートすることができない場合は、エラー510(リソースが不足)を返します。

. The MG returns its selected alternative in each of Local and Remote.

。 MGは、ローカルとリモートのそれぞれにその選択された代替を返します。

A new setting of a Local or Remote Descriptor completely replaces the previous setting of that descriptor in the MG. Thus to retain information from the previous setting the MGC must include that information in the new setting. If the MGC wishes to delete some information from the existing descriptor, it merely resends the descriptor (in a Modify command) with the unwanted information stripped out.

ローカルまたはリモート記述子の新しい設定が完全​​にMGのその記述子の以前の設定を置き換えます。したがって、以前の設定からの情報を保持するために、MGCは、新しい設定にその情報を含める必要があります。 MGCは、既存の記述子からいくつかの情報を削除したい場合は、それは単に取り除か不要な情報を(修正コマンドで)記述子を再送信します。

7.1.9 Events Descriptor

The EventsDescriptor parameter contains a RequestIdentifier and a list of events that the Media Gateway is requested to detect and report. The RequestIdentifier is used to correlate the request with the notifications that it may trigger. Requested events include, for example, fax tones, continuity test results, and on-hook and off-hook transitions.

たEventsDescriptorパラメータはRequestIdentifierとメディアゲートウェイを検出して報告するように要求されたイベントのリストが含まれています。 RequestIdentifierは、それが引き起こす可能性の通知と要求を相関させるために使用されています。要求されたイベントは、例えば、ファックストーンを含み、導通試験結果、およびオンフックとオフフック遷移します。

Each event in the descriptor contains the Event name, an optional streamID, an optional KeepActive flag, and optional parameters. The Event name consists of a Package Name (where the event is defined) and an EventID. The ALL wildcard may be used for the EventID, indicating that all events from the specified package have to be detected. The default streamID is 0, indicating that the event to be detected is not related to a particular media stream. Events can have parameters. This allows a single event description to have some variation in meaning without creating large numbers of individual events. Further event parameters are defined in the package.

記述子内の各イベントは、イベント名、オプションstreamIDで、オプションのKeepActiveフラグ、およびオプションのパラメータが含まれています。イベント名は、(イベントが定義されている)パッケージ名とイベントIDで構成されています。 ALLワイルドカードを指定されたパッケージからのすべてのイベントが検出されなければならないことを示す、イベントIDのために使用することができます。デフォルトstreamIDでは、検出されるイベントは、特定のメディア・ストリームに関連していないことを示し、0です。イベントは、パラメータを持つことができます。これは、単一のイベントの説明は、個々の事象を大量に作成することなく、意味的にいくつかのバリエーションを持つことができます。また、イベントのパラメータは、パッケージで定義されています。

The default action of the MG, when it detects an event in the Events Descriptor, is to send a Notify command to the MG. Any other action is for further study.


If the value of the EventBufferControl property equals LockStep, following detection of such an event, normal handling of events is suspended. Any event which is subsequently detected and occurs in the EventBuffer Descriptor is added to the end of the EventBuffer (a FIFO queue), along with the time that it was detected. The MG SHALL wait for a new EventsDescriptor to be loaded. A new EventsDescriptor can be loaded either as the result of receiving a command with a new EventsDescriptor, or by activating an embedded EventsDescriptor.

EventBufferControlプロパティの値は、イベントの検出に続いて、ロックステップに等しい場合、イベントの通常の取り扱いが停止されます。続いて検出され、EventBufferディスクリプタで発生された任意のイベントは、それが検出された時刻とともに、EventBuffer(FIFOキュー)の最後に追加されます。 MGは、ロードするために、新しいEventsDescriptorを待つものとします。新しいたEventsDescriptorは新しいたEventsDescriptorでコマンドを受信した結果として、または埋め込まれたEventsDescriptorを活性化することのいずれかによってロードすることができます。

If EventBufferControl equals Off, the MG continues processing based on the active EventsDescriptor.


In the case that an embedded EventsDescriptor being activated, the MG continues event processing based on the newly activated EventsDescriptor (Note - for purposes of EventBuffer handling, activation of an embedded EventsDescriptor is equivalent to receipt of a new EventsDescriptor).

埋め込まれたEventsDescriptorが起動された場合に、MGは、新たに活性化されたEventsDescriptor( - EventBuffer取り扱いの目的のために、埋め込まれたEventsDescriptorの活性化は新規たEventsDescriptorの受信に等価であることに注意してください)に基づいて、イベントの処理を継続します。

When the MG receives a command with a new EventsDescriptor, one or more events may have been buffered in the EventBuffer in the MG. The value of EventBufferControl then determines how the MG treats such buffered events.

MGが新しいEventsDescriptorを使用してコマンドを受信した場合、1つ以上のイベントがMGでEventBufferにバッファリングされている可能性があります。 EventBufferControlの値は、MGは、このようなバッファリングイベントをどのように扱うかを決定します。

Case 1


If EventBufferControl = LockStep and the MG receives a new EventsDescriptor it will check the FIFO EventBuffer and take the following actions:

EventBufferControl =ロックステップとMGが新しいEventsDescriptorをを受信した場合には、FIFO EventBufferをチェックして、次のアクションを取ることになります。

1. If the EventBuffer is empty, the MG waits for detection of events based on the new EventsDescriptor.

1. EventBufferが空の場合、MGは新しいEventsDescriptorをに基づいてイベントの検出を待ちます。

2. If the EventBuffer is non-empty, the MG processes the FIFO queue starting with the first event:

2. EventBufferが空でない場合、MGは最初のイベントから始まるFIFOキューを処理します。

         a) If the event in the queue is in the events listed in the new
         EventsDescriptor, the default action of the MG is to send a
         Notify command to the MGC and remove the event from the
         EventBuffer.  Any other action is for further study.  The time
         stamp of the Notify shall be the time the event was actually
         detected.  The MG then waits for a new EventsDescriptor. While
         waiting for a new EventsDescriptor, any events matching the
         EventsBufferDescriptor will be placed in  the EventBuffer and
         the event processing will repeat from step 1.

b) If the event is not in the new EventsDescriptor, the MG SHALL discard the event and repeat from step 1.


Case 2


If EventBufferControl equals Off and the MG receives a new EventsDescriptor, it processes new events with the new EventsDescriptor.


If the MG receives a command instructing it to set the value of EventBufferControl to Off, all events in the EventBuffer SHALL be discarded.


The MG may report several events in a single Transaction as long as this does not unnecessarily delay the reporting of individual events.


For procedures regarding transmitting the Notify command, refer to the appropriate annex for specific transport considerations.


The default value of EventBufferControl is Off.


Note - Since the EventBufferControl property is in the TerminationStateDescriptor, the MG might receive a command that changes the EventBufferControl property and does not include an EventsDescriptor.

注 - EventBufferControlプロパティがTerminationStateDescriptorにあるので、MGはEventBufferControlプロパティを変更したEventsDescriptorが含まれていないコマンドを受け取ることがあります。

Normally, detection of an event shall cause any active signals to stop. When KeepActive is specified in the event, the MG shall not interrupt any signals active on the Termination on which the event is detected.

通常、イベントの検出は、任意のアクティブ信号を停止させるものとします。 KeepActiveがイベントに指定されている場合、MGはイベントが検出されている終了時にアクティブなすべての信号を中断してはなりません。

An event can include an Embedded Signals descriptor and/or an Embedded Events Descriptor which, if present, replaces the current Signals/Events descriptor when the event is detected. It is possible, for example, to specify that the dial-tone Signal be generated when an off-hook Event is detected, or that the dial-tone Signal be stopped when a digit is detected. A media gateway controller shall not send EventsDescriptors with an event both marked KeepActive and containing an embedded SignalsDescriptor.


Only one level of embedding is permitted. An embedded EventsDescriptor SHALL NOT contain another embedded EventsDescriptor; an embedded EventsDescriptor may contain an embedded SignalsDescriptor.


An EventsDescriptor received by a media gateway replaces any previous Events Descriptor. Event notification in process shall complete, and events detected after the command containing the new EventsDescriptor executes, shall be processed according to the new EventsDescriptor.


7.1.10 EventBuffer Descriptor
7.1.10 EventBuffer記述子

The EventBuffer Descriptor contains a list of events, with their parameters if any, that the MG is requested to detect and buffer when EventBufferControl equals LockStep (see 7.1.9).


7.1.11 Signals Descriptor

A SignalsDescriptor is a parameter that contains the set of signals that the Media Gateway is asked to apply to a Termination. A SignalsDescriptor contains a number of signals and/or sequential signal lists. A SignalsDescriptor may contain zero signals and sequential signal lists. Support of sequential signal lists is optional.

SignalsDescriptorは、メディアゲートウェイが終了に適用するように要求された信号のセットを含むパラメータです。 SignalsDescriptorは、信号および/または連続信号リストの番号を含みます。 SignalsDescriptorはゼロ信号と順次信号のリストを含んでいてもよいです。順次信号リストのサポートはオプションです。

Signals are defined in packages. Signals shall be named with a Package name (in which the signal is defined) and a SignalID. No wildcard shall be used in the SignalID. Signals that occur in a SignalsDescriptor have an optional StreamID parameter (default is 0, to indicate that the signal is not related to a particular media stream), an optional signal type (see below), an optional duration and possibly parameters defined in the package that defines the signal. This allows a single signal to have some variation in meaning, obviating the need to create large numbers of individual signals. Finally, the optional parameter "notifyCompletion" allows a MGC to indicate that it wishes to be notified when the signal finishes playout. When the MGC enables the signal completion event (see section E.1.2) in an Events Descriptor, that event is detected whenever a signal terminates and "notifyCompletion" for that signal is set to TRUE. The signal completion event of section E.1.2 has a parameter that indicates how the signal terminated: it played to completion, it was interrupted by an event, it was halted because a new SignalsDescriptor arrived, or the signal did not complete for some other reason.

シグナルは、パッケージで定義されています。シグナルは、パッケージ名(信号が定義されている)とSignalIDで命名されなければなりません。ワイルドカードはSignalIDで使用してはなりません。 SignalsDescriptorで発生する信号は、おそらく任意streamIDでパラメータ(デフォルトは、信号が特定のメディア・ストリームに関連しないことを示すために、0である)、任意の信号タイプ(下記参照)、任意の持続時間と、パッケージに定義されたパラメータを有しますすなわち、信号を定義します。これは、個々の信号を大量に作成する必要がなくなり、意味でいくつかのバリエーションを持っている単一の信号を可能にします。最後に、オプションのパラメータ「notifyCompletionは」MGCが、それは信号が再生を終了したときに通知されることを望んでいることを示すことができます。 MGCはイベント記述子に信号完了イベントを(セクションE.1.2を参照)を有効にすると、信号が終了し、その信号は、「notifyCompletion」はTRUEに設定されているときはいつでも、そのイベントが検出されます。セクションE.1.2の信号完了イベント信号が終了するかを示すパラメータがあります。それが完了するまでプレイし、それはイベントによって中断された、それは新しいSignalsDescriptorが到着したので停止した、または信号が何らかの理由で完了しませんでした。

The duration is an integer value that is expressed in hundredths of a second.


There are three types of signals:


. on/off - the signal lasts until it is turned off, . timeout - the signal lasts until it is turned off or a specific period of time elapses, . brief - the signal duration is so short that it will stop on its own unless a new signal is applied that causes it to stop; no timeout value is needed.

。オン/オフ - それがオフになるまで信号が、続きます。タイムアウトは - それは、特定の期間が経過オフされるまで、または信号が、続きます。簡単 - 信号期間は、新しい信号は、それが停止させることに適用されていない限り、それは自分自身で停止することをとても短いです。タイムアウト値は必要ありません。

If the signal type is specified in a SignalsDescriptor, it overrides the default signal type (see Section 12.1.4). If duration is specified for an on/off signal, it SHALL be ignored.


A sequential signal list consists of a signal list identifier, a sequence of signals to be played sequentially, and a signal type.


Only the trailing element of the sequence of signals in a sequential signal list may be an on/off signal. If the trailing element of the sequence is an on/off signal, the signal type of the sequential signal list shall be on/off as well. If the sequence of signals in a sequential signal list contains signals of type timeout and the trailing element is not of type on/off, the type of the sequential signal list SHALL be set to timeout. The duration of a sequential signal list with type timeout is the sum of the durations of the signals it contains. If the sequence of signals in a sequential signal list contains only signals of type brief, the type of the sequential signal list SHALL be set to brief. A signal list is treated as a single signal of the specified type when played out.


Multiple signals and sequential signal lists in the same SignalsDescriptor shall be played simultaneously.


Signals are defined as proceeding from the termination towards the exterior of the Context unless otherwise specified in a package. When the same Signal is applied to multiple Terminations within one Transaction, the MG should consider using the same resource to generate these Signals.


Production of a Signal on a Termination is stopped by application of a new SignalsDescriptor, or detection of an Event on the Termination (see section 7.1.9).


A new SignalsDescriptor replaces any existing SignalsDescriptor. Any signals applied to the Termination not in the replacement descriptor shall be stopped, and new signals are applied, except as follows. Signals present in the replacement descriptor and containing the KeepActive flagshall be continued if they are currently playing and have not already completed. If a replacement signal descriptor contains a signal that is not currently playing and contains the KeepActive flag, that signal SHALL be ignored. If the replacement descriptor contains a sequential signal list with the same identifier as the existing descriptor, then


. the signal type and sequence of signals in the sequential signal list in the replacement descriptor shall be ignored, and


. the playing of the signals in the sequential signal list in the existing descriptor shall not be interrupted.


7.1.12 Audit Descriptor

The Audit Descriptor specifies what information is to be audited. The Audit Descriptor specifies the list of descriptors to be returned. Audit may be used in any command to force the return of a descriptor even if the descriptor in the command was not present, or had no underspecified parameters. Possible items in the Audit Descriptor are:



Audit may be empty, in which case, no descriptors are returned. This is useful in Subtract, to inhibit return of statistics, especially when using wildcard.


7.1.13 ServiceChange Descriptor

The ServiceChangeDescriptor contains the following parameters:


. ServiceChangeMethod . ServiceChangeReason . ServiceChangeAddress

。 ServiceChangeMethod。 ServiceChangeReason。 ServiceChangeAddress

. ServiceChangeDelay . ServiceChangeProfile . ServiceChangeVersion . ServiceChangeMGCId . TimeStamp

。 ServiceChangeDelay。 ServiceChangeProfile。 ServiceChangeVersion。 ServiceChangeMGCId。タイムスタンプ

See section 7.2.8.


7.1.14 DigitMap Descriptor
7.1.14 DigitMap記述子

A DigitMap is a dialing plan resident in the Media Gateway used for detecting and reporting digit events received on a Termination. The DigitMap Descriptor contains a DigitMap name and the DigitMap to be assigned. A digit map may be preloaded into the MG by management action and referenced by name in an EventsDescriptor, may be defined dynamically and subsequently referenced by name, or the actual digitmap itself may be specified in the EventsDescriptor. It is permissible for a digit map completion event within an Events Descriptor to refer by name to a DigitMap which is defined by a DigitMap Descriptor within the same command, regardless of the transmitted order of the respective descriptors.

DigitMapは、メディアゲートウェイでのダイヤルプランの居住者は、終了時に受信桁の事象を検出し、報告するために使用されています。 DigitMap記述子はDigitMap名と割り当てられるべきDigitMapが含まれています。ケタ地図は、管理アクションによってMGにプリロードそしてたEventsDescriptorで名前によって参照することができる、動的に定義し、続いて名前によって参照、または実際digitmap自体がたEventsDescriptorで指定することができるされてもよいです。それにかかわらず、それぞれの記述子の送信順序を、同じコマンド内のDigitMap記述子によって定義されるDigitMapを名前で参照するためにイベント・ディスクリプタ内ケタ地図完成イベントに許容されます。

DigitMaps defined in a DigitMapDescriptor can occur in any of the standard Termination manipulation Commands of the protocol. A DigitMap, once defined, can be used on all Terminations specified by the (possibly wildcarded) TerminationID in such a command. DigitMaps defined on the root Termination are global and can be used on every Termination in the MG, provided that a DigitMap with the same name has not been defined on the given Termination. When a DigitMap is defined dynamically in a DigitMap Descriptor:

DigitMapDescriptorで定義さDigitMapsは、プロトコルの標準終了操作コマンドのいずれかで起こり得ます。一度定義DigitMapは、そのようなコマンドに(おそらくワイルドカード)TerminationIDによって指定されたすべての端子に使用することができます。ルート終端に定義されたDigitMapsはグローバルであり、同じ名前を持つDigitMapが与えられた終了時に定義されていないことを提供し、MG内のすべての終了時に使用することができます。 DigitMapがDigitMap記述子に動的に定義されている場合:

. A new DigitMap is created by specifying a name that is not yet defined. The value shall be present.


. A DigitMap value is updated by supplying a new value for a name that is already defined. Terminations presently using the digitmap shall continue to use the old definition; subsequent EventsDescriptors specifying the name, including any EventsDescriptor in the command containing the DigitMap descriptor, shall use the new one.

。 DigitMapの値がすでに定義されている名前の新しい値を供給することによって更新されます。現在、古い定義を使用し続けなければならdigitmapを使用して終端。 DigitMap記述子を含むコマンドで任意のたEventsDescriptorを含む名前を指定する、後続のEventsDescriptorsは、新しいものを使用しなければなりません。

. A DigitMap is deleted by supplying an empty value for a name that is already defined. Terminations presently using the digitmap shall continue to use the old definition.

。 DigitMapは既に定義されている名前に空の値を供給することによって削除されます。現在digitmapを使用して終端は、古い定義を使用することを継続するものとします。

The collection of digits according to a DigitMap may be protected by three timers, viz. a start timer (T), short timer (S), and long timer (L).


1. The start timer (T) is used prior to any digits having been dialed.


2. If the Media Gateway can determine that at least one more digit is needed for a digit string to match any of the allowed patterns in the digit map, then the interdigit timer value should be set to a long (L) duration (e.g. 16 seconds).


3. If the digit string has matched one of the patterns in a digit map, but it is possible that more digits could be received which would cause a match with a different pattern, then instead of reporting the match immediately, the MG must apply the short timer (S) and wait for more digits.


The timers are configurable parameters to a DigitMap. The Start timer is started at the beginning of every digit map use, but can be overridden.


The formal syntax of the digit map is described by the DigitMap rule in the formal syntax description of the protocol (see Annex A and Annex B). A DigitMap, according to this syntax, is defined either by a string or by a list of strings. Each string in the list is an alternative event sequence, specified either as a sequence of digit map symbols or as a regular expression of digit map symbols. These digit map symbols, the digits "0" through "9" and letters "A" through a maximum value depending on the signalling system concerned, but never exceeding "K", correspond to specified events within a package which has been designated in the Events Descriptor on the termination to which the digit map is being applied. (The mapping between events and digit map symbols is defined in the documentation for packages associated with channel-associated signalling systems such as DTMF, MF, or R2. Digits "0" through "9" MUST be mapped to the corresponding digit events within the signalling system concerned. Letters should be allocated in logical fashion, facilitating the use of range notation for alternative events.)

ケタ地図の正式な構文は、プロトコルの正式な構文記述のDigitMap規則によって記述される(付録Aと付録Bを参照)。 DigitMapは、この構文によると、文字列または文字列のリストのいずれかによって定義されます。リスト内の各文字列はケタ地図記号のシーケンスとして、あるいはケタ地図記号の正規表現として指定、代替イベントシーケンスです。これらケタ地図記号、「0」〜「9」の数字と関係するシグナリングシステムに依存し、最大値を経て文字「A」が、「K」を超えることはない、で指定されたパッケージ内に指定されたイベントに対応しますディジットマップが適用されると終了時にイベント記述子。 (イベントおよびディジットマップシンボルとの間のマッピングは、例えばDTMF、MF、又はR2、チャネル関連シグナリングシステムに関連付けられたパッケージのドキュメントで定義されている。数字「0」〜「9」内の対応する桁イベントにマッピングされなければならないスルーシステムは当該シグナリング。手紙は、代替イベントの範囲表記の使用を容易に、論理的な方法で割り当てられるべきです。)

The letter "x" is used as a wildcard, designating any event corresponding to symbols in the range "0"-"9". The string may also contain explicit ranges and, more generally, explicit sets of symbols, designating alternative events any one of which satisfies that position of the digit map. Finally, the dot symbol "." stands for zero or more repetitions of the event selector (event, range of events, set of alternative events, or wildcard) that precedes it. As a consequence of the third timing rule above, inter-event timing while matching the dot symbol uses the short timer by default.

文字「X」、「0」の範囲内のシンボルに対応する任意のイベントを指定し、ワイルドカードとして使用されている - 「9」。文字列は、より一般的に、別のイベントを指定するシンボルの明示的なセットは、のいずれかの数字マップの位置を満たす明確な範囲を含んでいてもよいです。最後に、ドット記号「」それに先行するイベントセレクタ(イベント、イベントの範囲、別のイベントのセット、またはワイルドカード)のゼロ回以上の繰り返しを表します。上記第3のタイミング規則の結果として、イベント間のタイミングは、ドット記号と一致するデフォルトで短いタイマを使用します。

In addition to these event symbols, the string may contain "S" and "L" inter-event timing specifiers and the "Z" duration modifier. "S" and "L" respectively indicate that the MG should use the short (S) timer or the long (L) timer for subsequent events, over-riding the timing rules described above. A timer specifier following a dot specifies inter-event timing for all events matching the dot as well as for subsequent events. If an explicit timing specifier is in effect in one alternative event sequence, but none is given in any other candidate alternative, the timer value set by the explicit timing specifier must be used. If all sequences with explicit timing controls are dropped from the candidate set, timing reverts to the default rules given above. Finally, if conflicting timing specifiers are in effect in different alternative sequences, the results are undefined.

これらのイベントのシンボルに加えて、文字列が「S」と「L」イベント間タイミング指定子及び「Z」期間改質剤を含んでいてもよいです。 「S」および「L」は、それぞれMGがオーバーライディング上記タイミングルール、その後のイベントのためにショート(S)タイマーまたはロング(L)タイマを使用すべきであることを示しています。ドット以下のタイマー指定子は、ドットに一致するすべてのイベントのためだけでなく、その後のイベントのためにイベント間のタイミングを指定します。明示的なタイミング指定子が一つの代替イベントシーケンスに有効であるが、いずれも、任意の他の候補代替的に指定されていない場合、明示的なタイミング指定により設定されたタイマ値を使用しなければなりません。明示的なタイミング・コントロールとすべてのシーケンスが候補セットから削除された場合、タイミングは、上記のデフォルトのルールに戻ります。相反するタイミング指定子は異なる別の配列に有効である場合、最終的に、結果は未定義です。

A "Z" designates a long duration event: placed in front of the symbol(s) designating the event(s) which satisfy a given digit position, it indicates that that position is satisfied only if the duration of the event exceeds the long-duration threshold. The value of this threshold is assumed to be provisioned in the MG.


A digit map is active while the events descriptor which invoked it is active and it has not completed. A digit map completes when:


. a timer has expired, or


. an alternative event sequence has been matched and no other alternative event sequence in the digit map could be matched through detection of an additional event (unambiguous match), or


. an event has been detected such that a match to a complete alternative event sequence of the digit map will be impossible no matter what additional events are received.


Upon completion, a digit map completion event as defined in the package providing the events being mapped into the digit map shall be generated. At that point the digit map is deactivated. Subsequent events in the package are processed as per the currently active event processing mechanisms.


Pending completion, successive events shall be processed according to the following rules:


1. The "current dial string", an internal variable, is initially empty. The set of candidate alternative event sequences includes all of the alternatives specified in the digit map.


2. At each step, a timer is set to wait for the next event, based either on the default timing rules given above or on explicit timing specified in one or more alternative event sequences. If the timer expires and a member of the candidate set of alternatives is fully satisfied, a timeout completion with full match is reported. If the timer expires and part or none of any candidate alternative is satisfied, a timeout completion with partial match is reported.


3. If an event is detected before the timer expires, it is mapped to a digit string symbol and provisionally added to the end of the current dial string. The duration of the event (long or not long) is noted if and only if this is relevant in the current symbol position (because at least one of the candidate alternative event sequences includes the "Z" modifier at this position in the sequence).


4. The current dial string is compared to the candidate alternative event sequences. If and only if a sequence expecting a long-duration event at this position is matched (i.e. the event had long duration and met the specification for this position), then any alternative event sequences not specifying a long duration event at this position are discarded, and the current dial string is modified by inserting a "Z" in front of the symbol representing the latest event. Any sequence expecting a long-duration event at this position but not matching the observed event is discarded from the candidate set. If alternative event sequences not specifying a long duration event in the given position remain in the candidate set after application of the above rules, the observed event duration is treated as irrelevant in assessing matches to them.


5. If exactly one candidate remains, a completion event is generated indicating an unambiguous match. If no candidates remain, the latest event is removed from the current dial string and a completion event is generated indicating full match if one of the candidates from the previous step was fully satisfied before the latest event was detected, or partial match otherwise. The event removed from the current dial string will then be reported as per the currently active event processing mechanisms.


6. If no completion event is reported out of step 5 (because the candidate set still contains more than one alternative event sequence), processing returns to step 2.


A digit map is activated whenever a new event descriptor is applied to the termination or embedded event descriptor is activated, and that event descriptor contains a digit map completion event which itself contains a digit map parameter. Each new activation of a digit map begins at step 1 of the above procedure, with a clear current dial string. Any previous contents of the current dial string from an earlier activation are lost. While the digit map is activated, detection is enabled for all events defined in the package containing the specified digit map completion event. Normal event behaviour (e.g. stopping of signals unless the digit completion event has the KeepActive flag enabled) continues to apply for each such event detected, except that the events in the package containing the specified digit map completion event other than the completion event itself are not individually notified.

新しいイベント記述子が終了に適用されるか、または埋め込まれたイベント記述子が活性化され、そのイベント記述子自体がケタ地図パラメータを含んケタ地図完了イベントが含まれているときはいつでもケタ地図が活性化されます。ディジットマップのそれぞれの新しい活性化は、明確な現在のダイヤル文字列で、上記の手順のステップ1から始まります。以前の起動から現在のダイヤルストリングのいずれかの以前の内容は失われます。ディジットマップが活性化されている間、検出は、指定されたケタ地図完成イベントを含むパッケージで定義されたすべてのイベントのために有効になっています。 (桁完了イベントが有効KeepActiveフラグを持っていない限り、例えば信号の停止)通常のイベントの動作が検出された各そのようなイベントを適用し続け、完了イベント自体以外の指定されたケタ地図完成イベントを含むパッケージのイベントではないことを除い個別に通知しました。

Note that if a package contains a digit map completion event, then an event specification consisting of the package name with a wildcarded ItemID (Property Name) will activate a digit map if the event includes a digit map parameter. Regardless of whether a digit map is activated, this form of event specification will cause the individual events to be reported to the MGC as they are detected.


As an example, consider the following dial plan:


0 Local operator 00 Long distance operator xxxx Local extension number (starts with 1-7) 8xxxxxxx Local number #xxxxxxx Off-site extension *xx Star services 91xxxxxxxxxx Long distance number 9011 + up to 15 digits International number

0ローカルオペレータ00長距離オペレータXXXXローカル内線番号は(1-7で始まる)8xxxxxxxローカル番号#xxxxxxx +最大15桁まで91xxxxxxxxxx長距離番号9011国際番号オフサイト延長* XXのスターサービス

If the DTMF detection package described in Annex E (section E.6) is used to collect the dialled digits, then the dialling plan shown above results in the following digit map:


(0| 00|[1-7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)

(0 | 00 | [1-7] XXX | 8xxxxxxx | Fxxxxxxx | EXX | 91xxxxxxxxxx | 9011x)。

7.1.15 Statistics Descriptor

The Statistics parameter provides information describing the status and usage of a Termination during its existence within a specific Context. There is a set of standard statistics kept for each termination where appropriate (number of octets sent and received for example). The particular statistical properties that are reported for a given Termination are determined by the Packages realized by the Termination. By default, statistics are reported when the Termination is Subtracted from the Context. This behavior can be overridden by including an empty AuditDescriptor in the Subtract command. Statistics may also be returned from the AuditValue command, or any Add/Move/Modify command using the Audit descriptor.


Statistics are cumulative; reporting Statistics does not reset them. Statistics are reset when a Termination is Subtracted from a Context.


7.1.16 Packages Descriptor

Used only with the AuditValue command, the PackageDescriptor returns a list of Packages realized by the Termination.


7.1.17 ObservedEvents Descriptor
7.1.17 ObservedEvents記述子

ObservedEvents is supplied with the Notify command to inform the MGC of which event(s) were detected. Used with the AuditValue command, the ObservedEventsDescriptor returns events in the event buffer which have not been Notified. ObservedEvents contains the RequestIdentifier of the EventsDescriptor that triggered the notification, the event(s) detected and the detection time(s). Detection times are reported with a precision of hundredths of a second. Time is expressed in UTC.

ObservedEventsが検出されたイベント(複数可)のMGCに通知する通知コマンドが供給されています。 AuditValueコマンドで使用、ObservedEventsDescriptorが通知されていないイベントバッファ内のイベントを返します。 ObservedEvents通知をトリガしたEventsDescriptorのRequestIdentifierを含有する、イベント(複数可)を検出し、検出時間(秒)。検出時間は、第二の100分の1の精度で報告されています。時間はUTCで表現されます。

7.1.18 Topology Descriptor

A topology descriptor is used to specify flow directions between terminations in a Context. Contrary to the descriptors in previous sections, the topology descriptor applies to a Context instead of a Termination. The default topology of a Context is that each termination's transmission is received by all other terminations. The Topology Descriptor is optional to implement.


The Topology Descriptor occurs before the commands in an action. It is possible to have an action containing only a Topology Descriptor, provided that the context to which the action applies already exists.


A topology descriptor consists of a sequence of triples of the form (T1, T2, association). T1 and T2 specify Terminations within the Context, possibly using the ALL or CHOOSE wildcard. The association specifies how media flows between these two Terminations as follows.

トポロジー記述子の形式(T1、T2、アソシエーション)のトリプルの配列からなります。 T1とT2は、場合によってはすべてを使用して、コンテキスト内の終端を指定するか、ワイルドカードを選択してください。関連付けは、次のようにメディアがこれらの2つの終端の間を流れる方法を指定します。

. (T1, T2, isolate) means that the Terminations matching T2 do not receive media from the Terminations matching T1, nor vice versa.

。 (T1、T2、分離)がT2と一致する終端がその逆T1と一致する終端からメディアを受信し、またしないことを意味します。

. (T1, T2, oneway) means that the Terminations that match T2 receive media from the Terminations matching T1, but not vice versa. In this case use of the ALL wildcard such that there are Terminations that match both T1 and T2 is not allowed.

。 (T1、T2、一方向)手段T2と一致する終端はT1と一致する終端からメディアを受信し、なく、逆もまた同様です。 T1とT2の両方が許可されていないと一致する終端が存在するようにすべてのワイルドカードのこの場合、使用中。

. (T1, T2, bothway) means that the Terminations matching T2 receive media from the Terminations matching T1, and vice versa. In this case it is allowed to use wildcards such that there are

。 (T1、T2、bothway)T2と一致する終端がその逆T1と一致する終端からメディアを受信し、ということを意味します。この場合、そこにあるように、ワイルドカードを使用することが許可されています

Terminations that match both T1 and T2. However, if there is a Termination that matches both, no loopback is introduced; loopbacks are created by setting the TerminationMode. CHOOSE wildcards may be used in T1 and T2 as well, under the following restrictions:


. the action (see section 8) of which the topology descriptor is part contains an Add command in which a CHOOSE wildcard is used;


. if a CHOOSE wildcard occurs in T1 or T2, then a partial name SHALL NOT be specified.

。 CHOOSEワイルドカードがT1またはT2で発生した場合、その名前の一部を指定することはないものとします。

The CHOOSE wildcard in a topology descriptor matches the TerminationID that the MG assigns in the first Add command that uses a CHOOSE wildcard in the same action. An existing Termination that matches T1 or T2 in the Context to which a Termination is added, is connected to the newly added Termination as specified by the topology descriptor. The default association when a termination is not mentioned in the Topology descriptor is bothway (if T3 is added to a context with T1 and T2 with topology (T3,T1,oneway) it will be connected bothway to T2).

トポロジー記述子でCHOOSEワイルドカードはMGが同じアクションでCHOOSEワイルドカードを使用して最初の追加のコマンドに割り当てるTerminationIDにマッチします。トポロジー記述子によって指定されるように終端が付加されたコンテキストでのT1またはT2に一致する既存の終端は、新たに追加された終端に接続されています。 (T3)はトポロジー(T3、T1、一方向とT1とT2とのコンテキストに追加され、それがT2にbothwayに接続される場合)終了がトポロジー記述子に記載されていないデフォルトの関連付けがbothwayあります。

The figure below and the table following it show some examples of the effect of including topology descriptors in actions. In these examples it is assumed that the topology descriptors are applied in sequence.


            Context 1           Context 2           Context 3
      +------------------+  +------------------+  +------------------+
      |      +----+      |  |      +----+      |  |      +----+      |
      |      | T2 |      |  |      | T2 |      |  |      | T2 |      |
      |      +----+      |  |      +----+      |  |      +----+      |
      |       ^  ^       |  |          ^       |  |          ^       |
      |       |  |       |  |          |       |  |          |       |
      |    +--+  +--+    |  |          +---+   |  |          +--+    |
      |    |        |    |  |              |   |  |             |    |
      |    v        v    |  |              v   |  |             |    |
      | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
      | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |
      | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
      +------------------+  +------------------+  +------------------+
       1. No Topology Desc.  2. T1, T2 Isolate     3. T3, T2 oneway
            Context 1           Context 2           Context 3
      +------------------+  +------------------+  +------------------+
      |      +----+      |  |      +----+      |  |      +----+      |
      |      | T2 |      |  |      | T2 |      |  |      | T2 |      |
      |      +----+      |  |      +----+      |  |      +----+      |
      |          |       |  |          ^       |  |       ^  ^       |
      |          |       |  |          |       |  |       |  |       |
      |          +--+    |  |          +---+   |  |    +--+  +--+    |
      |             |    |  |              |   |  |    |        |    |
      |             v    |  |              v   |  |    v        v    |
      | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
      | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |
      | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
      +------------------+  +------------------+  +------------------+
       4. T2, T3 oneway      5. T2, T3 bothway     6. T1, T2 bothway

Figure 4: A Sequence Of Example Topologies


Topology Description


1 No topology descriptors When no topology descriptors are included, all terminations have a both way connection to all other terminations.


2 T1, T2, Isolate Removes the connection between T1 and T2. T3 has a both way connection with both T1 and T2. T1 and T2 have bothway connection to T3.

2 T1、T2は、アイソはT1とT2との間の接続を削除します。 T3はT1とT2の両方と双方向の両方の接続を有しています。 T1とT2は、T3へbothway接続しています。

3 T3, T2, oneway A oneway connection from T3 to T2 (i.e. T2 receives media flow from T3). A bothway connection between T1 and T3.

3 T3、T2、一方向T2へT3から一方向接続(すなわち、T2​​はT3からメディアフローを受信します)。 T1とT3との間の双方向の両方の接続。

4 T2, T3, oneway A oneway connection between T2 to T3. T1 and T3 remain bothway connected

4 T2、T3、一方向T2からT3の間に一方向接続。 T1とT3が接続されて、両方の方法のまま

5 T2, T3 bothway T2 is bothway connected to T3. This results in the same as 2.

5 T2、T3 bothway T2はT3に接続bothwayあります。これは2と同じになります。

6 T1, T2 bothway (T2, T3 bothway and T1,T3 bothway may be implied or explicit). All terminations have a bothway connection to all other terminations.

6 T1、T2のbothway(T2、T3のbothway及びT1、T3のbothwayは、暗黙または明示することができます)。すべての端子は、他のすべての終端にbothway接続しています。

A oneway connection must implemented in such a way that the other Terminations in the Context are not aware of the change in topology.


7.2 Command Application Programming Interface

Following is an Application Programming Interface (API) describing the Commands of the protocol. This API is shown to illustrate the Commands and their parameters and is not intended to specify implementation (e.g. via use of blocking function calls). It describes the input parameters in parentheses after the command name and the return values in front of the Command. This is only for descriptive purposes; the actual Command syntax and encoding are specified in later subsections. All parameters enclosed by square brackets ([. . . ]) are considered optional.


7.2.1 Add

The Add Command adds a Termination to a Context.


TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Add( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )

TerminationID【、MediaDescriptor] [、ModemDescriptor] [、MuxDescriptor] [たEventsDescriptorは] [、SignalsDescriptor] [、DigitMapDescriptorは] [、ObservedEventsDescriptor] [、EventBufferDescriptor] [、StatisticsDescriptorは] [、PackagesDescriptorは(TerminationID [MediaDescriptor]を追加[ ModemDescriptor] [、MuxDescriptor] [たEventsDescriptor] [、SignalsDescriptor] [、DigitMapDescriptor] [、AuditDescriptor])

The TerminationID specifies the termination to be added to the Context. The Termination is either created, or taken from the null Context. For an existing Termination, the TerminationID would be specific. For a Termination that does not yet exist, the TerminationID is specified as CHOOSE in the command. The new TerminationID will be returned. Wildcards may be used in an Add, but such usage would be unusual. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified.


The optional MediaDescriptor describes all media streams.


The optional ModemDescriptor and MuxDescriptor specify a modem and multiplexer if applicable. For convenience, if a Multiplex Descriptor is present in an Add command and lists any Terminations that are not currently in the Context, such Terminations are added to the context as if individual Add commands listing the Terminations were invoked. If an error occurs on such an implied Add, error 471 - Implied Add for Multiplex failure shall be returned and further processing of the command shall cease.

該当する場合は、オプションのModemDescriptorとMuxDescriptorは、モデムとマルチプレクサを指定します。便宜上、マルチプレックス記述子は、Addコマンドに存在し、終端をリスト個々の追加コマンドが呼び出されたかのように、現在のコンテキストでは、そのような終端は、コンテキストに追加されていない任意の終端を示していますならば。エラーは、このような暗黙の追加で発生した場合、エラー471 - 暗黙の多重故障のための追加が返されなければならないと、コマンドのさらなる処理は中止しなければなりません。

The EventsDescriptor parameter is optional. If present, it provides the list of events that should be detected on the Termination.


The SignalsDescriptor parameter is optional. If present, it provides the list of signals that should be applied to the Termination.


The DigitMapDescriptor parameter is optional. If present, defines a DigitMap definition that may be used in an EventsDescriptor.


The AuditDescriptor is optional. If present, the command will return descriptors as specified in the AuditDescriptor.


All descriptors that can be modified could be returned by MG if a parameter was underspecified or overspecified. ObservedEvents, Statistics, and Packages, and the EventBuffer Descriptors are returned only if requested in the AuditDescriptor. Add SHALL NOT be used on a Termination with a serviceState of "OutofService".

パラメータがunderspecifiedさやオーバースペックれた場合は変更することができるすべてのディスクリプタはMGによって返されることがあります。 ObservedEvents、統計、およびパッケージ、およびEventBufferディスクリプタはAuditDescriptorに要求された場合にのみ返されます。 「OUTOFSERVICE」のserviceStateと終了時に使用してはならない追加。

7.2.2 Modify

The Modify Command modifies the properties of a Termination.


TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Modify( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )

TerminationID【、MediaDescriptor] [、ModemDescriptor] [、MuxDescriptor] [たEventsDescriptor] [、SignalsDescriptor] [、DigitMapDescriptor] [、ObservedEventsDescriptor] [、EventBufferDescriptor] [、StatisticsDescriptor] [、PackagesDescriptor]変更(TerminationID【、MediaDescriptor] [ ModemDescriptor] [、MuxDescriptor] [たEventsDescriptor] [、SignalsDescriptor] [、DigitMapDescriptor] [、AuditDescriptor])

The TerminationID may be specific if a single Termination in the Context is to be modified. Use of wildcards in the TerminationID may be appropriate for some operations. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple

コンテキスト内の単一終端が変更される場合TerminationIDは特異的であってもよいです。 TerminationIDでワイルドカードを使用すると、いくつかの操作のために適切かもしれません。ワイルドカードが1TerminationIDに一致した場合、すべての可能なマッチがそれぞれ1のために報告された結果で、試みられています。試みの注文時の複数の

TerminationIDs match is not specified. The CHOOSE option is an error, as the Modify command may only be used on existing Terminations.


The remaining parameters to Modify are the same as those to Add. Possible return values are the same as those to Add.


7.2.3 Subtract

The Subtract Command disconnects a Termination from its Context and returns statistics on the Termination's participation in the Context.


TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Subtract(TerminationID [, AuditDescriptor] )

TerminationID【、MediaDescriptor] [、ModemDescriptor] [、MuxDescriptor] [たEventsDescriptor] [、SignalsDescriptor] [、DigitMapDescriptor] [、ObservedEventsDescriptor] [、EventBufferDescriptor] [、StatisticsDescriptor] [、PackagesDescriptor]減算(TerminationID【、AuditDescriptor])

TerminationID in the input parameters represents the Termination that is being subtracted. The TerminationID may be specific or may be a wildcard value indicating that all (or a set of related) Terminations in the Context of the Subtract Command are to be subtracted. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified. The CHOOSE option is an error, as the Subtract command may only be used on existing Terminations. ALL may be used as the ContextID as well as the TerminationId in a Subtract, which would have the effect of deleting all contexts, deleting all ephemeral terminations, and returning all physical terminations to Null context.

入力パラメータのTerminationIDが減算されて終了を表します。 TerminationIDは特定であってもよく、または減算コマンドのコンテキストで終端すべての(関連のまたはセット)が減算されることを示すワイルドカード値であってもよいです。ワイルドカードが1TerminationIDに一致した場合、すべての可能なマッチがそれぞれ1のために報告された結果で、試みられています。複数のTerminationIDsマッチが指定されていない試みの順序。減算コマンドは、既存の終端に使用することができるよう選択したオプションは、エラーです。 ALLは、すべてのコンテキストを削除するすべてのエフェメラル終端の削除、およびNullコンテキストにすべての物理終端を戻す効果を有するであろう減算でのContextIDならびにTerminationIdとして使用することができます。

By default, the Statistics parameter is returned to report information collected on the Termination or Terminations specified in the Command. The information reported applies to the Termination's or Terminations' existence in the Context from which it or they are being subtracted.


The AuditDescriptor is optional. If present, the command will return descriptors as specified in the AuditDescriptor. Possible return values are the same as those to Add.


When a provisioned Termination is Subtracted from a context, its property values shall revert to:


. the default value, if specified for the property and not overridden by provisioning, . otherwise, the provisioned value.


7.2.4 Move

The Move Command moves a Termination to another Context from its current Context in one atomic operation. The Move command is the only command that refers to a Termination in a Context different from that to which the command is applied. The Move command shall not be used to move Terminations to or from the null Context.

移動コマンドは、1回のアトミック操作で現在のコンテキストから別のコンテキストに終端を移動させます。 Moveコマンドは、コマンドが適用されるものとは異なるコンテキストに終了を意味するコマンドのみです。 Moveコマンドは、NULLコンテキストまたはから終端を移動するために使用してはなりません。

TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Move( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )

TerminationID【、MediaDescriptor] [、ModemDescriptor] [、MuxDescriptor] [たEventsDescriptor] [、SignalsDescriptor] [、DigitMapDescriptor] [、ObservedEventsDescriptor] [、EventBufferDescriptor] [、StatisticsDescriptor] [、PackagesDescriptor]移動(TerminationID【、MediaDescriptor] [ ModemDescriptor] [、MuxDescriptor] [たEventsDescriptor] [、SignalsDescriptor] [、DigitMapDescriptor] [、AuditDescriptor])

The TerminationID specifies the Termination to be moved. It may be wildcarded. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified. By convention, the Termination is subtracted from its previous Context. The Context to which the Termination is moved is indicated by the target ContextId in the Action. If the last remaining Termination is moved out of a Context, the Context is deleted.


The remaining descriptors are processed as in the Modify Command. The AuditDescriptor with the Statistics option, for example, would return statistics on the Termination just prior to the Move. Possible descriptors returned from Move are the same as for Add. Move SHALL NOT be used on a Termination with a serviceState of "OutofService".


7.2.5 AuditValue
7.2.5 AuditValue

The AuditValue Command returns the current values of properties, events, signals and statistics associated with Terminations.


TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] AuditValue(TerminationID, AuditDescriptor )

TerminationID【、MediaDescriptor] [、ModemDescriptor] [、MuxDescriptor] [たEventsDescriptor] [、SignalsDescriptor] [、DigitMapDescriptor] [、ObservedEventsDescriptor] [、EventBufferDescriptor] [、StatisticsDescriptor] [、PackagesDescriptor] AuditValue(TerminationID、AuditDescriptor)

TerminationID may be specific or wildcarded. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified. If a wildcarded response is requested, only one command return is generated, with the contents containing the union of the values of all Terminations matching the wildcard. This convention may reduce the volume of data required to audit a group of Terminations. Use of CHOOSE is an error.

TerminationIDは特定またはワイルドカードを使ったことがあります。ワイルドカードが1TerminationIDに一致した場合、すべての可能なマッチがそれぞれ1のために報告された結果で、試みられています。複数のTerminationIDsマッチが指定されていない試みの順序。ワイルドカードの応答が要求された場合のみ、1つのコマンドのリターンは、ワイルドカードに一致するすべての端子の値の和集合を含む内容で、生成されます。この規則は、終端のグループを監査するために必要なデータの量を減らすことができます。 CHOOSEの使用は誤りです。

The appropriate descriptors, with the current values for the Termination, are returned from AuditValue. Values appearing in multiple instances of a descriptor are defined to be alternate values supported, with each parameter in a descriptor considered independent.


ObservedEvents returns a list of events in the EventBuffer, PackagesDescriptor returns a list of packages realized by the Termination. DigitMapDescriptor returns the name or value of the current DigitMap for the Termination. DigitMap requested in an AuditValue command with TerminationID ALL returns all DigitMaps in the gateway. Statistics returns the current values of all statistics being kept on the Termination. Specifying an empty Audit Descriptor results in only the TerminationID being returned. This may be useful to get a list of TerminationIDs when used with wildcard.

ObservedEventsはEventBuffer内のイベントのリストを返し、PackagesDescriptor終了によって実現パッケージのリストを返します。 DigitMapDescriptorは終了の現在のDigitMapの名前または値を返します。 TerminationID ALLでAuditValueコマンドで要求されたDigitMapは、ゲートウェイ内のすべてのDigitMapsを返します。統計は、終了時に保持されているすべての統計情報の現在の値を返します。返されるだけTerminationIDに空の監査記述子を指定すると。これは、ワイルドカードで使用する場合のTerminationIDsのリストを取得することが有用であり得ます。

AuditValue results depend on the Context, viz. specific, null, or wildcarded. The TerminationID may be specific, or wildcarded. The following illustrates other information that can be obtained with the Audit Command:

AuditValue結果はすなわち、コンテキストに依存します。 、特定のヌル、またはワイルドカードを使いました。 TerminationIDは、特定の、またはワイルドカードであってもよいです。以下は、監査コマンドで取得することができ、他の情報を示しています。

ContextID TerminationID Information Obtained

ContextID TerminationID情報を取得します

Specific wildcard Audit of matching Terminations in a Context


Specific specific Audit of a single Termination in a Context


Null Root Audit of Media Gateway state and events


Null wildcard Audit of all matching Terminations in the Null Context


Null specific Audit of a single Termination outside of any Context


All wildcard Audit of all matching Terminations and the Context to which they are associated


All Root List of all ContextIds


7.2.6 AuditCapabilities
7.2.6 AuditCapabilities

The AuditCapabilities Command returns the possible values of properties, events, signals and statistics associated with Terminations.


TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor]

TerminationID【、MediaDescriptor] [、ModemDescriptor] [、MuxDescriptor] [たEventsDescriptor] [、SignalsDescriptor] [、ObservedEventsDescriptor] [、EventBufferDescriptor]

[,StatisticsDescriptor] AuditCapabilities(TerminationID, AuditDescriptor )


The appropriate descriptors, with the possible values for the Termination are returned from AuditCapabilities. Descriptors may be repeated where there are multiple possible values. If a wildcarded response is requested, only one command return is generated, with the contents containing the union of the values of all Terminations matching the wildcard. This convention may reduce the volume of data required to audit a group of Terminations.


Interpretation of what capabilities are requested for various values of ContextID and TerminationID is the same as in AuditValue.


The EventsDescriptor returns the list of possible events on the Termination together with the list of all possible values for the EventsDescriptor Parameters. The SignalsDescriptor returns the list of possible signals that could be applied to the Termination together with the list of all possible values for the Signals Parameters. StatisticsDescriptor returns the names of the statistics being kept on the termination. ObservedEventsDescriptor returns the names of active events on the termination. DigitMap and Packages are not legal in AuditCapability.

たEventsDescriptorはたEventsDescriptorパラメータのすべての可能な値のリストと一緒に解約に可能性のあるイベントのリストを返します。 SignalsDescriptorは、信号パラメータのすべての可能な値のリストと一緒に解約に適用できる可能性シグナルのリストを返します。 StatisticsDescriptorは、終了時に保持されている統計の名前を返します。 ObservedEventsDescriptorは、終了時にアクティブなイベントの名前を返します。 DigitMapとパッケージはAuditCapabilityに法的ではありません。

7.2.7 Notify

The Notify Command allows the Media Gateway to notify the Media Gateway Controller of events occurring within the Media Gateway.



The TerminationID parameter specifies the Termination issuing the Notify Command. The TerminationID shall be a fully qualified name.

TerminationIDパラメータは、通知コマンドを発行して終了を指定します。 TerminationIDは完全修飾名でなければなりません。

The ObservedEventsDescriptor contains the RequestID and a list of events that the Media Gateway detected in the order that they were detected. Each event in the list is accompanied by parameters associated with the event and an indication of the time that the event was detected. Procedures for sending Notify commands with RequestID equal to 0 are for further study.

ObservedEventsDescriptorはRequestIDとメディアゲートウェイは、それらが検出された順に検出されたイベントのリストが含まれています。リスト内の各イベントは、イベントとイベントが検出された時間の表示に関連するパラメータを伴います。 0に等しいRequestIDで通知コマンドを送信するための手順は、今後の検討課題です。

Notify Commands with RequestID not equal to 0 shall occur only as the result of detection of an event specified by an Events Descriptor which is active on the termination concerned.


The RequestID returns the RequestID parameter of the EventsDescriptor that triggered the Notify Command. It is used to correlate the notification with the request that triggered it. The events in the list must have been requested via the triggering EventsDescriptor or embedded events descriptor unless the RequestID is 0 (which is for further study).

RequestIDは、通知コマンドをトリガしたEventsDescriptorのRequestIDパラメータを返します。それをトリガー要求に通知を相関させるために使用されています。 RequestIDは(今後の検討課題である)0でない限り、リスト内のイベントがトリガたEventsDescriptorまたは埋め込まれたイベント記述子を介して要求されている必要があります。

7.2.8 ServiceChange

The ServiceChange Command allows the Media Gateway to notify the Media Gateway Controller that a Termination or group of Terminations is about to be taken out of service or has just been returned to service. The Media Gateway Controller may indicate that Termination(s) shall be taken out of or returned to service. The Media Gateway may notify the MGC that the capability of a Termination has changed. It also allows a MGC to hand over control of a MG to another MGC.


TerminationID, [ServiceChangeDescriptor] ServiceChange(TerminationID, ServiceChangeDescriptor )


The TerminationID parameter specifies the Termination(s) that are taken out of or returned to service. Wildcarding of Termination names is permitted, with the exception that the CHOOSE mechanism shall not be used. Use of the "Root" TerminationID indicates a ServiceChange affecting the entire Media Gateway.

TerminationIDパラメータはから取り出しまたはサービスに返される終了(複数可)を指定します。終了名のワイルドカードは、CHOOSEメカニズムを使用してはならないことを除いて、許可されています。 「ルート」TerminationIDの使用は全体のメディアゲートウェイに影響を与えるのServiceChangeを示しています。

The ServiceChangeDescriptor contains the following parameters as required:


. ServiceChangeMethod . ServiceChangeReason . ServiceChangeDelay . ServiceChangeAddress . ServiceChangeProfile . ServiceChangeVersion . ServiceChangeMgcId . TimeStamp

。 ServiceChangeMethod。 ServiceChangeReason。 ServiceChangeDelay。 ServiceChangeAddress。 ServiceChangeProfile。 ServiceChangeVersion。 ServiceChangeMgcId。タイムスタンプ

The ServiceChangeMethod parameter specifies the type of ServiceChange that will or has occurred:


1) Graceful - indicates that the specified Terminations will be taken out of service after the specified ServiceChangeDelay; established connections are not yet affected, but the Media Gateway Controller should refrain from establishing new connections and should attempt to gracefully tear down existing connections. The MG should set termination serviceState at the expiry of ServiceChangeDelay or the removal of the termination from an active context (whichever is first), to "out of service".

1)グレースフル - 指定された終端を指定ServiceChangeDelay後にサービスから取り出されることを示しています。確立された接続はまだ影響を受けませんが、メディアゲートウェイコントローラは、新しい接続を確立控えるべきで、優雅に既存の接続を切断しようとしなければなりません。 MGはServiceChangeDelayの満了またはアクティブコンテキスト(最初の方)から、「サービス外」に終了の除去を終了serviceStateを設定しなければなりません。

2) Forced - indicates that the specified Terminations were taken abruptly out of service and any established connections associated with them were lost. The MGC is responsible for cleaning up the context (if any) with which the failed termination is associated. At a minimum the termination shall be subtracted from the context. The termination serviceState should be "out of service".

2)強制 - 指定された終端がサービスのうち、急に採取し、それらに関連するすべての確立された接続が失われたことを示しています。 MGCは失敗し、終了が関連付けられているコンテキスト(もしあれば)をクリーンアップする責任があります。最低で終端は、文脈から差し引かなければなりません。終了serviceStateは、「サービス外」でなければなりません。

3) Restart - indicates that service will be restored on the specified Terminations after expiration of the ServiceChangeDelay. The serviceState should be set to "inService" upon expiry of ServiceChangeDelay.

3)再起動 - サービスはServiceChangeDelayの満了の後に指定された終端に復元されることを示しています。 serviceStateはServiceChangeDelayの満了時に「インサービス」に設定する必要があります。

4) Disconnected - always applied with the Root TerminationID, indicates that the MG lost communication with the MGC, but it was subsequently restored. Since MG state may have changed, the MGC may wish to use the Audit command to resynchronize its state with the MG's.

4)切断 - 常にルートTerminationIDに適用されるが、MGはMGCとの通信が失われたことを示しているが、それはその後回復しました。 MGの状態が変化している可能性があるので、MGCはMGので、その状態を再同期するために、監査コマンドを使用することをお勧めします。

5) Handoff - sent from the MGC to the MG, this reason indicates that the MGC is going out of service and a new MGC association must be established. Sent from the MG to the MGC, this indicates that the MG is attempting to establish a new association in accordance with a Handoff received from the MGC with which it was previously associated.

5)ハンドオフは - MGCからMGに送られ、この理由は、MGCがサービスの外に起こっていると新しいMGCアソシエーションが確立されなければならないことを示しています。 MGCにMGから送信され、これはMGは、それが以前に関連していたとMGCから受信したハンドオフに従って新しいアソシエーションを確立しようとしていることを示しています。

6) Failover - sent from MG to MGC to indicate the primary MG is out of service and a secondary MG is taking over.

6)フェイルオーバー - プライマリMGを示すために、MGCにMGから送信されたサービスの外であり、二次MGを引き継ぐされます。

7) Another value whose meaning is mutually understood between the MG and the MGC.


The ServiceChangeReason parameter specifies the reason why the ServiceChange has or will occur. It consists of an alphanumeric token (IANA registered) and an explanatory string.


The optional ServiceChangeAddress parameter specifies the address (e.g., IP port number for IP networks) to be used for subsequent communications. It can be specified in the input parameter descriptor or the returned result descriptor. ServiceChangeAddress and ServiceChangeMgcId parameters must not both be present in the ServiceChangeDescriptor or the ServiceChangeResultDescriptor. The serviceChangeAddress provides an address to be used within the context of the association currently being negotiated, while the ServiceChangeMgcId provides an alternate address where the MG should seek to establish another association.

オプションServiceChangeAddressパラメータ(例えば、IPネットワークのためのIPポート番号)は、その後の通信に使用するアドレスを指定します。これは、入力パラメータ記述子または返される結果記述子で指定することができます。 ServiceChangeAddressとServiceChangeMgcIdパラメータは両方ともServiceChangeDescriptorまたはServiceChangeResultDescriptor中に存在してはなりません。 serviceChangeAddressはServiceChangeMgcIdはMGが別のアソシエーションを確立するために求めるべき代替アドレスを提供するが、現在、交渉中アソシエーションのコンテキスト内で使用されるアドレスを提供します。

The optional ServiceChangeDelay parameter is expressed in seconds. If the delay is absent or set to zero, the delay value should be considered to be null. In the case of a "graceful" ServiceChangeMethod, a null delay indicates that the Media Gateway Controller should wait for the natural removal of existing connections and should not establish new connections. . For "graceful" only, a null delay means the MG must not set serviceState "out of service" until the termination is in the null context.

オプションのServiceChangeDelayパラメータは秒単位で表されます。遅延は存在しないか、またはゼロに設定されている場合は、遅延の値がヌルであると考えるべきです。 「優雅な」ServiceChangeMethodの場合は、ヌル遅れは、メディアゲートウェイコントローラは、既存の接続の自然な除去を待つ必要があり、新しい接続を確立するべきではないことを示しています。 。 「優雅」の場合のみ、ヌル遅延が終了がヌル文脈にあるまでMGは「サービスのうち、」serviceStateを設定しないでなければならないことを意味します。

The optional ServiceChangeProfile parameter specifies the Profile (if any) of the protocol supported. The ServiceChangeProfile includes the version of the profile supported.

オプションServiceChangeProfileパラメータは、サポートされるプロトコルのプロファイルを(もしあれば)を指定します。 ServiceChangeProfileは、サポートされているプロファイルのバージョンが含まれています。

The optional ServiceChangeVersion parameter contains the protocol version and is used if protocol version negotiation occurs (see section 11.3).


The optional TimeStamp parameter specifies the actual time as kept by the sender. It can be used by the responder to determine how its notion of time differs from that of its correspondent. TimeStamp is sent with a precision of hundredths of a second, and is expressed in UTC.


The optional Extension parameter may contain any value whose meaning is mutually understood by the MG and MGC.


A ServiceChange Command specifying the "Root" for the TerminationID and ServiceChangeMethod equal to Restart is a registration command by which a Media Gateway announces its existence to the Media Gateway Controller. The Media Gateway is expected to be provisioned with the name of one primary and optionally some number of alternate Media Gateway Controllers. Acknowledgement of the ServiceChange Command completes the registration process. The MG may specify the transport ServiceChangeAddress to be used by the MGC for sending messages in the ServiceChangeAddress parameter in the input ServiceChangeDescriptor. The MG may specify an address in the ServiceChangeAddress parameter of the ServiceChange request, and the MGC may also do so in the ServiceChange reply. In either case, the recipient must use the supplied address as the destination for all subsequent transaction requests within the association. At the same time, as indicated in section 9, transaction replies and pending

再起動に等しいTerminationIDとServiceChangeMethodのための「ルート」を指定のServiceChangeコマンドは、メディアゲートウェイがメディアゲートウェイコントローラにその存在を発表したことにより、登録コマンドです。メディアゲートウェイは、一つの一次の名前でプロビジョニングおよび代替メディアゲートウェイコントローラのいくつかの数を任意にすることが期待されます。 ServiceChangeコマンドの謝辞は、登録プロセスを完了します。 MGは、入力ServiceChangeDescriptorにServiceChangeAddressパラメータにメッセージを送信するためにMGCが使用するトランスポートServiceChangeAddressを指定することもできます。 MGはのServiceChange要求のServiceChangeAddressパラメータのアドレスを指定することができ、そしてMGCものServiceChange応答でそうすることができます。いずれの場合も、受信者は、協会内の後続のすべてのトランザクション要求の宛先として供給されたアドレスを使用する必要があります。セクション9に示されるように同時に、トランザクションが応答し、ペンディング

indications must be sent to the address from which the corresponding requests originated. This must be done even if it implies extra messaging because commands and responses cannot be packed together. The TimeStamp parameter shall be sent with a registration command and its response.

適応症は、対応する要求の発信元のアドレスに送信されなければなりません。これは、コマンドと応答が一緒にパックすることができないので、それは余分なメッセージングを意味していても実行する必要があります。 TIMESTAMPパラメータは、登録コマンドとその応答で送付されなければなりません。

The Media Gateway Controller may return an ServiceChangeMgcId parameter that describes the Media Gateway Controller that should preferably be contacted for further service by the Media Gateway. In this case the Media Gateway shall reissue the ServiceChange command to the new Media Gateway Controller. The Gateway specified in an ServiceChangeMgcId, if provided, shall be contacted before any further alternate MGCs. On a HandOff message from MGC to MG, the ServiceChangeMgcId is the new MGC that will take over from the current MGC.

メディアゲートウェイコントローラは、好ましくは、メディアゲートウェイによるさらなるサービスのために接触されるべきメディアゲートウェイコントローラを記述するServiceChangeMgcIdパラメータを返すことができます。この場合、メディアゲートウェイは、新たなメディアゲートウェイコントローラへのServiceChangeコマンドを再発行しなければなりません。 ServiceChangeMgcIdで指定されたゲートウェイは、提供される場合、任意のさらなる代替のMGCs前に連絡しなければなりません。 MGへのMGCからハンドオフメッセージでは、ServiceChangeMgcIdは、現在のMGCから引き継ぐ新しいMGCです。

The return from ServiceChange is empty except when the Root terminationID is used. In that case it includes the following parameters as required:


. ServiceChangeAddress, if the responding MGC wishes to specify an new destination for messages from the MG for the remainder of the association;

。 ServiceChangeAddress応答をMGCに関連の残りのMGからのメッセージのための新たな送信先を指定したい場合。

. ServiceChangeMgcId, if the responding MGC does not wish to sustain an association with the MG;

。 ServiceChangeMgcId、応答MGCはMGとの関連付けを維持したくない場合は、

. ServiceChangeProfile, if the responder wishes to negotiate the profile to be used for the association;

。 ServiceChangeProfile、応答者がアソシエーションのために使用されるプロファイルを交渉することを望む場合、

. ServiceChangeVersion, if the responder wishes to negotiate the version of the protocol to be used for the association.

。 ServiceChangeVersion、応答者がアソシエーションに使用されるプロトコルのバージョンを交渉することを望む場合。

The following ServiceChangeReasons are defined. This list may be extended by an IANA registration as outlined in section 13.3


        900 Service Restored
        901 Cold Boot
        902 Warm Boot
        903 MGC Directed Change
        904 Termination malfunctioning
        905 Termination taken out of service
        906 Loss of lower layer connectivity (e.g. downstream sync)
        907 Transmission Failure
        908 MG Impending Failure
        909 MGC Impending Failure
        910 Media Capability Failure
        911 Modem Capability Failure

912 Mux Capability Failure 913 Signal Capability Failure 914 Event Capability Failure 915 State Loss


7.2.9 Manipulating and Auditing Context Attributes

The commands of the protocol as discussed in the preceding sections apply to terminations. This section specifies how contexts are manipulated and audited.


Commands are grouped into actions (see section 8). An action applies to one context. In addition to commands, an action may contain context manipulation and auditing instructions.


An action request sent to a MG may include a request to audit attributes of a context. An action may also include a request to change the attributes of a context.


The context properties that may be included in an action reply are used to return information to a MGC. This can be information requested by an audit of context attributes or details of the effect of manipulation of a context.


If a MG receives an action which contains both a request to audit context attributes and a request to manipulate those attributes, the response SHALL include the values of the attributes after processing the manipulation request.


7.2.10 Generic Command Syntax

The protocol can be encoded in a binary format or in a text format. MGCs should support both encoding formats. MGs may support both formats.

プロトコルは、バイナリ形式またはテキスト形式で符号化することができます。 MGCは両方のエンコーディング形式をサポートする必要があります。 MGのは、両方のフォーマットをサポートすることができます。

The protocol syntax for the binary format of the protocol is defined in Annex A. Annex C specifies the encoding of the Local and Remote descriptors for use with the binary format.


A complete ABNF of the text encoding of the protocol per RFC2234 is given in Annex B. SDP is used as the encoding of the Local and Remote Descriptors for use with the text encoding as modified in section 7.1.8.

RFC2234あたりのプロトコルのテキストエンコーディングの完全なABNFは、附属書B. SDPに記載されているセクション7.1.8で修正されたテキストエンコーディングで使用するためのローカルおよびリモート記述子のエンコーディングとして使用されます。

7.3 Command Error Codes

Errors consist of an IANA registered error code and an explanatory string. Sending the explanatory string is optional. Implementations are encouraged to append diagnostic information to the end of the string.


When a MG reports an error to a MGC, it does so in an error descriptor. An error descriptor consists of an error code and optionally the associated explanatory string.


The identified error codes are:


        400 - Bad Request
        401 - Protocol Error
        402 - Unauthorized
        403 - Syntax Error in Transaction
        404 - Syntax Error in TransactionReply
        405 - Syntax Error in TransactionPending
        406 - Version Not Supported
        410 - Incorrect identifier
        411 - The transaction refers to an unknown ContextId
        412 - No ContextIDs available

421 - Unknown action or illegal combination of actions 422 - Syntax Error in Action 430 - Unknown TerminationID 431 - No TerminationID matched a wildcard 432 - Out of TerminationIDs or No TerminationID available 433 - TerminationID is already in a Context 440 - Unsupported or unknown Package 441 - Missing RemoteDescriptor 442 - Syntax Error in Command 443 - Unsupported or Unknown Command 444 - Unsupported or Unknown Descriptor 445 - Unsupported or Unknown Property 446 - Unsupported or Unknown Parameter 447 - Descriptor not legal in this command 448 - Descriptor appears twice in a command 450 - No such property in this package 451 - No such event in this package 452 - No such signal in this package 453 - No such statistic in this package 454 - No such parameter value in this package 455 - Parameter illegal in this Descriptor 456 - Parameter or Property appears twice in this Descriptor 461 - TransactionIDs in Reply do not match Request

421 - 不明または複数のアクション422の不正な組み合わせ - アクション430で構文エラー - 不明TerminationID 431 - のTerminationIDsのうち、または433なしTerminationID - - TerminationIDがコンテキスト440に既に存在する - サポートされていないか、不明なパッケージ441ノーTerminationIDがワイルドカード432に一致しました - 欠落RemoteDescriptor 442 - サポートされていないか、不明なコマンド444 - - コマンド443構文エラーサポートされていないか、不明な記述子445 - サポートされていないか、不明なプロパティ446 - サポートされていないか、不明パラメータ447 - 記述子法的ではない、このコマンド448で - 記述子は、コマンド450で二回表示されます - このパッケージ452においては、このようなイベント - - このパッケージ453においては、このような信号 - このパッケージ451にそのようなプロパティないこのパッケージ454においては、このような統計情報 - このディスクリプタ456に違法パラメータ - - このパッケージ455には、このようなパラメータ値パラメータまたはプロパティは、この記述子461で2回表示 - 要求と一致しない返信でTransactionIDsを

462 - Commands in Transaction Reply do not match commands in request 463 - TerminationID of Transaction Reply does not match request 464 - Missing reply in Transaction Reply 465 - TransactionID in Transaction Pending does not match any open request 466 - Illegal Duplicate Transaction Request 467 - Illegal Duplicate Transaction Reply 471 - Implied Add for Multiplex failure

462 - トランザクション返信のコマンドは、要求463のコマンドと一致していません - 不正な重複トランザクション要求467 - - 保留中の任意のオープン要求466と一致していませんTRANSACTIONID取引で - 465返信トランザクションに欠けて返信 - トランザクション返信のTerminationIDが要求464と一致していません不正トランザクション返信471を複製 - 暗黙の多重故障のために追加します。

500 - Internal Gateway Error 501 - Not Implemented 502 - Not ready. 503 - Service Unavailable 504 - Command Received from unauthorized entity 505 - Command Received before Restart Response 510 - Insufficient resources 512 - Media Gateway unequipped to detect requested Event 513 - Media Gateway unequipped to generate requested Signals 514 - Media Gateway cannot send the specified announcement 515 - Unsupported Media Type 517 - Unsupported or invalid mode 518 - Event buffer full 519 - Out of space to store digit map 520 - Media Gateway does not have a digit map 521 - Termination is "ServiceChangeing" 526 - Insufficient bandwidth 529 - Internal hardware failure 530 - Temporary Network failure 531 - Permanent Network failure 581 - Does Not Exist

500 - 内部ゲートウェイエラー501 - 未実装502 - 準備ができていません。 503 - サービスを使用できません504 - 再起動レスポンス510前に受信したコマンド - - コマンドが不正なエンティティ505から受信したリソースが不足512 - 要求された信号514を生成するメディアゲートウェイは未装備 - - 要求されたイベント513を検出するメディアゲートウェイは未装備メディアゲートウェイは、指定された告知を送信できない515 - サポートされていないメディアタイプ517 - サポートされていないか、または無効モード518は - ケタマップ520を格納するためのスペースの不足 - - メディアゲートウェイは、ケタ地図521を持っていません - 終了は「ServiceChangeing」さ526 - 不十分な帯域幅529 - 内部ハードウェア障害イベントは、完全な519をバッファリング530 - 一時的なネットワーク障害が発生531 - 恒久的なネットワーク障害581は - 存在しません


Commands between the Media Gateway Controller and the Media Gateway are grouped into Transactions, each of which is identified by a TransactionID. Transactions consist of one or more Actions. An Action consists of a series of Commands that are limited to operating within a single Context. Consequently each Action typically specifies a ContextID. However, there are two circumstances where a specific ContextID is not provided with an Action. One is the case of modification of a Termination outside of a Context. The other is where the controller requests the gateway to create a new Context. Following is a graphic representation of the Transaction, Action and Command relationships.


       | Transaction x                                            |
       |  +----------------------------------------------------+  |
       |  | Action 1                                           |  |
       |  | +---------+  +---------+  +---------+  +---------+ |  |
       |  | | Command |  | Command |  | Command |  | Command | |  |
       |  | |    1    |  |    2    |  |    3    |  |    4    | |  |
       |  | +---------+  +---------+  +---------+  +---------+ |  |
       |  +----------------------------------------------------+  |
       |                                                          |
       |  +----------------------------------------------------+  |
       |  | Action 2                                           |  |
       |  | +---------+                                        |  |
       |  | | Command |                                        |  |
       |  | |    1    |                                        |  |
       |  | +---------+                                        |  |
       |  +----------------------------------------------------+  |
       |                                                          |
       |  +----------------------------------------------------+  |
       |  | Action 3                                           |  |
       |  | +---------+  +---------+  +---------+              |  |
       |  | | Command |  | Command |  | Command |              |  |
       |  | |    1    |  |    2    |  |    3    |              |  |
       |  | +---------+  +---------+  +---------+              |  |
       |  +----------------------------------------------------+  |

Figure 5 Transactions, Actions and Commands


Transactions are presented as TransactionRequests. Corresponding responses to a TransactionRequest are received in a single reply, possibly preceded by a number of TransactionPending messages (see section 8.2.3).

トランザクションはTransactionRequestsとして提示されています。 TransactionRequestに対応する応答がおそらくTransactionPendingメッセージの数が先行単一の応答で受信される(セクション8.2.3を参照)。

Transactions guarantee ordered Command processing. That is, Commands within a Transaction are executed sequentially. Ordering of Transactions is NOT guaranteed - transactions may be executed in any order, or simultaneously.

取引の保証は、コマンドの処理を命じました。これは、トランザクション内のコマンドが順次実行されることになります。取引の順序は保証されません - トランザクションは、任意の順序で実行され、または同時にすることができます。

At the first failing Command in a Transaction, processing of the remaining Commands in that Transaction stops. If a command contains a wildcarded TerminationID, the command is attempted with each of the actual TerminationIDs matching the wildcard. A response within the TransactionReply is included for each matching TerminationID, even if one or more instances generated an error. If any TerminationID matching a wildcard results in an error when executed, any commands following the wildcarded command are not attempted. Commands may be marked as "Optional" which can override this behaviour - if a command marked as Optional results in an error, subsequent commands in the Transaction will be executed. A TransactionReply includes the results for all of the Commands in the corresponding TransactionRequest. The TransactionReply includes the return values for the Commands that were executed successfully, and the Command and error descriptor for any Command that failed. TransactionPending is used to periodically notify the receiver that a Transaction has not completed yet, but is actively being processed.

トランザクションの最初の失敗したコマンドでは、そのトランザクション内の残りのコマンドの処理が停止します。コマンドは、ワイルドカードのTerminationIDが含まれている場合、このコマンドは、ワイルドカードに一致する実際のTerminationIDsのそれぞれにしようとしています。 TransactionReply内応答は、1つ以上のインスタンスでエラーが発生した場合でも、各マッチングTerminationIDのために含まれています。実行時に任意のTerminationIDがエラーでワイルドカード結果に一致する場合は、ワイルドカードを使ったコマンド以下のいずれかのコマンドが試行されていません。コマンドがエラーのように任意の結果をマークした場合、トランザクション内の後続のコマンドが実行されます - コマンドは、この動作を無効にすることができ、「オプション」としてマークすることができます。 TransactionReplyは、対応TransactionRequestのコマンドのすべての結果を含んでいます。 TransactionReplyは失敗した任意のコマンドの実行に成功したコマンドの戻り値、およびコマンドおよびエラーの記述が含まれています。 TransactionPendingは定期的にトランザクションがまだ完了していない受信者に通知するために使用されますが、積極的に処理されています。

Applications SHOULD implement an application level timer per transaction. Expiration of the timer should cause a retransmission of the request. Receipt of a Reply should cancel the timer. Receipt of Pending should restart the timer.


8.1 Common Parameters
8.1.1 Transaction Identifiers

Transactions are identified by a TransactionID, which is assigned by sender and is unique within the scope of the sender.


8.1.2 Context Identifiers

Contexts are identified by a ContextID, which is assigned by the Media Gateway and is unique within the scope of the Media Gateway. The Media Gateway Controller shall use the ContextID supplied by the Media Gateway in all subsequent Transactions relating to that Context. The protocol makes reference to a distinguished value that may be used by the Media Gateway Controller when referring to a Termination that is currently not associated with a Context, namely the null ContextID.


The CHOOSE wildcard is used to request that the Media Gateway create a new Context. The MGC shall not use partially specified ContextIDs containing the CHOOSE wildcard.

CHOOSEワイルドカードは、メディアゲートウェイは、新しいコンテキストを作成することを要求するために使用されます。 MGCは、CHOOSEワイルドカードを含む部分的に指定されたコンテクストIDを使用してはなりません。

The MGC may use the ALL wildcard to address all Contexts on the MG.


8.2 Transaction Application Programming Interface

Following is an Application Programming Interface (API) describing the Transactions of the protocol. This API is shown to illustrate the Transactions and their parameters and is not intended to specify implementation (e.g. via use of blocking function calls). It will describe the input parameters and return values expected to be used by the various Transactions of the protocol from a very high level. Transaction syntax and encodings are specified in later subsections.


8.2.1 TransactionRequest
8.2.1 TransactionRequest

The TransactionRequest is invoked by the sender. There is one Transaction per request invocation. A request contains one or more Actions, each of which specifies its target Context and one or more Commands per Context.


       TransactionRequest(TransactionId {
              ContextID {Command _ Command},
                               . . .
              ContextID  {Command _ Command } })

The TransactionID parameter must specify a value for later correlation with the TransactionReply or TransactionPending response from the receiver.


The ContextID parameter must specify a value to pertain to all Commands that follow up to either the next specification of a ContextID parameter or the end of the TransactionRequest, whichever comes first.


The Command parameter represents one of the Commands mentioned in the "Command Details" subsection titled "Application Programming Interface".


8.2.2 TransactionReply
8.2.2 TransactionReply

The TransactionReply is invoked by the receiver. There is one reply invocation per transaction. A reply contains one or more Actions, each of which must specify its target Context and one or more Responses per Context.


        TransactionReply(TransactionID {
                ContextID { Response _ Response },
                                . . .
                ContextID { Response _ Response } })

The TransactionID parameter must be the same as that of the corresponding TransactionRequest.


The ContextID parameter must specify a value to pertain to all Responses for the action. The ContextID may be specific or null.

ContextIDパラメータは、アクションのためのすべての応答に関係する値を指定する必要があります。 ContextIDは特定またはnullの場合もあります。

Each of the Response parameters represents a return value as mentioned in section 7.2, or an error descriptor if the command execution encountered an error. Commands after the point of failure are not processed and, therefore, Responses are not issued for them.


An exception to this occurs if a command has been marked as optional in the Transaction request. If the optional command generates an error, the transaction still continues to execute, so the Reply would, in this case, have Responses after an Error.


If the receiver encounters an error in processing a ContextID, the requested Action response will consist of the context ID and a single error descriptor, 422 Syntax Error in Action.


If the receiver encounters an error such that it cannot determine a legal Action, it will return a TransactionReply consisting of the TransactionID and a single error descriptor, 422 Syntax Error in Action. If the end of an action cannot be reliably determined but one or more Actions can be parsed, it will process them and then send 422 Syntax Error in Action as the last action for the transaction. If the receiver encounters an error such that is cannot determine a legal Transaction, it will return a TransactionReply with a null TransactionID and a single error descriptor (403 Syntax Error in Transaction).


If the end of a transaction can not be reliably determined and one or more Actions can be parsed, it will process them and then return 403 Syntax Error in Transaction as the last action reply for the transaction. If no Actions can be parsed, it will return 403 Syntax Error in Transaction as the only reply


If the terminationID cannot be reliably determined it will send 442 Syntax Error in Command as the action reply.


If the end of a command cannot be reliably determined it will return 442 Syntax Error in Transaction as the reply to the last action it can parse.


8.2.3 TransactionPending

The receiver invokes the TransactionPending. A TransactionPending indicates that the Transaction is actively being processed, but has not been completed. It is used to prevent the sender from assuming the TransactionRequest was lost where the Transaction will take some time to complete.

受信機は、TransactionPendingを呼び出します。 TransactionPendingは、取引が活発に処理されているが、完了していないことを示しています。トランザクションが完了するまでに時間がかかりますどこTransactionRequestが失われたと仮定すると、送信者からのを防ぐために使用されます。

TransactionPending(TransactionID { } )

TransactionPending(TRANSACTIONID {})

The TransactionID parameter must be the same as that of the corresponding TransactionRequest. A property of root (normalMGExecutionTime) is settable by the MGC to indicate the interval within which the MGC expects a response to any transaction from the MG. Another property (normalMGCExecutionTime) is settable by the MGC to indicate the interval within which the MG should expects a response to any transaction from the MGC. Senders may receive more than one TransactionPending for a command. If a duplicate request is received when pending, the responder may send a duplicate pending immediately, or continue waiting for its timer to trigger another Transaction Pending.

TRANSACTIONIDパラメータは、対応するTransactionRequestのものと同じでなければなりません。 MGCは、MGCがMGからのすべてのトランザクションに対する応答を期待する範囲内の間隔を示すために、ルートのプロパティ(normalMGExecutionTime)が設定可能です。別のプロパティ(normalMGCExecutionTime)は、MGがMGCからのすべてのトランザクションに対する応答を期待すべき内に間隔を示すために、MGCによって設定可能です。送信者は、コマンドに複数のTransactionPendingを受け取ることができます。保留中のとき、重複する要求を受信した場合、応答者はすぐに保留中の重複を送ったり、別のトランザクション保留をトリガするそのタイマーを待ち続けることがあります。

8.3 Messages

Multiple Transactions can be concatenated into a Message. Messages have a header, which includes the identity of the sender. The Message Identifier (MID) of a message is set to a provisioned name (e.g. domain address/domain name/device name) of the entity transmitting the message. Domain name is a suggested default.


Every Message contains a Version Number identifying the version of the protocol the message conforms to. Versions consist of one or two digits, beginning with version 1 for the present version of the protocol.


The transactions in a message are treated independently. There is no order implied, there is no application or protocol acknowledgement of a message.



The transport mechanism for the protocol should allow the reliable transport of transactions between an MGC and MG. The transport shall remain independent of what particular commands are being sent and shall be applicable to all application states. There are several transports defined for the protocol, which are defined in normative Annexes to this document. Additional Transports may be defined as additional annexes in subsequent editions of this document, or in separate documents. For transport of the protocol over IP, MGCs shall implement both TCP and UDP/ALF, an MG shall implement TCP or UDP/ALF or both.

プロトコルの搬送機構はMGCとMGとの間の取引の信頼性の輸送を可能にすべきです。輸送は、特定のコマンドが送信されているものの独立性を維持するものとし、すべてのアプリケーションの状態に適用しなければなりません。このドキュメントに規範的附属書で定義されたプロトコルのために定義されたいくつかのトランスポートは、あります。追加のトランスポートは、この文書の次の版で、または別の文書に追加の別館として定義することができます。 MGCのは、TCPおよびUDP / ALFの両方を実装しなければならオーバーIPプロトコルの輸送については、MGはTCPやUDP / ALFまたは両方を実施しなければなりません。

The MG is provisioned with a name or address (such as DNS name or IP address) of a primary and zero or more secondary MGCs (see section 7.2.8) that is the address the MG uses to send messages to the MGC. If TCP or UDP is used as the protocol transport and the port to which the initial ServiceChange request is to be sent is not otherwise known, that request should be sent to the default port number for the protocol. This port number is 2944 for text-encoded operation or 2945 for binary-encoded operation, for either UDP or TCP. The MGC receives the message containing the ServiceChange request from the MG and can determine the MG's address from it. As described in section 7.2.8, either the MG or the MGC may supply an address in the

MGは、MGがMGCにメッセージを送信するために使用するアドレスである(セクション7.2.8を参照)は、一次及びゼロ以上の二次のMGCの(例えば、DNS名やIPアドレスなど)の名前またはアドレスがプロビジョニングされています。 TCPやUDPは、初期のServiceChange要求が送られるべきプロトコル・トランスポートおよびポートとして使用されている場合はそれ以外知らないが、その要求は、プロトコルのデフォルトのポート番号に送信する必要があります。このポート番号は、UDPまたはTCPのいずれかのために、バイナリエンコードされた操作のためのテキストエンコードされた操作のための2944または2945です。 MGCは、MGからのServiceChange要求を含むメッセージを受信し、それからMGのアドレスを決定することができます。セクション7.2.8で説明したように、MGまたはMGCのいずれかのアドレスを供給することができます

ServiceChangeAddress parameter to which subsequent transaction requests must be addressed, but responses (including the response to the initial ServiceChange request) must always be sent back to the address which was the source of the corresponding request.


9.1 Ordering of Commands

This document does not mandate that the underlying transport protocol guarantees the sequencing of transactions sent to an entity. This property tends to maximize the timeliness of actions, but it has a few drawbacks. For example:


. Notify commands may be delayed and arrive at the MGC after the transmission of a new command changing the EventsDescriptor


. If a new command is transmitted before a previous one is acknowledged, there is no guarantee that prior command will be executed before the new one.


Media Gateway Controllers that want to guarantee consistent operation of the Media Gateway may use the following rules. These rules are with respect to commands that are in different transactions. Commands that are in the same transaction are executed in order (see section 8).


1. When a Media Gateway handles several Terminations, commands pertaining to the different Terminations may be sent in parallel, for example following a model where each Termination (or group of Terminations) is controlled by its own process or its own thread.


2. On a Termination, there should normally be at most one outstanding command (Add or Modify or Move), unless the outstanding commands are in the same transaction. However, a Subtract command may be issued at any time. In consequence, a Media Gateway may sometimes receive a Modify command that applies to a previously subtracted Termination. Such commands should be ignored, and an error code should be returned.


3. On a given Termination, there should normally be at most one outstanding Notify command at any time.


4. In some cases, an implicitly or explicitly wildcarded Subtract command that applies to a group of Terminations may step in front of a pending Add command. The Media Gateway Controller should individually delete all Terminations for which an Add command was pending at the time of the global Subtract command. Also, new Add commands for Terminations named by the wild-carding (or implied in a Multiplex descriptor) should not be sent until the wild-carded Subtract command is acknowledged.


5. AuditValue and AuditCapability are not subject to any sequencing.
5. AuditValueとAuditCapabilityは、任意の順序付けの対象にはなりません。

6. ServiceChange shall always be the first command sent by a MG as defined by the restart procedure. Any other command or response must be delivered after this ServiceChange command.


These rules do not affect the command responder, which should always respond to commands.


9.2 Protection against Restart Avalanche

In the event that a large number of Media Gateways are powered on simultaneously and they were to all initiate a ServiceChange transaction, the Media Gateway Controller would very likely be swamped, leading to message losses and network congestion during the critical period of service restoration. In order to prevent such avalanches, the following behavior is suggested:


1. When a Media Gateway is powered on, it should initiate a restart timer to a random value, uniformly distributed between 0 and a maximum waiting delay (MWD). Care should be taken to avoid synchronicity of the random number generation between multiple Media Gateways that would use the same algorithm.


2. The Media Gateway should then wait for either the end of this timer or the detection of a local user activity, such as for example an off-hook transition on a residential Media Gateway.


3. When the timer elapses, or when an activity is detected, the Media Gateway should initiate the restart procedure.


The restart procedure simply requires the MG to guarantee that the first message that the Media Gateway Controller sees from this MG is a ServiceChange message informing the Media Gateway Controller about the restart.


Note - The value of MWD is a configuration parameter that depends on the type of the Media Gateway. The following reasoning may be used to determine the value of this delay on residential gateways.

注 - MWDの値は、メディアゲートウェイのタイプに依存設定パラメータです。以下の推論は、レジデンシャルゲートウェイに、この遅延の値を決​​定するために使用することができます。

Media Gateway Controllers are typically dimensioned to handle the peak hour traffic load, during which, in average, 10% of the lines will be busy, placing calls whose average duration is typically 3 minutes. The processing of a call typically involves 5 to 6 Media


Gateway Controller transactions between each Media Gateway and the Media Gateway Controller. This simple calculation shows that the Media Gateway Controller is expected to handle 5 to 6 transactions for each Termination, every 30 minutes on average, or, to put it otherwise, about one transaction per Termination every 5 to 6 minutes on average. This suggests that a reasonable value of MWD for a residential gateway would be 10 to 12 minutes. In the absence of explicit configuration, residential gateways should adopt a value of 600 seconds for MWD.


The same reasoning suggests that the value of MWD should be much shorter for trunking gateways or for business gateways, because they handle a large number of Terminations, and also because the usage rate of these Terminations is much higher than 10% during the peak busy hour, a typical value being 60%. These Terminations, during the peak hour, are this expected to contribute about one transaction per minute to the Media Gateway Controller load. A reasonable algorithm is to make the value of MWD per "trunk" Termination six times shorter than the MWD per residential gateway, and also inversely proportional to the number of Terminations that are being restarted. For example MWD should be set to 2.5 seconds for a gateway that handles a T1 line, or to 60 milliseconds for a gateway that handles a T3 line.



This section covers security when using the protocol in an IP environment.


10.1 Protection of Protocol Connections

A security mechanism is clearly needed to prevent unauthorized entities from using the protocol defined in this document for setting up unauthorized calls or interfering with authorized calls. The security mechanism for the protocol when transported over IP networks is IPsec [RFC2401 to RFC2411].

セキュリティ・メカニズムは明らかに不正な通話を設定するか、許可された呼び出しに干渉するため、この文書で定義されたプロトコルを使用して、権限のないエンティティを防止するために必要とされます。 IPネットワーク上で転送プロトコルのセキュリティメカニズムは、IPsec [RFC2411とRFC2401]です。

The AH header [RFC2402] affords data origin authentication, connectionless integrity and optional anti-replay protection of messages passed between the MG and the MGC. The ESP header [RFC2406] provides confidentiality of messages, if desired. For instance, the ESP encryption service should be requested if the session descriptions are used to carry session keys, as defined in SDP.


Implementations of the protocol defined in this document employing the ESP header SHALL comply with section 5 of [RFC2406], which defines a minimum set of algorithms for integrity checking and encryption. Similarly, implementations employing the AH header SHALL comply with section 5 of [RFC2402], which defines a minimum set of algorithms for integrity checking using manual keys.


Implementations SHOULD use IKE [RFC2409] to permit more robust keying options. Implementations employing IKE SHOULD support authentication with RSA signatures and RSA public key encryption.

実装は、より堅牢なキーイングオプションを可能にするために、IKE [RFC2409]を使用すべきです。 IKEを使用する実装は、RSA署名とRSA公開鍵暗号による認証をサポートする必要があります。

10.2 Interim AH scheme

Implementation of IPsec requires that the AH or ESP header be inserted immediately after the IP header. This cannot be easily done at the application level. Therefore, this presents a deployment problem for the protocol defined in this document where the underlying network implementation does not support IPsec.


As an interim solution, an optional AH header is defined within the H.248 protocol header. The header fields are exactly those of the SPI, SEQUENCE NUMBER and DATA fields as defined in [RFC2402]. The semantics of the header fields are the same as the "transport mode" of [RFC2402], except for the calculation of the Integrity Check value (ICV). In IPsec, the ICV is calculated over the entire IP packet including the IP header. This prevents spoofing of the IP addresses. To retain the same functionality, the ICV calculation should be performed across the entire transaction prepended by a synthesized IP header consisting of a 32 bit source IP address, a 32 bit destination address and an 16 bit UDP encoded as 10 hex digits. When the interim AH mechanism is employed when TCP is the transport Layer, the UDP Port above becomes the TCP port, and all other operations are the same.

暫定的な解決策として、任意AHヘッダはH.248プロトコルヘッダ内で定義されています。ヘッダーフィールドは正確に[RFC2402]で定義されるようにSPI、シーケンス番号とDATAフィールドのものです。ヘッダフィールドのセマンティクスは、インテグリティ・チェック値(ICV)の計算を除いて、[RFC2402]の「トランスポートモード」と同じです。 IPsecのでは、ICVはIPヘッダを含むIPパケット全体にわたって計算されます。これは、IPアドレスのスプーフィングを防止します。同じ機能を保持するために、ICV計算は32ビット送信元IPアドレス、32ビットの宛先アドレスと10桁の16進数で符号化された16ビットのUDPからなる合成IPヘッダが付加トランザクション全体にわたって実行されなければなりません。暫定AH機構が採用されている場合、TCPはトランスポート層である場合、UDPポートは、上記のTCPポートになり、他のすべての操作は同じです。

Implementations of the H.248 protocol SHALL implement IPsec where the underlying operating system and the transport network supports IPsec. Implementations of the protocol using IPv4 SHALL implement the interim AH scheme. However, this interim scheme SHALL NOT be used when the underlying network layer supports IPsec. IPv6 implementations are assumed to support IPsec and SHALL NOT use the interim AH scheme.

基礎となるオペレーティングシステムと輸送ネットワークがIPsecをサポートしているところH.248プロトコルの実装はIPsecを実施しなければなりません。 IPv4を使用してプロトコルの実装は、暫定AHスキームを実施しなければなりません。基盤となるネットワーク層がIPsecをサポートしている場合しかし、この暫定スキームを使用してはなりません。 IPv6実装は、IPsecをサポートするために仮定され、暫定AHスキームを使用してはなりません。

All implementations of the interim AH mechanism SHALL comply with section 5 of [RFC2402] which defines a minimum set of algorithms for integrity checking using manual keys.


The interim AH interim scheme does not provide protection against eavesdropping; thus forbidding third parties from monitoring the connections set up by a given termination. Also, it does not provide protection against replay attacks. These procedures do not necessarily protect against denial of service attacks by misbehaving


MGs or misbehaving MGCs. However, they will provide an identification of these misbehaving entities, which should then be deprived of their authorization through maintenance procedures.


10.3 Protection of Media Connections

The protocol allows the MGC to provide MGs with "session keys" that can be used to encrypt the audio messages, protecting against eavesdropping.


A specific problem of packet networks is "uncontrolled barge-in". This attack can be performed by directing media packets to the IP address and UDP port used by a connection. If no protection is implemented, the packets must be decompressed and the signals must be played on the "line side".


A basic protection against this attack is to only accept packets from known sources, checking for example that the IP source address and UDP source port match the values announced in the Remote Descriptor. This has two inconveniences: it slows down connection establishment and it can be fooled by source spoofing:


. To enable the address-based protection, the MGC must obtain the remote session description of the egress MG and pass it to the ingress MG. This requires at least one network roundtrip, and leaves us with a dilemma: either allow the call to proceed without waiting for the round trip to complete, and risk for example, "clipping" a remote announcement, or wait for the full roundtrip and settle for slower call-set-up procedures.


. Source spoofing is only effective if the attacker can obtain valid pairs of source destination addresses and ports, for example by listening to a fraction of the traffic. To fight source spoofing, one could try to control all access points to the network. But this is in practice very hard to achieve.


An alternative to checking the source address is to encrypt and authenticate the packets, using a secret key that is conveyed during the call set-up procedure. This will not slow down the call set-up, and provides strong protection against address spoofing.



The control association between MG and MGC is initiated at MG cold start, and announced by a ServiceChange message, but can be changed by subsequent events, such as failures or manual service events. While the protocol does not have an explicit mechanism to support multiple MGCs controlling a physical MG, it has been designed to support the multiple logical MG (within a single physical MG) that can be associated with different MGCs.


11.1 Multiple Virtual MGs

A physical Media Gateway may be partitioned into one or more Virtual MGs. A virtual MG consists of a set of statically partitioned physical Terminations and/or sets of ephemeral Terminations. A physical Termination is controlled by one MGC. The model does not require that other resources be statically allocated, just Terminations. The mechanism for allocating Terminations to virtual MGs is a management method outside the scope of the protocol. Each of the virtual MGs appears to the MGC as a complete MG client.

物理的なメディアゲートウェイは、1つ以上の仮想のMGに分割することができます。仮想MGは、静的分配物理的終端及び/又はエフェメラル終端の組の集合から成ります。物理的な終了は1 MGCによって制御されます。このモデルは、他のリソースが静的に割り当てられることだけ終端を必要としません。仮想のMGに終端を割り当てるためのメカニズムは、プロトコルの範囲外の管理方法です。仮想のMGのそれぞれは完全なMGクライアントとしてMGCに表示されます。

A physical MG may have only one network interface, which must be shared across virtual MGs. In such a case, the packet/cell side Termination is shared. It should be noted however, that in use, such interfaces require an ephemeral instance of the Termination to be created per flow, and thus sharing the Termination is straightforward. This mechanism does lead to a complication, namely that the MG must always know which of its controlling MGCs should be notified if an event occurs on the interface.


In normal operation, the Virtual MG will be instructed by the MGC to create network flows (if it is the originating side), or to expect flow requests (if it is the terminating side), and no confusion will arise. However, if an unexpected event occurs, the Virtual MG must know what to do with respect to the physical resources it is controlling.


If recovering from the event requires manipulation of a physical interface's state, only one MGC should do so. These issues are resolved by allowing any of the MGCs to create EventsDescriptors to be notified of such events, but only one MGC can have read/write access to the physical interface properties; all other MGCs have read-only access. The management mechanism is used to designate which MGC has read/write capability, and is designated the Master MGC.

イベントから回復することは物理インターフェイスの状態の操作を必要とする場合、唯一のMGCは、そうすべきです。これらの問題は、このようなイベントが通知されるようにEventsDescriptorsを作成するためのMGCのいずれかを可能にすることにより解決されていますが、一つだけMGCは、物理インターフェイスのプロパティへの読み取り/書き込みアクセス権を持つことができます。他のすべてのMGCは、読み取り専用アクセスを。管理機構は、MGC /書き込み機能を読み取るた指定するために使用され、そしてマスターMGCが指定されています。

Each virtual MG has its own Root Termination. In most cases the values for the properties of the Root Termination are independently settable by each MGC. Where there can only be one value, the parameter is read-only to all but the Master MGC.


ServiceChange may only be applied to a Termination or set of Terminations partitioned to the Virtual MG or created (in the case of ephemeral Terminations) by that Virtual MG.


11.2 Cold Start

A MG is pre-provisioned by a management mechanism outside the scope of this protocol with a Primary and (optionally) an ordered list of Secondary MGCs. Upon a cold start of the MG, it will issue a ServiceChange command with a "Restart" method, on the Root Termination to its primary MGC. If the MGC accepts the MG, it will send a Transaction Accept, with the ServiceChangeMgcId set to itself. If the MG receives an ServiceChangeMgcId not equal to the MGC it contacted, it sends a ServiceChange to the MGC specified in the ServiceChangeMgcId. It continues this process until it gets a controlling MGC to accept its registration, or it fails to get a reply. Upon failure to obtain a reply, either from the Primary MGC, or a designated successor, the MG tries its pre-provisioned Secondary MGCs, in order. If the MG is unable to comply and it has established a transport connection to the MGC, it should close that connection. In any event, it should reject all subsequent requests from the MGC with Error 406 Version Not Supported.

MGは、プライマリおよびセカンダリのMGCの(オプションで)順序付けられたリストをこのプロトコルの範囲外の管理機構によって事前にプロビジョニングされています。 MGのコールドスタート時には、それがその主MGCへのルート終端に、「再起動」方式でのServiceChangeコマンドを発行します。 MGCがMGを受け入れる場合、それは自分自身に設定ServiceChangeMgcIdで、受け入れトランザクションを送信します。 MGはそれが連絡MGCと等しくないServiceChangeMgcIdを受信した場合、それはServiceChangeMgcIdで指定されたMGCへのServiceChangeを送信します。それはその登録を受け付けるように制御するMGCを取得するまでこのプロセスを継続、またはそれが応答を得るために失敗しました。応答を得られない時に、いずれかのプライマリMGC、または指定された後継者から、MGは順番に、その事前プロビジョニング二次のMGCを試みます。 MGが応じることができない、それはMGCへのトランスポート接続を確立している場合は、その接続を閉じる必要があります。いずれにせよ、それはサポートされていないエラー406バージョンとMGCから後続のすべての要求を拒否すべきです。

It is possible that the reply to a ServiceChange with Restart will be lost, and a command will be received by the MG prior to the receipt of the ServiceChange response. The MG shall issue error 505 - Command Received before Restart Response.

再起動とのServiceChangeへの回答が失われ、コマンドは前のServiceChange応答の受信にMGによって受信される可能性があります。 MGはエラー505を発行しなければならない - コマンドは、再起動レスポンス前に受信しました。

11.3 Negotiation of Protocol Version

The first ServiceChange command from an MG shall contain the version number of the protocol supported by the MG in the ServiceChangeVersion parameter. Upon receiving such a message, if the MGC supports only a lower version, then the MGC shall send a ServiceChangeReply with the lower version and thereafter all the messages between MG and MGC shall conform to the lower version of the protocol. If the MG is unable to comply and it has established a transport connection to the MGC, it should close that connection. In any event, it should reject all subsequent requests from the MGC with Error 406 Version Not supported.

MGから最初のServiceChangeコマンドはServiceChangeVersionパラメータでMGによってサポートされるプロトコルのバージョン番号を含まなければなりません。 MGCだけ低いバージョンをサポートする場合、そのようなメッセージを受信し、その後MGCが低いバージョンでServiceChangeReplyを送付した後、すべてのMGとMGCとの間のメッセージは、プロトコルの下位バージョンに適合しなければなりません。 MGが応じることができない、それはMGCへのトランスポート接続を確立している場合は、その接続を閉じる必要があります。いずれにせよ、それはサポートされていませんエラー406バージョンとMGCから後続のすべての要求を拒否すべきです。

If the MGC supports a higher version than the MG but is able to support the lower version proposed by the MG, it shall send a ServiceChangeReply with the lower version and thereafter all the messages between MG and MGC shall conform to the lower version of the protocol. If the MGC is unable to comply, it shall reject the association, with Error 406 Version Not Supported.

MGCはMGより高いバージョンをサポートしていますが、MGによって提案された下位バージョンをサポートすることが可能であるならば、それは低いバージョンでServiceChangeReplyを送信しなければならないし、その後MGとMGCとの間のすべてのメッセージは、プロトコルの下位バージョンに適合しなければなりません。 MGCが遵守できない場合は、サポートされていないエラー406バージョンで、関連付けを却下します。

Protocol version negotiation may also occur at "handoff" and "failover" ServiceChanges.


When extending the protocol with new versions, the following rules should be followed.


1. Existing protocol elements, i.e., procedures, parameters, descriptor, property, values, should not be changed unless a protocol error needs to be corrected or it becomes necessary to change the operation of the service that is being supported by the protocol.


2. The semantics of a command, a parameter, descriptor, property, value should not be changed.


3. Established rules for formatting and encoding messages and parameters should not be modified.


4. When information elements are found to be obsolete they can be marked as not used. However, the identifier for that information element will be marked as reserved. In that way it can not be used in future versions.


11.4 Failure of an MG

If a MG fails, but is capable of sending a message to the MGC, it sends a ServiceChange with an appropriate method (graceful or forced) and specifies the Root TerminationID. When it returns to service, it sends a ServiceChange with a "Restart" method.


Allowing the MGC to send duplicate messages to both MGs accommodates pairs of MGs that are capable of redundant failover of one of the MGs. Only the Working MG shall accept or reject transactions. Upon failover, the Primary MG sends a ServiceChange command with a "Failover" method and a "MG Impending Failure" reason. The MGC then uses the primary MG as the active MG. When the error condition is repaired, the Working MG can send a "ServiceChange" with a "Restart" method.

MGCは両方のMGに重複したメッセージを送信できるようにするとのMGの1の冗長フェイルオーバーが可能なのMGのペアに対応します。唯一のワーキングMGは、受け入れるか、またはトランザクションを却下します。フェイルオーバーが発生すると、プライマリMGは「フェイルオーバー」方法と「MG差し迫った障害」の理由でのServiceChangeコマンドを送信します。 MGCは、アクティブなMGとして主MGを使用しています。エラー状態が修復されると、ワーキングMGは、「再起動」メソッドで「のServiceChange」を送ることができます。

11.5 Failure of an MGC

If the MG detects a failure of its controlling MGC, it attempts to contact the next MGC on its pre-provisioned list. It starts its attempts at the beginning (Primary MGC), unless that was the MGC that failed, in which case it starts at its first Secondary MGC. It sends a ServiceChange message with a "Failover" method and a " MGC Impending Failure" reason.


In partial failure, or manual maintenance reasons, an MGC may wish to direct its controlled MGs to use a different MGC. To do so, it sends a ServiceChange method to the MG with a "HandOff" method, and its designated replacement in ServiceChangeMgcId. The MG should send a ServiceChange message with a "Handoff" method and a "MGC directed change" reason to the designated MGC. If it fails to get a reply, or fails to see an Audit command subsequently, it should behave as if its MGC failed, and start contacting secondary MGCs. If the MG is unable to establish a control relationship with any MGC, it shall wait a random amount of time as described in section 9.2 and then start contacting its primary, and if necessary, its secondary MGCs again.

部分的な障害、または手動メンテナンス上の理由で、MGCは異なるMGCを使用するには、その制御のMGを指示することを望むかもしれません。そのためには、「ハンドオフ」方法、およびServiceChangeMgcIdでその指定された交換にMGへのServiceChangeメソッドを送信します。 MGは「ハンドオフ」方法と指定されたMGCに「MGC監督の変更」の理由でのServiceChangeメッセージを送信する必要があります。それは回答を得るために失敗した、またはその後の監査コマンドを参照してくださいに失敗した場合、それはそのMGCが失敗したかのように動作し、二次のMGCを接触させることを開始する必要があります。 MGがどんなMGCとの制御関係を確立することができない場合は、再度、9.2節で説明したようにランダムな時間を待ってから、その主に連絡を開始し、必要であれば、その二次MGCのものとします。

No recommendation is made on how the MGCs involved in the Handoff maintain state information; this is considered to be out of scope of this recommendation. The MGC and MG may take the following steps when Handoff occurs. When the MGC initiates a HandOff, the handover should be transparent to Operations on the Media Gateway. Transactions can be executed in any order, and could be in progress when the ServiceChange is executed. Accordingly, commands in progress continue, transaction replies are sent to the new MGC (after a new control association is established), and the MG should expect outstanding transaction replies from the new MGC. No new messages shall be sent to the new MGC until the control association is established. Repeated transaction requests shall be directed to the new MGC. The MG shall maintain state on all terminations and contexts.

いかなる勧告は、ハンドオフに関わったMGCは、状態情報を維持する方法で行われていません。これは、この勧告の範囲外であると考えられています。ハンドオフが発生したときにMGCとMGは、次の手順を実行することがあります。 MGCは、ハンドオフを開始すると、ハンドオーバがメディアゲートウェイでの操作に透明であるべきです。トランザクションは、任意の順序で実行することができ、かつのServiceChangeが実行されたときに進行中である可能性があります。したがって、進行中のコマンドが継続し、トランザクション応答が新しいMGC(新しい制御アソシエーションが確立された後)に送られ、そしてMGは、優れたトランザクションが新しいMGCからの応答を期待すべきです。制御アソシエーションが確立されるまで、新しいメッセージは新しいMGCに送信されてはなりません。繰り返されるトランザクション要求は、新しいMGCを目的としなければなりません。 MGは、すべての端子とコンテキストに状態を維持しなければなりません。

It is possible that the MGC could be implemented in such a way that a failed MGC is replaced by a working MGC where the identity of the new MGC is the same as the failed one. In such a case, ServiceChangeMgcId would be specified with the previous value and the MG shall behave as if the value was changed, and send a ServiceChange message, as above.


Pairs of MGCs that are capable of redundant failover can notify the controlled MGs of the failover by the above mechanism.



The primary mechanism for extension is by means of Packages. Packages define additional Properties, Events, Signals and Statistics that may occur on Terminations.


Packages defined by IETF will appear in separate RFCs.


Packages defined by ITU-T may appear in the relevant recommendations (e.g. as annexes).


1. A public document or a standard forum document, which can be referenced as the document that describes the package following the guideline above, should be specified.


2. The document shall specify the version of the Package that it describes.


3. The document should be available on a public web server and should have a stable URL. The site should provide a mechanism to provide comments and appropriate responses should be returned.


12.1 Guidelines for defining packages

Packages define Properties, Events, Signals, and Statistics.


Packages may also define new error codes according to the guidelines given in section 13.2. This is a matter of documentary convenience: the package documentation is submitted to IANA in support of the error code registration. If a package is modified, it is unnecessary to provide IANA with a new document reference in support of the error code unless the description of the error code itself is modified.


Names of all such defined constructs shall consist of the PackageID (which uniquely identifies the package) and the ID of the item (which uniquely identifies the item in that package). In the text encoding the two shall be separated by a forward slash ("/") character. Example: togen/playtone is the text encoding to refer to the play tone signal in the tone generation package.

すべてのそのような定義された構築物の名前は、(一意に識別するパッケージ)のPackageID及び(一意そのパッケージ内のアイテムを識別する)項目のIDで構成されなければなりません。テキストエンコーディングでは2は、スラッシュ(「/」)で区切られなければなりません。例:togen / playtone音源パッケージにプレイトーン信号を参照するテキストエンコーディングです。

A Package will contain the following sections:


12.1.1 Package

Overall description of the package, specifying:


. Package Name: only descriptive, . PackageID: Is an identifier . Description: . Version: A new version of a package can only add additional Properties, Events, Signals, Statistics and new possible values for an existing parameter described in the original package. No deletions or modifications shall be allowed. A version is an integer in the range from 1 to 99.

。パッケージ名:のみ記述。 PackageID:識別子です。説明:。バージョン:パッケージの新バージョンでは、唯一のオリジナルのパッケージで説明既存のパラメータのために追加のプロパティ、イベント、シグナル、統計と新しい可能な値を追加することができます。いいえ削除や変更は許されてはなりません。バージョンは、1から99の範囲の整数です。

. Extends (Optional): A package may extend an existing package. The version of the original package must be specified. When a package extends another package it shall only add additional Properties, Events, Signals, Statistics and new possible values for an existing parameter described in the original package. An extended package shall not redefine or overload a name defined in the original package. Hence, if package B version 1 extends package A version 1, version 2 of B will not be able to extend the A version 2 if A version 2 defines a name already in B version 1.

。 (オプション)拡張:パッケージには、既存のパッケージを延長することができます。オリジナルパッケージのバージョンを指定する必要があります。パッケージが別のパッケージを拡張するとき、それは唯一の追加のプロパティ、イベント、シグナル、統計と元のパッケージに記載し既存のパラメータのための新しい可能な値を追加しなければなりません。拡張されたパッケージは、オリジナルのパッケージで定義された名前を再定義するか、過負荷にならないものとします。パッケージBバージョン1は、バージョン1をパッケージに延びている場合、バージョン2がBバージョン1で既に名前を定義する場合したがって、Bのバージョン2は、バージョン2を拡張することができません。

12.1.2 Properties

Properties defined by the package, specifying:


. Property Name: only descriptive. . PropertyID: Is an identifier . Description: . Type: One of: String: UTF-8 string Integer: 4 byte signed integer Double: 8 byte signed integer Character: Unicode UTF-8 encoding of a single letter. Could be more than one octet. Enumeration: One of a list of possible unique values (See 12.3) Sub-list: A list of several values from a list Boolean

。物件名:のみ記述。 。 PropertyID:識別子です。説明:。型:String:の一つのUTF-8文字列整数:ダブル4バイトの符号付き整数:8バイトの符号付き整数文字:単一文字のユニコードUTF-8エンコーディング。複数のオクテットである可能性があります。列挙:一つの可能​​なユニークな値のリストのサブリスト(12.3を参照):複数の値のリストを一覧ブールから

. Possible Values: . Defined in: Which H.248 descriptor the property is defined in. LocalControl is for stream dependent properties. TerminationState is for stream independent properties.

。可能な値:。で定義される:プロパティはで定義されているH.248記述子ローカル制御は、ストリーム依存特性のためです。 TerminationStateは、ストリームの独立した性質のためです。

. Characteristics: Read / Write or both, and (optionally), global: Indicates whether a property is read-only, or read-write, and if it is global. If Global is omitted, the property is not global. If a property is declared as global, the value of the property is shared by all terminations realizing the package.


12.1.3 Events

Events defined by the package, specifying:


. Event name: only descriptive. . EventID: Is an identifier . Description: . EventsDescriptor Parameters: Parameters used by the MGC to configure the event, and found in the EventsDescriptor. See section 12.2.

。イベント名:のみ記述。 。イベントID:識別子です。説明:。たEventsDescriptorパラメータ:パラメータイベントを構成するためにMGCによって使用され、たEventsDescriptorで見つかりました。 12.2節を参照してください。

. ObservedEventsDescriptor Parameters: Parameters returned to the MGC in Notify requests and in replies to command requests from the MGC that audit ObservedEventsDescriptor, and found in the ObservedEventsDescriptor. See section 12.2.

。 ObservedEventsDescriptorパラメータ:パラメータの要求を通知し、MGCその監査ObservedEventsDescriptorからの要求を命令する応答で、かつObservedEventsDescriptorで見つかったでMGCに戻りました。 12.2節を参照してください。

12.1.4 Signals
    .  Signals defined by the package, specifying:
    .  Signal Name: only descriptive.
    .  SignalID:  Is an identifier. SignalID is used in a
    .  Description
    .  SignalType: One of:
           - OO (On/Off)
           - TO (TimeOut)
           - BR (Brief)

Note - SignalType may be defined such that it is dependent on the value of one or more parameters. Signals that would be played with SignalType BR should have a default duration. The package has to define the default duration and signalType.

注 - SignalTypeは、一つ以上のパラメータの値に依存するように定義することができます。 SignalType BRで再生されるだろう信号は、デフォルトの継続時間を持つ必要があります。パッケージには、デフォルトの継続時間とsignalTypeを定義する必要があります。

. Duration: in hundredths of seconds . Additional Parameters: See section 12.2


12.1.5 Statistics

Statistics defined by the package, specifying:


. Statistic name: only descriptive. . StatisticID: Is an identifier. StatisticID is used in a StatisticsDescriptor. . Description . Units: unit of measure, e.g. milliseconds, packets.

。統計名前:のみ記述。 。 StatisticID:識別子です。 StatisticIDはStatisticsDescriptorに使用されています。 。説明。単位:測定単位、例えばミリ秒、パケット。

12.1.6 Procedures

Additional guidance on the use of the package.


12.2 Guidelines to defining Properties, Statistics and Parameters to Events and Signals.


    . Parameter Name: only descriptive
    . ParameterID: Is an identifier
    . Type: One of:
         String: UTF-8 octet string
         Integer: 4 octet signed integer
         Double: 8 octet signed integer
         Character: Unicode UTF-8 encoding of a single letter. Could be
         more than one octet.
         Enumeration: One of a list of possible unique values (See 12.3)
         Sub-list: A list of several values from a list

. Possible values: . Description:


12.3 Lists

Possible values for parameters include enumerations. Enumerations may be defined in a list. It is recommended that the list be IANA registered so that packages that extend the list can be defined without concern for conflicting names.


12.4 Identifiers

Identifiers in text encoding shall be strings of up to 64 characters, containing no spaces, starting with an alphanumeric character and consisting of alphanumeric characters and / or digits, and possibly including the special character underscore ("_").


Identifiers in binary encoding are 2 octets long.


Both text and binary values shall be specified for each identifier, including identifiers used as values in enumerated types.


12.5 Package Registration

A package can be registered with IANA for interoperability reasons. See section 13 for IANA considerations.

パッケージには、相互運用性の理由のためにIANAに登録することができます。 IANAの考慮事項についてはセクション13を参照してください。

13. IANAの考慮事項
13.1 Packages

The following considerations SHALL be met to register a package with IANA:


1. A unique string name, unique serial number and version number is registered for each package. The string name is used with text encoding. The serial number shall be used with binary encoding. Serial Numbers 60000-64565 are reserved for private use. Serial number 0 is reserved.


2. A contact name, email and postal addresses for that contact shall be specified. The contact information shall be updated by the defining organization as necessary.


3. A reference to a document that describes the package, which should be public:


The document shall specify the version of the Package that it describes.


If the document is public, it should be located on a public web server and should have a stable URL. The site should provide a mechanism to provide comments and appropriate responses should be returned.


4. Packages registered by other than recognized standards bodies shall have a minimum package name length of 8 characters.


5. All other package names are first come-first served if all other conditions are met


13.2 Error Codes

The following considerations SHALL be met to register an error code with IANA:


1. An error number and a one line (80 character maximum) string is registered for each error.


2. A complete description of the conditions under which the error is detected shall be included in a publicly available document. The description shall be sufficiently clear to differentiate the error from all other existing error codes.


3. The document should be available on a public web server and should have a stable URL.


4. Error numbers registered by recognized standards bodies shall have 3 or 4 character error numbers.


5. Error numbers registered by all other organizations or individuals shall have 4 character error numbers.


6. An error number shall not be redefined, nor modified except by the organization or individual that originally defined it, or their successors or assigns.


13.3 ServiceChange Reasons

The following considerations SHALL be met to register service change reason with IANA:


1. A one phrase, 80-character maximum, unique reason code is registered for each reason.

1. 1つのフレーズ、80文字の最大の、ユニークな理由コードは、それぞれの理由で登録されています。

2. A complete description of the conditions under which the reason is used is detected shall be included in a publicly available document. The description shall be sufficiently clear to differentiate the reason from all other existing reasons.


3. The document should be available on a public web server and should have a stable URL.




This Annex specifies the syntax of messages using the notation defined in ASN.1 [ITU-T Recommendation X.680 (1997): Information Technology - Abstract Syntax Notation One (ASN.1) - Specification of basic notation.]. Messages shall be encoded for transmission by applying the basic encoding rules specified in [ITU-T Recommendation X.690(1994) Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER)].

この附属書は、ASN.1で定義された表記法使用したメッセージの構文を指定し、[ITU-T勧告X.680(1997): - 抽象構文記法1(ASN.1) - 情報技術の基本的な表記法の仕様]。 【 - :基本符号化規則(BER)の仕様ASN.1エンコーディング規則は、ITU-T勧告X.690(1994)情報技術]のメッセージがで指定された基本的な符号化規則を適用することによって、送信のために符号化されます。

A.1 Coding of wildcards


The use of wildcards ALL and CHOOSE is allowed in the protocol. This allows a MGC to partially specify Termination IDs and let the MG choose from the values that conform to the partial specification. Termination IDs may encode a hierarchy of names. This hierarchy is provisioned. For instance, a TerminationID may consist of a trunk group, a trunk within the group and a circuit. Wildcarding must be possible at all levels. The following paragraphs explain how this is achieved.


The ASN.1 description uses octet strings of up to 8 octets in length for Termination IDs. This means that Termination IDs consist of at most 64 bits. A fully specified Termination ID may be preceded by a sequence of wildcarding fields. A wildcarding field is octet in length. Bit 7 (the most significant bit) of this octet specifies what type of wildcarding is invoked: if the bit value equals 1, then the ALL wildcard is used; if the bit value if 0, then the CHOOSE wildcard is used. Bit 6 of the wildcarding field specifies whether the wildcarding pertains to one level in the hierarchical naming scheme (bit value 0) or to the level of the hierarchy specified in the wildcarding field plus all lower levels (bit value 1). Bits 0 through 5 of the wildcarding field specify the bit position in the Termination ID at which the starts.


We illustrate this scheme with some examples. In these examples, the most significant bit in a string of bits appears on the left hand side.


Assume that Termination IDs are three octets long and that each octet represents a level in a hierarchical naming scheme. A valid Termination ID is 00000001 00011110 01010101.

終了IDが3つのオクテットの長及び各オクテットは階層命名方式でレベルを表していることであることを前提としています。有効な終端IDは00000001 00011110 01010101です。

Addressing ALL names with prefix 00000001 00011110 is done as follows: wildcarding field: 10000111 Termination ID: 00000001 00011110 xxxxxxxx.

次のように00000001 00011110が行われた接頭辞ですべての名前をアドレス指定:ワイルドカードフィールド:10000111終了ID:00000001 00011110 XXXXXXXX。

The values of the bits labeled "x" is irrelevant and shall be ignored by the receiver.


Indicating to the receiver that is must choose a name with 00011110 as the second octet is done as follows: wildcarding fields: 00010111 followed by 00000111 Termination ID: xxxxxxxx 00011110 xxxxxxxx.

ワイルドカードフィールド:XXXXXXXX XXXXXXXX 00011110:00010111は00000111終端IDに続いて、次のように第2オクテットが行われるように00011110と名前を選択する必要がありますされて受信機に指示します。

The first wildcard field indicates a CHOOSE wildcard for the level in the naming hierarchy starting at bit 23, the highest level in our assumed naming scheme. The second wildcard field indicates a CHOOSE wildcard for the level in the naming hierarchy starting at bit 7, the lowest level in our assumed naming scheme.


Finally, a CHOOSE-wildcarded name with the highest level of the name equal to 00000001 is specified as follows: wildcard field: 01001111 Termination ID: 0000001 xxxxxxxx xxxxxxxx .

ワイルドカードフィールド:01001111終了ID:0000001 XXXXXXXXのXXXXXXXXを次のように最後に、00000001と等しい名前の最高レベルの選択肢、ワイルドカード名が指定されています。

Bit value 1 at bit position 6 of the first octet of the wildcard field indicates that the wildcarding pertains to the specified level in the naming hierarchy and all lower levels.


Context IDs may also be wildcarded. In the case of Context IDs, however, specifying partial names is not allowed. Context ID 0x0 SHALL be used to indicate the NULL Context, Context ID 0xFFFFFFFE SHALL be used to indicate a CHOOSE wildcard, and Context ID 0xFFFFFFFF SHALL be used to indicate an ALL wildcard.

コンテキストIDはまた、ワイルドカードすることができます。コンテキストIDの場合は、しかし、部分的な名前を指定することはできません。コンテキストIDは0x0はNULLコンテキストを示すために使用されるものと、コンテキストID 0xFFFFFFFEは、ワイルドカードを選択指示するために使用されるもの、およびコンテキストID 0xFFFFFFFFのは、ALLワイルドカードを示すために使用されなければなりません。

TerminationID 0xFFFFFFFFFFFFFFFF SHALL be used to indicate the ROOT Termination.

TerminationID 0xFFFFFFFFFFFFFFFFはROOTの終了を示すために使用しなければなりません。

A.2 ASN.1 syntax specification

A.2 ASN.1構文の仕様

This section contains the ASN.1 specification of the H.248 protocol syntax.


NOTE - In case a transport mechanism is used that employs application level framing, the definition of Transaction below changes. Refer to the annex defining the transport mechanism for the definition that applies in that case.

注 - ここで、搬送機構は、アプリケーションレベルのフレーミング、変更以下トランザクションの定義を用いるが使用されます。その場合に適用される定義のためのトランスポート・メカニズムを定義する別館を参照してください。

NOTE - The ASN.1 specification below contains a clause defining TerminationIDList as a sequence of TerminationIDs. The length of this sequence SHALL be one. The SEQUENCE OF construct is present only to allow future extensions.

注 - ASN.1仕様は以下のTerminationIDsのシーケンスとしてTerminationIDListを定める条項が含まれています。このシーケンスの長さは1でなければなら。構築物の配列は、将来の拡張を可能にする唯一の存在です。

   MegacoMessage ::= SEQUENCE
        authHeader      AuthenticationHeader OPTIONAL,
        mess            Message
   AuthenticationHeader ::= SEQUENCE
        secParmIndex    SecurityParmIndex,
        seqNum          SequenceNum,
        ad              AuthData
   SecurityParmIndex ::= OCTET STRING(SIZE(4))
   SequenceNum       ::= OCTET STRING(SIZE(4))
   AuthData          ::= OCTET STRING (SIZE (16..32))
   Message ::= SEQUENCE
        version         INTEGER(0..99),
   -- The version of the protocol defined here is equal to 1.
        mId             MId,    -- Name/address of message originator
        messageBody             CHOICE
                messageError    ErrorDescriptor,
                transactions    SEQUENCE OF Transaction
   MId ::= CHOICE
        ip4Address                      IP4Address,
        ip6Address                      IP6Address,
        domainName                      DomainName,
        deviceName                      PathName,
        mtpAddress                      OCTET STRING(SIZE(2)),
    -- Addressing structure of mtpAddress:
    --        15                0
    --        |  PC        | NI |
    --           14 bits    2 bits
   DomainName ::= SEQUENCE

name IA5String, -- The name starts with an alphanumeric digit followed by a -- sequence of alphanumeric digits, hyphens and dots. No two -- dots shall occur consecutively. portNumber INTEGER(0..65535) OPTIONAL }

、IA5Stringに名前を付ける - 英数字の数字、ハイフンとドットのシーケンス - 名前が続く英数字数字で始まります。いいえ2 - ドットが連続して発生してはなりません。ここで、portNumber INTEGER(0 65535)OPTIONAL}

   IP4Address ::= SEQUENCE
        address         OCTET STRING (SIZE(4)),
        portNumber      INTEGER(0..65535) OPTIONAL
   IP6Address ::= SEQUENCE
        address         OCTET STRING (SIZE(16)),
        portNumber      INTEGER(0..65535) OPTIONAL
   PathName ::= IA5String(SIZE (1..64))
   -- See section A.3
   Transaction ::= CHOICE
        transactionRequest      TransactionRequest,
        transactionPending      TransactionPending,
        transactionReply        TransactionReply,
        transactionResponseAck  TransactionResponseAck,
             -- use of response acks is dependent on underlying
   TransactionId ::= INTEGER(0..4294967295)  -- 32 bit unsigned integer
   TransactionRequest ::= SEQUENCE
        transactionId           TransactionId,
        actions                 SEQUENCE OF ActionRequest,
   TransactionPending ::= SEQUENCE
        transactionId           TransactionId,
   TransactionReply ::= SEQUENCE
        transactionId           TransactionId,
        transactionResult       CHOICE
             transactionError   ErrorDescriptor,
             actionReplies      SEQUENCE OF ActionReply
   TransactionResponseAck ::= SEQUENCE
        firstAck        TransactionId,
        lastAck         TransactionId OPTIONAL
   ErrorDescriptor ::= SEQUENCE
        errorCode       ErrorCode,
        errorText       ErrorText OPTIONAL
   ErrorCode ::= INTEGER(0..65535)
   -- See section 13 for IANA considerations w.r.t. error codes
   ErrorText ::= IA5String
   ContextID ::= INTEGER(0..4294967295)

-- Context NULL Value: 0 -- Context CHOOSE Value: 429467294 (0xFFFFFFFE) -- Context ALL Value: 4294967295 (0xFFFFFFFF)

- コンテキストNULL値:0 - コンテキスト値を選択:429467294(0xFFFFFFFE) - コンテキストALL値:4294967295(0xFFFFFFFFの)

   ActionRequest ::= SEQUENCE
        contextId               ContextID,
        contextRequest          ContextRequest OPTIONAL,
        contextAttrAuditReq     ContextAttrAuditRequest OPTIONAL,
        commandRequests         SEQUENCE OF CommandRequest
   ActionReply ::= SEQUENCE
        contextId               ContextID,
        errorDescriptor         ErrorDescriptor OPTIONAL,
        contextReply            ContextRequest OPTIONAL, commandReply            SEQUENCE OF CommandReply
   ContextRequest ::= SEQUENCE
        priority                INTEGER(0..15) OPTIONAL,
        emergency               BOOLEAN OPTIONAL,
        topologyReq             SEQUENCE OF TopologyRequest OPTIONAL,
   ContextAttrAuditRequest ::= SEQUENCE
   topology     NULL OPTIONAL,
        emergency       NULL OPTIONAL,
        priority        NULL OPTIONAL,
   CommandRequest ::= SEQUENCE
        command                 Command,
        optional                NULL OPTIONAL,
        wildcardReturn          NULL OPTIONAL,
   Command ::= CHOICE
        addReq                  AmmRequest,
        moveReq                 AmmRequest,
        modReq                  AmmRequest,
        -- Add, Move, Modify requests have the same parameters
        subtractReq             SubtractRequest,
        auditCapRequest         AuditRequest,
        auditValueRequest       AuditRequest,
        notifyReq               NotifyRequest,
        serviceChangeReq        ServiceChangeRequest,
   CommandReply ::= CHOICE
        addReply                AmmsReply,
        moveReply               AmmsReply,
        modReply                AmmsReply,
        subtractReply           AmmsReply,
        -- Add, Move, Modify, Subtract replies have the same parameters auditCapReply           AuditReply,
        auditValueReply         AuditReply,
        notifyReply             NotifyReply,
        serviceChangeReply      ServiceChangeReply,
   TopologyRequest ::= SEQUENCE
        terminationFrom         TerminationID,
        terminationTo           TerminationID,
        topologyDirection       ENUMERATED
   AmmRequest ::= SEQUENCE
        terminationID           TerminationIDList,
        mediaDescriptor         MediaDescriptor OPTIONAL,
        modemDescriptor         ModemDescriptor OPTIONAL,
        muxDescriptor           MuxDescriptor OPTIONAL,
        eventsDescriptor        EventsDescriptor OPTIONAL,
        eventBufferDescriptor   EventBufferDescriptor OPTIONAL,
        signalsDescriptor       SignalsDescriptor OPTIONAL,
        digitMapDescriptor      DigitMapDescriptor OPTIONAL,
        auditDescriptor         AuditDescriptor OPTIONAL,
   AmmsReply ::= SEQUENCE
        terminationID           TerminationIDList,
        terminationAudit        TerminationAudit OPTIONAL
   SubtractRequest ::= SEQUENCE
        terminationID           TerminationIDList,
        auditDescriptor         AuditDescriptor OPTIONAL,
   AuditRequest ::= SEQUENCE

terminationID TerminationID, auditDescriptor AuditDescriptor, ... }


   AuditReply ::= SEQUENCE
        terminationID           TerminationID,
        auditResult             AuditResult
   AuditResult ::= CHOICE
        contextAuditResult      TerminationIDList,
        terminationAuditResult  TerminationAudit
   AuditDescriptor ::= SEQUENCE
        auditToken      BIT STRING
                muxToken(0), modemToken(1), mediaToken(2),
                eventsToken(3), signalsToken(4),
                digitMapToken(5), statsToken(6),
                packagesToken(8), eventBufferToken(9)
        } OPTIONAL,
   TerminationAudit ::= SEQUENCE OF AuditReturnParameter
   AuditReturnParameter ::= CHOICE
        errorDescriptor                 ErrorDescriptor,
        mediaDescriptor                 MediaDescriptor,
        modemDescriptor                 ModemDescriptor,
        muxDescriptor                   MuxDescriptor,
        eventsDescriptor                EventsDescriptor,
        eventBufferDescriptor           EventBufferDescriptor,
        signalsDescriptor               SignalsDescriptor,
        digitMapDescriptor              DigitMapDescriptor,
        observedEventsDescriptor        ObservedEventsDescriptor,
        statisticsDescriptor            StatisticsDescriptor,
        packagesDescriptor              PackagesDescriptor,
   NotifyRequest ::= SEQUENCE
        terminationID                   TerminationIDList,
        observedEventsDescriptor        ObservedEventsDescriptor,
        errorDescriptor                 ErrorDescriptor OPTIONAL,
   NotifyReply ::= SEQUENCE
        terminationID                   TerminationIDList OPTIONAL,
        errorDescriptor                 ErrorDescriptor OPTIONAL,
   ObservedEventsDescriptor ::= SEQUENCE
        requestId                       RequestID,
        observedEventLst                SEQUENCE OF ObservedEvent
   ObservedEvent ::= SEQUENCE
        eventName                       EventName,
        streamID                        StreamID OPTIONAL,
        eventParList                    SEQUENCE OF EventParameter,
        timeNotation                    TimeNotation OPTIONAL
   EventName ::= PkgdName
   EventParameter ::= SEQUENCE
        eventParameterName              Name,
        value                           Value
   ServiceChangeRequest ::= SEQUENCE
        terminationID                   TerminationIDList,
        serviceChangeParms              ServiceChangeParm,
   ServiceChangeReply ::= SEQUENCE
        terminationID                   TerminationIDList,
        serviceChangeResult             ServiceChangeResult,

... }

。。。 }

-- For ServiceChangeResult, no parameters are mandatory. Hence the -- distinction between ServiceChangeParm and ServiceChangeResParm.

- ServiceChangeResultのために、何のパラメータは必須ではありません。従って - ServiceChangeParmとServiceChangeResParmの区別。

   ServiceChangeResult ::= CHOICE
        errorDescriptor                 ErrorDescriptor,
        serviceChangeResParms           ServiceChangeResParm
   WildcardField ::= OCTET STRING(SIZE(1))
   TerminationID ::= SEQUENCE
        wildcard        SEQUENCE OF WildcardField,
        id              OCTET STRING(SIZE(1..8))
   -- See Section A.1 for explanation of wildcarding mechanism.
   -- Termination ID 0xFFFFFFFFFFFFFFFF indicates the ROOT Termination.
   TerminationIDList ::= SEQUENCE OF TerminationID
   MediaDescriptor ::= SEQUENCE

termStateDescr TerminationStateDescriptor OPTIONAL, streams CHOICE { oneStream StreamParms, multiStream SEQUENCE OF StreamDescriptor }, ... }

termStateDescr TerminationStateDescriptor OPTIONAL、...}、CHOICE {oneStream StreamParms、StreamDescriptorのマルチストリーム・シーケンスを}ストリーム

   StreamDescriptor ::= SEQUENCE
        streamID                        StreamID,
        streamParms                     StreamParms
   StreamParms ::= SEQUENCE
        localControlDescriptor     LocalControlDescriptor OPTIONAL,
        localDescriptor            LocalRemoteDescriptor OPTIONAL,
        remoteDescriptor           LocalRemoteDescriptor OPTIONAL,
   LocalControlDescriptor ::= SEQUENCE
        streamMode      StreamMode OPTIONAL,
        reserveValue    BOOLEAN,
        reserveGroup    BOOLEAN,
        propertyParms   SEQUENCE OF PropertyParm,
   StreamMode ::= ENUMERATED

-- In PropertyParm, value is a SEQUENCE OF octet string. When sent -- by an MGC the interpretation is as follows: -- empty sequence means CHOOSE -- one element sequence specifies value -- longer sequence means "choose one of the values" -- The relation field may only be selected if the value sequence -- has length 1. It indicates that the MG has to choose a value -- for the property. E.g., x > 3 (using the greaterThan -- value for relation) instructs the MG to choose any value larger -- than 3 for property x. -- The range field may only be selected if the value sequence -- has length 2. It indicates that the MG has to choose a value -- in the range between the first octet in the value sequence and -- the trailing octet in the value sequence, including the -- boundary values. -- When sent by the MG, only responses to an AuditCapability request -- may contain multiple values, a range, or a relation field.

- PropertyParmでは、値は、オクテットストリングの配列です。送信された場合 - MGCによって、次のような解釈がある: - 配列「の値のいずれかを選択してください」という意味長い - - 値ならば関係フィールドのみ選択することができ、1つの要素シーケンスが値を指定する - 空のシーケンスがCHOOSE意味しますシーケンスは - プロパティの - それはMGが値を選択しなければならないことを示している長さ1を持っています。例えば、X> 3(演算子:GreaterThanを用い - リレーションの値) - プロパティX 3よりも大きい任意の値を選択するためにMGに指示します。 - 末尾オクテットで - 第1の値のシーケンスにおけるオクテットとの間の範囲の - 長さ2を有し、これはMGが値を選択しなければならないことを示す - 範囲フィールドは、値のシーケンスがあれば選択することができます境界値 - を含む値シーケンス、。 MGによって送信された場合、AuditCapability要求にのみ応答が - - 複数の値、範囲、または関連フィールドを含んでいてもよいです。

   PropertyParm ::= SEQUENCE
        name            PkgdName,
        value           SEQUENCE OF OCTET STRING,
        extraInfo       CHOICE
                        relation        Relation,
                        range           BOOLEAN
                } OPTIONAL


   Name ::= OCTET STRING(SIZE(2))
   PkgdName ::= OCTET STRING(SIZE(4))
   -- represents Package Name (2 octets) plus Property Name (2 octets)
   -- To wildcard a package use 0xFFFF for first two octets, choose
   -- is not allowed. To reference native property tag specified in
   -- Annex C, use 0x0000 as first two octets.
   -- Wildcarding of Package Name is permitted only if Property Name is
   -- also wildcarded.
   Relation ::= ENUMERATED
   LocalRemoteDescriptor ::= SEQUENCE
        propGrps        SEQUENCE OF PropertyGroup,
   PropertyGroup ::= SEQUENCE OF PropertyParm
   TerminationStateDescriptor ::= SEQUENCE
        propertyParms           SEQUENCE OF PropertyParm,
        eventBufferControl      EventBufferControl OPTIONAL,
        serviceState            ServiceState OPTIONAL,
   EventBufferControl ::= ENUMERATED
   ServiceState ::= ENUMERATED
   MuxDescriptor   ::= SEQUENCE
        muxType                 MuxType,
        termList                SEQUENCE OF TerminationID,
        nonStandardData         NonStandardData OPTIONAL,
   MuxType ::= ENUMERATED
   StreamID ::= INTEGER(0..65535)  -- 16 bit unsigned integer
   EventsDescriptor ::= SEQUENCE
        requestID               RequestID,
        eventList               SEQUENCE OF RequestedEvent
   RequestedEvent ::= SEQUENCE
        pkgdName                PkgdName,
        streamID                StreamID OPTIONAL,
        eventAction             RequestedActions OPTIONAL,
        evParList               SEQUENCE OF EventParameter
   RequestedActions ::= SEQUENCE
        keepActive              BOOLEAN,
        eventDM                 EventDM OPTIONAL,
        secondEvent             SecondEventsDescriptor OPTIONAL,
        signalsDescriptor       SignalsDescriptor OPTIONAL,
   EventDM ::= CHOICE
   {    digitMapName    DigitMapName,
        digitMapValue   DigitMapValue
   SecondEventsDescriptor ::= SEQUENCE
        requestID               RequestID,
        eventList               SEQUENCE OF SecondRequestedEvent
   SecondRequestedEvent ::= SEQUENCE
        pkgdName                PkgdName,
        streamID                StreamID OPTIONAL,
        eventAction             SecondRequestedActions OPTIONAL,
        evParList               SEQUENCE OF EventParameter
   SecondRequestedActions ::= SEQUENCE
        keepActive              BOOLEAN,
        eventDM                 EventDM OPTIONAL,
        signalsDescriptor       SignalsDescriptor OPTIONAL,
   EventBufferDescriptor ::= SEQUENCE OF ObservedEvent
   SignalsDescriptor ::= SEQUENCE OF SignalRequest
   SignalRequest ::=CHOICE
        signal          Signal,
        seqSigList      SeqSigList
   SeqSigList ::= SEQUENCE
        id              INTEGER(0..65535),
        signalList      SEQUENCE OF Signal
   Signal ::= SEQUENCE
        signalName              SignalName,
        streamID                StreamID OPTIONAL,
        sigType                 SignalType OPTIONAL,
        duration                INTEGER (0..65535) OPTIONAL,
        notifyCompletion        BOOLEAN OPTIONAL,
        keepActive              BOOLEAN OPTIONAL,
        sigParList              SEQUENCE OF SigParameter
   SignalType ::= ENUMERATED
   SignalName ::= PkgdName
   SigParameter ::= SEQUENCE
        sigParameterName                Name,
        value                           Value
   RequestID ::= INTEGER(0..4294967295)   -- 32 bit unsigned integer
   ModemDescriptor ::= SEQUENCE
        mtl                     SEQUENCE OF ModemType,
        mpl                     SEQUENCE OF PropertyParm,
        nonStandardData         NonStandardData OPTIONAL
   ModemType ::= ENUMERATED
   DigitMapDescriptor ::= SEQUENCE
        digitMapName            DigitMapName,
        digitMapValue           DigitMapValue
   DigitMapName ::= Name
   DigitMapValue ::= SEQUENCE

{ startTimer INTEGER(0..99) OPTIONAL, shortTimer INTEGER(0..99) OPTIONAL, longTimer INTEGER(0..99) OPTIONAL, digitMapBody IA5String -- See Section A.3 for explanation of digit map syntax }

{startTimer INTEGER(0..99)OPTIONAL、shortTimer INTEGER(0..99)OPTIONAL、longTimer INTEGER(0..99)OPTIONAL、digitMapBody IA5String - ケタ地図構文の説明についてはセクションA.3を参照してください}

   ServiceChangeParm ::= SEQUENCE
        serviceChangeMethod     ServiceChangeMethod,
        serviceChangeAddress    ServiceChangeAddress OPTIONAL,
        serviceChangeVersion    INTEGER(0..99) OPTIONAL,
        serviceChangeProfile    ServiceChangeProfile OPTIONAL,
        serviceChangeReason     Value,
        serviceChangeDelay      INTEGER(0..4294967295) OPTIONAL,
                                    -- 32 bit unsigned integer
        serviceChangeMgcId      MId OPTIONAL,
        timeStamp               TimeNotation OPTIONAL,
        nonStandardData         NonStandardData OPTIONAL,
   ServiceChangeAddress ::= CHOICE
        portNumber      INTEGER(0..65535), -- TCP/UDP port number
        ip4Address      IP4Address,
        ip6Address      IP6Address,
        domainName      DomainName,
        deviceName      PathName,
        mtpAddress      OCTET STRING(SIZE(2)),
   ServiceChangeResParm ::= SEQUENCE
        serviceChangeMgcId      MId OPTIONAL,
        serviceChangeAddress    ServiceChangeAddress OPTIONAL,
        serviceChangeVersion    INTEGER(0..99) OPTIONAL,
        serviceChangeProfile    ServiceChangeProfile OPTIONAL
   ServiceChangeMethod ::= ENUMERATED
        disconnected(4), handOff(5),
   ServiceChangeProfile ::= SEQUENCE
        profileName     Name,
        version         INTEGER(0..99)
   PackagesDescriptor ::= SEQUENCE OF PackagesItem
   PackagesItem ::= SEQUENCE
        packageName             Name,
        packageVersion  INTEGER(0..99)
   StatisticsDescriptor ::= SEQUENCE OF StatisticsParameter
   StatisticsParameter ::= SEQUENCE
        statName                PkgdName,
        statValue               Value
   NonStandardData ::= SEQUENCE
        nonStandardIdentifier   NonStandardIdentifier,
        data                    OCTET STRING
   NonStandardIdentifier                ::= CHOICE
        object                  OBJECT IDENTIFIER,
        h221NonStandard         H221NonStandard,
        experimental            IA5STRING(SIZE(8)),
    -- first two characters should be "X-" or "X+"
   H221NonStandard ::= SEQUENCE
   {    t35CountryCode     INTEGER(0..255), -- country, as per T.35
        t35Extension       INTEGER(0..255), -- assigned nationally
        manufacturerCode   INTEGER(0..65535), -- assigned nationally
   TimeNotation ::= SEQUENCE
        date            IA5String(SIZE(8)),  -- yyyymmdd format
        time            IA5String(SIZE(8))  -- hhmmssss format
   Value ::= OCTET STRING



A.3 Digit maps and path names


From a syntactic viewpoint, digit maps are strings with syntactic restrictions imposed upon them. The syntax of valid digit maps is specified in ABNF [RFC 2234]. The syntax for digit maps presented in this section is for illustrative purposes only. The definition of digitMap in Annex B takes precedence in the case of differences between the two.

構文の観点から、ケタ地図は彼らに課せられた構文の制限付きで文字列です。有効桁マップの構文はABNF [RFC 2234]で指定されています。このセクションで提示ケタ地図の構文は、説明のみを目的としています。附属書BにdigitMapの定義は、両者の違いの場合に優先されます。

digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP) digitStringList = digitString *( LWSP "/" LWSP digitString ) digitString = 1*(digitStringElement) digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange = ("x" / LWSP "[" LWSP digitLetter LWSP "]" LWSP) digitLetter = *((DIGIT "-" DIGIT) /digitMapLetter)

digitMap =(digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP)digitStringList = digitString *(LWSP "/" LWSP digitString)digitString = 1 *(digitStringElement)digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange =( "X" / LWSP "[" LWSP digitLetter LWSP "]" LWSP)digitLetter = *((DIGIT " - " DIGIT)/ digitMapLetter)

digitMapLetter = DIGIT ;digits 0-9 / %x41-4B / %x61-6B ;a-k and A-K / "L" / "S" ;Inter-event timers ;(long, short) / "Z" ;Long duration event LWSP = *(WSP / COMMENT / EOL) WSP = SP / HTAB COMMENT = ";" *(SafeChar / RestChar / WSP) EOL EOL = (CR [LF]) / LF SP = %x20 HTAB = %x09 CR = %x0D LF = %x0A SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" / "'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" / "(" / ")" / "%" / "." RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" / "<" / ">" / "=" / %x22 DIGIT = %x30-39 ; digits 0 through 9

digitMapLetter = DIGIT; 0-9 /%x41-4B /%x61-6B; AKおよびAK / "L" / "S";インターイベントタイマ(ロング、ショート)/ "Z";長持続イベントLWSP = *(WSP / COMMENT / EOL)WSP = SP / HTAB COMMENT = ";" *(SafeChar / RestChar / WSP)EOLのEOL =(CR [LF])/ LF SP =%X20 HTAB =%X09 CR =%x0D LF =%X0A SafeChar = DIGIT / ALPHA / "+" / " - " / " &」/ "!" / "_" / "/" / "'" / "?" / "@" / "^" / "`"/ "〜"/ "*"/ "$"/ "\"/ "("/ ")"/ "%"/ "" RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "" / "#" / "<" / ">" / "=" /%のX22 DIGIT =%x30-39。 0〜9の数字

ALPHA = %x41-5A / %x61-7A ; A-Z, a-z A path name is also a string with syntactic restrictions imposed upon it. The ABNF production defining it is copied from Annex B.

ALPHA =%x41-5A /%x61-7A。 -Z、Z-パス名もそれに課さ構文制約の文字列です。それを定義するABNF生産は、附属書Bからコピーされます

PathName = NAME *(["/"] ["*"] ["@"] (ALPHA / DIGIT)) ["*"] NAME = ALPHA *63(ALPHA / DIGIT / "_" )

引数PathName = NAME *([ "/"] [ "*"] [ "@"(ALPHA / DIGIT))[ "*"] NAME = ALPHA * 63(ALPHA / DIGIT / "_")



B.1 Coding of wildcards


   In a text encoding of the protocol, while TerminationIDs are
   arbitrary, by judicious choice of names, the wildcard character, "*"
   may be made more useful.  When the wildcard character is encountered,
   it will "match" all TerminationIDs having the same previous and
   following characters (if appropriate).  For example, if there were
   TerminationIDs of R13/3/1, R13/3/2 and R13/3/3, the TerminationID
   R13/3/* would match all of them.  There are some circumstances where
   ALL Terminations must be referred to.  The TerminationID "*"
   suffices, and is referred to as ALL. The CHOOSE TerminationID "$" may
   be used to signal to the MG that it has to create an ephemeral
   Termination or select an idle physical Termination.

B.2 ABNF specification

B.2 ABNF仕様

The protocol syntax is presented in ABNF according to RFC2234.


megacoMessage = LWSP [authenticationHeader SEP ] message

megacoMessage = LWSP [authenticationHeader 9月]メッセージ

authenticationHeader = AuthToken EQUAL SecurityParmIndex COLON SequenceNum COLON AuthData

authenticationHeader =持つAuthToken EQUAL SecurityParmIndex COLONのSequenceNumコロンAuthData

SecurityParmIndex = "0x" 8(HEXDIG) SequenceNum = "0x" 8(HEXDIG) AuthData = "0x" 32*64(HEXDIG)

SecurityParmIndex = "0X" 8(HEXDIG)SequenceNum = "0X" 8(HEXDIG)AuthData = "0X" 32 * 64(HEXDIG)

message = MegacopToken SLASH Version SEP mId SEP messageBody ; The version of the protocol defined here is equal to 1.

メッセージ= MegacopTokenバージョン9月中旬のSEPするmessagebodyを大幅に削減。ここで定義されたプロトコルのバージョンは1に等しいです。

messageBody = ( errorDescriptor / transactionList )

するmessagebody =(errorDescriptor / transactionList)

transactionList = 1*( transactionRequest / transactionReply / transactionPending / transactionResponseAck ) ;Use of response acks is dependent on underlying transport

transactionList = 1 *(transactionRequest / transactionReply / transactionPending / transactionResponseAck);応答ACKの使用は、基本的な輸送に依存しています

transactionPending = PendingToken EQUAL TransactionID LBRKT RBRKT transactionResponseAck = ResponseAckToken LBRKT transactionAck *(COMMA transactionAck) RBRKT transactionAck = transactionID / (transactionID "-" transactionID)

transactionPending = PendingToken EQUAL TRANSACTIONID LBRKT RBRKT transactionResponseAck = ResponseAckToken LBRKT transactionAck *(COMMA transactionAck)RBRKT transactionAck =トランザクションID /(トランザクションID " - " トランザクションID)

transactionRequest = TransToken EQUAL TransactionID LBRKT actionRequest *(COMMA actionRequest) RBRKT

transactionRequest = TransToken EQUAL TRANSACTIONID LBRKT actionRequest *(COMMA actionRequest)RBRKT

actionRequest = CtxToken EQUAL ContextID LBRKT (( contextRequest [COMMA commandRequestList]) / commandRequestList) RBRKT

actionRequest = CtxToken EQUALのContextID LBRKT((contextRequest [COMMA commandRequestList])/ commandRequestList)RBRKT

contextRequest = ((contextProperties [COMMA contextAudit]) / contextAudit)

contextRequest =((contextProperties [COMMA contextAudit])/ contextAudit)

contextProperties = contextProperty *(COMMA contextProperty)

contextProperties = contextProperty *(COMMA contextProperty)

; at-most-once contextProperty = (topologyDescriptor / priority / EmergencyToken)

;で最大1回contextProperty =(topologyDescriptor /優先順位/ EmergencyToken)

contextAudit = ContextAuditToken LBRKT contextAuditProperties *(COMMA contextAuditProperties) RBRKT

contextAudit = ContextAuditToken LBRKT contextAuditProperties *(COMMA contextAuditProperties)RBRKT

; at-most-once contextAuditProperties = ( TopologyToken / EmergencyToken / PriorityToken )

;で最大1回contextAuditProperties =(トポロジトークン/緊急トークン/優先トークン)

commandRequestList= ["O-"] commandRequest *(COMMA ["O-"] commandRequest)

commandRequestList = [ "O"] commandRequest *(段落[ "O"] commandRequest)

commandRequest = ( ammRequest / subtractRequest / auditRequest / notifyRequest / serviceChangeRequest)

commandRequest =(ammRequest / subtractRequest / auditRequest / notifyRequest / serviceChangeRequest)

transactionReply = ReplyToken EQUAL TransactionID LBRKT ( errorDescriptor / actionReplyList ) RBRKT

transactionReply = ReplyToken EQUAL TRANSACTIONID LBRKT(errorDescriptor / actionReplyList)RBRKT

actionReplyList = actionReply *(COMMA actionReply )

actionReplyList = actionReply *(COMMA actionReply)

actionReply = CtxToken EQUAL ContextID LBRKT ( errorDescriptor / commandReply ) RBRKT

actionReply = CtxToken EQUALのContextID LBRKT(errorDescriptor / commandReply)RBRKT

commandReply = (( contextProperties [COMMA commandReplyList] ) / commandReplyList )

commandReply =((contextProperties [COMMA commandReplyList])/ commandReplyList)

commandReplyList = commandReplys *(COMMA commandReplys ) commandReplys = (serviceChangeReply / auditReply / ammsReply / notifyReply )

commandReplyList = commandReplys *(COMMA commandReplys)commandReplys =(serviceChangeReply / auditReply / ammsReply / notifyReply)

;Add Move and Modify have the same request parameters ammRequest = (AddToken / MoveToken / ModifyToken ) EQUAL TerminationID [LBRKT ammParameter *(COMMA ammParameter) RBRKT]

; [RBRKT LBRKT ammParameter *(COMMA ammParameter)]同じリクエストパラメータammRequest =(AddToken / MoveToken / ModifyToken)EQUAL TerminationIDを有する移動や変更を加えます

;at-most-once ammParameter = (mediaDescriptor / modemDescriptor / muxDescriptor / eventsDescriptor / signalsDescriptor / digitMapDescriptor / eventBufferDescriptor / auditDescriptor)

;で最もワンスammParameter =(mediaDescriptor / modemDescriptor / muxDescriptor /たEventsDescriptor / signalsDescriptor / digitMapDescriptor / eventBufferDescriptor / auditDescriptor)

ammsReply = (AddToken / MoveToken / ModifyToken / SubtractToken ) EQUAL TerminationID [ LBRKT terminationAudit RBRKT ]

ammsReply =(AddToken / MoveToken / ModifyToken / SubtractToken)EQUAL TerminationID [LBRKT terminationAudit RBRKT]

subtractRequest = ["W-"] SubtractToken EQUAL TerminationID [ LBRKT auditDescriptor RBRKT]

subtractRequest = [ "W-"] SubtractToken EQUAL TerminationID [LBRKT auditDescriptor RBRKT]

auditRequest = ["W-"] (AuditValueToken / AuditCapToken ) EQUAL TerminationID LBRKT auditDescriptor RBRKT

auditRequest = [ "W-"](AuditValueToken / AuditCapToken)EQUAL TerminationID LBRKT auditDescriptor RBRKT

auditReply = (AuditValueToken / AuditCapToken ) ( contextTerminationAudit / auditOther)

auditReply =(AuditValueToken / AuditCapToken)(contextTerminationAudit / auditOther)

auditOther = EQUAL TerminationID LBRKT terminationAudit RBRKT

auditOther = EQUAL TerminationID LBRKT terminationAudit RBRKT

terminationAudit = auditReturnParameter *(COMMA auditReturnParameter)

terminationAudit = auditReturnParameter *(COMMA auditReturnParameter)

contextTerminationAudit = EQUAL CtxToken ( terminationIDList / LBRKT errorDescriptor RBRKT )

contextTerminationAudit = EQUAL CtxToken(terminationIDList / LBRKT errorDescriptor RBRKT)

;at-most-once except errorDescriptor auditReturnParameter = (mediaDescriptor / modemDescriptor / muxDescriptor / eventsDescriptor / signalsDescriptor / digitMapDescriptor / observedEventsDescriptor / eventBufferDescriptor / statisticsDescriptor / packagesDescriptor / errorDescriptor )

;最もワンスを除いerrorDescriptor auditReturnParameter =(mediaDescriptor / modemDescriptor / muxDescriptor /たEventsDescriptor / signalsDescriptor / digitMapDescriptor / observedEventsDescriptor / eventBufferDescriptor / statisticsDescriptor / packagesDescriptor / errorDescriptor)

auditDescriptor = AuditToken LBRKT [ auditItem *(COMMA auditItem) ] RBRKT

auditDescriptor =監査トークンLBRKT [監査項目*(COMMA監査項目)] RBRKT

notifyRequest = NotifyToken EQUAL TerminationID LBRKT ( observedEventsDescriptor [ COMMA errorDescriptor ] ) RBRKT

notifyRequest = NotifyToken EQUAL TerminationID LBRKT(observedEventsDescriptor [COMMA errorDescriptor])RBRKT

notifyReply = NotifyToken EQUAL TerminationID [ LBRKT errorDescriptor RBRKT ]

notifyReply = NotifyToken EQUAL TerminationID [LBRKT errorDescriptor RBRKT]

serviceChangeRequest = ServiceChangeToken EQUAL TerminationID LBRKT serviceChangeDescriptor RBRKT

serviceChangeRequest = ServiceChangeToken EQUAL TerminationID LBRKT serviceChangeDescriptor RBRKT

serviceChangeReply = ServiceChangeToken EQUAL TerminationID [LBRKT (errorDescriptor / serviceChangeReplyDescriptor) RBRKT]

serviceChangeReply = ServiceChangeToken EQUAL TerminationID [LBRKT(errorDescriptor / serviceChangeReplyDescriptor)RBRKT]

errorDescriptor = ErrorToken EQUAL ErrorCode LBRKT [quotedString] RBRKT

errorDescriptor = ErrorToken EQUALのErrorCode LBRKT [quotedString] RBRKT

ErrorCode = 1*4(DIGIT) ; could be extended

ErrorCode = 1×4(DIGIT)。拡張することができ

TransactionID = UINT32


mId = (( domainAddress / domainName ) [":" portNumber]) / mtpAddress / deviceName

MID =((ドメインアドレス/ドメイン名)[ ":" ポート番号])/ mtpAddress / DEVICENAME

; ABNF allows two or more consecutive "." although it is meaningless ; in a domain name. domainName = "<" (ALPHA / DIGIT) *63(ALPHA / DIGIT / "-" / ".") ">" deviceName = pathNAME

; ABNFは、二つ以上の連続したことができます「」それは無意味ですが。ドメイン名インチdomainNameを= "<"(ALPHA / DIGIT)* 63(ALPHA / DIGIT / " - " / "") ">" DEVICENAME =パス名

ContextID = (UINT32 / "*" / "-" / "$")

ContextID =(UINT32 / "*" / " - " / "$")

domainAddress = "[" (IPv4address / IPv6address) "]" ;RFC2373 contains the definition of IP6Addresses. IPv6address = hexpart [ ":" IPv4address ] IPv4address = V4hex DOT V4hex DOT V4hex DOT V4hex V4hex = 1*3(DIGIT) ; "0".."225" ; this production, while occurring in RFC2373, is not referenced ; IPv6prefix = hexpart SLASH 1*2DIGIT hexpart = hexseq "::" [ hexseq ] / "::" [ hexseq ] / hexseq hexseq = hex4 *( ":" hex4) hex4 = 1*4HEXDIG

domainAddress = "["(IPv4Addressを/ IPv6address) "]"、RFC2373はIP6Addressesの定義を含みます。 IPv6address = hexpart [ ":" IPv4Addressを】IPv4Addressを= V4hex DOT V4hex DOT V4hex DOT V4hex V4hex = 1 * 3(DIGIT)。 "0" .. "225";この生産は、RFC2373で発生する一方で、参照されていません。 IPv6prefix = hexpart SLASH 1 * 2DIGIT hexpart = hexseq "::" [hexseq] / "::" [hexseq] / hexseq hexseq = hex4 *( ":" hex4)hex4 = 1 * 4HEXDIG

portNumber = UINT16

ここで、portNumber = UINT16

; An mtp address is two octets long mtpAddress = MTPToken LBRKT octetString RBRKT terminationIDList = LBRKT TerminationID *(COMMA TerminationID) RBRKT

; MTPアドレス2つのオクテットで長いmtpAddress = MTPToken LBRKT OCTETSTRING RBRKT terminationIDList = LBRKT TerminationID *(COMMA TerminationID)RBRKT

; Total length of pathNAME must not exceed 64 chars. pathNAME = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$" ) ["@" pathDomainName ]

;パス名の合計の長さが64文字を超えてはなりません。パス名= [ "*"] NAME *( "/" / "*" / ALPHA / DIGIT / "_" / "$")[pathDomainName "@"]

; ABNF allows two or more consecutive "." although it is meaningless ; in a path domain name. pathDomainName = (ALPHA / DIGIT / "*" ) *63(ALPHA / DIGIT / "-" / "*" / ".")

; ABNFは、二つ以上の連続したことができます「」それは無意味ですが。パスのドメイン名インチpathDomainName =(ALPHA / DIGIT / "*")* 63(ALPHA / DIGIT / " - " / "*" / "")

TerminationID = "ROOT" / pathNAME / "$" / "*"

TerminationID = "ROOT" /パス名/ "$" / "*"

mediaDescriptor = MediaToken LBRKT mediaParm *(COMMA mediaParm) RBRKT

mediaDescriptor =メディアトークンLBRKT mediaParm *(COMMA mediaParm)RBRKT

; at-most-once per item ; and either streamParm or streamDescriptor but not both mediaParm = (streamParm / streamDescriptor / terminationStateDescriptor)

;で最大1回の項目ごとに、いずれかstreamParm又はstreamDescriptorなくmediaParm =(streamParm / streamDescriptor / terminationStateDescriptor)の両方

; at-most-once streamParm = ( localDescriptor / remoteDescriptor / localControlDescriptor )

;最も一度-PARM =(ローカル記述子/リモートディスクリプタ/ localControlDescriptor)をストリーム

streamDescriptor = StreamToken EQUAL StreamID LBRKT streamParm *(COMMA streamParm) RBRKT

streamDescriptor = StreamToken EQUAL streamIDでLBRKT streamParm *(COMMA streamParm)RBRKT

localControlDescriptor = LocalControlToken LBRKT localParm *(COMMA localParm) RBRKT

localControlDescriptor = LocalControlToken LBRKT localParm *(COMMA localParm)RBRKT

; at-most-once per item localParm = ( streamMode / propertyParm / reservedValueMode / reservedGroupMode )

;で最もワンス項目あたりlocalParm =(streamMode / propertyParm / reservedValueMode / reservedGroupMode)

reservedValueMode = ReservedValueToken EQUAL ( "ON" / "OFF" ) reservedGroupMode = ReservedGroupToken EQUAL ( "ON" / "OFF" )

reservedValueMode = ReservedValueトークンEQUAL( "ON" / "OFF")reservedGroupMode =予約グループトークンEQUAL( "ON" / "OFF")

streamMode = ModeToken EQUAL streamModes

streamMode = ModeToken EQUAL streamModes

streamModes = (SendonlyToken / RecvonlyToken / SendrecvToken / InactiveToken / LoopbackToken )

streamModes =(SendonlyToken / RecvonlyToken / SENDRECVトークン/非アクティブトークン/ループバックトークン)

propertyParm = pkgdName parmValue parmValue = (EQUAL alternativeValue/ INEQUAL VALUE) alternativeValue = ( VALUE / LSBRKT VALUE *(COMMA VALUE) RSBRKT / LSBRKT VALUE DOT DOT VALUE RSBRKT )



不等= LWSP( ">" / "<" / "#")LWSP LSBRKT = LWSP "[" LWSP RSBRKT = LWSP "]" LWSP

localDescriptor = LocalToken LBRKT octetString RBRKT

localdescript R = localtok LBRKT OctetStringにRBRKT

remoteDescriptor = RemoteToken LBRKT octetString RBRKT

remoteDescriptor = RemoteToken LBRKT OCTETSTRING RBRKT

eventBufferDescriptor= EventBufferToken LBRKT observedEvent *( COMMA observedEvent ) RBRKT

eventBufferDescriptor = EventBufferToken LBRKT observedEvent *(COMMA observedEvent)RBRKT

eventBufferControl = BufferToken EQUAL ( "OFF" / LockStepToken )

eventBufferControl = BufferToken EQUAL( "OFF" / LockStepToken)

terminationStateDescriptor = TerminationStateToken LBRKT terminationStateParm *( COMMA terminationStateParm ) RBRKT

terminationStateDescriptor = TerminationStateToken LBRKT terminationStateParm *(COMMA terminationStateParm)RBRKT

; at-most-once per item terminationStateParm =(propertyParm / serviceStates / eventBufferControl )

;で最大1回アイテムごとterminationStateParm =(propertyParm / serviceStates / eventBufferControl)

serviceStates = ServiceStatesToken EQUAL ( TestToken / OutOfSvcToken / InSvcToken )

サービス状態=サービス状態EQUALトークン(トークンテスト/ OutOfSvcToken / InSvcToken)

muxDescriptor = MuxToken EQUAL MuxType terminationIDList

muxDescriptor = MuxToken EQUAL MuxType terminationIDList

MuxType = ( H221Token / H223Token / H226Token / V76Token / extensionParameter )

MuxType =(H221トークン/ H223Token / H226トークン/ V76トークン/拡張パラメータ)

StreamID = UINT16 pkgdName = (PackageName SLASH ItemID) ;specific item / (PackageName SLASH "*") ;all events in package / ("*" SLASH "*") ; all events supported by the MG PackageName = NAME ItemID = NAME

streamIDで= UINT16 pkgdName =(PackageNameにはアイテムIDをスラッシュ);特定のアイテム/(PackageNameのスラッシュ "*");パッケージ内のすべてのイベント/( "*" スラッシュ "*")。 MG PackageNameに= NAMEアイテムID = NAMEでサポートされているすべてのイベント

eventsDescriptor = EventsToken EQUAL RequestID LBRKT requestedEvent *( COMMA requestedEvent ) RBRKT

たEventsDescriptor = EventsToken EQUAL RequestID LBRKT requestedEvent *(COMMA requestedEvent)RBRKT

requestedEvent = pkgdName [ LBRKT eventParameter *( COMMA eventParameter ) RBRKT ]

requestedEvent = pkgdName [LBRKT eventParameter *(COMMA eventParameter)RBRKT]

; at-most-once each of KeepActiveToken , eventDM and eventStream ;at most one of either embedWithSig or embedNoSig but not both ;KeepActiveToken and embedWithSig must not both be present eventParameter = ( embedWithSig / embedNoSig / KeepActiveToken /eventDM / eventStream / eventOther )

;で最もワンスKeepActiveToken、eventDMとeventStreamの各;最大embedWithSig又はembedNoSigのいずれか一方ではなく、両方; KeepActiveTokenとembedWithSigの両方は、本eventParameter =(embedWithSig / embedNoSig / KeepActiveToken / eventDM / eventStream / eventOther)であってはなりません

embedWithSig = EmbedToken LBRKT signalsDescriptor [COMMA embedFirst ] RBRKT embedNoSig = EmbedToken LBRKT embedFirst RBRKT

embedWithSig = EmbedToken LBRKT signalsDescriptor [COMMA embedFirst] RBRKT embedNoSig = EmbedToken LBRKT embedFirst RBRKT

; at-most-once of each embedFirst = EventsToken EQUAL RequestID LBRKT secondRequestedEvent *(COMMA secondRequestedEvent) RBRKT

;で最もワンス各embedFirstの= EventsToken EQUAL RequestID LBRKT secondRequestedEvent *(COMMA secondRequestedEvent)RBRKT

secondRequestedEvent = pkgdName [ LBRKT secondEventParameter *( COMMA secondEventParameter ) RBRKT ]

secondRequestedEvent = pkgdName [LBRKT secondEventParameter *(パラグラフsecondEventParameter)RBRKT]

; at-most-once each of embedSig , KeepActiveToken, eventDM or ; eventStream ; KeepActiveToken and embedSig must not both be present secondEventParameter = ( EmbedSig / KeepActiveToken / eventDM / eventStream / eventOther )

;で最大1回の各embedSig、KeepActiveToken、eventDMかの。 eventStream; KeepActiveTokenとembedSig両方存在してはならないsecondEventParameter =(EmbedSig / KeepActiveToken / eventDM / eventStream / eventOther)

embedSig = EmbedToken LBRKT signalsDescriptor RBRKT

embedSig = EmbedToken LBRKT signalsDescriptor RBRKT

eventStream = StreamToken EQUAL StreamID

eventStream = StreamToken EQUAL streamIDで

eventOther = eventParameterName parmValue


eventParameterName = NAME

eventParameterName = NAME

eventDM = DigitMapToken ((EQUAL digitMapName ) / (LBRKT digitMapValue RBRKT ))

eventDM = DigitMapToken((EQUAL digitMapName)/(LBRKT digitMapValue RBRKT))

signalsDescriptor = SignalsToken LBRKT [ signalParm *(COMMA signalParm)] RBRKT

signalsDescriptor = SignalsToken LBRKT [signalParm *(COMMA signalParm)] RBRKT

signalParm = signalList / signalRequest

signalParm = signalList / signalRequest

signalRequest = signalName [ LBRKT sigParameter *(COMMA sigParameter) RBRKT ]

signalRequest = signalName [LBRKT sigParameter *(COMMA sigParameter)RBRKT]

signalList = SignalListToken EQUAL signalListId LBRKT signalListParm *(COMMA signalListParm) RBRKT

signalList = SignalListToken EQUAL signalListId LBRKT signalListParm *(COMMA signalListParm)RBRKT

signalListId = UINT16

signalistid = UINT16

;exactly once signalType, at most once duration and every signal ;parameter signalListParm = signalRequest

;正確signalType一度、最大で一回の期間、すべての信号;パラメータsignalListParm = signalRequest

signalName = pkgdName ;at-most-once sigStream, at-most-once sigSignalType, ;at-most-once sigDuration, every signalParameterName at most once sigParameter = sigStream / sigSignalType / sigDuration / sigOther / notifyCompletion / KeepActiveToken sigStream = StreamToken EQUAL StreamID sigOther = sigParameterName parmValue sigParameterName = NAME sigSignalType = SignalTypeToken EQUAL signalType signalType = (OnOffToken / TimeOutToken / BriefToken) sigDuration = DurationToken EQUAL UINT16 notifyCompletion = NotifyCompletionToken EQUAL ("ON" / "OFF")

signalName = pkgdName;で最もワンスsigSignalType sigStream、最大1回、最大1回sigDuration、すべてのsignalParameterName高々一度sigParameter = sigStream / sigSignalType / sigDuration / sigOther / notifyCompletion / KeepActiveToken sigStream = StreamToken EQUAL streamIDでsigOther = sigParameterName parmValue sigParameterName = NAME sigSignalType = SignalTypeToken EQUAL signalType signalType =(OnOffToken / TimeOutToken / BriefToken)sigDuration = DurationToken EQUAL UINT16 notifyCompletion = NotifyCompletionToken EQUAL( "ON" / "OFF")

observedEventsDescriptor = ObservedEventsToken EQUAL RequestID LBRKT observedEvent *(COMMA observedEvent) RBRKT

observedEventsDescriptor = ObservedEventsToken EQUAL RequestID LBRKT observedEvent *(COMMA observedEvent)RBRKT

;time per event, because it might be buffered observedEvent = [ TimeStamp LWSP COLON] LWSP pkgdName [ LBRKT observedEventParameter *(COMMA observedEventParameter) RBRKT ]

;イベント当たりの時間、それはバッファリングされる可能性があるためobservedEvent = [タイムスタンプLWSP結腸] LWSP pkgdName [LBRKT observedEventParameter *(COMMA observedEventParameter)RBRKT]

;at-most-once eventStream, every eventParameterName at most once observedEventParameter = eventStream / eventOther

;で最もワンスeventStream、すべてのeventParameterName高々一度observedEventParameter = eventStream / eventOther

RequestID = UINT32

RequestID = UINT32

modemDescriptor = ModemToken (( EQUAL modemType) / (LSBRKT modemType *(COMMA modemType) RSBRKT)) [ LBRKT NAME parmValue *(COMMA NAME parmValue) RBRKT ]

modemDescriptor ModemToken =((EQUALモデムタイプ)/(LSBRKTモデムタイプ*(COMMAモデムタイプ)RSBRKT))LBRKT parmValue NAME *(COMMA NAME parmValue)RBRKT]

; at-most-once modemType = (V32bisToken / V22bisToken / V18Token / V22Token / V32Token / V34Token / V90Token / V91Token / SynchISDNToken / extensionParameter)

;で最もワンス=(V32bisToken / V22bisToken / V18Token / V22Token / V32Token / V34Token / V90Token / V91Token / SynchISDNToken / extensionParameter)modemType

digitMapDescriptor = DigitMapToken EQUAL digitMapName ( LBRKT digitMapValue RBRKT ) digitMapName = NAME digitMapValue = ["T" COLON Timer COMMA] ["S" COLON Timer COMMA] ["L" COLON Timer COMMA] digitMap Timer = 1*2DIGIT digitMap = digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP)

digitMapDescriptor = DigitMapToken EQUAL digitMapName(LBRKT digitMapValue RBRKT)digitMapName = NAME digitMapValue = [ "T" COLONタイマCOMMA] [ "S" COLONタイマCOMMA] [ "L" COLONタイマCOMMA] digitMapタイマ= 1 * 2DIGIT digitMap = digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP)

digitStringList = digitString *( LWSP "|" LWSP digitString ) digitString = 1*(digitStringElement) digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange = ("x" / LWSP "[" LWSP digitLetter LWSP "]" LWSP) digitLetter = *((DIGIT "-" DIGIT ) / digitMapLetter) digitMapLetter = DIGIT ;Basic event symbols / %x41-4B / %x61-6B ; a-k, A-K / "L" / "S" ;Inter-event timers (long, short) / Z" ;Long duration modifier

digitStringList = digitString *(LWSP "|" LWSP digitString)digitString = 1 *(digitStringElement)digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange =( "X" / LWSP "[" LWSP digitLetter LWSP "]" LWSP)digitLetter = *((DIGIT " - " DIGIT)/ digitMapLetter)digitMapLetter = DIGIT;基本的なイベントのシンボル/%x41-4B /%x61-6B。 -K、A-K / "L" / "S";インターイベントタイマ(ロング、ショート)/ Z」;長い持続時間修飾子

;at-most-once auditItem = ( MuxToken / ModemToken / MediaToken / SignalsToken / EventBufferToken / DigitMapToken / StatsToken / EventsToken / ObservedEventsToken / PackagesToken )

;で最もワンスauditItem =(MuxToken / ModemToken / MediaToken / SignalsToken / EventBufferToken / DigitMapToken / StatsToken / EventsToken / ObservedEventsToken / PackagesToken)

serviceChangeDescriptor = ServicesToken LBRKT serviceChangeParm *(COMMA serviceChangeParm) RBRKT

serviceChangeDescriptor = ServicesToken LBRKT serviceChangeParm *(COMMA serviceChangeParm)RBRKT

serviceChangeParm = (serviceChangeMethod / serviceChangeReason / serviceChangeDelay / serviceChangeAddress / serviceChangeProfile / extension / TimeStamp / serviceChangeMgcId / serviceChangeVersion )

serviceChangeParm =(serviceChangeMethod / serviceChangeReason / serviceChangeDelay / serviceChangeAddress / serviceChangeProfile /エクステンション/タイムスタンプ/ serviceChangeMgcId / serviceChangeVersion)

serviceChangeReplyDescriptor = ServicesToken LBRKT servChgReplyParm *(COMMA servChgReplyParm) RBRKT

serviceChangeReplyDescriptor = ServicesToken LBRKT servChgReplyParm *(COMMA servChgReplyParm)RBRKT

;at-most-once. Version is REQUIRED on first ServiceChange response servChgReplyParm = (serviceChangeAddress / serviceChangeMgcId / serviceChangeProfile / serviceChangeVersion ) serviceChangeMethod = MethodToken EQUAL (FailoverToken / ForcedToken / GracefulToken / RestartToken / DisconnectedToken / HandOffToken / extensionParameter)

;で最大1回。バージョンは、最初のServiceChange応答servChgReplyParm =(serviceChangeAddress / serviceChangeMgcId / serviceChangeProfile / serviceChangeVersion)serviceChangeMethod = MethodToken EQUAL(FailoverToken / ForcedToken / GracefulToken / RestartToken / DisconnectedToken / HandOffToken / extensionParameter)で必要とされています

serviceChangeReason = ReasonToken EQUAL VALUE serviceChangeDelay = DelayToken EQUAL UINT32 serviceChangeAddress = ServiceChangeAddressToken EQUAL VALUE serviceChangeMgcId = MgcIdToken EQUAL mId serviceChangeProfile = ProfileToken EQUAL NAME SLASH Version serviceChangeVersion = VersionToken EQUAL Version extension = extensionParameter parmValue

serviceChangeReason = ReasonToken等しい値serviceChangeDelay = DelayToken EQUAL UINT32 serviceChangeAddress = ServiceChangeAddressToken等しい値serviceChangeMgcId = MgcIdToken EQUAL MID serviceChangeProfile = ProfileToken EQUAL NAME版serviceChangeVersion = VersionToken EQUALバージョン拡張スラッシュ= extensionParameter parmValue

packagesDescriptor = PackagesToken LBRKT packagesItem *(COMMA packagesItem) RBRKT

packagesDescriptor = PackagesToken LBRKT packagesItem *(COMMA packagesItem)RBRKT

Version = 1*2(DIGIT) packagesItem = NAME "-" UINT16

バージョン= 1 * 2(DIGIT)packagesItem = NAME " - " UINT16

TimeStamp = Date "T" Time ; per ISO 8601:1988 ; Date = yyyymmdd Date = 8(DIGIT) ; Time = hhmmssss Time = 8(DIGIT) statisticsDescriptor = StatsToken LBRKT statisticsParameter *(COMMA statisticsParameter ) RBRKT

タイムスタンプ=日「T」の時間。 ISO 8601あたり:1988;日付= YYYYMMDD日= 8(DIGIT)。時間= hhmmssss時間= 8(DIGIT)statisticsDescriptor = StatsToken LBRKT statisticsParameter *(COMMA statisticsParameter)RBRKT

;at-most-once per item statisticsParameter = pkgdName EQUAL VALUE

;で最大1回アイテムの統計パラメータ= pkgの名前EQUAL VALUEあたり

topologyDescriptor = TopologyToken LBRKT terminationA COMMA terminationB COMMA topologyDirection RBRKT terminationA = TerminationID terminationB = TerminationID topologyDirection = BothwayToken / IsolateToken / OnewayToken

topologyDescriptor = TopologyToken LBRKT terminationA COMMA terminationB COMMA topologyDirection RBRKT terminationA = TerminationID terminationB = TerminationID topologyDirection = BothwayToken / IsolateToken / OnewayToken

priority = PriorityToken EQUAL UINT16

優先= PriorityToken EQUAL UINT16

extensionParameter = "X" ("-" / "+") 1*6(ALPHA / DIGIT)

extensionParameter = "X"( " - " / "+")1 * 6(ALPHA / DIGIT)

; octetString is used to describe SDP defined in RFC2327. ; Caution should be taken if CRLF in RFC2327 is used. ; To be safe, use EOL in this ABNF. ; Whenever "}" appears in SDP, it is escaped by "\", e.g., "\}" octetString = *(nonEscapeChar) nonEscapeChar = ( "\}" / %x01-7C / %x7E-FF ) quotedString = DQUOTE 1*(SafeChar / RestChar/ WSP) DQUOTE

; OCTETSTRINGは、RFC2327で定義されたSDPを記述するために使用されます。 ; RFC2327でCRLFが使用されている場合は注意が取られるべきです。 ;安全のため、このABNFでEOLを使用しています。 ;たび "}"、それは、例えば、 "\" でエスケープされたSDPに現れる "\}" OCTETSTRING = *(nonEscapeChar)nonEscapeChar =( "\}" /%x01-7C /%x7E-FF)quotedString = DQUOTE 1 *(SafeChar / RestChar / WSP)DQUOTE

UINT16 = 1*5(DIGIT) ; %x0-FFFF UINT32 = 1*10(DIGIT) ; %x0-FFFFFFFF

UINT16 = 1 * 5(DIGIT)。 %のX0-FFFF UINT32 = 1 * 10(DIGIT)。 %のX0-FFFFFFFF

NAME = ALPHA *63(ALPHA / DIGIT / "_" ) VALUE = quotedString / 1*(SafeChar) SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" / "'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" / "(" / ")" / "%" / "|" / "."

NAME = ALPHA * 63(ALPHA / DIGIT / "_")VALUE = quotedString / 1 *(SafeChar)SafeChar = DIGIT / ALPHA / "+" / " - " / "&" / "!" / "_" / "/" / "'" / "?" / "@" / "^" / "`"/ "〜"/ "*"/ "$"/ "\"/ "("/ ")"/ "%"/ "|" / ""

EQUAL = LWSP %x3D LWSP ; "=" COLON = %x3A ; ":" LBRKT = LWSP %x7B LWSP ; "{" RBRKT = LWSP %x7D LWSP ; "}" COMMA = LWSP %x2C LWSP ; "," DOT = %x2E ; "." SLASH = %x2F ; "/"

EQUAL = LWSP%のX3D LWSP。 "=" COLON =%のX3A。 ":" LBRKT = LWSP%x7B LWSP。 "{" RBRKT = LWSP%x7D LWSP。 "}" COMMAはLWSP%のX2CのLWSPを=。 "" DOT =%のx2E。 "" =%x2Fスラッシュ。 "/"

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z DIGIT = %x30-39 ; 0-9 DQUOTE = %x22 ; " (Double Quote) HEXDIG = ( DIGIT / "A" / "B" / "C" / "D" / "E" / "F" ) SP = %x20 ; space HTAB = %x09 ; horizontal tab CR = %x0D ; Carriage return LF = %x0A ; linefeed LWSP = *( WSP / COMMENT / EOL ) EOL = (CR [LF] / LF ) WSP = SP / HTAB ; white space SEP = ( WSP / EOL / COMMENT) LWSP COMMENT = ";" *(SafeChar/ RestChar / WSP / %x22) EOL RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" / "<" / ">" / "="

ALPHA =%x41-5A /%x61-7A。 -Z / Z-DIGIT =%x30-39。 0-9 DQUOTE =%X22。 "(二重引用符)HEXDIG =(DIGIT / "A"/ "B"/ "C"/ "D"/ "E"/ "F")SP =%X20;空間HTAB =%X09;水平タブCR =% x0D;キャリッジリターンLF =%X0A;改行LWSP = *(WSP / COMMENT / EOL)EOL =(CR [LF] / LF)WSP = SP / HTAB;ホワイトスペース9月=(WSP / EOL / COMMENT)LWSPコメント= ";" *(SafeChar / RestChar / WSP /%X22)EOL RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "" / "#" / " <」/ ">" / "="

AddToken = ("Add" / "A") AuditToken = ("Audit" / "AT") AuditCapToken = ("AuditCapability" / "AC") AuditValueToken = ("AuditValue" / "AV") AuthToken = ("Authentication" / "AU") BothwayToken = ("Bothway" / "BW") BriefToken = ("Brief" / "BR") BufferToken = ("Buffer" / "BF") CtxToken = ("Context" / "C") ContextAuditToken = ("ContextAudit" / "CA") DigitMapToken = ("DigitMap" / "DM") DiscardToken = ("Discard" / "DS") DisconnectedToken = ("Disconnected" / "DC") DelayToken = ("Delay" / "DL") DurationToken = ("Duration" / "DR") EmbedToken = ("Embed" / "EB") EmergencyToken = ("Emergency" / "EM") ErrorToken = ("Error" / "ER") EventBufferToken = ("EventBuffer" / "EB") EventsToken = ("Events" / "E") FailoverToken = ("Failover" / "FL") ForcedToken = ("Forced" / "FO") GracefulToken = ("Graceful" / "GR") H221Token = ("H221" ) H223Token = ("H223" ) H226Token = ("H226" ) HandOffToken = ("HandOff" / "HO") InactiveToken = ("Inactive" / "IN") IsolateToken = ("Isolate" / "IS") InSvcToken = ("InService" / "IV")

AddToken =( "追加" / "A")AuditToken =( "監査" / "AT")AuditCapToken =( "AuditCapability" / "AC")AuditValueToken =( "AuditValue" / "AV")持つAuthToken =( "認証" / "AU")BothwayToken =( "Bothway" / "BW")BriefToken =( "ブリーフ" / "BR")BufferToken =( "バッファ" / "BF")CtxToken =( "コンテキスト" / "C")ContextAuditToken =( "ContextAudit" / "CA")DigitMapToken =( "DigitMap" / "DM")DiscardToken =( "廃棄" / "DS")DisconnectedToken =( "切断" / "DC")DelayToken =( "遅延" / "DL")DurationToken =( "時間" / "DR")EmbedToken =( "埋め込み" / "EB")EmergencyToken =( "緊急" / "EM")ErrorToken =( "エラー" / "ER")EventBufferToken = ( "EventBuffer" / "EB")EventsToken =( "イベント" / "E")FailoverToken =( "フェイルオーバー" / "FL")ForcedToken =( "強制" / "FO")GracefulToken =( "正常な" / " GR ")H221Token =(" H221" )H223Token =( "H223")H226Token =( "H226")HandOffToken =( "ハンドオフ" / "HO")InactiveToken =( "非アクティブ" / "IN")IsolateToken =(」私は "/ ""/ "")InSvcToken =(" IS INSERVICE隔離V」)

KeepActiveToken = ("KeepActive" / "KA") LocalToken = ("Local" / "L") LocalControlToken = ("LocalControl" / "O") LockStepToken = ("LockStep" / "SP") LoopbackToken = ("Loopback" / "LB") MediaToken = ("Media" / "M") MegacopToken = ("MEGACO" / "!") MethodToken = ("Method" / "MT") MgcIdToken = ("MgcIdToTry" / "MG") ModeToken = ("Mode" / "MO") ModifyToken = ("Modify" / "MF") ModemToken = ("Modem" / "MD") MoveToken = ("Move" / "MV") MTPToken = ("MTP") MuxToken = ("Mux" / "MX") NotifyToken = ("Notify" / "N") NotifyCompletionToken = ("NotifyCompletion" / "NC") ObservedEventsToken = ("ObservedEvents" / "OE") OnewayToken = ("Oneway" / "OW") OnOffToken = ("OnOff" / "OO") OutOfSvcToken = ("OutOfService" / "OS") PackagesToken = ("Packages" / "PG") PendingToken = ("Pending" / "PN") PriorityToken = ("Priority" / "PR") ProfileToken = ("Profile" / "PF") ReasonToken = ("Reason" / "RE") RecvonlyToken = ("ReceiveOnly" / "RC") ReplyToken = ("Reply" / "P") RestartToken = ("Restart" / "RS") RemoteToken = ("Remote" / "R") ReservedGroupToken = ("ReservedGroup" / "RG") ReservedValueToken = ("ReservedValue" / "RV") SendonlyToken = ("SendOnly" / "SO") SendrecvToken = ("SendReceive" / "SR") ServicesToken = ("Services" / "SV") ServiceStatesToken = ("ServiceStates" / "SI") ServiceChangeToken = ("ServiceChange" / "SC") ServiceChangeAddressToken = ("ServiceChangeAddress" / "AD") SignalListToken = ("SignalList" / "SL") SignalsToken = ("Signals" / "SG") SignalTypeToken = ("SignalType" / "SY") StatsToken = ("Statistics" / "SA") StreamToken = ("Stream" / "ST") SubtractToken = ("Subtract" / "S") SynchISDNToken = ("SynchISDN" / "SN") TerminationStateToken = ("TerminationState" / "TS") TestToken = ("Test" / "TE") TimeOutToken = ("TimeOut" / "TO")

KeepActiveToken =( "KeepActive" / "KA")LocalToken =( "ローカル" / "L")LocalControlToken =( "ローカル制御" / "O")LockStepToken =( "ロックステップ" / "SP")LoopbackToken =( "ループバック" / "LB")MediaToken =( "メディア" / "M")MegacopToken =( "MEGACO" / "!")MethodToken =( "メソッド" / "MT")MgcIdToken =( "MgcIdToTry" / "MG")ModeToken =( "モード" / "MO")ModifyToken =( "変更" / "MF")ModemToken =( "モデム" / "MD")MoveToken =( "移動" / "MV")MTPToken =( "MTP") MuxToken =( "MUX" / "MX")NotifyToken =( "通知" / "N")NotifyCompletionToken =( "NotifyCompletion" / "NC")ObservedEventsToken =( "ObservedEvents" / "OE")をOnewayToken =( "片道" / "OW")OnOffToken =( "のOnOff" / "OO")OutOfSvcToken =( "OUTOFSERVICE" / "OS")PackagesToken =( "パッケージ" / "PG")PendingToken =( "保留" / "PN")PriorityToken =( "優先順位" / "PR")ProfileToken =( "プロファイル" / "PF")ReasonToken =( "理由" / "RE")RecvonlyToken =( "ReceiveOnly" / "RC")ReplyToken =( "返信" / "P")RestartToken =( "再起動" / "RS")RemoteToken =(「再モテ」/ "R")ReservedGroupToken =( "ReservedGroup" / "RG")ReservedValueToken =( "ReservedValue" / "RV")SendonlyToken =( "SENDONLY" / "SO")SendrecvToken =( "SendReceive" / "SR" )ServicesToken =( "サービス" / "SV")ServiceStatesToken =( "ServiceStates" / "SI")ServiceChangeToken =( "のServiceChange" / "SC")ServiceChangeAddressToken =( "ServiceChangeAddress" / "AD")SignalListToken =( "SignalList "/ "SL")SignalsToken =(" 信号」/ "SG")SignalTypeToken =( "SignalType" / "SY")StatsToken =( "統計" / "SA")StreamToken =( "ストリーム" / "ST") SubtractToken =( "減算" / "S")SynchISDNToken =( "SynchISDN" / "SN")TerminationStateToken =( "TerminationState" / "TS")TestToken =( "テスト" / "TE")TimeOutToken =( "タイムアウト" /) "TO"

TopologyToken = ("Topology" / "TP") TransToken = ("Transaction" / "T") ResponseAckToken = ("TransactionResponseAck"/ "K") V18Token = ("V18") V22Token = ("V22") V22bisToken = ("V22b") V32Token = ("V32") V32bisToken = ("V32b") V34Token = ("V34") V76Token = ("V76") V90Token = ("V90") V91Token = ("V91")

TopologyToken =( "トポロジ" / "TP")TransToken =( "トランザクション" / "T")ResponseAckToken =( "TransactionResponseAck" / "K")V18Token =( "V18")V22Token =( "V22")V22bisToken =( "V22B")V32Token =( "V32")V32bisToken =( "V32b")V34Token =( "V34")V76Token =( "V76")V90Token =( "V90")V91Token =( "V91")


メディアストリームのプロパティのANNEX C TAGS(規定)

Parameters for Local descriptors and Remote descriptors are specified as tag-value pairs if binary encoding is used for the protocol. This annex contains the property names (PropertyID), the tags (Property Tag), type of the property (Type) and the values (Value).Values presented in the Value field when the field contains references shall be regarded as "information". The reference contains the normative values. If a value field does not contain a reference then the values in that field can be considered as "normative".


Tags are given as hexadecimal numbers in this annex. When setting the value of a property, a MGC may underspecify the value according to one of the mechanisms specified in section 7.1.1.


For type "enumeration" the value is represented by the value in brackets, e.g., Send(0), Receive(1).


C.1 General Media Attributes


PropertyID Property Type Value Tag


Media 1001 Enumeration Audio(0), Video(1), Data(2),


Transmission mode 1002 Enumeration Send(0), Receive(1), Send&Receive(2)


Number of Channels 1003 Unsigned 0-255 Integer Sampling rate 1004 Unsigned 0-2^32 Integer Bitrate 1005 Integer (0..4294967295) Note - units of 100 bit/s

チャンネル数1003符号なし整数0-255サンプリングレート1004符号なし0-2 ^ 32整数ビットレート1005 INTEGER(0 4294967295)注 - 100ビット/秒の単位

ACodec 1006 Octet String Audio Codec Type: Reference: ITU-T Rec. Q.765 - Application transport mechanism. Non-ITU codecs are defined with the appropriate standards organisation under a defined Organizational Identifier.

ACodec 1006オクテットSTRINGオーディオコーデックの種類:参照:ITU-T勧告。 Q.765 - アプリケーションのトランスポートメカニズム。非ITUコーデックは、定義された組織識別子の下で、適切な標準化団体で定義されています。

Samplepp 1007 Unsigned Maximum samples or Integer frames per packet: 0- 65535

Samplepp 1007個の符号なしの最大サンプルまたはパケットあたりの整数フレーム:0- 65535

Silencesupp 1008 BOOLEAN Silence Suppression: True/false

Silencesupp 1008 BOOLEAN無音:真/偽

Encrypttype 1009 Octet string Ref.: rec. H.245

Encrypttype 1009オクテット文字列のRef .: REC。 H.245

Encryptkey 100A Octet string Encryption key SIZE(0..65535) Ref.: rec. H.235

Encryptkey 100Aオクテット文字列の暗号化キーSIZE(0 65535)参考:REC。 H.235

Echocanc 100B Enumeration Echo Canceller: Off(0), G.165(1), G168(2)

Echocanc 100B列挙エコーキャンセラ:OFF(0)、G.165(1)、G168(2)

Gain 100C Unsigned Gain in db: 0-65535 Integer Jitterbuff 100D Unsigned Jitter buffer size in Integer ms: 0-65535

整数ミリ秒で0〜65535の整数Jitterbuff 100D符号なしジッタバッファサイズ:dBでの利得100C符号なしゲイン0-65535

PropDelay 100E Unsigned Propagation Delay: Integer 0..65535 Maximum propagation delay in milliseconds for the bearer connection between two media gateways. The maximum delay will be dependent on the bearer technology.

PropDelay 100E符号なし伝搬遅延:2つのメディアゲートウェイとの間のベアラ接続のためのミリ秒の整数0 65535最大伝搬遅延。最大遅延は、ベアラ技術に依存することになります。

RTPpayload 100F integer Payload type in RTP Profile for Audio and Video Conferences with Minimal Control Ref.: RFC 1890

最小量のコントロールのRefオーディオとテレビ会議システムのためのRTPプロフィールでRTPpayload 100F整数ペイロードタイプ:RFC 1890

C.2 Mux Properties


PropertyID Property Type Value Tag


H.221 2001 Octet Ref.: rec. H.245, string H222LogicalChannelParameters

H.221 2001オクテットのRef .: REC。 H.245、文字列H222LogicalChannelParameters

H223 2002 Octet Ref.: rec. H.245, string H223LogicalChannelParameters

H223 2002オクテットのRef .: REC。 H.245、文字列H223LogicalChannelParameters

V76 2003 Octet Ref.: rec. H.245, String V76LogicalChannelParameters

V76 2003オクテットのRef .: REC。 H.245、文字列V76LogicalChannelParameters

H2250 2004 Octet Ref.: rec. H.245, String H2250LogicalChannelParameters

H2250 2004オクテットのRef .: REC。 H.245、文字列H2250LogicalChannelParameters

C.3 General bearer properties


PropertyID Property Type Value Tag Mediatx 3001 Enumeration Media Transport Type: TDM Circuit(0), ATM(1), FR(2), Ipv4(3), Ipv6(4), _

PropertyID施設のタイプの値タグMediatx 3001列挙メディアトランスポート・タイプ:TDMサーキット(0)、ATM(1)、FR(2)はIPv4(3)は、ipv6(4)、_

BIR 3002 4 OCTET Value depends on transport technology

BIR 3002 4オクテット値は、トランスポート技術に依存します

NSAP 3003 1-20 OCTETS See NSAP Reference: ITU X.213 Annex A

NSAP 3003 1-20 OCTETS参照NSAP参考:ITU X.213附属書A

C.4 General ATM properties


PropertyID Property Type Value Tag


AESA 4001 20 OCTETS ATM End System Address

S 4001 20 okatetarsaアートマエンドシステムアドレス

VPVC 4002 2 x 16 bit VPC/VCI integer

VPVC 4002 2×16ビットVPC / VCI整数

SC 4003 4 bits Service Category Reference: ITU Recommendation Q.2931 (1995)

SC 4003 4ビットのサービスカテゴリリファレンス:ITU勧告Q.2931(1995)

BCOB 4004 5 bit integer Broadband Bearer Class

BCOB 4004 5ビットの整数ブロードバンドベアラクラス

Reference: ITU Recommendation Q.2961.2 (06/97)


BBTC 4005 octet Broadband Transfer Capability Reference: ITU Recommendation Q.2961 (10/95)

BBTC 4005オクテットブロードバンド転送機能リファレンス:ITU勧告Q.2961(95分の10)

ATC 4006 Enumeration I.371 ATM Traffic Capability

ATC 4006列挙I.371 ATMトラフィック機能

Reference: ITU Recommendation I.371: DBR(0), SBR1(1), SBR2(2), SBR(3), ABT/IT(4), ABT/DT(5), ABR(6)

参照:ITU勧告I.371:DBR(0)、SBR1(1)、SBR2(2)、SBR(3)、ABT / IT(4)、ABT / DT(5)、ABR(6)

STC 4007 2 bits Susceptibility to clipping Reference: ITU Recommendation Q.2931 (1995) 00 Susceptible 01 Not-susceptible

クリッピング参考にSTC 4007 2ビット感受性:ITU勧告Q.2931(1995)00感受性01-にくいです

UPCC 4008 2 bits User Plane Connection configuration: Reference: ITU Recommendation Q.2931 (1995) 00 Pt-to-pt, 01 Pt-to-mpt

UPCC 4008 2ビットのユーザ・プレーン接続の構成:リファレンス:ITU勧告Q.2931(1995)00のPt対PT、01のPt対MPT

PCR0 4009 24 bit Peak Cell Rate (For integer CLP=0) Reference: ITU Recommendation I.371

ITU勧告I.371:リファレンス(整数CLP = 0)PCR0 4009 24ビットピーク・セル・レート

SCR0 400A 24 bit Sustainable Cell Rate integer (For CLP=0) Reference: ITU Recommendation I.371

SCR0 400A 24ビット持続可能セルレート整数リファレンス(CLP = 0):ITU勧告I.371

MBS0 400B 24 bit Maximum Burst Size (For integer CLP=0) Reference: ITU Recommendation I.371

MBS0 400B 24ビットの最大バーストサイズ(整数CLPの場合= 0)参考:ITU勧告I.371

PCR1 400C 24 bit Peak Cell Rate (For integer CLP=0+1) Reference: ITU Recommendation I.371

PCR1 400C 24ビットピーク・セル・レート(整数CLPのため= 0 + 1)参考:ITU勧告I.371

SCR2 400D 24 bit Sustainable Cell Rate integer (For CLP=0+1) Reference: ITU Recommendation I.371

SCR2 400D 24ビット持続可能セルレート整数リファレンス(CLP = 0 + 1の場合):ITU勧告I.371

MBS3 400E 24 bit Maximum Burst Size (For integer CLP=0+1)

(= 0 + 1の整数CLPの場合)乃至MBS3 400E 24ビットの最大バーストサイズ

Reference: ITU Recommendation I.371


BEI 400F Boolean Best Effort Indicator

BEI 400Fブールベストエフォートインジケータ

TI 4010 Boolean Tagging

TI 4010ブールタギング

FD 4011 Boolean Frame Discard

FD 4011ブールフレーム廃棄

FCDV 4012 24 bit Forward P-P CDV integer

FCDV 4012 24ビット転送P-P CDV整数

BCDV 4013 24 bit Backward P-P CDV integer

BCDV 4013 24ビットの下位P-P CDV整数

FCLR0 4014 8 bit integer Forward Cell Loss Ratio (For CLP=0)

FCLR0 4014(CLP = 0)8ビット整数フォワードセル損失率

BCLR0 4015 8 bit integer Backward P-P Cell Loss Ratio (For CLP=0)

BCLR0 4015 8ビット整数(CLP = 0)下位P-Pセル損失率

FCLR1 4016 8 bit integer Forward Cell Loss Ratio

FCLR1 4016 8ビット整数フォワードセル損失率

BCLR1 4017 8 bit integer Backward P-P Cell Loss Ratio (For CLP=0+1)

BCLR1 4017 8ビット整数下位P-Pセル損失率(CLP = 0 + 1の場合)

FCDV 4018 24 bit Forward Cell Delay integer Variation

FCDV 4018 24ビットの転送セル遅延変動整数

BCDV 4019 24 bit Backward Cell Delay integer Variation

BCDV 4019 24ビットの下位セル遅延変動整数

FACDV 401A 24 bit Forward Acceptable P-P-P integer CDV

FACDV 401A 24ビット転送許容P-P-Pの整数CDV

BACDV 401B 24 bit Backward Acceptable P-P integer CDV

BACDV 401B 24ビットの下位許容P-Pの整数CDV

FCCDV 401C 24 bit Forward Cumulative P-P integer CDV

FCCDV 401C 24ビット転送累積P-Pの整数CDV

BCCDV 401D 24 bit Backward Cumulative P-P integer CDV

BCCDV 401D 24ビット下位累積P-Pの整数CDV

FCLR 401E 8 bit integer Acceptable Forward Cell Loss Ratio

FCLR 401E 8ビット整数許容フォワードセル損失率

BCLR 401F 8 bit integer Acceptable Backward Cell Loss Ratio

BCLR 401F 8ビット整数許容下位セル損失率

EETD 4020 16 bit End-to-end transit delay integer

EETD 4020 16ビットのエンドツーエンド伝送遅延の整数

Mediatx (See 4021 AAL Type General Properties) Reference: ITU Recommendation Q.2931 (1995)


QosClass 4022 Integer 0-4 Qos Class Reference: ITU Recommendation Q.2931 (1995) QoS Parameter Application: Qos Class0 QoS ApplicationBest Effort Parameter Unspecified

QosClass 4022整数0-4のQoSクラスリファレンス:ITU勧告Q.2931(1995)QoSパラメータアプリケーション:未指定のQoS Class0のQoS ApplicationBestエフォートパラメータ

        0       Unspecified               Best EffortConstant Bit rate
                Specified                 circuit emulation
        1       Specified                 Constant Bit rate circuit
                Specified                 emulationVariable bit rate
                                          video and audio
        2       Specified                 Variable bit rate video and
                Specified                 audioConnection-oriented data
        3       Specified                 Connection-oriented
                Specified                 dataConnectionless data
        4       Specified                 Connectionless data

AALtype 4023 1 OCTET AAL Type Reference: ITU Recommendation Q.2931 (1995) 00000000 AAL for voice 00000001 AAL type 1 00000010 AAL type 2 00000011 AAL type 3/4 00000101 AAL type 5 00010000 user defined AAL

5 00010000ユーザがAALを定義音声00000001 AALタイプ1 00000010 AALタイプ2 00000011 AALタイプ3/4 00000101 AALタイプのITU勧告Q.2931(1995)00000000 AAL:AALtype 4023 1つのオクテットAALタイプ参照

C.5 Frame Relay


PropertyID Property Type Value Tag


DLCI 5001 Unsigned Integer Data link connection id

DLCI 5001符号なし整数データリンク接続ID

CID 5002 Unsigned Integer sub-channel id.

CID 5002符号なし整数のサブチャネルID。

SID/Noiselevel 5003 Unsigned Integer silence insertion descriptor

SID /ノイズレベル5003符号なし整数無音挿入記述子

Primary Payload 5004 Unsigned Integer Primary Payload Type type Covers FAX and codecs


C.6 IP

C.6 IP

PropertyID Property Type Value Tag


IPv4 6001 32 BITS Ipv4Address: Ipv4Address Reference: IETF RFC791

IPv4の6001 32ビットIPv4Addressを:IPv4Addressを参照:IETF RFC791

IPv6 6002 128 BITS IPv6 Address: Reference: IETF RFC2460

IPv6の6002 128 BITS IPv6アドレス:参考:IETF RFC2460

Port 6003 unsigned integer 0-65535


Porttype 6004 enumerated TCP(0), UDP(1), SCTP(2)




PropertyID Property Type Value Tag


AESA 7001 20 OCTETS AAL2 service endpoint address as defined in Reference: ITU Recommendation Q.2630.1 ESEA NSEA

AESA 7001の20オクテットAAL2サービス・エンドポイント・アドレスを参考に定義されている:ITU勧告Q.2630.1 ESEA NSEA

BIR See C.3 4 OCTETS Served user generated reference as defined in Reference: ITU Recommendation Q.2630.1 SUGR

ITU勧告Q.2630.1 SUGR:リファレンスに定義されるようにBIR参照C.3 4つのオクテットサービス対象ユーザが参照を生成しました

ALC 7002 12 OCTETS AAL2 link characteristics as defined in Reference: ITU Recommendation Q.2630.1 max/average CPS-SDU bitrate, max/average CPS-SDU size

ITU勧告Q.2630.1最大/平均CPS-SDUのビットレート、最大/平均CPS-SDUサイズ:リファレンスに定義されているALC 7002 12オクテットAAL2リンク特性

SSCS 7003 I.366.2: Service audio (8 OCTETS) specific multirate (3 OCTETS) convergence or I.366.1: sublayer SAR-assured (14 OCTETS)/ information unassured (7 OCTETS) as defined in Reference: Q.2630.1 and used in I.366.1 and I.366.2 I.366.2: audio/multirate

リファレンスで定義されるようにサブレイヤSAR-保証(14オクテット)/ unassured情報(7つのオクテット):Q.2630.1とで使用されるSSCS 7003 I.366.2:サービスオーディオ(8つのオクテット)特定のマルチレート(3つのオクテット)収束又はI.366.1 I.366.1とI.366.2 I.366.2:オーディオ/マルチレート

I.366.1: SAR-assured/unassured

I.366.1:SAR-保証/ unassured

SUT 7004 1..254 octets Served user transport parameter as defined in Reference: ITU Recommendation Q.2630.1

リファレンスで定義されているSUT 7004 1..254オクテットサービス対象ユーザの輸送パラメータ:ITU勧告Q.2630.1

TCI 7005 BOOLEAN Test connection indicator

TCI 7005 BOOLEANテスト接続インジケータ

as defined in Reference: ITU Recommendation Q.2630.1


Timer_CU 7006 32 bit integer Timer-CU: Milliseconds to hold partially filled cell before sending.

Timer_CU 7006 32ビット整数タイマ-CU:ミリ秒送信する前に、部分的に充填されたセルを保持します。

MaxCPSSDU 7007 8 bit integer Maximum Common Part Sublayer Service Data Unit Ref.: rec. Q.2630.1

MaxCPSSDU 7007 8ビット整数の最大共通パートサブレイヤサービスデータユニットのRef .: REC。 Q.2630.1

SCLP 7008 Boolean Set Cell Local PriorityLP bit: True if CLP bit is to be set

SCLP 7008ブールセットセルローカルPriorityLPビット:真のCLPビットが設定される場合

EETR 7009 Boolean Timing Requirements Reference: ITU Recommendation Q.2931 (1995) End to End Timing Required: In broadband bearer capability

EETR 7009のブールタイミング要件参照:ITU勧告Q.2931(1995)の終了が必要なタイミングを終了するには:機能ベアラブロードバンドで

CID 700A 8 bits subchannel id, 0-255 Ref.: rec. I.363.2 (09/97)

CID 700A、8ビットのサブチャネルID、0-255参考文献:REC。 I. 363.2(09/97)



PropertyID Property Type Value Tag


BIR See GIT (Generic Table Identifier Transport) 4 OCTETS C.3 Ref.: Recommendation Q.2941.1 (09/97)

BIR参照GIT(汎用表識別子トランスポート)4つのオクテットC.3のRef .:勧告Q.2941.1(09/97)

AAL1ST 8001 1 OCTET AAL1 Subtype:

AAL1ST 8001 1 OCTET AAL1サブタイプ:

Reference: ITU Recommendation Q.2931 (1995) 00000000 Null


00000001 voiceband signal transport on 64kbit/s 00000010 circuit transport 00000100 high-quality audio signal transport 00000101 video signal transport


CBRR 8002 1 OCTET CBR Rate Reference: ITU Recommendation Q.2931 (1995) 00000001 64 kbit/s 00000100 1544 kbit/s 00000101 6312 kbit/s 00000110 32064 kbit/s 00000111 44736 kbit/s 00001000 97728 kbit/s 00010000 2048 kbit/s 00010001 8448 kbit/s 00010010 34368 kbit/s 00010011 139264 kbit/s 01000000 n x 64 kbit/s 01000001 n * 8 kbit/s

CBRR 8002 1つのOCTET CBRレート参考:ITU勧告Q.2931(1995)00000001 64キロビット/秒00000100 1544キロビット/秒00000101 6312キロビット/秒00000110 32064キロビット/秒00000111 44​​736キロビット/秒00001000 97728キロビット/秒00010000 2048キロビット/ S 00010001 8448キロビット/秒00010010 34368キロビット/秒00010011 139264キロビット/秒01000000 NX 64キロビット/秒01000001 N * 8キロビット/秒

MULT See Multiplier, or n x Table 64k/8k/300 C.9

MULT参照乗算器、又はn Xテーブル64K / 8K / 300 C.9

Reference: ITU Recommendation Q.2931 (1995)


SCRI 8003 1 OCTECT Source Clock Frequency Recovery Method Reference: ITU Recommendation Q.2931 (1995) 00000000 NULL 00000001 SRTS 00000010 ACM

SCRI 8003 1つのOCTETソースクロック周波数回復のメソッド参照:ITU勧告Q.2931(1995)00000000 00000001 NULL ARTS 00000010 ACM

ECM 8004 1 OCTECT Error Correction Method Reference: ITU Recommendation Q.2931 (1995) 00000000 Null 00000001 FEC-LOSS 00000010 FEC-DELAY

ECM 8004 1つのオクテット誤り訂正方法リファレンス:ITU勧告Q.2931(1995)00000000 00000001ヌルFEC-LOSS 00000010 FEC-DELAY

SDTB 8005 16 bit integer Structured Data Transfer Blocksize Reference: ITU Recommendation I.363.1 Block size of SDT CBR service

SDTB 8005 16ビット整数構造化データ転送ブロックサイズ参考:SDT CBRサービスのITU勧告I.363.1ブロックサイズ

PFCI 8006 8 bit integer Partially filled cells indentifier Reference: ITU Recommendation I.363.1

PFCI 8006部分的に充填された細胞は、リファレンスindentifier 8ビット整数:ITU勧告I.363.1を



EETR See See Table C.7 See Table C.7 Table C.7


C.9 Bearer Capabilities


PropertyID Property Type Value Tag


TMR 9001 1 OCTET Transmission Medium Requirement (Q.763)

TMR 9001 1つのOCTET伝送媒体の要件(Q.763)

Reference: ITU Recommendation Q.763(09/97) Bit 8 7 6 5 4 3 2 1 00000000 - speech 00000001 - spare 00000010 - 64 kbit/s unrestricted 00000011 - 3.1 kHz audio 00000100 - reserved for alternate speech (service 2)/64 kbit/s unrestricted (service 1) 00000101 - reserved for alternate 64 kbit/s unrestricted (service 1)/speech (service 2) 00000110 - 64 kbit/s preferred 00000111 - 2 x 64 kbit/s unrestricted 00001000 - 384 kbit/s unrestricted 00001001 - 1536 kbit/s unrestricted 00001010 - 1920 kbit/s unrestricted 00001011 through 00001111- spare 00010000 - 3 x 64 kbit/s unrestricted 00010001 - 4 x 64 kbit/s unrestricted 00010010 - 5 x 64 kbit/s unrestricted 00010011 spare 00010100 - 7 x 64 kbit/s unrestricted 00010101 - 8 x 64 kbit/s unrestricted 00010110 - 9 x 64 kbit/s unrestricted 00010111 - 10 x 64 kbit/s unrestricted 00011000 - 11 x 64 kbit/s unrestricted 00011001 - 12 x 64 kbit/s unrestricted 00011010 - 13 x 64 kbit/s unrestricted 00011011 - 14 x 64 kbit/s unrestricted 00011100 - 15 x 64 kbit/s unrestricted 00011101 - 16 x 64 kbit/s unrestricted 00011110 - 17 x 64 kbit/s unrestricted 00011111 - 18 x 64 kbit/s unrestricted 00100000 - 19 x 64 kbit/s unrestricted 00100001 - 20 x 64 kbit/s unrestricted

参照:ITU勧告Q.763(09/97)ビット8 7 6 5 4 3 2 1 00000000 - 00000001スピーチ - スペア00000010から64キロビット/秒無制限00000011から3.1 kHzオーディオ00000100 - 代替音声のために予約(サービス2)/ 64キロビット/秒無制限(サービス1)00000101 - 代替の64キロビット/秒のために確保さ無制限(サービス1)/スピーチ(サービス2)00000110から64キロビット/秒00000111好ましい - / 384キロビット - 2×64キロビット/秒無制限00001000をsの無制限00001001 - 1536キロビット/秒無制限00001010 - 1920キロビット/秒無制限00001011 00001111-スペア00010000スルー - 3×64キロビット/秒無制限00010001から4×64キロビット/秒無制限00010010から5×64キロビット/秒無制限00010011スペア00010100から7×64キロビットは/無制限だ00010101から8×64キロビット/秒無制限00010110から9×64キロビット/秒無制限00010111から10×64キロビット/秒無制限00011000から11×64キロビット/秒無制限00011001から12 X 64キロビット/秒00011010無制限 - 13×64キロビット/秒無制限00011011から14×64キロビット/秒無制限00011100から15×64 Kビット/ sの無制限00011101から16×64キロビット/秒無制限00011110から17×64キロビット/秒無制限00011111から18×64キロビット/秒無制限00100000から19×64キロビット/秒無制限00100001から20×64キロビット/秒無制限

00100010 - 21 x 64 kbit/s unrestricted 00100011 - 22 x 64 kbit/s unrestricted 00100100 - 23x 64 kbit/s unrestricted 00100101 - spare 00100110 - 25 x 64 kbit/s unrestricted 00100111 - 26 x 64 kbit/s unrestricted 00101000 - 27 x 64 kbit/s unrestricted 00101001 - 28 x 64 kbit/s unrestricted 00101010 - 29 x 64 kbit/s unrestricted 00101011 through 11111111 Spare

00100010から21×64キロビット/秒無制限00100011から22×64キロビット/秒無制限00100100 - 23X 64キロビット/秒無制限00100101から27 - スペア00100110から25×64キロビット/秒無制限00100111から26×64キロビット/秒無制限00101000 X 64キロビット/秒無制限00101001から28×64キロビット/秒無制限00101010から11111111スペア介して29×64キロビット/秒無制限00101011

TMRSR 9002 1 OCTET Transmission Medium Requirement Subrate

TMRSR 9002 1 OCTET伝送媒体の要件サブレート

0 - unspecified 1 - 8kbit/s 2 - 16kbit/s 3 - 32kbit/s

0 - 不特定の1 - 8kbit / sの2 - 16Kビット/秒の3 - 32Kビット/秒

Contcheck 9003 BOOLEAN Continuity Check Reference: ITU Recommendation Q.763(09/97) 0 - Not required on this circuit 1 - Required on this circuit

Contcheck 9003 BOOLEAN導通チェック参照:ITU勧告Q.763(09/97)0 - この回路1には必要ありません - この回路に必要な

ITC 9004 5 BITS Information Transfer Capability Reference: ITU Recommendation Q.763(09/97) Bits 5 4 3 2 1 00000 - Speech 01000 -Unrestricted digital information 01001- Restricted digital information 10000 3.1 kHz audio 10001 - Unrestricted digital information with tones/announcements (Note 2) 11000 -Video All other values are reserved.

トーンで非制限デジタル情報/ - ITU勧告Q.763(09/97)ビット5 4 3 2 1 00000 - スピーチ01000 -Unrestrictedデジタル情報01001-制限デジタル情報10000 3.1 kHzオーディオ10001:ITC 9004、5ビットの情報転送能力リファレンスアナウンス(注2)11000 - ビデオ他のすべての値が予約されています。

TransMode 9005 2 BITS Transfer Mode Reference: ITU Recommendation Q.931 (1998) Bit 2 1 00 - Circuit mode 10 - Packet mode

TRANSMODE 9005 2ビット転送モードリファレンス:ITU勧告Q.931(1998)ビット2 1 00 - サーキットモード10 - パケットモード

TransRate 9006 5 BITS Transfer Rate Reference: ITU Recommendation Q.931 (1998) Bit 5 4 3 2 1 00000 - This code shall be used for packet mode calls 10000 - 64 kbit/s

TransRate 9006 5ビットレートリファレンス転送:ITU勧告Q.931(1998)ビット5 4 3 2 1 00000から64キロビット/秒 - パケットモード10000を呼び出すためにこのコードを使用しなければなりません

10001 - 2 x 64 kbit/s 10011 -384 kbit/s 10101 -1536 kbit/s 10111 -1920 kbit/s 11000 - Multirate (64 kbit/s base rate)

10001から2×64キロビット/秒10011 -384キロビット/秒10101 -1536キロビット/秒10111 -1920キロビット/秒11000 - マルチレート(64kビット/ sの基本レート)

MULT 9007 7 BITS Rate Multiplier Reference: ITU Recommendation Q.931 (1998) Any value from 2 to n (maximum number of B-channels)

MULT 9007 7ビットレート乗数参照:ITU勧告Q.931(1998)2からnまでの任意の値(Bチャネルの最大数)

USI 9008 5 BITS User Information Layer 1 Protocol Reference: ITU Recommendation Q.931 (1998) Bits 5 4 3 2 1 00001 - CCITT standardized rate adaption V.110 and X.30. 00010 - Recommendation G.711 u-law 00011 - Recommendation G.711 A-law 00100 - Recommendation G.721 32 kbit/s ADPCM and Recommendation I.460. 00101 - Recommendations H.221 and H.242 00110 - Recommendations H.223 and H.245 00111 - Non-ITU-T standardized rate adaption. 01000 - ITU-T standardized rate adaption V.120. 01001 - CCITT standardized rate adaption X.31 HDLC flag stuffing. All other values are reserved.

USI 9008 5 BITSユーザ情報レイヤ1プロトコルリファレンス:ITU勧告Q.931(1998)ビット5 4 3 2 1 00001 - CCITT規格化レート適応V.110およびX.30。 00010 - 勧告G.711のU法則00011 - 勧告G.711 A法則00100 - 勧告G.721 32キロビット/秒のADPCMと勧告I.460。 00101 - 勧告H.221とH.242 00110 - 勧告H.223とH.245 00111 - 非ITU-Tの標準化速度整合。 01000 - ITU-T標準化レート適応V.120。 01001 - CCITT規格化レート適応X.31 HDLCフラグスタッフィング。その他の値はすべて予約されています。

syncasync 9009 BOOLEAN Synchronous/ Asynchronous Reference: ITU Recommendation Q.931 (1998) 0 - Synchronous data 1 - Asynchronous data

syncasync 9009 BOOLEAN同期/非同期リファレンス:ITU勧告Q.931(1998)0 - 同期データ1 - 非同期データ

negotiation 900A BOOLEAN Negotiation Reference: ITU Recommendation Q.931 (1998) 0 - In-band negotiation possible 1 - In-band negotiation not possible

交渉900A BOOLEAN交渉リファレンス:ITU勧告Q.931(1998)0から1の可能なインバンド交渉 - インバンド交渉ではない可能性

Userrate 900B 5 BITS User Rate Reference: ITU Recommendation Q.931 (1998) Bits 5 4 3 2 1 00000 - Rate is indicated by E-bits specified in Recommendation I.460 or may be negotiated in-band 00001 - 0.6 kbit/s Recommendations V.6 and X.1 00010 - 1.2 kbit/s Recommendation V.6 00011 - 2.4 kbit/s Recommendations V.6 and X.1 00100 - 3.6 kbit/s Recommendation V.6 00101 - 4.8 kbit/s Recommendations V.6 and X.1 00110 - 7.2 kbit/s RecommendationV.6

Userrate 900B 5 BITSユーザレートリファレンス: - レートは勧告I.460で指定されたEビットによって示されるか、またはインバンド00001ネゴシエートすることができる - 0.6キロビット/秒ITU勧告Q.931(1998)5 4 3 2 1 00000ビット勧告V.6とX.1 00010から1.2キロビット/秒勧告V.6 00011から2.4キロビット/秒勧告V.6とX.1 00100から3.6キロビット/秒勧告V.6 00101から4.8キロビット/秒勧告V 0.6とX.1 00110から7.2キロビット/秒RecommendationV.6

00111 - 8 kbit/s Recommendation I.460 01000 - 9.6 kbit/s Recommendations V.6 and X.1 01001 - 14.4 kbit/s Recommendation V.6 01010 - 16 kbit/s Recommendation I.460 01011 - 19.2 kbit/s Recommendation V.6 01100 - 32 kbit/s Recommendation I.460 01101 - 38.4 kbit/s Recommendation V.110 01110 - 48 kbit/s Recommendations V.6 and X.1 01111 - 56 kbit/s Recommendation V.6 10010 - 57.6 kbit/s Recommendation V.14 extended 10011 - 28.8 kbit/s Recommendation V.110 10100 - 24 kbit/s Recommendation V.110 10101 - 0.1345 kbit/s Recommendation X.1 10110 - 0.100 kbit/s Recommendation X.1 10111 - 0.075/1.2 kbit/s Recommendations V.6 and X.1 11000 - 1.2/0.075 kbit/s Recommendations V.6 and X.1 11001 - 0.050 kbit/s Recommendations V.6 and X.1 11010 - 0.075 kbit/s Recommendations V.6 and X.1 11011 - 0.110 kbit/s Recommendations V.6 and X.1 11100 - 0.150 kbit/s Recommendations V.6 and X.1 11101 - 0.200 kbit/s Recommendations V.6 and X.1 11110 - 0.300 kbit/s Recommendations V.6 and X.1 11111 - 12 kbit/s Recommendation V.6 All other values are reserved.

00111から8キロビット/秒勧告I.460 01000から9.6キロビット/秒勧めV.6とX.1 01001から14.4キロビット/秒推奨V.6 01010から16キロビット/秒勧告I.460 01011から19.2キロビット/秒38.4キロビット/秒推奨V.110 01110 - - 48キロビット/秒勧めV.6とX.1 01111から56キロビット/秒推奨V.6 10010推薦V.6 01100から32キロビット/秒勧告I.460 01101 - 28.8キロビット/秒勧告V.110 10100 - - 24キロビット/秒勧告V.110 10101から0.1345キロビット/秒推奨X.1 10110から0.100キロビット/秒推奨X.1 10111 57.6キロビット/秒勧告V.14は10011拡張しました - 0.075 / 1.2キロビット/秒勧めV.6とX.1 11000から1.2 / 0.075キロビット/秒勧めV.6とX.1 11001から0.050キロビット/秒勧めV.6とX.1 11010から0.075キロビット/ sの勧告V.6とX.1 11011から0.110キロビット/秒勧告V.6とX.1 11100から0.150キロビット/秒勧告V.6とX.1 11101から0.200キロビット/秒勧告V.6とX. 1 11110から0.300キロビット/秒勧告V.6とX.1 11111から12キロビット/秒Recomme ndation V.6他のすべての値が予約されています。

INTRATE 900C 2 BITS Intermediate Rate Reference: ITU Recommendation Q.931 (1998) Bit 2 1 00 - Not used 01 - 8 kbit/s 10 - 16 kbit/s 11 - 32 kbit/s

INTRATE 900C 2、BITS中間レート参考:ITU勧告Q.931(1998)ビット2 1 00 - 未使用01から8キロビット/秒10から16キロビット/秒11から32キロビット/秒

nictx 900D BOOLEAN Network Independent Clock (NIC) on transmission Reference: ITU Recommendation Q.931 (1998) 0 - Not required to send data with network independent clock 1 - Required to send data with network independent clock nicrx 900E BOOLEAN Network independent clock (NIC) on reception Reference: ITU Recommendation Q.931 (1998) 0 - Cannot accept data with network independent clock (i.e. sender does not support this optional procedure) 1 - Can accept data with network independent clock (i.e. sender does support this optional procedure)

nictx 900Dブーリアンネットワーク独立クロック伝送参考に(NIC):ITU勧告Q.931(1998)0 - ネットワークでデータを送信する必要はなく、独立したクロック1 - ネットワークの独立したクロックnicrx 900Eブーリアンネットワークの独立したクロックでデータを送信するために必要な(NIC )受信参考に:ITU勧告Q.931(1998)0 - ネットワークの独立したクロックでデータを受け入れることができない(つまり、送信者がこのオプションの手順をサポートしていません)1 - ネットワークの独立したクロックでデータを受け入れることができる(すなわち、送信者は、このオプションの手順をサポートしています)

flowconttx 900F BOOLEAN Flow Control on transmission (Tx) Reference: ITU Recommendation Q.931 (1998) 0 - Not required to send data with flow control mechanism 1 - Required to send data with flow control mechanism

伝送上のflowconttx 900F BOOLEANフローコントロール(TX)参考:ITU勧告Q.931(1998)0 - フロー制御メカニズムを使用してデータを送信するために必要な - フロー制御機構1とデータを送信する必要はありません

flowcontrx 9010 BOOLEAN Flow control on reception (Rx) Reference: ITU Recommendation Q.931 (1998) 0 - Cannot accept data with flow control mechanism (i.e. sender does not support this optional procedure) 1 - Can accept data with flow control mechanism (i.e. sender does support this optional procedure)

受信(Rx)の参考にflowcontrx 9010 BOOLEANフロー制御:ITU勧告Q.931(1998)0 - (すなわち、送信者は、このオプションの手順をサポートしていません)1フロー制御機構を備えたデータを受け入れることができない - フロー制御機構を備えたデータを受け入れることができる(つまり、送信者)は、このオプションの手順をサポートしています

rateadapthdr 9011 BOOLEAN Rate adaption header/no header Reference: ITU Recommendation Q.931 (1998) 0 - Rate adaption header not included 1 - Rate adaption header included

rateadapthdr 9011 BOOLEANレート適応ヘッダ/なしヘッダリファレンス:ITU勧告Q.931(1998)0 - レート適応ヘッダは1含まれていない - レート適応ヘッダが含まれ

multiframe 9012 BOOLEAN Multiple frame establishment support in data link Reference: ITU Recommendation Q.931 (1998) 0 - Multiple frame establishment not supported. Only UI frames allowed. 1 - Multiple frame establishment supported

データリンクリファレンスマルチフレーム9012 BOOLEAN複数のフレームの確立のサポート:ITU勧告Q.931(1998)0 - 複数のフレームの確立がサポートされていません。唯一のUIフレームができました。 1 - 複数のフレームの確立をサポート

OPMODE 9013 BOOLEAN Mode of operation Reference: ITU Recommendation Q.931 (1998) 0 Bit transparent mode of operation 1 Protocol sensitive mode of operation

動作基準のOPMODE 9013 BOOLEANモード:ITU勧告Q.931(1998)操作の操作1プロトコルに敏感なモードの0ビット透過モード

llidnegot 9014 BOOLEAN Logical link identifier negotiation Reference: ITU Recommendation Q.931 (1998) 0 Default, LLI = 256 only 1 Full protocol negotiation

llidnegot 9014 BOOLEAN論理リンク識別子交渉リファレンス:ITU勧告Q.931(1998)0デフォルト、LLI = 256のみ1つのフルプロトコルネゴシエーション

assign 9015 BOOLEAN Assignor/assignee Reference: ITU Recommendation Q.931 (1998) 0 Message originator is "Default assignee" 1 Message originator is "Assignor only"

0メッセージ発信元が「デフォルト譲受人が」1つのメッセージ発信元が「唯一の譲渡」ですITU勧告Q.931(1998):9015 BOOLEAN譲渡/譲受人のリファレンスを割り当て

inbandneg 9016 BOOLEAN In-band/out-band negotiation Reference: ITU Recommendation Q.931 (1998)

ITU勧告Q.931(1998):9016 BOOLEANインバンド/アウトバンド交渉リファレンスinbandneg

0- Negotiation is done with USER INFORMATION messages on a temporary signalling connection 1- Negotiation is done in-band using logical link zero


stopbits 9017 2 BITS Number of stop bits Reference: ITU Recommendation Q.931 (1998) Bits 2 1 00 - Not used 01 - 1 bit 10 - 1.5 bits 11 - 2 bits

ストップビットストップビットの9017の2ビット数は、参照:ITU勧告Q.931(1998)ビット2 1 00 - 1.5ビット11 - - 2ビットを10ビット1 - 01を使用しません

databits 9018 2 BIT Number of data bits excluding parity Bit if present Reference: ITU Recommendation Q.931 (1998) Bit 2 1 00 - Not used 01 - 5 bits 10 - 7 bits 11 - 8 bits

パリティビットを除いたデータビットのデータビット9018 2ビット数本参考場合:ITU勧告Q.931(1998)ビット2 1 00 - 01未使用 - 5ビット10 - 7ビット11から8ビット

parity 9019 3 BIT Parity information Reference: ITU Recommendation Q.931 (1998) Bit 3 2 1 000 - Odd 010 - Even 011 -None 100 - Forced to 0 101 - Forced to 1 All other values are reserved.

パリティ9019、3ビットパリティ情報リファレンス:ITU勧告Q.931(1998)ビット3 2 1 000 - 010奇数 - でも011 -none 100から0 101に強制 - 他の全ての値は予約されている1に強制。

duplexmode 901A BOOLEAN Mode duplex Reference: ITU Recommendation Q.931 (1998) 0 - Half duplex 1 - Full duplex

duplexmode 901A BOOLEANモード二重参考:ITU勧告Q.931(1998)0 - 半二重1 - 全二重

modem 901B 6 BIT Modem Type Reference: ITU Recommendation Q.931 (1998) Bits 6 5 4 3 2 1 00000 through 000101 National Use 010001 - Recommendation V.21 010010 - Recommendation V.22 010011 - Recommendation V.22 bis 010100 - Recommendation V.23 010101 - Recommendation V.26 011001 - Recommendation V.26 bis 010111 -Recommendation V.26 ter

モデム901B 6 BITモデムタイプリファレンス:ITU勧告Q.931 6 5 4 3 2 1 00000 010001国立使用000101スルー(1998)ビット - 勧告V.21 010010 - 勧告V.22 010011 - 勧告V.22は010100ビス - 勧告V.23 010101 - 勧告V.26 011001 - 勧告V.26は010111 -recommendation V.26タービス

011000 - RecommendationV.27 011001 - Recommendation V.27 bis 011010 - Recommendation V.27 ter 011011 - Recommendation V.29 011101 - Recommendation V.32 011110 - Recommendation V.34 100000 through 101111 National Use 110000 through 111111 User Specified

011000 - RecommendationV.27 011001 - 勧告V. 27は011010ビス - 勧告V. 27ター011011 - 勧告V.29 011101 - 勧告V.32 011110 - 指定された勧告101111国内使用を通じてV.34 100000 110000 111111を使用したユーザー

layer2prot 901C 5 BIT User information layer 2 protocol Reference: ITU Recommendation Q.931 (1998) Bit 5 4 3 2 1 00010 - Recommendation Q.921/I.441 [3] 00110 - Recommendation X.25 [5], link layer 01100 - LAN logical link control (ISO/IEC 8802-2) All other values are reserved.

layer2prot 901C 5ビットのユーザ情報レイヤ2プロトコルリファレンス:ITU勧告Q.931(1998)ビット5 4 3 2 1 00010 - 勧告Q.921 / I.441 [3] 00110 - 勧告X.25 [5]、リンク層01100 - LAN論理リンク制御(ISO / IEC 8802-2)他のすべての値が予約されています。

layer3prot 901D 5 BIT User information layer 3 protocol Reference: ITU Recommendation Q.931 (1998) Bit 5 4 3 2 1 00010 - Recommendation Q.931/I.451 00110 - Recommendation X.25, packet layer 01011 - ISO/IEC TR 9577 (Protocol identification in the network layer) All other values are reserved.

layer3prot 901D 5ビットのユーザ情報レイヤ3プロトコルリファレンス:ITU勧告Q.931(1998)ビット5 4 3 2 1 00010 - 勧告Q.931 / I.451の00110 - 勧告X.25、パケット層01011 - ISO / IEC TR 9577(ネットワーク層におけるプロトコル識別)他のすべての値が予約されています。

addlayer3prot 901E OCTET Additional User Information layer 3 protocol Reference: ITU Recommendation Q.931 (1998)

addlayer3prot 901E OCTET追加のユーザ情報レイヤ3プロトコルリファレンス:ITU勧告Q.931(1998)

Bits 4321 4321 1100 1100 - Internet Protocol (RFC 791) (ISO/IEC TR 9577) 1100 1111 - Point-to-point Protocol (RFC 1548)

ビット4321 4321 1100 1100 - インターネットプロトコル(RFC 791)(ISO / IEC TR 9577)1100 1111 - ポイントツーポイントプロトコル(RFC 1548)

DialledN 901F 30 OCTETS Dialled Number DiallingN 9020 30 OCTETS Dialling Number

数DiallingN 9020 30 OCTETSダイヤル番号をダイヤルDialledN 901F 30 OCTETS

ECHOCI 9021 Enumeration Echo Control Information echo canceler off (0), incoming echo canceler on (1), outgoing echo canceler on (2), incoming and outgoing echo canceler on (3)

ECHOCI 9021列挙エコー制御情報エコーキャンセラオフ(0)、(3)(2)、着信および発信エコーキャンセラ(1)、発信エコーキャンセラの着信エコーキャンセラ

NCI 9022 1 OCTET Nature of Connection Indicators Reference: ITU Recommendation Q.763

NCI 9022接続の指標の1 OCTET自然参考:ITU勧告Q.763を

Bits 8 7 6 5 4 3 2 1 Bits 2 1 Satellite Indicator 0 0 no satellite circuit in the connection 0 1 one satellite circuit in the connection 1 0 two satellite circuits in the connection 1 1 spare

ビット8 7 6 5 4 3 2 1ビット2 1衛星インジケータ0 0 0 1つの衛星回路1 0 2つの衛星回線接続1スペアに関連して接続でない衛星回路

Bits 4 3 Continuity check indicator 0 0 continuity check not required 0 1 continuity check required on this circuit 1 0 continuity check performed on a previous circuit 1 1 spare

ビット4 3導通チェックインジケータ0連続性チェックは、前の回路1つのスペア上で行わこの回路1回の0連続性チェックに必要0 1つの導通チェックを必要としません

Bits 5 Echo control device indicator 0 outgoing echo control device not included 1 outgoing echo control device included


Bits 8 7 6 Spare

ビット8 7 6スペア

C.10 AAL5 Properties

C.10 AAL5プロパティ

PropertyID Property Type Value Tag


FMSDU A001 32 bit integer Forward Maximum CPCS-SDU Size: Reference: ITU Recommendation Q.2931 (1995) Maximum CPCS-SDU size sent in the direction from the calling user to the called user.

FMSDU A001 32ビット整数フォワード最大CPCS-SDUサイズ:リファレンス:ITU勧告Q.2931(1995)と呼ばれるユーザに発呼ユーザからの方向に送信された最大CPCS-SDUサイズ。

BMSDU A002 32 bit integer Backwards Maximum CPCS-SDU Size Reference: ITU Recommendation Q.2931 (1995) Maximum CPCS-SDU size sent in the direction from the called user to the calling user.

BMSDU A002 32ビット整数後方最大CPCS-SDUサイズリファレンス:ITU勧告Q.2931発呼ユーザに呼び出されたユーザからの方向に送信(1995)最大CPCS-SDUサイズ。

SSCS See See table C.7 See table C.7 table C.7 Additional values: VPI/VCI

VPI / VCI:表C.7がテーブルC.7表C.7追加の値を見るSSCSを参照してください。

SC See See Table C.4 See table C.4 Table C.4


C.11 SDP Equivalents

C.11 SDP同等

PropertyID Property Type Value Tag


SDP_V B001 STRING Protocol Version

SDP_V B001 STRINGプロトコルバージョン

SDP_O B002 STRING Owner/creator and session ID

SDP_O B002 STRING所有者/クリエイターとセッションID

SDP_S B003 STRING Sesson name


SDP_I B004 STRING Session identifier

SDP_I B004 STRINGセッション識別子

SDP_U B005 STRING URI of descriptor


SDC_E B006 STRING email address

SDC_E B006 STRINGのメールアドレス

SDP_P B007 STRING phone number

SDP_P B007 STRINGの電話番号

SDP_C B008 STRING Connection information


SDP_B B009 STRING Bandwidth Information

SDP_B B009 STRING帯域幅情報

SDP_Z B00A STRING time zone adjustment

SDP_Z B00A STRINGのタイムゾーンの調整

SDP_K B00B STRING Encryption Key


SDP_A B00C STRING Zero or more session attributes

SDP_A B00C STRINGゼロ以上のセッション属性

SDP_T B00D STRING Active Session Time

SDP_T B00DのSTRINGアクティブセッション時間

SDP_R B00E STRING Zero or more repeat times

SDP_R B00E STRINGゼロ以上の繰り返し回数

Reference in all cases: IETF RFC2327, "Session Description Protocol"

すべての場合において参考:IETF RFC2327、「セッション記述プロトコル」

C.12 H.245

C.12 H.245

PropertyID Property Type Value Tag OLC C001 octet string The value of H.245 OpenLogicalChannel structure.

PropertyID施設のタイプの値タグOLC C001オクテット文字列H.245のOpenLogicalChannel構造の値。

OLCack C002 octet string The value of H.245 OpenLogicalChannelAck structure. OLCcnf C003 octet string The value of H.245 OpenLogicalChannelConfirm structure. OLCrej C004 octet string The value of H.245 OpenLogicalChannelReject structure. CLC C005 octet string The value of H.245 CloseLogicalChannel structure. CLCack C006 octet string The value of H.245 CloseLogicalChannelAck structure. Reference in all cases: ITU-T Recommendation H.245

OLCack C002オクテット文字列H.245 OpenLogicalChannelAck構造体の値。 OLCcnf C003オクテット文字列H.245 OpenLogicalChannelConfirm構造の値。 OLCrej C004オクテット文字列H.245 OpenLogicalChannelReject構造体の値。 CLC C005オクテット文字列H.245 CloseLogicalChannel構造体の値。 CLCack C006オクテット文字列H.245 CloseLogicalChannelAck構造体の値。すべての場合において参考:ITU-T勧告H.245



D.1 Transport over IP/UDP using Application Level Framing

アプリケーションレベルフレーミングを使用してIP / UDP経由D.1輸送

Protocol messages defined in this document may be transmitted over UDP. When no port is provided by the peer (see section 7.2.8), commands should be sent to the default port number, 2944 for text-encoded operation or 2945 for binary-encoded operation. Responses must be sent to the address and port from which the corresponding commands were sent except if the response is to a handoff or failover, in which case the procedures of 11.5 apply.


Implementors using IP/UDP with ALF should be aware of the restrictions of the MTU on the maximum message size.

ALFとIP / UDPを使用して実装者は、最大メッセージサイズのMTUの制限に注意する必要があります。

D.1.1 Providing At-Most-Once Functionality


Messages, being carried over UDP, may be subject to losses. In the absence of a timely response, commands are repeated. Most commands are not idempotent. The state of the MG would become unpredictable if, for example, Add commands were executed several times. The transmission procedures shall thus provide an "At-Most-Once" functionality.


Peer protocol entities are expected to keep in memory a list of the responses that they sent to recent transactions and a list of the transactions that are currently outstanding. The transaction identifier of each incoming message is compared to the transaction identifiers of the recent responses sent to the same MId. If a match is found, the entity does not execute the transaction, but simply repeats the response. If no match is found, the message will be compared to the list of currently outstanding transactions. If a match is found in that list, indicating a duplicate transaction, the entity does not execute the transaction (see section 8.2.3 for procedures on sending TransactionPending).


The procedure uses a long timer value, noted LONG-TIMER in the following. The timer should be set larger than the maximum duration of a transaction, which should take into account the maximum number of repetitions, the maximum value of the repetition timer and the maximum propagation delay of a packet in the network. A suggested value is 30 seconds.


The copy of the responses may be destroyed either LONG-TIMER seconds after the response is issued, or when the entity receives a confirmation that the response has been received, through the "Response Acknowledgement parameter". For transactions that are acknowledged through this parameter, the entity shall keep a copy of the transaction-id for LONG-TIMER seconds after the response is issued, in order to detect and ignore duplicate copies of the transaction request that could be produced by the network.


D.1.2 Transaction identifiers and three-way handshake


D.1.2.1 Transaction identifiers


Transaction identifiers are 32 bit integer numbers. A Media Gateway Controller may decide to use a specific number space for each of the MGs that they manage, or to use the same number space for all MGs that belong to some arbitrary group. MGCs may decide to share the load of managing a large MG between several independent processes. These processes will share the same transaction number space. There are multiple possible implementations of this sharing, such as having a centralized allocation of transaction identifiers, or pre-allocating non-overlapping ranges of identifiers to different processes. The implementations shall guarantee that unique transaction identifiers are allocated to all transactions that originate from a logical MGC (identical mId). MGs can simply detect duplicate transactions by looking at the transaction identifier and mId only.

トランザクション識別子は、32ビットの整数です。メディアゲートウェイコントローラは、彼らが管理するのMGごとに特定の数のスペースを使用するように決定することができる、またはいくつかの任意のグループに属するすべてのMGに同じ数のスペースを使用します。 MGCのは、いくつかの独立したプロセスとの間に大きなMGを管理する負荷を共有するように決定することができます。これらのプロセスは同じトランザクション数のスペースを共有します。そのようなトランザクション識別子の集中配分を有する、または異なるプロセスの識別子の重複しない範囲を予め割り当て、この共有の複数の可能な実装が存在します。実装は、固有のトランザクション識別子は、論理MGC(同じMID)から発信すべてのトランザクションに割り当てられていることを保証しなければなりません。 MGのは、単純にのみトランザクション識別子およびMIDを見て、重複するトランザクションを検出することができます。

D.1.2.2 Three-way handshake


The TransactionResponse Acknowledgement parameter can be found in any message. It carries a set of "confirmed transaction-id ranges". Entities may choose to delete the copies of the responses to transactions whose id is included in "confirmed transaction-id ranges" received in the transaction response messages. They should silently discard further commands when the transaction-id falls within these ranges.


The "confirmed transaction-id ranges" values shall not be used if more than LONG-TIMER seconds have elapsed since the MG issued its last response to that MGC, or when a MG resumes operation. In this situation, transactions should be accepted and processed, without any test on the transaction-id.


Messages that carry the "Transaction Response Acknowledgement" parameter may be transmitted in any order. The entity shall retain the "confirmed transaction-id ranges" receivedfor LONG-TIMER seconds.

「トランザクション応答承認」パラメータを運ぶメッセージは、任意の順序で送信することができます。エンティティは、「確認トランザクションIDの範囲」receivedfor LONG-TIMER秒を保持するものとします。

In the binary encoding, if only the firstAck is present in a response acknowledgement (see Annex A.2), only one transaction is acknowledged. If both firstAck and lastAck are present, then the range of transactions from firstAck to lastAck is acknowledged. In the text encoding, a horizontal dash is used to indicate a range of transactions being acknowledged (see Annex B.2).

バイナリ符号化では、場合にのみfirstAckは(附属書A.2を参照)応答確認に存在する、1つのトランザクションのみが認められています。 firstAckとlastAck両方が存在する場合、firstAckからlastAckのトランザクションの範囲が認められています。テキストエンコーディングでは、水平方向のダッシュ(附属書B.2を参照)承認されたトランザクションの範囲を示すために使用されます。

D.1.3 Computing retransmission timers


It is the responsibility of the requesting entity to provide suitable time outs for all outstanding transactions, and to retry transactions when time outs have been exceeded. Furthermore, when repeated transactions fail to be acknowledged, it is the responsibility of the requesting entity to seek redundant services and/or clear existing or pending connections.


The specification purposely avoids specifying any value for the retransmission timers. These values are typically network dependent. The retransmission timers should normally estimate the timer value by measuring the time spent between the sending of a command and the return of a response.


Note - One possibility is to use the algorithm implemented in TCP-IP, which uses two variables:

注 - 一つの可能​​性は2つの変数を使用してTCP-IPに実装されたアルゴリズムを使用することです:

. The average acknowledgement delay, AAD, estimated through an exponentially smoothed average of the observed delays.


. The average deviation, ADEV, estimated through an exponentially smoothed average of the absolute value of the difference between the observed delay and the current average. The retransmission timer, in TCP, is set to the sum of the average delay plus N times the average deviation. The maximum value of the timer should however be bounded for the protocol defined in this document, in order to guarantee that no repeated packet would be received by the gateways after LONG-TIMER seconds. A suggested maximum value is 4 seconds.


After any retransmission, the entity should do the following:


. It should double the estimated value of the average delay, AAD


. It should compute a random value, uniformly distributed between 0.5 AAD and AAD

。それは一様に0.5 AADとAAD間分散、ランダムな値を計算しなければなりません

. It should set the retransmission timer to the sum of that random value and N times the average deviation.


This procedure has two effects. Because it includes an exponentially increasing component, it will automatically slow down the stream of messages in case of congestion. Because it includes a random component, it will break the potential synchronization between notifications triggered by the same external event.


D.1.4 Provisional responses


Executing some transactions may require a long time. Long execution times may interact with the timer based retransmission procedure. This may result either in an inordinate number of retransmissions, or in timer values that become too long to be efficient. Entities that can predict that a transaction will require a long execution time may send a provisional response, "Transaction Pending".


Entities that receive a Transaction Pending shall switch to a different repetition timer for repeating requests. The root termination has a property (ProvisionalResponseTimerValue), which can be set to the requested maximum number of milliseconds between receipt of a command and transmission of the TransactionPending response. Upon receipt of a final response, an immediate confirmation shall be sent, and normal repetition timers shall be used thereafter. Receipt of a Transaction Pending after receipt of a reply shall be ignored.


D.1.5 Repeating Requests, Responses and Acknowledgements


The protocol is organized as a set of transactions, each of which is composed request and a response, commonly referred to as an acknowledgement. The protocol messages, being carried over UDP, may be subject to losses. In the absence of a timely response, transactions are repeated. Entities are expected to keep in memory a list of the responses that they sent to recent transactions, i.e. a list of all the responses they sent over the last LONG-TIMER seconds, and a list of the transactions that are currently being executed.


The repetition mechanism is used to guard against three types of possible errors:


    .  transmission errors, when for example a packet is lost due to
       noise on a line or congestion in a queue;
    .  component failure, when for example an interface to a entity
       becomes unavailable;
    .  entity failure, when for example an entire entity become

The entities should be able to derive from the past history an estimate of the packet loss rate due to transmission errors. In a properly configured system, this loss rate should be kept very low, typically less than 1%. If a Media Gateway Controller or a Media Gateway has to repeat a message more than a few times, it is very legitimate to assume that something else than a transmission error is occurring. For example, given a loss rate of 1%, the probability that five consecutive transmission attempts fail is 1 in 100 billion, an event that should occur less than once every 10 days for a Media Gateway Controller that processes 1 000 transactions per second. (Indeed, the number of repetition that is considered excessive should be a function of the prevailing packet loss rate.) We should note that the "suspicion threshold", which we will call "Max1", is normally lower than the "disconnection threshold", which should be set to a larger value.

エンティティは、過去の履歴から、伝送エラーによるパケット損失率の推定値を導出することができるはずです。適切に構成されたシステムでは、この損失率は、典型的には1%未満、非常に低く維持されるべきです。メディアゲートウェイコントローラまたはメディアゲートウェイが数倍以上のメッセージの詳細を繰り返す必要がある場合は、伝送エラー以外の何かが発生していることを前提とするのは非常に正当なものです。例えば、1%の損失率を考慮すると、5回の連続した送信試行が失敗する確率1,000億1、毎秒1つの000トランザクションを処理するメディアゲートウェイコントローラ毎10日に1回未満で発生するイベントです。 (実際、過度考えられている繰り返しの数は、現行のパケットロス率の関数である必要があります。)私たちは、「Max1のを」呼ぶ「疑惑しきい値」は、「切断閾値」よりも通常低いことに注意すべきです、大きな値に設定されるべきです。

A classic retransmission algorithm would simply count the number of successive repetitions, and conclude that the association is broken after retransmitting the packet an excessive number of times (typically between 7 and 11 times.) In order to account for the possibility of an undetected or in-progress "failover", we modify the classic algorithm so that if the Media Gateway receives a valid ServiceChange message announcing a failover, it will start transmitting outstanding commands to that new MGC. Responses to commands are still transmitted to the source address of the command.


In order to automatically adapt to network load, this document specifies exponentially increasing timers. If the initial timer is set to 200 milliseconds, the loss of a fifth retransmission will be detected after about 6 seconds. This is probably an acceptable waiting delay to detect a failover. The repetitions should continue after that delay not only in order to perhaps overcome a transient connectivity problem, but also in order to allow some more time for the execution of a failover - waiting a total delay of 30 seconds is probably acceptable.

自動的にネットワーク負荷に適応するためには、この文書では、指数関数的に増加するタイマーを指定します。初期タイマが200ミリ秒に設定されている場合は、第五の再送の損失は約6秒後に検出されます。これはおそらく、フェールオーバーを検出するために許容可能な待機遅延です。繰り返しは、おそらく一過接続の問題を克服するために、それだけでなく遅延の後に続ける必要があり、また、フェイルオーバーを実行するためのいくつかのより多くの時間を可能にするために - 30秒の合計遅延を待っているが、おそらく許容可能です。

It is, however, important that the maximum delay of retransmissions be bounded. Prior to any retransmission, it is checked that the time elapsed since the sending of the initial datagram is no greater than T-MAX. If more than T-MAX time has elapsed, the MG concludes that the MGC has failed, and it begins its recovery process. When the MG establishes a new control association, it can retransmit to the new MGC. Alternatively, a MG may use a ServiceChange with ServiceChangeMethod equal to disconnected to inform the new MGC that the MG lost one or more transactions. The value T-MAX is related to the LONG-TIMER value: the LONG-TIMER value is obtained by adding to T-MAX the maximum propagation delay in the network.

再送信の最大遅延時間が制限されることが重要です。任意の再送信に先立ち、初期のデータグラムの送信からの経過時間がT-MAXを超えないことを確認します。 T-MAX時間以上が経過している場合は、MGはMGCに失敗したと判断し、それは、その回復プロセスを開始します。 MGは新しいコントロールの関連付けを確立するとき、それは新しいMGCに再送信することができます。また、MGはMGが1つ以上のトランザクションを失ったことを新しいMGCに通知するために切断さに等しいServiceChangeMethodとのServiceChangeを使用することができます。値T-MAXはLONG​​-TIMER値に関連している:LONG-TIMER値は、T-MAXにネットワーク内の最大伝搬遅延を加えたものです。

D.2 using TCP


Protocol messages as defined in this document may be transmitted over TCP. When no port is specified by the other side (see section 7.2.8), the commands should be sent to the default port. The defined protocol has messages as the unit of transfer, while TCP is a stream-oriented protocol. TPKT, according to RFC1006 SHALL be used to delineate messages within the TCP stream.

この文書で定義されているプロトコルメッセージは、TCPを介して送信することができます。ポートが他の側(セクション7.2.8を参照)で指定されていない場合、コマンドはデフォルトのポートに送信する必要があります。 TCPは、ストリーム指向のプロトコルである定義されたプロトコルは、転送の単位としてメッセージを有しています。 TPKTは、RFC1006によるTCPストリーム内のメッセージを描写するために使用しなければなりません。

In a transaction-oriented protocol, there are still ways for transaction requests or responses to be lost. As such, it is recommended that entities using TCP transport implement application level timers for each request and each response, similar to those specified for application level framing over UDP.


D.2.1 Providing the At-Most-Once functionality


Messages, being carried over TCP, are not subject to transport losses, but loss of a transaction request or its reply may nonetheless be noted in real implementations. In the absence of a timely response, commands are repeated. Most commands are not idempotent. The state of the MG would become unpredictable if, for example, Add commands were executed several times.


To guard against such losses, it is recommended that entities follow the procedures in section D.1.1


D.2.2 Transaction identifiers and three way handshake


For the same reasons, it is possible that transaction replies may be lost even with a reliable delivery protocol such as TCP. It is recommended that entities follow the procedures in section D.1.2.2.


D.2.3 Computing retransmission timers


With reliable delivery, the incidence of loss of a transaction request or reply is expected to be very low. Therefore, only simple timer mechanisms are required. Exponential back-off algorithms should not be necessary, although they could be employed where, as in an MGC, the code to do so is already required, since MGCs must implement ALF/UDP as well as TCP.

信頼性の高い配信では、トランザクション要求または応答の損失の発生率は非常に低いと予想されます。したがって、単純なタイマーメカニズムが必要とされています。 MGCのはALF / UDPなどTCPを実装する必要がありますので、MGCのように、そうするコードはすでに、必要な場合、彼らは使用することができるが、指数バックオフアルゴリズムは、必要ありません。

D.2.4 Provisional responses


As with UDP, executing some transactions may require a long time. Entities that can predict that a transaction will require a long execution time may send a provisional response, "Transaction Pending". They should send this response if they receive a repetition of a transaction that is still being executed.


Entities that receive a Transaction Pending shall switch to a longer repetition timer for that transaction.


Entities shall retain Transactions and replies until they are confirmed. The basic procedure of section D.1.4 should be followed, but simple timer values should be sufficient. There is no need to send an immediate confirmation upon receipt of a final response.


D.2.5 Ordering of commands


TCP provides ordered delivery of transactions. No special procedures are required. It should be noted that ALF/UDP allows sending entity to modify its behavior under congestion, and in particular, could reorder transactions when congestion is encountered. TCP could not achieve the same results.

TCPは、取引の注文の配信を提供します。特別な手続きは必要ありません。 ALF / UDPは輻輳の下でその動作を変更することを企業に送ることができますことに留意すべきである、と混雑に遭遇したとき、特に、取引を並べ替えることができます。 TCPは、同じ結果を得ることができませんでした。



This Annex contains definitions of some packages for use with the Megaco protocol.


E.1 Generic


PackageID: g (0x000e) Version: 1 Extends: None


Description: Generic package for commonly encountered items.


E.1.1 Properties




E.1.2 Events


   EventID:     cause (0x0001)

Generic error event


ObservedEvents Descriptor Parameters:


        General Cause
        ParameterID: Generalcause (0x0001)

Description: This parameter groups the failures into six groups, which the MGC may act upon.


Possible values: Enumerated, "NR" Normal Release (0x0001) "UR" Unavailable Resources (0x0002) "FT" Failure, Temporary (0x0003) "FP" Failure, Permanent (0x0004) "IW" Interworking Error (0x0005) "UN" Unsupported (0x0006)

可能な値:列挙、 "NR" ノーマルリリース(0x0001に) "UR" 利用できないリソース(0×0002) "FT" 失敗、一時的(0x0003) "FP" 失敗、パーマネント(0x0004は) "IW" インターワーキングエラー(0x0005) "UN"サポートされていない(0x0006)

        Failure Cause
        ParameterID: Failurecause (0x0002)

Description: The Release Cause is the value generated by the Released equipment, i.e. a released network connection. The concerned value is defined in the appropriate bearer control protocol.


Possible Values: OCTET STRING


   Signal Completion
   EventID: sc (0x0002)

Indicates termination of one or more signals for which the notifyCompletion parameter was set to "ON". For further procedural description, see sections 7.1.11, 7.1.17, and 7.2.7.


ObservedEvents Descriptor parameters:


        Signal Identity
        ParameterID:  SigID (0x0001)

This parameter identifies the signals which have terminated.


Type: list


Possible values: a list of signals and/or sequential signal lists which have terminated. A signal outside of a sequential signal list shall be identified using the pkgdName syntax without wildcarding. An individual signal inside of a sequential signal list shall be identified using the sequential signal list syntax with the correct signal list identifier, enclosing the name of the specific signal which terminated in pkgdName syntax.


        Termination Method
        ParameterID:  Meth (0x0002)

Indicates the means by which the signal terminated.


Type: enumeration


Possible values: "TO" (0x0001) Duration expired "EV" (0x0002) Interrupted by event "SD" (0x0003) Halted by new Signals Descriptor "NC" (0x0004) Not completed, other cause


E.1.3 Signals




E.1.4 Statistics

え。1。4 Sたちsちcs



E.2 Base Root Package


Base Root Package PackageID: root (0x000f) Version: 1 Extends: None


Description: This package defines Gateway wide properties.


E.2.1 Properties


   PropertyID: maxNumberOfContexts (0x0001)

The value of this property gives the maximum number of contexts that can exist at any time. The NULL context is not included in this number.

このプロパティの値は、任意の時点で存在できるコンテキストの最大数を示します。 NULLコンテキストは、この数には含まれていません。

Type: Double


Possible values: 1 and up


   PropertyID: maxTerminationsPerContext (0x0002)

The maximum number of allowed terminations in a context, see section 6.1


Type: Integer


Possible Values: any integer


Defined In: TerminationState


   PropertyId: normalMGExecutionTime (0x0003)

Settable by the MGC to indicate the interval within which the MGC expects a response to any transaction from the MG (exclusive of network delay)


Type: Integer


Possible Values: any integer, represents milliseconds


   PropertyId: normalMGCExecutionTime (0x0004)

Settable by the MGC to indicate the interval within which the MG should expects a response to any transaction from the MGC (exclusive of network delay)


Type: Integer


Possible Values: any integer, represents milliseconds


   PropertyId: ProvisionalResponseTimerValue (0x0005)

Indicates the time within which to expect a Pending Response if a Transaction cannot be completed. Initially set to normalMGExecutionTime or normalMGCExecutionTime as appropriate, plus network delay, but may be lowered.


E.2.2 Events




E.2.3 Signals




E.2.4 Statistics

え。2。4 Sたちsちcs



E.2.5 Procedures




E.3 Tone Generator Package


PackageID: tonegen (0x0001) Version: 1 Extends: None


Description: This package defines signals to generate audio tones. This package does not specify parameter values. It is intended to be extendable. Generally, tones are defined as an individual signal with a parameter, ind, representing "interdigit" time delay, and a tone id to be used with playtones. A tone id should be kept consistent with any tone generation for the same tone. MGs are expected to be provisioned with the characteristics of appropriate tones for the country in which the MG is located.

説明:このパッケージには、オーディオトーンを生成するための信号を定義します。このパッケージは、パラメータ値を指定していません。拡張可能であることを意図しています。一般に、トーンは、「インターディジット」時間遅延、及びplaytonesで使用するトーンIDを表す、IND、パラメータを使用して個々の信号として定義されます。トーンIDが同じトーンのための任意のトーン生成と一致保たれるべきです。 MGはMGが配置されている国の適切なトーンの特性をプロビジョニングすることが期待されます。

E.3.1 Properties




E.3.2 Events




E.3.3 Signals


   Play tone
   SignalID: pt (0x0001)

Plays audio tone over an audio channel


Signal Type: Brief


Duration: Provisioned


Additional Parameters:


        Tone id list
        ParameterID: tl (0x0001)

Type: list of tone ids.


List of tones to be played in sequence. The list SHALL contain one or more tone ids.


        Inter signal duration
        ParameterID: ind (0x0002)

Type: integer.


Timeout between two consecutive tones in milliseconds


No tone ids are specified in this package. Packages that extend this package can add possible values for tone id as well as adding individual tone signals.


E.3.4 Statistics

え。3。4 Sたちsちcs



E.3.5 Procedures




E.4 Tone Detection Package


PackageID: tonedet (0x0002) Version: 1 Extends: None


This Package defines events for audio tone detection. Tones are selected by name (tone id). MGs are expected to be provisioned with the characteristics of appropriate tones for the country in which the MG is located.

このパッケージには、オーディオトーン検出のためのイベントを定義します。トーンは名前(トーンID)によって選択されています。 MGはMGが配置されている国の適切なトーンの特性をプロビジョニングすることが期待されます。

This package does not specify parameter values. It is intended to be extendable.


E.4.1 Properties




E.4.2 Events


   Start tone detected
   EventID: std, 0x0001

Detects the start of a tone. The characteristics of positive tone detection is implementation dependent.


EventsDescriptor parameters:


        Tone id list
        ParameterID: tl (0x0001)

Type: list of tone ids


Possible values: The only tone id defined in this package is "wild card" which is "*" in text encoding and 0x0000 in binary. Extensions to this package would add possible values for tone id. If tl is "wild card", any tone id is detected.

可能な値:このパッケージで定義されているのみトーンidはテキストエンコーディングでは、「*」およびバイナリでは0x0000である「ワイルドカード」です。このパッケージへの拡張は、トーンIDの可能な値を追加します。 TLは「ワイルドカード」であれば、任意のトーンIDが検出されました。

ObservedEventsDescriptor parameters:


        Tone id
        ParameterID: tid (0x0003)

Type: Enumeration


Possible values: "wildcard" as defined above is the only value defined in this package. Extensions to this package would add additional possible values for tone id.


   End tone detected
   EventID: etd, 0x0002

Detects the end of a tone.


EventDescriptor parameters:


        Tone id list
        ParameterID: tl (0x0001)

Type: enumeration or list of enumerated types


Possible values: No possible values are specified in this package. Extensions to this package would add possible values for tone id.


ObservedEventsDescriptor parameters:


        Tone id
        ParameterID: tid (0x0003)

Type: Enumeration


Possible values: "wildcard" as defined above is the only value defined in this package. Extensions to this package would add possible values for tone id


        ParameterId: dur (0x0002)

Type: integer, in milliseconds


This parameter contains the duration of the tone from first detection until it stopped.


   Long tone detected
   EventID: ltd, 0x0003

Detects that a tone has been playing for at least a certain amount of time


EventDescriptor parameters:


        Tone id list
        ParameterID: tl (0x0001)

Type: enumeration or list


Possible values: "wildcard" as defined above is the only value defined in this package. Extensions to this package would add possible values for tone id


        ParameterID: dur (0x0002)

Type: integer, duration to test against


Possible values: any legal integer, expressed in milliseconds.


ObservedEventsDescriptor parameters:


        Tone id
        ParameterID: tid (0x0003)

Possible values: No possible values are specified in this package. Extensions to this package would add possible values for tone id.


E.4.3 Signals




E.4.4 Statistics

え。4。4 Sたちsちcs



E.4.5 Procedures




E.5 Basic DTMF Generator Package


PackageID: dg (0x0003) Version: 1 Extends: tonegen version 1


This package defines the basic DTMF tones as signals and extends the allowed values of parameter tl of playtone in tonegen.


E.5.1 Properties




E.5.2 Events




E.5.3 Signals


   dtmf character 0
   SignalID: d0 (0x0010)

Generate DTMF 0 tone. The physical characteristic of DTMF 0 is defined in the gateway.

DTMF 0トーンを生成します。 DTMF 0の物理的特性はゲートウェイで定義されています。

Signal Type: Brief


Duration: Provisioned


Additional Parameters:




   Additional Values:

d0 (0x0010) is defined as a toneid for playtone.


The other dtmf characters are specified in exactly the same way. A table with all signal names and signal IDs is included. Note that each dtmf character is defined as both a signal and a toneid, thus extending the basic tone generation package. Also note that dtmf SignalIds are different from the names used in a digit map.

他のDTMF文字は全く同じ方法で指定されています。すべての信号名および信号IDを持つテーブルが含まれています。各DTMF文字は、このように基本的な音源パッケージを拡張する、信号及びtoneid両方として定義されていることに留意されたいです。また、DTMF SignalIdsが数字マップで使用される名前とは異なることに注意してください。

Signal Name Signal ID/tone id

信号名信号のID /トーンイド

dtmf character 0 d0 (0x0010) dtmf character 1 d1 (0x0011) dtmf character 2 d2 (0x0012) dtmf character 3 d3 (0x0013) dtmf character 4 d4 (0x0014) dtmf character 5 d5 (0x0015) dtmf character 6 d6 (0x0016) dtmf character 7 d7 (0x0017) dtmf character 8 d8 (0x0018) dtmf character 9 d9 (0x0019) dtmf character * ds (0x0020)

DTMFキャラクタ0 D0(0x0010)DTMFキャラクタ1つのD1(0x0011)DTMFキャラクタ2つのD2(0x0012)DTMFキャラクタ3つのD3(0x0013)DTMFキャラクタ4つのD4(0x0014)DTMFキャラクタ5つのD5(0x0015)DTMFキャラクタ6つのD6(0x0016)DTMF文字7つのD7(0x0017)のDTMF文字8つのD8(0x0018)のDTMF文字9つのD9(0x0019)のDTMF文字* DS(0x0020に)

dtmf character # do (0x0021) dtmf character A da (0x001a) dtmf character B db (0x001b) dtmf character C dc (0x001c) dtmf character D dd (0x001d)


E.5.4 Statistics

え。5。4 Sたちsちcs



E.5.5 Procedures




E.6 DTMF detection Package

E.6 DTMF検出パッケージ

PackageID: dd (0x0004) Version: 1 Extends: tonedet version 1


This package defines the basic DTMF tones detection. This Package extends the possible values of tone id in the "start tone detected" "end tone detected" and "long tone detected" events.


Additional tone id values are all tone ids described in package dg (basic DTMF generator package).


The following table maps DTMF events to digit map symbols as described in section 7.1.14.


DTMF Event Symbol


d0 "0" d1 "1" d2 "2" d3 "3" d4 "4" d5 "5" d6 "6" d7 "7" d8 "8" d9 "9" da "A" or "a"

D0 "0" D1 "1" D2 "2" D3 "3" D4 "4" D5 "5" D6 "6" D7 "7" D8 "8" D9 "9" DA "A" または "A"

db "B" or "b" dc "C" or "c" dd "D" or "d" ds "E" or "e" do "F" or "f"

DB "B" または "B" DC "C" または "C" DD "D" 又は "D" DS "E" または "e" "F" または "F" を行います

E.6.1 Properties




E.6.2 Events


   DTMF digits

EventIds are defined with the same names as the SignalIds defined in the table found in section E.5.3.


   DigitMap Completion Event
   EventID: ce, 0x0001

Generated when a digit map completes as described in section 7.1.14.


EventsDescriptor parameters: digit map processing is activated only if a digit map parameter is present, specifying a digit map by name or by value. Other parameters such as a KeepActive flag or embedded Events or Signals Descriptors may be present.


ObservedEventsDescriptor parameters:


        ParameterID: ds (0x0001)

Type: string of digit map symbols (possibly empty) returned as a quotedString.


Possible values: a sequence of the characters "0" through "9", "A" through "F", and the long duration modifier "L".


Description: the portion of the current dial string as described in section 7.1.14 which matched part or all of an alternative event sequence specified in the digit map.


        Termination Method
        ParameterID:    Meth (0x0003)

Type: enumeration


Possible values: "UM" (0x0001) Unambiguous match "PM" (0x0002) Partial match, completion by timer expiry or unmatched event "FM" (0x0003) Full match, completion by timer expiry or unmatched event


Description: indicates the reason for generation of the event. See the procedures in section 7.1.14.


E.6.3 Signals




E.6.4 Statistics

え。6。4 Sたちsちcs



E.6.5 Procedures




E.7 Call Progress Tones Generator Package


PackageID: cg, 0x0005 Version: 1 Extends: tonegen version 1


This package defines the basic call progress tones as signals and extends the allowed values of the tl parameter of playtone in tonegen.


E.7.1 Properties




E.7.2 Events




E.7.3 Signals


   Dial Tone
   SignaID: dt (0x0030)

Generate dial tone. The physical characteristic of dial tone is available in the gateway.


Signal Type: Timeout


Duration: Provisioned


Additional Parameters: None


   Additional Values
   dt (0x0030) is defined as a tone id for playtone The other tones of
   this package are defined in exactly the same way.  A table with all
   signal names and  signal IDs is included.  Note that each tone is
   defined as both a signal and a toneid, thus extending the basic tone
   generation package.

Signal Name Signal ID/tone id

信号名信号のID /トーンイド

Dial Tone dt (0x0030) Ringing Tone rt (0x0031) Busy Tone bt (0x0032) Congestion Tone ct (0x0033) Special Information Tone sit(0x0034) Warning Tone wt (0x0035) Payphone Recognition Tone pt (0x0036) Call Waiting Tone cw (0x0037) Caller Waiting Tone cr (0x0038)

トーンDT(0x0030)着信音のRT(0x0031)ビジートーンBT(0x0032)輻輳トーンCT(0x0033)特別な情報トーンSIT(0x0034)警告音の重量(0x0035)公衆電話認識トーンPTは(0x0036)ダイヤルキャッチホントーンCW(0x0037 )発信者ウェイティングトーンCR(アドレス0x0038)

E.7.4 Statistics

え。7。4 Sたちsちcs



E.7.5 Procedures


NOTE - The required set of tone ids corresponds to those defined in Recommendation E.180/Q.35 [ITU-T Recommendation E.180/Q.35 (1998)]. See E.180 for definition of the meanings of these tones.

注 - トーンIDの必要なセットが勧告E.180 / Q.35 [ITU-T勧告E.180 / Q.35(1998)]で定義されたものに相当します。これらのトーンの意味の定義については、E.180を参照してください。

E.8 Call Progress Tones Detection Package


PackageID: cd (0x0006) Version: 1 Extends: tonedet version 1


This package defines the basic call progress detection tones. This Package extends the possible values of tone id in the "start tone detected", "end tone detected" and "long tone detected" events.


   Additional values

tone id values are defined for start tone detected, end tone detected and long tone detected with the same values as those in package cg (call progress tones generation package).


The required set of tone ids corresponds to Recommendation E.180/Q.35 [ITU-T Recommendation E.180/Q.35 (1998)]. See Recommendation E.180/Q.35 for definition of the meanings of these tones.

トーンIDの必要なセットが勧告E.180 / Q.35 [ITU-T勧告E.180 / Q.35(1998)]に相当します。これらのトーンの意味の定義については、勧告E.180 / Q.35を参照してください。

E.8.1 Properties




E.8.2 Events


Events are defined as in the call progress tones generator package (cg) for the tones listed in the table of section E.7.3


E.8.3 Signals




E.8.4 Statistics

え。8。4 Sたちsちcs



E.8.5 Procedures




E.9 Analog Line Supervision Package


PackageID: al, 0x0009 Version: 1 Extends: None


This package defines events and signals for an analog line.


E.9.1 Properties




E.9.2 Events


   EventID: on (0x0004)

Detects handset going on hook. Whenever an events descriptor is activated that requests monitoring for an on-hook event and the line is already on-hook, then the MG shall immediately generate an on-hook event.


EventDescriptor parameters




ObservedEventsDescriptor parameters




   EventID: of (0x0005)

Detects handset going off hook. Whenever an events descriptor is activated that requests monitoring for an off-hook event and the line is already off-hook, then the MG shall immediately generate an off-hook event.


EventDescriptor parameters




ObservedEventsDescriptor parameters




   EventID: fl, 0x0006

Detects handset flash. A flash occurs when an onhook is followed by an offhook between a minimum and maximum duration.


EventDescriptor parameters


        Minimum duration
        ParameterID: mindur (0x0004)

Type: integer in milliseconds


Default value is provisioned


        Maximum duration
        ParameterID: maxdur (0x0005)

Type: integer in milliseconds


Default value is provisioned


ObservedEventsDescriptor parameters




E.9.3 Signals


   SignalID: ri, 0x0002

Applies ringing on the line


Signal Type: TimeOut


Duration: Provisioned


Additional Parameters:




        ParameterID: cad (0x0006)

Type: list of integers representing durations of alternating on and off segments, constituting a complete ringing cycle starting with an on. Units in milliseconds.


Default is fixed or provisioned. Restricted function MGs may ignore cadence values they are incapable of generating.


        ParameterID: freq (0x0007)

Type: integer in Hz


Default is fixed or provisioned. Restricted function MGs may ignore frequency values they are incapable of generating.


E.9.4 Statistics

え。9。4 Sたちsちcs



E.9.5 Procedures




E.10 Basic Continuity Package


PackageID: ct (0x000a) Version: 1 Extends: None


This package defines events and signals for continuity test. The continuity test includes provision of either a loopback or transceiver functionality.


E.10.1 Properties




E.10.2 Events


   EventID: cmp, 0x0005

This event detects test completion of continuity test.


EventDescriptor parameters




ObservedEventsDescriptor parameters


        ParameterID: res (0x0008)

Type: Enumeration


Possible values: success (0x0001), failure (0x0000)


E.10.3 Signals


   Continuity test
   SignalID: ct (0x0003)

Initiates sending of continuity test tone on the termination to which it is applied.


Signal Type: TimeOut


Default value is provisioned


Additional Parameters:




   SignalID: rsp (0x0004)

The signal is used to respond to a continuity test . See section E.10.5 for further explanation.


Signal Type: TimeOut


Default duration is provisioned


Additional Parameters:




E.10.4 Statistics

え。10。4 Sたちsちcs



E.10.5 Procedures


When a MGC wants to initiate a continuity test, it sends a command to the MG containing . a signals descriptor with the ct signal, and . an events descriptor containing the cmp event.

MGCは、導通試験を開始することを望んでいるとき、それは含むMGにコマンドを送信します。信号は、CT信号と記述、および。 CMPイベントを含むイベントディスクリプタ。

Upon reception of a command containing the ct signal and cmp event, the MG initiates the continuity test tone for the specified termination. If the return tone is detected before the signal times out, the cmp event shall be generated with the value of the result parameter equal to success. In all other cases, the cmp event shall be generated with the value of the result parameter equal to failure.


When a MGC wants the MG to respond to a continuity test, it sends a command to the MG containing a signals descriptor with the rsp signal. Upon reception of a command with the rsp signal, the MG awaits reception of the continuity test tone. When the tone is received before the rsp signal times out, the MG returns the applicable return tone. If the rsp signal times out, the MG removes the detection and the return tone (if that was playing).

MGCが導通試験に対応するためにMGを望んでいる場合は、RSP信号と信号記述子を含むMGにコマンドを送信します。 RSP信号とコマンドを受信すると、MGは、導通テストトーンの受信を待ちます。トーンがRSP信号がタイムアウトする前に受信した場合、MGは該当リターントーンを返します。アウトRSP信号の時間ならば(それが遊んでいた場合)、MGが検出とリターントーンを削除します。

When a continuity test is performed on a termination, no echo devices or codecs shall be active on that termination.


Performing voice path assurance as part of continuity testing is provisioned by bilateral agreement between network operators.


E.11 Network Package


PackageID: nt (0x000b) Version: 1 Extends: None


This package defines properties of network terminations independent of network type.


E.11.1 Properties


   Maximum Jitter Buffer
   PropertyID: jit (0x0007)

This property puts a maximum size on the jitter buffer.


Type: integer in milliseconds


Possible Values: This property is specified in milliseconds.


Defined In: LocalControlDescriptor


Characteristics: read/write


E.11.2 Events


   network failure
   EventID: netfail, 0x0005

The termination generates this event upon detection of a failure due to external or internal network reasons.


EventDescriptor parameters




ObservedEventsDescriptor parameters


   ParameterID: cs (0x0001)

Type: String


Possible values: any text string


This parameter may be included with the failure event to provide diagnostic information on the reason of failure.


   quality alert
   EventID: qualert, 0x0006

This property allows the MG to indicate a loss of quality of the network connection. The MG may do this by measuring packet loss, interarrival jitter, propogation delay and then indicating this using a percentage of quality loss.

このプロパティは、MGは、ネットワーク接続の品質の低下を示すことができます。 MGは、パケットロス、ジッタのinterarrival、プロパゲーションの遅延を測定して、品質の損失の割合を使用して、このことを示すことによってこれを行うことができます。

EventDescriptor parameters


        ParameterId: th (0x0001)

Type: integer


Possible Values: threshold for percent of quality loss measured, calculated based on a provisioned method, that could take into consideration packet loss, jitter, and delay for example. Event is triggered when calculation exceeds the threshold.


ObservedEventsDescriptor parameters


        ParameterId: th (0x0001)

Type: integer


Possible Values: percent of quality loss measured, calculated based on a provisioned method, that could take into consideration packet loss, jitter, and delay for example.


E.11.3 Signals




E.11.4 Statistics

え。11。4 Sたちsちcs

   StatisticsID: dur (0x0001)

Description: Provides duration of time the termination has been in the context.


Type: Double, in milliseconds


   Octets Sent
   StatisticID: os (0x0002)

Type: double


Possible Values: any 64 bit integer


   Octets Received
   StatisticID: or (0x0003)

Type: double


Possible Values: any 64 bit integer


E.11.5 Procedures




E.12 RTP Package

E.12 RTPパッケージ

PackageID: rtp (0x000c) Version: 1 Extends: Network Package version 1


This package is used to support packet based multimedia data transfer by means of the Real-time Transport Protocol (RTP) [RFC 1889].

このパッケージは、リアルタイム転送プロトコル(RTP)[RFC 1889]によるパケットベースのマルチメディアデータの転送をサポートするために使用されます。

E.12.1 Properties




E.12.2 Events


Payload Transition EventID: pltrans, 0x0001 This event detects and notifies when there is a transition of the RTP payload format from one format to another.


EventDescriptor parameters




ObservedEventsDescriptor parameters


        ParameterID: rtppltype, 0x01

Type: list of enumerated types.


Possible values: The encoding method shall be specified by using one or several valid encoding names, as defined in the RTP AV Profile or registered with IANA.


E.12.3 Signals




E.12.4 Statistics

え。12。4 Sたちsちcs

   Packets Sent ------------ StatisticID: ps (0x0004)

Type: double


Possible Values: any 64 bit integer


   Packets Received ---------------- StatisticID: pr (0x0005)

Type: double


Possible Values: any 64 bit integer


   Packet Loss ----------- StatisticID: pl (0x0006)

Describes the current rate of packet loss on an RTP stream, as defined in IETF RFC 1889. Packet loss is expressed as percentage value: number of packets lost in the interval between two reception reports, divided by the number of packets expected during that interval.

その間隔中に予想されるパケットの数で割った2つの受信レポート間隔で失われたパケットの数:パーセント値として表現されるIETF RFC 1889パケット損失に定義されているRTPストリーム上のパケット損失の現在の速度を、記載されています。

Type: double


Possible Values: a 32 bit whole number and a 32 bit fraction.


   StatisticID: jit (0x0007)

Requests the current value of the interarrival jitter on an RTP stream as defined in IETF RFC 1889. Jitter measures the variation in interarrival time for RTP data packets.

IETF RFC 1889ジッタ測定にRTPデータパケットの到着間の時間の変化を定義した通りでRTPストリーム上の到着間ジッタの現在の値を要求します。

   StatisticID:delay (0x0008)

Requests the current value of packet propagation delay expressed in timestamp units. Same as average latency.


E.12.5 Procedures




E.13 TDM Circuit Package

E.13 TDMサーキットパッケージ

PackageID: tdmc (0x000d) Version: 1 Extends: Network Package version 1


This package is used to support TDM circuit terminations.


E.13.1 Properties


   Echo Cancellation
   PropertyID: ec (0x0008)

By default, the telephony gateways always perform echo cancellation. However, it is necessary, for some calls, to turn off these operations.


Type: boolean


Possible Values: "on" (when the echo cancellation is requested) and "off" (when it is turned off.) The default is "on".


Defined In: LocalControlDescriptor


Characteristics: read/write


   Gain Control
   PropertyID: gain (0x000a)

Gain control, or usage of of signal level adaptation and noise level reduction is used to adapt the level of the signal. However, it is necessary, for example for modem calls, to turn off this function.


Type: enumeration (integer)


Possible Values: The gain control parameter may either be specified as "automatic" (0xffffffff), or as an explicit number of decibels of gain (any other integer value). The default is provisioned in the MG.


Defined In: LocalControlDescriptor


Characteristics: read/write


E.13.2 Events




E.13.3 Signals




E.13.4 Statistics

え。13。4 Sたちsちcs



E.13.5 Procedures






All Megaco implementors must read the normative part of this document carefully before implementing from it. No one should use the examples in this section as stand-alone explanations of how to create protocol messages.


The examples in this section use SDP for encoding of the Local and Remote stream descriptors. SDP is defined in RFC 2327. If there is any discrepancy between the SDP in the examples, and RFC 2327, the RFC should be consulted for correctness. Audio profiles used are those defined in RFC 1890, and others registered with IANA. For example, G.711 A-law is called PCMA in the SDP, and is assigned profile 0. G.723 is profile 4, and H263 is profile 34. See also

このセクションの例は、ローカルおよびリモートのストリーム記述子の符号化のためのSDPを使用します。実施例におけるSDPの間に矛盾がある場合、SDPは、RFC 2327で定義され、そしてRFC 2327、RFCが正しいために相談すべきです。使用オーディオプロファイルは、RFC 1890で定義されたものであり、その他はIANAに登録します。例えば、G.711 A法則は、SDPでPCMAと呼ばれ、プロファイル0が割り当てられているG.723は、プロファイル4であり、そしてH263も参照プロファイル34です。


A.1 Residential Gateway to Residential Gateway Call


This example scenario illustrates the use of the elements of the protocol to set up a Residential Gateway to Residential Gateway call over an IP-based network. For simplicity, this example assumes that both Residential Gateways involved in the call are controlled by the same Media Gateway Controller.


A.1.1 Programming Residential GW Analog Line Terminations for Idle Behavior


The following illustrates the API invocations from the Media Gateway Controller and Media Gateways to get the Terminations in this scenario programmed for idle behavior. Both the originating and terminating Media Gateways have idle AnalogLine Terminations programmed to look for call initiation events (i.e.-offhook) by using the Modify Command with the appropriate parameters. The null Context is used to indicate that the Terminations are not yet involved in a Context. The ROOT termination is used to indicate the entire MG instead of a termination within the MG.

以下は、アイドル状態の動作のためにプログラムされ、このシナリオで終端を取得するために、メディアゲートウェイコントローラとメディアゲートウェイからのAPI呼び出しを示しています。発信元および終端メディアゲートウェイの両方が適切なパラメータで変更コマンドを使用して通話開始イベント(すなわち、オフフック)を探すようにプログラムアイドルAnalogLine終端を持っています。ヌルコンテキストは、終端がまだコンテキストに関与していないことを示すために使用されます。 ROOT終端は全体MGの代わりMG内の終端を示すために使用されます。

In this example, MG1 has the IP address, MG2 is, and the MGC is The default Megaco port is 55555 for all three.


1. An MG registers with an MGC using the ServiceChange command:
1. MGはのServiceChangeコマンドを使用してMGCに登録します:

MG1 to MGC: MEGACO/1 [] Transaction = 9998 { Context = - { ServiceChange = ROOT {Services { Method=Restart, ServiceChangeAddress=55555, Profile=ResGW/1} }

MGCへMG1:MEGACO / 1 []トランザクション= 9998 {コンテキスト= - {のServiceChange = ROOT {サービス{METHOD =再起動、ServiceChangeAddress = 55555、プロフィール= ResGW / 1}}

} }

} }

2. The MGC sends a reply:
2. MGCは応答を送信します。

MGC to MG1: MEGACO/1 []:55555 Reply = 9998 { Context = - {ServiceChange = ROOT { Services {ServiceChangeAddress=55555, Profile=ResGW/1} } } }

MG1にMGC:MEGACO / 1 []:55555返信= 9998 {コンテキスト= - {のServiceChange = ROOT {サービス{ServiceChangeAddress = 55555、プロフィール= ResGW / 1}}}}

3. The MGC programs a Termination in the NULL context. The terminationId is A4444, the streamId is 1, the requestId in the Events descriptor is 2222. The mId is the identifier of the sender of this message, in this case, it is the IP address and port []:55555. Mode for this stream is set to SendReceive. "al" is the analog line supervision package.

3. MGCプログラムNULLコンテキストで終了。 55555:terminationIdがA4444である、streamIDでは1であり、イベント記述子でrequestIdは2222ザMIDは、このメッセージの送信者の識別子であり、この場合には、IPアドレスとポート[]です。このストリームのためのモードがSendReceiveに設定されています。 「アル」は、アナログ回線監視パッケージです。

MGC to MG1: MEGACO/1 []:55555 Transaction = 9999 { Context = - { Modify = A4444 { Media { Stream = 1 { LocalControl { Mode = SendReceive, ds0/gain=2, ; in dB, ds0/ec=G165 }, Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 0 a=fmtp:PCMU VAD=X-NNVAD ; special voice activity ; detection algorithm } } }, Events = 2222 {al/of} } } }

MG1にMGC:MEGACO / 1 []:55555トランザクション= 9999 {コンテキスト= - {修正= A4444 {メディア{ストリーム= 1 {{ローカル制御モード= SendReceive、DS0 /ゲイン= 2、。デシベル、DS0 / EC = G165}で、=のfmtpローカル{V = 0 C = IN IP4 $ M = $オーディオのRTP / AVP 0 A:PCMU VAD = X-NNVAD。特殊な音声活性;検出アルゴリズム}}} = 2222イベント{アル/の}}}}

The dialplan script could have been loaded into the MG previously. Its function would be to wait for the OffHook, turn on dialtone and start collecting DTMF digits. However in this example, we use the digit map, which is put into place after the offhook is detected (step 5 below).


Note that the embedded EventsDescriptor could have been used to combine steps 3 and 4 with steps 8 and 9, eliminating steps 6 and 7.


4. The MG1 accepts the Modify with this reply:
4. MG1は、この応答に修正を受け付けます。

MG1 to MGC: MEGACO/1 []:55555 Reply = 9999 { Context = - {Modify = A4444} }

MGCへMG1:MEGACO / 1 []:55555返信= 9999 {コンテキスト= - {修正= A4444}}

5. A similar exchange happens between MG2 and the MGC, resulting in an idle Termination called A5555.


A.1.2 Collecting Originator Digits and Initiating Termination


The following builds upon the previously shown conditions. It illustrates the transactions from the Media Gateway Controller and originating Media Gateway (MG1) to get the originating Termination (A4444) through the stages of digit collection required to initiate a connection to the terminating Media Gateway (MG2).


6. MG1 detects an offhook event from User 1 and reports it to the Media Gateway Controller via the Notify Command.

6. MG1は、ユーザ1からのオフフックイベントを検出して通知するコマンドを経由してメディアゲートウェイコントローラにそれを報告します。

MG1 to MGC: MEGACO/1 []:55555 Transaction = 10000 { Context = - { Notify = A4444 {ObservedEvents =2222 { 19990729T22000000:al/of}}

MGCへMG1:MEGACO / 1 []:55555トランザクション= 10000 {コンテキスト= - {= A4444 {ObservedEvents = 2222 {19990729T22000000通知:アル/}}のを

} }

} }

7. And the Notify is acknowledged.

MGC to MG1: MEGACO/1 []:55555 Reply = 10000 { Context = - {Notify = A4444} }

MG1にMGC:MEGACO / 1 []:55555返信= 10000 {コンテキスト= - {通知= A4444}}

8. The MGC Modifies the termination to play dial tone, to look for digits according to Dialplan0 and to look for the on-hook event now. MGC to MG1:

8. MGCは、ダイヤルトーンをDialplan0に応じて数字を探すために、今オンフックイベントを探すためにプレーするために、終了を変更します。 MG1にMGC:

MEGACO/1 []:55555 Transaction = 10001 { Context = - { Modify = A4444 { Events = 2223 { al/on, dd/ce {DigitMap=Dialplan0} }, Signals {cg/dt}, DigitMap= Dialplan0{ (0| 00|[1-7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)} } } }

MEGACO / 1 []:55555トランザクション= 10001 {コンテキスト= - {修正= A4444 {イベント= 2223 {アル/に、DD / CE {DigitMap = Dialplan0}}、信号{CG / DT}、DigitMap = Dialplan0 {(0 | 00 | [1-7] XXX | 8xxxxxxx | Fxxxxxxx | EXX | 91xxxxxxxxxx |。9011x)}}}}

9. And the Modify is acknowledged.

MG1 to MGC: MEGACO/1 []:55555 Reply = 10001 { Context = - {Modify = A4444} }

MGCへMG1:MEGACO / 1 []:55555返信= 10001 {コンテキスト= - {修正= A4444}}

10. Next, digits are accumulated by MG1 as they are dialed by User 1. Dialtone is stopped upon detection of the first digit. When an appropriate match is made of collected digits against the currently programmed Dialplan for A4444, another Notify is sent to the Media Gateway Controller.


MG1 to MGC: MEGACO/1 []:55555 Transaction = 10002 { Context = - { Notify = A4444 {ObservedEvents =2223 {

MGCへMG1:MEGACO / 1 []:55555トランザクション= 10002 {コンテキスト= - {通知= A4444 {ObservedEvents = 2223 {

19990729T22010001:dd/ce{ds="916135551212",Meth=FM}}} } }

19990729T22010001:DD / CE {DS = "916135551212"、メタ= FM}}}}}

11. And the Notify is acknowledged.

MGC to MG1: MEGACO/1 []:55555 Reply = 10002 { Context = - {Notify = A4444} }

MG1にMGC:MEGACO / 1 []:55555返信= 10002 {コンテキスト= - {通知= A4444}}

12. The controller then analyses the digits and determines that a connection needs to be made from MG1 to MG2. Both the TDM termination A4444, and an RTP termination are added to a new context in MG1. Mode is ReceiveOnly since Remote descriptor values are not yet specified. Preferred codecs are in the MGC's preferred order of choice.


MGC to MG1: MEGACO/1 []:55555 Transaction = 10003 { Context = $ { Add = A4444, Add = $ { Media { Stream = 1 { LocalControl { Mode = ReceiveOnly,

MGC MG1へ:MEGACO / 1 []:55555トランザクション= 10003 {コンテキスト= $ {、= A4444を追加= $ {{メディアストリーム= 1 {{ローカル制御モード= ReceiveOnlyを追加し、

nt/jit=40, ; in ms }, Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4 a=ptime:30 v=0 c=IN IP4 $ m=audio $ RTP/AVP 0 } } } } } }

NT / JIT = 40、。 } MSで、{V = 0 C = IN IP4 $ M =オーディオ$のRTP / AVP 4 A = PTIMEローカル:30 V = 0 C = IN IP4 $ M =オーディオ$のRTP / AVP 0}}}}}}

NOTE - The MGC states its preferred parameter values as a series of sdp blocks in Local. The MG fills in the Local Descriptor in the Reply.

注 - MGCは、ローカルでのSDP一連のブロックとしてその好ましいパラメータ値を述べています。 MGは返信でローカル記述で埋めます。

13. MG1 acknowledges the new Termination and fills in the Local IP address and UDP port. It also makes a choice for the codec based on the MGC preferences in Local. MG1 sets the RTP port to 2222. MEGACO/1 []:55555 Reply = 10003 { Context = 2000 { Add = A4444, Add=A4445{ Media { Stream = 1 { Local { v=0 c=IN IP4 m=audio 2222 RTP/AVP 4 a=ptime:30 a=recvonly } ; RTP profile for G.723 is 4 } } } } }

13. MG1は新しいターミネーションを認識し、ローカルIPアドレスとUDPポートを埋めます。また、現地でのMGCの好みに基づいてコーデックの選択肢となります。 MG1は[] MEGACO / 1 2222にRTPポートを設定:55555返信= 10003 {コンテキスト= 2000 {追加= A4444を追加= A4445 IP4 124.124 IN {メディア{ストリーム= 1 {ローカル{V = 0のC = .124.222 M =オーディオ22​​22 RTP / AVP 4 A = PTIME:30 = recvonlyで}。 G.723のためのRTPプロフィールは、4}}}}}であります

14. The MGC will now associate A5555 with a new Context on MG2, and establish an RTP Stream (i.e, A5556 will be assigned), SendReceive connection through to the originating user, User 1. The MGC also sets ring on A5555.

14. MGCは、MGCはまた、A5555にリングを設定MG2に新しいコンテキストと今関連付けるA5555し、RTPストリーム(すなわち、A5556が割り当てられる)、発信ユーザへ貫通SendReceive接続を確立し、ユーザ1。

MGC to MG2: MEGACO/1 []:55555 Transaction = 50003 { Context = $ { Add = A5555 { Media { Stream = 1 { LocalControl {Mode = SendReceive} }}, Events=1234{al/of} Signals {al/ri} }, Add = $ {Media { Stream = 1 { LocalControl { Mode = SendReceive, nt/jit=40 ; in ms },

MG2へMGC:MEGACO / 1 []:55555トランザクション= 50003 {コンテキスト= $ {追加= A5555 {メディア{ストリーム= 1 {ローカル制御{モード= SendReceive}}} = 1234 {アル/シグナル}のイベント{アル/ Riが}}、追加= $ {メディア{ストリーム= 1 {{ローカル制御モード= SendReceive、NT / JIT = 40。 } MSにおいて、

Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4 a=ptime:30 }, Remote { v=0 c=IN IP4 m=audio 2222 RTP/AVP 4 a=ptime:30 } ; RTP profile for G.723 is 4 } } } } }

ローカル{V = 0 C = IN IP4 $ M = $オーディオのRTP / AVP 4 A = PTIME:30}、リモート{V = 0 C = IN IP4 M =オーディオ22​​22 RTP / AVP 4 A = PTIME:30 }。 G.723のためのRTPプロフィールは、4}}}}}であります

15. This is acknowledged. The stream port number is different from the control port number. In this case it is 1111 (in the SDP).


MG2 to MGC: MEGACO/1 []:55555 Reply = 50003 { Context = 5000 { Add = A5555{} Add = A5556{ Media { Stream = 1 { Local { v=0 c=IN IP4 m=audio 1111 RTP/AVP 4 } } ; RTP profile for G723 is 4 }

MGCへMG2:MEGACO / 1 []:55555返信= 50003 {コンテキスト= 5000 {= A5555を追加{} = A5556追加{{メディアストリーム= 1 {ローカル{V = 0 C = IN IP4 M =オーディオ1111 RTP / AVP 4}}。 G723のためのRTPプロファイルが4}であります

} } }

} } }

16. The above IPAddr and UDPport need to be given to MG1 now.

MGC to MG1: MEGACO/1 []:55555 Transaction = 10005 { Context = 2000 { Modify = A4444 {

MG1にMGC:MEGACO / 1 []:55555トランザクション= 10005 {コンテキスト= 2000 {修正= A4444 {

Signals {cg/rt} }, Modify = A4445 { Media { Stream = 1 { Remote { v=0 c=IN IP4 m=audio 1111 RTP/AVP 4 } } ; RTP profile for G723 is 4 } } } }

信号{CG / RT}}、修正= A4445 {メディア{ストリーム= 1 {リモート{V = 0 C = IN IP4 M =オーディオ1111 RTP / AVP 4}}。 G723のためのRTPプロフィールは、4}}}}であります

MG1 to MGC: MEGACO/1 []:55555 Reply = 10005 { Context = 2000 {Modify = A4444, Modify = A4445} }

MGCへMG1:MEGACO / 1 []:55555返信= 10005 {コンテキスト= 2000 {修正= A4444、修正= A4445}}

17. The two gateways are now connected and User 1 hears the RingBack. The MG2 now waits until User2 picks up the receiver and then the two-way call is established.

17. 2つのゲートウェイは、現在接続され、ユーザ1が呼び出し音を聞きます。 User2が受信機をピックアップした後、双方向通話が確立されるまでMG2は今待ちます。

From MG2 to MGC:


MEGACO/1 []:55555 Transaction = 50005 { Context = 5000 { Notify = A5555 {ObservedEvents =1234 { 19990729T22020002:al/of}} } }

MEGACO / 1 []:55555トランザクション= 50005 {コンテキスト= 5000 {通知= A5555 {ObservedEvents = 1234 {19990729T22020002:アル/}}}}の

From MGC to MG2:


MEGACO/1 []:55555 Reply = 50005 { Context = - {Notify = A5555}

MEGACO / 1 []:55555返信= 50005 {コンテキスト= - {} = A5555に通知


From MGC to MG2:


MEGACO/1 []:55555 Transaction = 50006 {

MEGACO / 1 []:55555トランザクション= 50006 {

Context = 5000 { Modify = A5555 { Events = 1235 {al/on}, Signals { } ; to turn off ringing } } }

コンテキスト= 5000 {修正= A5555 {イベント= 1235 {アル/}に、信号{}。リンギングをオフにします}}}

From MG2 to MGC:


MEGACO/1 []:55555 Reply = 50006 { Context = 5000 {Modify = A4445} }

MEGACO / 1 []:55555返信= 50006 {コンテキスト= 5000 {修正= A4445}}

18. Change mode on MG1 to SendReceive, and stop the ringback.
MG1 18.変更モードSendReceive、およびリングバックを停止します。

MGC to MG1: MEGACO/1 []:55555 Transaction = 10006 { Context = 2000 { Modify = A4445 { Media { Stream = 1 { LocalControl { Mode=SendReceive } } } }, Modify = A4444 { Signals { } } } }

MG1にMGC:MEGACO / 1 []:55555トランザクション= 10006 {コンテキスト= 2000 {修正= A4445 {メディア{ストリーム= 1 {{ローカル制御モード= SendReceive}}}}、修正= A4444 {シグナル{}} }}

from MG1 to MGC: MEGACO/1 []:55555 Reply = 10006 { Context = 2000 {Modify = A4445, Modify = A4444}}

MEGACO / 1 []:55555返信= 10006 {コンテキスト= 2000 {修正= A4445、修正= A4444}} MG1からMGCへ

19. The MGC decides to Audit the RTP termination on MG2.
19. MGCはMG2上のRTPの終了を監査することを決定します。

MEGACO/1 []:55555 Transaction = 50007 { Context = - {AuditValue = A5556{ Audit{Media, DigitMap, Events, Signals, Packages, Statistics }}

MEGACO / 1 []:55555トランザクション= 50007 {コンテキスト= - {AuditValue = A5556 {監査{メディア、DigitMap、イベント、信号、パッケージ、統計}}

} }

} }

20. The MG2 replies. An RTP termination has no events nor signals, so these are left out in the reply .

20. MG2返信。 RTPの終了には、イベントやシグナルを持っていないので、これらは、回答に取り残されています。

MEGACO/1 []:55555 Reply = 50007 { Context = - { AuditValue = A5556 { Media { Stream = 1 { LocalControl { Mode = SendReceive, nt/jit=40 }, Local { v=0 c=IN IP4 m=audio 1111 RTP/AVP 4 a=ptime:30 }, Remote { v=0 c=IN IP4 m=audio 2222 RTP/AVP 4 a=ptime:30 } } }, Packages {nt-1, rtp-1}, Statistics { rtp/ps=1200, ; packets sent nt/os=62300, ; octets sent rtp/pr=700, ; packets received nt/or=45100, ; octets received rtp/pl=0.2, ; % packet loss rtp/jit=20, rtp/delay=40 } ; avg latency } } }

MEGACO / 1 []:55555返信= 50007 {コンテキスト= - {AuditValueは= A5556 {メディア{ストリーム= 1 {ローカル制御{MODE = SendReceive、NT / JIT = 40}、IP4の局所{V = 0のC =のM =オーディオ1111 RTP / AVP 4 A = PTIME:30}、リモート{V = 0 C = IN IP4 M =オーディオ22​​22 RTP / AVP 4 A = PTIME:30}}}、パッケージ{NT -1、RTP-1}、統計{RTP / PS = 1200。パケットは、NT / OS = 62300送られます。オクテット送信RTP / PR = 700。パケットは、NT /または= 45100を受けました。オクテットは、受信したRTP / PL = 0.2、。 %のパケット損失RTP / JIT = 20、RTP /遅延= 40}。平均潜伏}}}

21. When the MGC receives an onhook signal from one of the MGs, it brings down the call. In this example, the user at MG2 hangs up first.


From MG2 to MGC:


MEGACO/1 []:55555 Transaction = 50008 { Context = 5000 { Notify = A5555 {ObservedEvents =1235 {

MEGACO / 1 []:= 1235 55555トランザクション= 50008 {コンテキスト= 5000 {通知= A5555 {ObservedEvents {


} }

} }

From MGC to MG2:


MEGACO/1 []:55555 Reply = 50008 { Context = - {Notify = A5555} }

MEGACO / 1 []:55555返信= 50008 {コンテキスト= - {通知= A5555}}

22. The MGC now sends both MGs a Subtract to take down the call. Only the subtracts to MG2 are shown here. Each termination has its own set of statistics that it gathers. An MGC may not need to request both to be returned. A5555 is a physical termination, and A5556 is an RTP termination.

22. MGCは現在、両方のMGに電話をテイクダウンする減算を送信します。 MG2にのみ減算がここに表示されています。各終端は、それが収集した統計情報の独自のセットを持っています。 MGCは両方が返されることを要求する必要はないかもしれません。 A5555は、物理的な終了で、A5556はRTP終了です。

From MGC to MG2:


MEGACO/1 []:55555 Transaction = 50009 { Context = 5000 { Subtract = A5555 {Audit{Statistics}}, Subtract = A5556 {Audit{Statistics}} } }

MEGACO / 1 []:55555トランザクション= 50009 {コンテキスト= 5000 {減算= A5555 {監査{統計}}、減算= A5556 {監査{統計}}}}

From MG2 to MGC:


MEGACO/1 []:55555 Reply = 50009 { Context = 5000 { Subtract = A5555 { Statistics { nt/os=45123, ; Octets Sent nt/dur=40 ; in seconds } }, Subtract = A5556 { Statistics { rtp/ps=1245, ; packets sent nt/os=62345, ; octets sent rtp/pr=780, ; packets received nt/or=45123, ; octets received rtp/pl=10, ; % packets lost rtp/jit=27, rtp/delay=48 ; average latency } } } }

MEGACO / 1 []:55555返信= 50009 {コンテキスト= 5000 {減算= A5555 {統計{NT / OS = 45123; ; NT / DUR = 40送信オクテット秒}} = A5556 {統計を減算{RTP / PS = 1245。パケットは、NT / OS = 62345送られます。オクテット送信RTP / PR = 780、。パケットは、NT /または= 45123を受けました。オクテットは、受信したRTP / PL = 10、。 %パケット紛失RTP / JIT = 27、RTP /遅延= 48。平均待ち時間}}}}

23. The MGC now sets up both MG1 and MG2 to be ready to detect the next off-hook event. See step 1. Note that this could be the default state of a termination in the null context, and if this were the case, no message need be sent from the MGC to the MG. Once a termination returns to the null context, it goes back to the default termination values for that termination.

23. MGCは現在、次のオフフックイベントを検出する準備ができてMG1とMG2の両方を設定します。これはヌル文脈で終了のデフォルト状態であることができることをステップ1.注意を参照してください、そしてこのような場合であれば、何のメッセージは、MGにMGCから送られる必要はありません。終了がヌル文脈に戻ったら、それは戻ってその終了のデフォルトの終了値になります。

Authors' Addresses


Fernando Cuervo Nortel Networks P.O. Box 3511, Station C Ottawa, ON K1Y 4H7 Canada E-mail:

フェルナンド・クエルボNortel Networksの私書箱ボックス3511、駅のCオタワ、K1Y 4H7カナダEメール

Nancy Greene Nortel Networks P.O. Box 3511, Station C Ottawa, ON K1Y 4H7 Canada E-mail:

ナンシー・グリーンNortel Networksの私書箱ボックス3511、駅のCオタワ、K1Y 4H7カナダEメール

Christian Huitema Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399 USA E-mail:

クリスチャンのHuitemaマイクロソフト社1つのマイクロソフト道、レドモンド、WA 98052-6399 USA Eメール

Abdallah Rayhan Nortel Networks P.O. Box 3511, Station C Ottawa, ON K1Y 4H7 Canada E-mail:

アブダラRayhan Nortel Networksの私書箱ボックス3511、駅のCオタワ、K1Y 4H7カナダEメール

Brian Rosen Marconi 1000 FORE Drive Warrendale, PA 15086 USA E-mail:

ブライアン・ローゼンFORE 1000年マルコーニドライブWarrendale、PA 15086 USA Eメール

John Segers Lucent Technologies, Room HE 303 Dept. Forward Looking Work P.O. Box 18, 1270 AA Huizen The Netherlands E-mail:

ジョンSegersルーセント・テクノロジーズ、ルームHE 303部門楽しみにして作業私書箱ボックス18、1270 AAフィッセンオランダEメール

Full Copyright Statement


Copyright (C) The Internet Society (2000). All Rights Reserved.


This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.


The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.






Funding for the RFC Editor function is currently provided by the Internet Society.

RFC Editor機能のための基金は現在、インターネット協会によって提供されます。