Network Working Group                                       M. Wildgrube
Request for Comments: 3072                                    March 2001
Category: Informational
                 Structured Data Exchange Format (SDXF)

Status of this Memo


This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.


Copyright Notice


Copyright (C) The Internet Society (2001). All Rights Reserved.




This document specifies a data exchange format and, partially, an API that can be used for creating and parsing such a format. The IESG notes that the same problem space can be addressed using formats that the IETF normally uses including ASN.1 and XML. The document reader is strongly encouraged to carefully read section 13 before choosing SDXF over ASN.1 or XML. Further, when storing text in SDXF, the user is encourage to use the datatype for UTF-8, specified in section 2.5.

この文書は、部分的にデータ交換フォーマットと、このようなフォーマットを作成し、解析するために使用することができるAPIを指定します。 IESGは、同じ問題空間は、IETFが正常にASN.1やXMLなど、使用する形式を使用して対処することができると指摘します。ドキュメントリーダが強く、慎重にASN.1やXMLを介しSDXFを選択する前に、セクション13を読むことを奨励しています。 SDXFにテキストを格納するとき、さらに、ユーザは、セクション2.5で指定されたUTF-8のデータ型を使用することが奨励されます。



This specification describes an all-purpose interchange format for use as a file format or for net-working. Data is organized in chunks which can be ordered in hierarchical structures. This format is self-describing and CPU-independent.


Table of Contents


   1.  Introduction ................................................. 2
   2.  Description of the SDXF data format .......................... 3
   3.  Introduction to the SDXF functions ........................... 5
   3.1 General remarks .............................................. 5
   3.2 Writing a SDXF buffer ........................................ 5
   3.3 Reading a SDXF buffer ........................................ 6
   3.4 Example ...................................................... 6
   4.  Platform independence ........................................ 8
   5.  Compression .................................................. 9
   6.  Encryption ...................................................11
   7.  Arrays........................................................11
   8.  Description of the SDXF functions ............................12
   8.1 Introduction .................................................12
   8.2 Basic definitions ............................................13
   8.3 Definitions for C++ ..........................................15
   8.4 Common Definitions ...........................................16
   8.5 Special functions ............................................17
   9.  'Support' of UTF-8 ...........................................19
   10.  Security Considerations .....................................19
   11.  Some general hints ..........................................20
   12.  IANA Considerations .........................................20
   13.  Discussion ..................................................21
   13.1 SDXF vs. ASN.1 ..............................................21
   13.2 SDXF vs. XML ................................................22
   14.  Author's Address ............................................24
   15.  Acknowledgements ............................................24
   16.  References ..................................................24
   17.  Full Copyright Statement ....................................26
1. Introduction
1. はじめに

The purpose of the Structured Data eXchange Format (SDXF) is to permit the interchange of an arbitrary structured data block with different kinds of data (numerical, text, bitstrings). Because data is normalized to an abstract computer architecture independent "network format", SDXF is usable as a network interchange data format.


This data format is not limited to any application, the demand for this format is that it is usable as a text format for word-processing, as a picture format, a sound format, for remote procedure calls with complex parameters, suitable for document formats, for interchanging business data, etc.


SDXF is self-describing, every program can unpack every SDXF-data without knowing the meaning of the individual data elements.


Together with the description of the data format a set of functions will be introduced. With the help of these functions one can create and access the data elements of SDXF. The idea is that a programmer should only use these functions instead of maintaining the structure by himself on the level of bits and bytes. (In the speech of object-oriented programming these functions are methods of an object which works as a handle for a given SDXF data block.)

一緒に機能のセットが導入されるデータ形式の記述です。これらの機能の助けを借りて1はSDXFのデータ要素を作成し、アクセスすることができます。アイデアは、プログラマだけビットとバイトのレベルで自分で構造を維持するのではなく、これらの関数を使用する必要があることです。 (オブジェクト指向プログラミングのスピーチでは、これらの機能は、所与SDXFデータブロックのためのハンドルとして働くオブジェクトのメソッドです。)

SDXF is not limited to a specific platform, along with a correct preparation of the SDXF functions the SDXF data can be interchanged (via network or data carrier) across the boundaries of different architectures (specified by the character code like ASCII, ANSI or EBCDIC and the byte order for binary data).


SDXF is also prepared to compress and encrypt parts or the whole block of SDXF data.


2. Description of SDXF data format.

2.1 First we introduce the term "chunk". A chunk is a data structure with a fixed set of components. A chunk may be "elementary" or "structured". The latter one contains itself one or more other chunks.


A chunk consists of a header and the data body (content):


   | Name     | Pos.| Length| Description                       |
   | chunk-ID |  1  |   2   | ID of the chunk (unsigned short)  |
   | flags    |  3  |   1   | type and properties of this chunk |
   | length   |  4  |   3   | length  of the following data     |
   | content  |  7  |   *)  | net data or a list of of chunks   |

(* as stated in "length". total length of chunk is length+6. The chunk ID is a non-zero positive number.

「長さ」で述べたように(*。チャンクの全長は長さ+ 6である。チャンクIDがゼロ以外の正の数です。

or more visually:


   | chunkID | fl | length       |  content

or in ASN.1 syntax:


   chunk  ::=  SEQUENCE
     chunkID INTEGER (1..65535),
     flags   BIT STRING,
     length  OCTET STRING SIZE 3, -- or: INTEGER (0..16777215)
     content OCTET STRING
2.2 Structured chunk.

A structured chunk is marked as such by the flag byte (see 2.5). Opposed to an elementary chunk its content consists of a list of chunks (elementary or structured):


   | id |f|len| chunk | chunk | chunk | ... | chunk |

With the help of this concept you can reproduce every hierarchically structured data into a SDXF chunk.


2.3 Some Remarks about the internal representation of the chunk's elements:


Binary values are always in high-order-first (big endian) format, like the binary values in the IP header (network format). A length of 300 (=256 + 32 + 12) is stored as

バイナリ値は、IPヘッダー(ネットワーク形式)にバイナリ値のように、高次ファースト(ビッグエンディアン)形式で常に。 300の長さ(= 256 + 32 + 12)として格納されます

   |         |    | 00   01   2C |  content

in hexadecimal notation.


This is also valid for the chunk-ID.


2.4 Character values in the content portion are also an object of adaptation: see chapter 4.


2.5 Meaning of the flag-bits: Let us represent the flag byte in this manner:


      | | | | | | | |
      | | | | | | | +-- reserved
      | | | | | | +---- array
      | | | | | +------ short chunk
      | | | | +-------- encrypted chunk
      | | | +---------- compressed chunk
      | | |
      +-+-+------------ data type (0..7)

data types are:


0 -- pending structure (chunk is inconsistent, see also 11.1) 1 -- structure 2 -- bit string 3 -- numeric 4 -- character 5 -- float (ANSI/IEEE 754-1985)

0 - ペンディング構造(チャンクは矛盾して、11.1も参照)1 - 構造2 - ビット列3 - 数字4 - 文字5 - フロート(ANSI / IEEE 754-1985)

6 -- UTF-8 7 -- reserved

6 - UTF-8 7 - 予約済み

2.6 A short chunk has no data body. The 3 byte Length field is used as data bytes instead. This is used in order to save space when there are many small chunks.


2.7 Compressed and encrypted chunks are explained in chapter 5 and 6.
2.8 Arrays are explained in chapter 7.
2.9 Handling of UTF-8 is explained in chapter 9.
2.10 Not all combinations of bits are allowed or reasonable:

- the flags 'array' and 'short' are mutually exclusive. - 'short' is not applicable for data type 'structure' and 'float'. - 'array' is not applicable for data type 'structure'.

- フラグ「アレイ」と「ショート」は相互に排他的です。 - 「短い」は、データ型「構造」と「フロート」には適用されません。 - 「配列」は、データ型「構造」には適用されません。

3. Introduction to the SDXF functions
3.1 General remarks

The functionality of the SDXF concept is not bounded to any programming language, but of course the functions themselves must be coded in a particular language. I discuss these functions in C and C++, because in the meanwhile these languages are available on almost all platforms.

SDXFコンセプトの機能は、任意のプログラミング言語に制限されていないが、もちろん機能自体が特定の言語でコーディングする必要があります。一方でこれらの言語は、ほぼすべてのプラットフォームで利用可能ですので、私は、CおよびC ++でこれらの機能について説明します。

All these functions for reading and writing SDXF chunks uses only one parameter, a parameter structure. In C++ this parameter structure is part of the "SDXF class" and the SDXF functions are methods of this class.

SDXFチャンクを読み書きのためのすべてのこれらの機能は、唯一つのパラメータ、パラメータ構造体を使用しています。 C ++では、このパラメータの構造「SDXFクラス」の一部であり、SDXF機能は、このクラスのメソッドです。

An exact description of the interface is given in chapter 8.


3.2 Writing a SDXF buffer
3.2 SDXFバッファを書きます

For to write SDXF chunks, there are following functions:


init -- initialize the parameter structure create -- create a new chunk leave -- "close" a structured chunk

INIT - 作成パラメータ構造体を初期化 - 新しいチャンク休暇を作成 - 「近い」構造化チャンクを

3.3 Reading a SDXF buffer
3.3 SDXFバッファを読み取ります

For to read SDXF chunks, there are following functions:


init -- initialize the parameter structure enter -- "go into" a structured chunk next -- "go to" the next chunk inside a structured chunk extract -- extract the content of an elementary chunk into user's data area leave -- "go out" off a structured chunk

INIT - 次構造のチャンク「に入る」 - - 構造化されたチャンクエキス内の次のチャンク「に行く」 - ユーザーのデータ領域休暇に基本チャンクの内容を抽出 - パラメータ構造を入力して初期化「に行きます構造化チャンクオフ「アウト

3.4 Example:
3.4.1 Writing:

For demonstration we use a reduced (outlined) C++ Form of these functions with polymorph definitions:

デモンストレーションのために我々は多形の定義でこれらの機能の減少(概説)C ++フォームを使用します。

void create (short chunkID); // opens a new structure, void create (short chunkID, char *string); // creates a new chunk with dataType character, etc.)

無効(ショートchunkID)を作成します。 //は、新たな構造を開き、ボイドは(短いchunkID、char *文字列)を作成します。 //データ型の文字などで新しいチャンクを作成します)

The sequence:


   SDXF x(new); // create the SDXF object "x" for a new chunk
                // includes the "init"
   x.create (3301);   // opens a new structure
   x.create (3302, "first chunk");
   x.create (3303, "second chunk");
   x.create (3304);   // opens a new structure
   x.create (3305, "chunk in a structure");
   x.create (3306, "next chunk in a structure");
   x.leave ();        // closes the inner structure
   x.create (3307, "third chunk");
   x.leave ();        // closes the outer structure creates a chunk which we can show graphically like:
    +--- 3302 = "first chunk"
    +--- 3303 = "second chunk"
    +--- 3304
    |      |
    |      +--- 3305 = "chunk in a structure"
    |      |
    |      +--- 3306 = "next chunk in a structure"
    +--- 3307 = "last chunk"
3.4.2 Reading

A typically access to a structured SDXF chunk is a selection inside a loop:


SDXF x(old); // defines a SDXF object "x" for an old chunk x.enter (); // enters the structure

SDXF×(古いです)。 //)が(古いチャンクx.enterためSDXFオブジェクト「X」を規定します。 //構造に入り、

   while (x.rc == 0) // 0 == ok, rc will set by the SDXF functions
     switch (x.chunkID)
       case 3302:
         x.extract (data1, maxLength1);
                   // extr. 1st chunk into data1
       case 3303:
         x.extract (data2, maxLength2);
                   // extr. 2nd chunk into data2

case 3304: // we know this is a structure x.enter (); // enters the inner structure

ケース3304://私たちは)、これは、構造x.enter(知っています。 //内部構造に入り、

while (x.rc == 0) // inner loop { switch (x.chunkID) { case 3305: x.extract (data3, maxLength3); // extr. the chunk inside struct.

一方、(x.rc == 0)//内部ループ{スイッチ(x.chunkID){ケース3305:x.extract(DATA3、maxLength3)。 // EXTR。構造体の内部の塊。

             case 3306:
               x.extract (data4, maxLength4);
                         // extr. 2nd chunk inside struct.
  (); // returns x.rc == 1 at end of structure
         } // end-while
       case 3307:
         x.extract (data5, maxLength5);
                   // extract last chunk into data
       // default: none - ignore unknown chunks !!!

} // end-switch (); // returns x.rc = 1 at end of structure } // end-while

} //エンドスイッチ。 //戻りx.rc = 1構造体の端} //エンド一方で

4. Platform independence

The very most of the computer platforms today have a 8-Bits-in-a-Byte architecture, which enables data exchange between these platforms. But there are two significant points in which platforms may be different:


a) The representation of binary numerical (the short and long int and floats).


b) The representation of characters (ASCII/ANSI vs. EBCDIC)


Point (a) is the phenomenon of "byte swapping": How is a short int value 259 = 0x0103 = X'0103' be stored at address 4402?

ポイントは、(a)は、「バイトスワップ」の現象である:どのようにshort int型値259 = 0x0103 = X'0103' のアドレス4402で保存されていますか?

The two flavours are:


4402 4403 01 03 the big-endian, and 03 01 the little-endian.

4402 4403 01 03ビッグエンディアン、および03 01リトルエンディアン。

Point (b) is represented by a table of the assignment of the 256 possible values of a Byte to printable or control characters. (In ASCII the letter "A" is assigned to value (or position) 0x41 = 65, in EBCDIC it is 0xC1 = 193.)

ポイント(b)は、印刷可能な又は制御文字のバイトの256の可能な値の割り当てのテーブルで表されます。 (ASCIIの文字「」EBCDICに、値(又は位置)0×41 = 65に割り当てられ、それが= 193 0xC1です)

The solution of these problems is to normalize the data:


We fix:


(a) The internal representation of binary numerals are 2-complements in big-endian order.


(b) The internal representation of characters is ISO 8859-1 (also known as Latin 1).

(b)は、文字の内部表現は、ISO 8859-1(ラテン1としても知られる)です。

The fixing of point (b) should be regarded as a first strike. In some environment 8859-1 seems not to be the best choice, in a greek or russian environment 8859-5 or 8859-7 are appropriate.


Nevertheless, in a specific group (or world) of applications, that is to say all the applications which wants to interchange data with a defined protocol (via networking or diskette or something else), this internal character table must be unique.


So a possibility to define a translation table (and his inversion) should be given.


Important: You construct a SDXF chunk not for a specific addressee, but you adapt your data into a normalized format (or network format).


This adaption is not done by the programmer, it will be done by the create and extract function. An administrator has take care of defining the correct translation tables.


5. Compression

As stated in 2.5 there is a flag bit which declares that the following data (elementary or structured) are compressed. This data is not further interpretable until it is decompressed. Compression is transparently done by the SDXF functions: "create" does the compression for elementary chunks, "leave" for structured chunks, "extract" does the decompression for elementary chunks, "enter" for structured chunks.


Transparently means that the programmer has only to tell the SDXF functions that he want compress the following chunk(s).


For choosing between different compression methods and for controlling the decompressed (original) length, there is an additional definition:


After the chunk header for a compressed chunk, a compression header is following:


   |      chunk header     | compr. header | compressed data
   |chunkID|flg|   length  |md | orglength |

- 'orglength' is the original (decompressed) length of the data.

- 「orglength」は、データの元の(伸長)の長さです。

- 'md' is the "compression method": Two methods are described here:

2つの方法がここで説明されている: - 「MD」「は圧縮方式」です。

# method 01 for a simple (fast but not very effective) "Run Length 1" or "Byte Run 1" algorithm. (More then two consecutive identical characters are replaced by the number of these characters and the character itself.)

シンプル(高速ではなく、非常に効果的な)「ランレングス1」または「バイトラン1」アルゴリズムの#方法01。 (その他の2つの連続した同一の文字は、これらの文字と文字自体の数に置き換えられます。)

more precisely:


The compressed data consists of several sections of various length. Every section starts with a "counter" byte, a signed "tiny" (8 bit) integer, which contains a length information.


         If this byte contains the value "n",
         with n >= 0 (and n <128), the next n+1 bytes will be taken
         with n < 0 (and n > -128), the next byte will be replicated
         -n+1 times;
         n = -128 will be ignored.

Appending blanks will be cutted in general. If these are necessary, they can be reconstructed while "extract"ing with the parameter field "filler" (see 8.2.1) set to space character.


# method 02 for the wonderful "deflate" algorithm which comes from the "zip"-people. The authors are: Jean-loup Gailly (deflate routine), Mark Adler (inflate routine), and others.


The deflate format is described in [DEFLATE].


The values for the compression method number are maintained by IANA, see chap. 12.1.

圧縮方法の数の値は、CHAPを参照して、IANAによって維持されています。 12.1。

6. Encryption

As stated in 2.5 there is a flag bit which declares that the following data (elementary or structured) is encrypted. This data is not interpretable until it is decrypted. En/Decryption is transparently done by the SDXF functions, "create" does the encryption for elementary chunks, "leave" for structured chunks, "extract" does the decryption for elementary chunks, "enter" for structured chunks. (Yes it sounds very similar to chapter 5.) More then one encryption method for a given range of applications is not very reasonable. Some encryption algorithms work with block ciphering algorithms. That means that the length of the data to encrypt must be rounded up to the next multiple of this block length. This blocksize (zero means non-blocking) is reported by the encryption interface routine (addressed by the option field *encryptProc, see chapter 8.5) with mode=3. If blocking is used, at least one byte is added, the last byte of the lengthening data contains the number of added bytes minus one. With this the decryption interface routine can calculate the real data length.

2.5で述べたように(基本または構造)は、以下のデータが暗号化されていることを宣言フラグビットがあります。それが復号化されるまで、このデータは解釈ではありません。 EN /復号化は透過的に、基本チャンクの暗号化を行い、「作成」基本チャンクのための復号化は、構造化されたチャンクのために「と入力し、」ん「を抽出」、構造化されたチャンクのために、「残す」、SDXF機能によって行われます。アプリケーションの特定の範囲のためのより多くのそして1つの暗号化方式は非常に合理的ではない(はい、それは、第5章に非常によく似て聞こえます)。いくつかの暗号化アルゴリズムは、ブロック暗号化アルゴリズムで動作します。すなわち、暗号化するデータの長さが、このブロック長の倍数に切り上げられなければならないことを意味します。このブロックサイズは、(ゼロが非ブロッキングを意味する)の暗号化インターフェース・ルーチンによって報告されたモード= 3と(オプションフィールド*のencryptProcによって対処、章8.5を参照してください)。ブロッキングが使用されている場合は、少なくとも1つのバイトが追加され、延長データの最後のバイトが追加されたバイト数マイナス1が含まれています。これにより、復号化インタフェースルーチンは、実際のデータの長さを計算することができます。

If an application (or network connect handshaking protocol) needs to negotiate an encryption method it should be used a method number maintained by IANA, see chap. 12.2.

アプリケーション(またはネットワークは、ハンドシェイク・プロトコルを接続する)場合は、IANAによって維持方法の番号を使用されるべき暗号化方法を交渉する必要がある、CHAPを参照。 12.2。

Even the en/decryption is done transparently, an encryption key (password) must be given to the SDXF functions. Encryption is done after translating character data into, decryption is done before translation from the internal ("network-") format.

でもアン/復号化を透過的に行われ、暗号化キー(パスワード)がSDXF関数に与えられなければなりません。暗号化は、復号化は内部(「ネットワーク - 」)フォーマットからの変換前に行われるに文字データを変換した後に行われます。

If both, encryption and compression are applied on the same chunk, compression is done first - compression on good encrypted data (same strings appears as different after encryption) tends to zero compression rates.

、暗号化と圧縮の両方が同じチャンクに適用されている場合は、圧縮が最初に行われている - 良い暗号化されたデータの圧縮を(同じ文字列が暗号化した後に異なるとして表示されます)ゼロ圧縮率になる傾向があります。

7. Arrays

An array is a sequence of chunks with identical chunk-ID, length and data type.


At first a hint: in principle a special definition in SDXF for such an array is not really necessary:


It is not forbidden that there are more than one chunk with equal chunk-ID within the same structured chunk.


Therefore with a sequence of SDX_next / SDX_extract calls one can fill the destination array step by step.

従ってSDX_next / SDX_extractの配列と、ワンステップによって宛先アレイステップを埋めることができる呼び出します。

If there are many occurrences of chunks with the same chunk-ID (and a comparative small length), the overhead of the chunk-packages may be significant.


Therefore the array flag is introduced. An array chunk has only one chunk header for the complete sequence of elementary chunks. After the chunk header for an array chunk, an array header is following:


This is a short integer (big endian!) which contains the number of the array elements (CT). Every element has a fixed length (EL), so the chunklength (CL) is CL = EL * CT + 2.

これは、短整数(ビッグエンディアン!)配列要素(CT)の数が含まれています。すべての要素は、固定長(EL)を有しているので、chunklength(CL)は、CL = EL * CT + 2です。

The data elements follows immediately after the array header.


The complete array will be constructed by SDX_create, the complete array will be read by SDX_extract.


The parameter fields (see 8.2.1) 'dataLength' and 'count' are used for the SDXF functions 'extract' and 'create':


Field 'dataLength' is the common length of the array elements, 'count' is the actual dimension of the array for 'create' (input).


For the 'extract' function 'count' acts both as an input and output parameter:


Input : the maximum dimension output: the actual array dimension.


(If output count is greater than input count, the 'data cutted' warning will be responded and the destination array is filled up to the maximum dimension.)


8. Description of the SDXF functions
8.1 Introduction

Following the principles of Object Oriented Programming, not only the description of the data is necessary, but also the functions which manipulate data - the "methods".

「メソッド」 - オブジェクト指向プログラミングだけでなく、データの記述が必要ですが、また、データを操作する関数の原則に続き。

For the programmer knowing the methods is more important than knowing the data structure, the methods has to know the exact specifications of the data and guarantees the consistence of the data while creating them.


A SDXF object is an instance of a parameter structure which acts as a programming interface. Especially it points to an actual SDXF data chunk, and, while processing on this data, there is a pointer to the actual inner chunk which will be the focus for the next operation.


The benefit of an exact interface description is the same as using for example the standard C library functions: By using standard interfaces your code remains platform independent.


8.2 Basic definitions
8.2.1 The SDXF Parameter structure

All SDXF access functions need only one parameter, a pointer to the SDXF parameter structure:


First 3 prerequisite definitions:


   typedef short int      ChunkID;
   typedef unsigned char  Byte;
   typedef struct Chunk
     ChunkID    chunkID;
     Byte       flags;
     char       length [3];
     Byte       data;
   } Chunk;

And now the parameter structure:


typedef struct { ChunkID chunkID; // name (ID) of Chunk Byte *container; // pointer to the whole Chunk long bufferSize; // size of container Chunk *currChunk; // pointer to actual Chunk long dataLength; // length of data in Chunk long maxLength; // max. length of Chunk for SDX_extract long remainingSize; // rem. size in cont. after SDX_create long value; // for data type numeric double fvalue; // for data type float char *function; // name of the executed SDXF function Byte *data; // pointer to Data Byte *cryptkey; // pointer to Crypt Key short count; // (max.) number of elements in an array short dataType; // Chunk data type / init open type short ec; // extended return-code short rc; // return-code short level; // level of hierarchy char filler; // filler char for SDX_extract Byte encrypt; // Indication if data to encrypt (0 / 1) Byte compression; // compression method // (00=none, 01=RL1, 02=zip/deflate) } SDX_obj, *SDX_handle;

構造体のtypedef {ChunkID chunkID。チャンクバイト*コンテナの//名前(ID); //チャンク全体の長がbufferSizeへのポインタ。 //コンテナのチャンクのサイズ* currChunk。 //実際のチャンク長いデータ長へのポインタ。 //チャンク長いのmaxLength内のデータの長さ。 //最大。 SDX_extract長いremainingSizeのためのチャンクの長さ。 //レム。続きでサイズ。 SDX_create long値の後に、 //データ型の数値ダブルfvalueため、 //データ型フロートのchar *の機能のために、 //実行SDXF機能バイトの名前*データ;データバイト*のcryptkeyへの//ポインタ。 //ポインタは、キー短いカウントCRYPTします。 //配列ショートのdataTypeの要素数(最大) //チャンクデータ型/ initのオープンタイプのショートEC; //拡張リターンコードの短いRC。 //リターンコードを短くレベル。 //階層チャーフィラーのレベル。 // SDX_extractバイトの暗号化のためのフィラーチャー。 //表示データ(0/1)バイト圧縮を暗号化する場合。 //圧縮方法//(00 =なし、01 = RL1、02 =ジッパー/収縮)} SDX_obj、* SDX_handle。

Only the "public" fields of the parameter structure which acts as input and output for the SDXF functions is described here. A given implementation may add some "private" fields to this structure.


8.2.2 Basic Functions

All these functions works with a SDX_handle as the only formal parameter. Every function returns as output ec and rc as a report of success. For the values for ec, rc and dataType see chap. 8.4.

これらの関数はすべて、唯一の仮パラメータとしてSDX_handleで動作します。すべての関数は成功のレポートとして出力ECおよびRCとして返します。 ECの値については、RCとデータ型がchapを参照してください。 8.4。

1. SDX_init : Initialize the parameter structure.
1. SDX_init:パラメータ構造体を初期化します。
         input : container, dataType, bufferSize (for dataType =
                 SDX_NEW only)
         output: currChunk, dataLength (for dataType = SDX_OLD only),
                 ec, rc,
                 the other fields of the parameter structure will be

2. SDX_enter : Enter a structured chunk. You can access the first chunk inside this structured chunk. input : none output: currChunk, chunkID, dataLength, level, dataType, ec, rc

2. SDX_enter:構造化されたチャンクを入力します。あなたは、この構造化されたチャンク内の最初のチャンクにアクセスすることができます。入力:なし出力:currChunk、chunkID、データ長、レベル、データ型、EC、RC

3. SDX_leave : Leave the actual entered structured chunk. input : none output: currChunk, chunkID, dataLength, level, dataType, ec, rc

3. SDX_leave:実際に入力された構造化チャンクを残します。入力:なし出力:currChunk、chunkID、データ長、レベル、データ型、EC、RC

4. SDX_next : Go to the next chunk inside a structured chunk. input : none output: currChunk, chunkID, dataLength, dataType, count, ec, rc

4. SDX_next:構造化されたチャンク内の次のチャンクに移動します。入力:なし出力:currChunk、chunkID、データ長、データ型、カウント、EC、RC

        At the end of a structured chunk SDX_next returns rc =
        SDX_RC_failed and ec = SDX_EC_eoc (end of chunk)
        The actual structured chunk is SDX_leave'd automatically.

5. SDX_extract : Extract data of the actual chunk. (If actual chunk is structured, only a copy is done, elsewhere the data is converted to host format.) input / output depends on the dataType:

5. SDX_extract:実際のチャンクのデータを抽出します。 (実際のチャンクが構成されている場合にのみコピーが行われ、他の場所にデータをフォーマットをホストするように変換される)入力/出力は、データ型に依存します。

if dataType is structured, binary or char: input : data, maxLength, count, filler output: dataLength, count, ec, rc


if dataType is numeric (float resp.): input : none output: value (fvalue resp.), ec, rc


6. SDX_select : Go to the (next) chunk with a given chunkID. input : chunkID output: currChunk, dataLength, dataType, ec, rc

6. SDX_select:与えられたchunkIDと(次)のチャンクに移動します。入力:chunkID出力:currChunk、データ長、データ型、EC、RC

7. SDX_create : Creating a new chunk (at the end of the actual structured chunk). input : chunkID, dataLength, data, (f)value, dataType, compression, encrypt, count update: remainingSize, level output: currChunk, dataLength, ec, rc

7. SDX_create:(実際の構造化チャンクの終わりに)新しいチャンクを作成します。入力:chunkID、データ長、データ、(f)の値は、データ型、圧縮、暗号化、更新カウント:remainingSize、レベル出力:currChunk、DATALENGTH、EC、RC

8. SDX_append : Append a complete chunk at the end of the actual structured chunk). input : data, maxLength, currChunk update: remainingSize, level output: chunkID, chunkLength, maxLength, dataType, ec, rc

8. SDX_append:実際の構成チャンクの終わりに完全なチャンクを追加)。入力:データ、maxLengthの、currChunk更新:remainingSize、レベル出力:chunkID、chunkLength、maxLengthの、データ型、EC、RC

8.3 Definitions for C++
C 8.3の定義++

This is the specification of the SDXF class in C++: (The type 'Byte' is defined as "unsigned char" for bitstrings, opposed to "signed char" for character strings)

これは、C ++でSDXFクラスの仕様である:(タイプ「バイトが」文字列は、「signed char型」ではなく、ビット文字列は、「unsigned char型」として定義されます)

class C_SDXF { public:

クラスC_SDXF {パブリック:

// constructors and destructor: C_SDXF (); // dummy C_SDXF (Byte *cont); // old container C_SDXF (Byte *cont, long size); // new container C_SDXF (long size); // new container ~C_SDXF (); // methods: void init (void); // old container void init (Byte *cont); // old container void init (Byte *cont, long size); // new container void init (long size); // new container

//コンストラクタとデストラクタ:C_SDXF(); //ダミーC_SDXF(バイト*の続き)。 //古いコンテナC_SDXF(バイト*の続き、長いサイズ)。 //新しいコンテナC_SDXF(ロングサイズ)。 //新しいコンテナ〜C_SDXF(); //方法:空のinit(無効)。 //古いコンテナボイドのinit(バイト*の続き)。 //古いコンテナボイドのinit(バイト*の続き、長いサイズ)。 //新しいコンテナボイドのinit(ロングサイズ)。 //新しいコンテナ

     void enter   (void);
     void leave   (void);
     void next    (void);
     long extract (Byte *data, long length);    // chars, bits
     long extract (void);                       // numeric data
     void create  (ChunkID);                    // structured
     void create  (ChunkID, long value);        // numeric
     void create  (ChunkID, double fvalue);     // float
     void create  (ChunkID, Byte *data, long length);// binary
     void create  (ChunkID, char *data);             // chars
     void set_compression (Byte compression_method);
     void set_encryption  (Byte *encryption_key);

// interface:


ChunkID id; // see 8.4.1 short dataType; // see 8.4.2 long length; // length of data or chunk

ChunkIDのID。 // 8.4.1短いデータ型を参照。 // 8.4.2長い長さを参照してください。 //データまたはチャンクの長さ

     long     value;
     double   fvalue;
     short    rc;  // the raw return code       see 8.4.3
     short    ec;  // the extended return code  see 8.4.4

protected: // implementation dependent ...




8.4 Common Definitions:
8.4.1 Definition of ChunkID:

typedef short ChunkID;


8.4.2 Values for dataType:

SDX_DT_inconsistent = 0 SDX_DT_structured = 1 SDX_DT_binary = 2 SDX_DT_numeric = 3 SDX_DT_char = 4 SDX_DT_float = 5

SDX_DT_inconsistent = 0 SDX_DT_structured = 1 SDX_DT_binary = 2 SDX_DT_numeric = 3 SDX_DT_char = 4 SDX_DT_float = 5



data types for SDX_init: SDX_OLD = 1 SDX_NEW = 2

SDX_initのデータ型:SDX_OLD = 1 SDX_NEW = 2

8.4.3 Values for rc:

SDX_RC_ok = 0 SDX_RC_failed = 1 SDX_RC_warning = 1 SDX_RC_illegalOperation = 2 SDX_RC_dataError = 3 SDX_RC_parameterError = 4 SDX_RC_programError = 5 SDX_RC_noMemory = 6

SDX_RC_ok = 0 SDX_RC_failed = 1 SDX_RC_warning = 1 SDX_RC_illegalOperation = 2 SDX_RC_dataError = 3 SDX_RC_parameterError = 4 SDX_RC_programError = 5 SDX_RC_noMemory = 6

8.4.4 Values for ec:

SDX_EC_ok = 0 SDX_EC_eoc = 1 // end of chunk SDX_EC_notFound = 2 SDX_EC_dataCutted = 3 SDX_EC_overflow = 4 SDX_EC_wrongInitType = 5 SDX_EC_comprerr = 6 // compression error SDX_EC_forbidden = 7 SDX_EC_unknown = 8 SDX_EC_levelOvflw = 9 SDX_EC_paramMissing = 10 SDX_EC_magicError = 11 SDX_EC_not_consistent = 12 SDX_EC_wrongDataType = 13 SDX_EC_noMemory = 14 SDX_EC_error = 99 // rc is sufficiently

SDX_EC_ok = 0 SDX_EC_eoc = 1 //チャンクの終わりSDX_EC_notFound = 2 SDX_EC_dataCutted = 3 SDX_EC_overflow = 4 SDX_EC_wrongInitType = 5 SDX_EC_comprerr = 6 //圧縮誤差SDX_EC_forbidden = 7 SDX_EC_unknown = 8 SDX_EC_levelOvflw = 9 SDX_EC_paramMissing = 10 SDX_EC_magicError = 11 SDX_EC_not_consistent = 12 SDX_EC_wrongDataType = 13 SDX_EC_noMemory = 14 SDX_EC_error = 99 // RCは十分です

8.5 Special functions

Besides the basic definitions there is a global function (SDX_getOptions) which returns a pointer to a global table of options.


With the help of these options you can adapt the behaviour of SDXF. Especially you can define an alternative pair of translation tables or an alternative function which reads these tables from an external resource (p.e. from disk).


Within this table of options there is also a pointer to the function which is used for encryption / decryption: You can install your own encryption algorithm by setting this pointer.


The options pointer is received by:


SDX_TOptions *opt = SDX_getOptions ();

SDX_TOptions * OPT = SDX_getOptions();



typedef struct { Byte *toHost; // Trans tab net -> host Byte *toNet; // Trans tab host -> net int maxlevel; // highest possible level int translation; // translation net <-> host // is in effect=1 or not=0 TEncryptProc *encryptProc; // alternate encryption routine TGetTablesProc *getTablesProc; // alternate routine defining // translation Tables TcvtUTF8Proc *convertUTF8; // routine to convert to/from UTF-8 } SDX_TOptions;

typedefは構造体{バイト* toHost。 //トランスタブネット - >ホストバイト*トネット。 //トランス]タブのホスト - >ネットのint型のmaxlevel。 //可能な限り最高レベルのint型の翻訳; //翻訳ネット< - >ホスト//が有効になっている= 1か= 0 TEncryptProc * encryptProc。 //別の暗号化ルーチンTGetTablesProc * getTablesProc。 //別のルーチンの定義//変換テーブルTcvtUTF8Proc * convertUTF8。 //このルーチンは、UTF-8} SDX_TOptionsへ/から変換します。

typedef long TencryptProc ( int mode, // 1= to encrypt, 2= to decrypt, 3= encrypted length Byte *buffer, // data to en/decrypt long len, // len: length of buffer char *passw); // Password

typedefの長いTencryptProc(INTモード、// 1 =暗号化するために、2 =復号する、3 =暗号化された長さバイト*バッファ、//データEN /長LENを復号// LENに:バッファのchar *のPASSWの長さ)。 //パスワード

// returns length of en/de-crypted data // (parameter buffer and passw are ignored for mode=3) // returns blocksize for mode=3 and len=0. // blocksize is zero for non-blocking algorithms

EN /脱暗号化されたデータの//戻り長//モード= 3及びLEN = 0のブロックサイズを返す//(パラメータバッファとパスワードがモード= 3の場合は無視されます)。 //ブロックサイズは、ノンブロッキング・アルゴリズムのためのゼロです

typedef int TGetTablesProc (Byte **toNet, Byte **toHost); // toNet, toHost: pointer to output params. Both params // points to translation tables of 256 Bytes. // returns success: 1 = ok, 0 = error.

typedefがTGetTablesProc(バイト**トネット、バイト** toHost)をint型。 //トネット、toHost:出力のparamsへのポインタ。どちらも、256バイトの変換テーブルに//ポイントをparamsは。 1 = OK、0 =エラー://は成功を返します。

typedef int TcvtUTF8Proc ( int mode, // 1 = to UTF-8, 2 = from UTF-8 Byte *target, int *targetlength, // output Byte *source, int sourcelength); // input // targetlength contains maximal size as input param. // returns success: 1 = ok, 0 = no conversion

typedefのINT TcvtUTF8Proc(INTモード、// 1 = UTF-8に、2 = UTF-8からのバイト*ターゲット、INT * targetlength、//出力バイト*ソース、int型sourcelength)。 //入力// targetlengthは、入力のparamとして最大サイズが含まれています。 //リターンの成功:1 = OK、0 =変換なし

9. 'Support' of UTF-8.
UTF-8の9 'サポート'。

Many systems supports [UTF-8] as a character format for transferred data. The benefit is that no fixing of a specific character set for an application is needed because the set of 'all' characters is used, represented by the 'Universal Character Set' UCS-2 [UCS], a double byte coding for characters.

多くのシステムでは、[UTF-8]転送されたデータの文字形式などをサポートしています。利点は、「すべて」の文字セットが使用されているので、アプリケーションのための特定の文字セットのない固定「がセットユニバーサル文字」によって表される、必要とされていないことであるUCS-2 [UCS]、文字のダブルバイトコーディング。

SDXF does not really deal with UTF-8 by itself, there are many possibilities to interprete an UTF-8 sequence: The application may:


- reconstruct the UCS-2 sequence, - accepts only the pure ASCII character and maps non-ASCII to a special 'non-printable' character. - target is pure ASCII, non-ASCII is replaced in a senseful manner (French accented vowels replaced by vowels without accents, etc.). - target is a specific ANSI character set, the non-ASCII chars are mapped as possible, other replaced to a 'non-printable'. - etc.

- UCS-2配列を再構築する、 - 純粋なASCII文字を受け入れ、特別な「非印刷可能な」文字に非ASCIIをマッピングします。 - 目標は、純粋なASCII、非ASCIIはsenseful方法(アクセントなしで母音で置き換えフランス語アクセント母音など)で置換されています。 - ターゲットは、特定のANSI文字セットで、非ASCII文字は、他の「非印刷可能な」に置き換え、可能性としてマッピングされています。 - など

But SDXF offers an interface for the 'extract' and 'create' functions:


A function pointer may be specified in the options table to maintain this possibility (see 8.5). Default for this pointer is NULL: No further conversions are done by SDXF, the data are copied 'as is', it is treated as a bit string as for data type 'binary'.


If this function is specified, it is used by the 'create' function with the 'toUTF8' mode, and by the 'extract' function with the ' fromUTF8' mode. The invoking of these functions is done by SDXF transparently.


If the function returns zero (no conversion) SDXF copies the data without conversion.


10. Security Considerations

Any corruption of data in the chunk headers denounce the complete SDXF structure.


Any corruption of data in a encrypted or compressed SDXF structure makes this chunk unusable. An integrity check after decryption or decompression should be done by the "enter" function.


While using TCP/IP (more precisely: IP) as a transmission medium we can trust on his CRC check on the transport layer.

(より正確には:IP)TCP / IPを使用している間の伝送媒体として、我々は、トランスポート層の上に彼のCRCチェックに信頼することができます。

11. Some general hints

1. A consistent construction of a SDXF structure is done if every "create" to a structured chunk is closed by a paired "leave". While a structured chunk is under construction, his data type is set to zero - that means: this chunk is inconsistent. The SDX_leave function sets the datatype to "structured".

すべてのは、構造化チャンクに「作成」場合は1 SDXF構造の一貫性の構築が行われているペアリング「のまま」で閉じられています。構造化されたチャンクが建設中ですが、彼のデータ型がゼロに設定されている - つまり:このチャンクは矛盾しています。 SDX_leave機能は、「構造化」へのデータ型を設定します。

2. While creating an elementary chunk a platform dependent transformation to a platform independent format of the data is performed - at the end of construction the content of the buffer is ready to transport to another site, without any further translation.

2.データのプラットフォーム独立フォーマットのプラットフォーム依存の変換が行われる基本チャンクを作成中 - 構造の終わりにバッファの内容は、任意のさらなる変換なしに、別のサイトに輸送する準備ができています。

3. As you see no data definition in your programming language is needed for to construct a specific SDXF structure. The data is created dynamically by function calls.


4. With SDXF as a base you can define protocols for client / server applications. These protocols may be extended in downward compatibility manner by following two rules:

あなたは、クライアント/サーバアプリケーションのためのプロトコルを定義することができますベースとしてSDXF 4.。これらのプロトコルは、2つのルールを以下により下位互換性的に拡張されてもよいです。

Rule 1: Ignore unknown chunkIDs.


Rule 2: The sequence of chunks should not be significant.


12. IANA Considerations
12. IANAの考慮事項

The compression and encryption algorithms for SDXF is not fixed, SDXF is open for various algorithms. Therefore an agreement is necessary to interprete the compression and encryption algorithm method numbers. (Encryption methods are not a semantic part of SDXF, but may be used for a connection protocol to negotiate the encryption method to use.)

SDXFのための圧縮と暗号化アルゴリズムがSDXFは、様々なアルゴリズムのために開いている、固定されていません。したがって、契約は圧縮と暗号化アルゴリズム方式番号をinterpreteする必要があります。 (暗号化方式はSDXFの意味一部ではないが、使用する暗号化方法を交渉する接続プロトコルのために使用されてもよいです。)

Following two items are registered by IANA:


SDXF FOR 12.1の圧縮方法
   The compressed SDXF chunk starts with a "compression header".  This
   header contains the compression method as an unsigned 1-Byte integer
   (1-255).  These numbers are assigned by IANA and listed here: compression
    method     Description                     Hints
   ---------   ------------------------------- -------------
         01    RUN-LENGTH algorithm            see chap. 5
         02    DEFLATE (ZIP)                   see [DEFLATE]
     03-239    IANA to assign
    240-255    private or application specific
SDXF FOR 12.2暗号化の方法

An unique encryption method is fixed or negotiated by handshaking. For the latter one a number for each encryption method is necessary. These numbers are unsigned 1-Byte integers (1-255). These numbers are assigned by IANA and listed here:


     method    Description
    ---------  ------------------------------
     01-239    IANA to assign
    240-255    private or application specific
12.3 Hints for assigning a number:

Developers which want to register a compression or encrypt method for SDXF should contact IANA for a method number. The ASSIGNED NUMBERS document should be referred to for a current list of METHOD numbers and their corresponding protocols, see [IANA]. The new method SHOULD be a standard published as a RFC or by a established standardization organization (as OSI).


13. Discussion

There are already some standards for Internet data exchanging, IETF prefers ASN.1 and XML therefore. So the reasons for establish a new data format should be discussed.


13.1 SDXF vs. ASN.1
ASN.1対13.1 SDXF

The demand of ASN.1 (see [ASN.1]) is to serve program language independent means to define data structures. The real data format which is used to send the data is not defined by ASN.1 but usually BER or PER (or some derivates of them like CER and DER) are used in this context, see [BER] and [PER].


The idea behind ASN.1 is: On every platform on which a given application is to develop descriptions of the used data structures are available in ASN.1 notation. Out off these notations the real language dependent definitions are generated with the help of an ASN.1-compiler.


This compiler generates also transform functions for these data structures for to pack and unpack to and from the BER (or other) format.


A direct comparison between ASN.1 and SDXF is somehow inappropriate: The data format of SDXF is related rather to BER (and relatives). The use of ASN.1 to define data structures is no contradiction to SDXF, but: SDXF does not require a complete data structure to build the message to send, nor a complete data structure will be generated out off the received message.


The main difference lies in the concept of building and interpretation of the message, I want to name it the "static" and "dynamic" concept:


o ASN.1 uses a "static" approach: The whole data structure must exists before the message can be created.

O ASN.1は、「静的」なアプローチを使用しています:メッセージを作成することができます前に、全体のデータ構造必見存在します。

o SDXF constructs and interpretes the message in a "dynamic" way, the message will be packed and unpacked step by step by SDXF functions.

O SDXF構築物および「動的」な方法でメッセージをinterpretes、メッセージはSDXF機能によってステップによって充填し、解凍工程であろう。

The use of static structures may be appropriate for a series of applications, but for complex tasks it is often impossible to define the message as a whole. As an example try to define an ASN.1 description for a complex structured text document which is presented in XML: There are sections and paragraphs and text elements which may recursively consist of sections with specific text attributes.


13.2 SDXF vs. XML

On the one hand SDXF and XML are similar as they can handle any recursive complex data stream. The main difference is the kind of data which are to be maintained:


o XML works with pure text data (though it should be noted that the character representation is not standardized by XML). And: a XML document with all his tags is readable by human. Binary data as graphic is not included directly but may be referenced by an external link as in HTML.

(文字表現をXMLで標準化されていないことに留意すべきであるが)O XMLは、純粋なテキストデータで動作します。そして:すべての彼のタグを持つXML文書は、人間によって読み取り可能です。グラフィックなどのバイナリデータを直接含まれていませんが、HTMLのように、外部リンクによって参照することができます。

In XML there is no strong separation between informational and control data, escape characters (like "<" and "&") and the <![CDATA[...]]> construction are used to distinguish between these two types of data.

XMLの文字(のような「<」や「&」)とを逃れ、情報と制御データとの間には強い分離はありません。<![CDATA [...]]>建設は、データのこれらの2つのタイプを区別するために使用されています。

o SDXF maintains machine-readable data, it is not designed to be readable by human nor to edit SDXF data with a text editor (even more if compression and encryption is used). With the help of the SDXF functions you have a quick and easy access to every data element. The standard parser for a SDXF data structure follows always a simple template, the "while - switch -case ID - enter/extract" pattern as outlined in chap. 3.4.2.

SDXFは、機械読み取り可能なデータを保持し、O、人間が読めるようにも、テキストエディタ(圧縮と暗号化を使用しても多くの場合)とSDXFデータを編集するために設計されていません。 SDXF機能の助けを借りて、あなたはすべてのデータ要素にすばやく簡単にアクセスできます。 CHAPに概説されるようにパターン「入力/抽出 - - -case ID切り替えながら」をSDXFデータ構造のための標準的なパーサは、常に単純なテンプレートに従います。 3.4.2。

Because of the complete different philosophy behind XML and SDXF (and even ASN.1) a direct comparison may not be very senseful, as XML has its own right to exist next to ASN.1 (and even SDXF).


Nevertheless there is a chance to convert a XML data stream into a SDXF structure: As a first strike, every XML tag becomes a SDXF chunk ID. An elementary sequence <tag>pure text</tag> can be transformed into an elementary (non-structured) chunk with data type "character". Tags with attributes and sequences with nested tags are transformed into structured chunks. Because XML allows a tag sequence everywhere in a text stream, an artificially "elementary text" tag must be introduced: If <t> is the tag for text elements, the sequence:

それでもSDXF構造にXMLデータ・ストリームを変換する可能性があります:最初のストライキとして、すべてのXMLタグはSDXFチャンクIDになります。基本シーケンス<タグ>純粋なテキスト</タグ>のデータ型「文字」との基本(非構造化)のチャンクに変換することができます。属性とネストされたタグを有する配列を持つタグは、構造化チャンクに変換されます。 XMLはテキストストリームの至る所にタグ配列を可能にするので、人為的に「基本テキスト」タグを導入する必要があります。<T>は、テキスト要素のためのタグがある場合は、シーケンス:

<t>this is a text <attr value='bold'>with</attr> attributes</t>

<T>これはテキストです。<attrの値= '太字'>と</ ATTR>属性</ T>

is to be "in thought" replaced by:


<t><et>this is a text </et><attr value='bold'><et>with</et></attr> <et> attributes</et></t>

<T> <ら>これはテキスト</ら> <ATTR値= '太字'> <ら>と</ら> </ ATTR> <ら>属性</ら> </ T>

(With "et" as the "elementary text" tag)


This results in following SDXF structure:


   +-- ID_et = " this is a text "
   +-- ID_attr
   |   |
   |   +-- ID_value = "bold"
   |   |
   |   +-- ID_et = "with"
   +-- ID_et = " attributes"

ID_t and ID_et may be represented by the same chunk ID, only distinguished by the data type ("structured" for <t> and "character" for <et>)


Binary data as pictures can be directly imbedded into a SDXF structure instead referencing them as an external link like in HTML.


14. Author's Address

Max Wildgrube Schlossstrasse 120 60486 Frankfurt Germany

マックスWildgrubeシュロスシュトラーセ120 60486フランクフルトドイツ



15. Acknowledgements

I would like to thank Michael J. Slifcak ( for the supporting discussions.

私は支援の議論のためにマイケル・J Slifcak(を感謝したいと思います。

16. References

[ASN.1] Information processing systems - Open Systems Interconnection, "Specification of Abstract Syntax Notation One (ASN.1)", International Organization for Standardization, International Standard 8824, December 1987.

[ASN.1]情報処理システム - 開放型システム間相互接続、「仕様抽象の構文記法1(ASN.1)」、国際標準化機構、国際標準8824、1987年12月。

[BER] Information Processing Systems - Open Systems Interconnection - "Specification of Basic Encoding Rules for Abstract Notation One (ASN.1)", International Organization for Standardization, International Standard 8825-1, December 1987.

[BER]情報処理システム - オープンシステム間相互接続 - 「抽象記法1(ASN.1)のための基本的な符号化規則の仕様」、国際標準化機構、国際規格8825から1、1987年12月。

[DEFLATE] Deutsch, P., "DEFLATE Compressed Data Format Specification version 1.3", RFC 1951, May 1996.

[DEFLATE]ドイツ、P.、 "DEFLATE圧縮データフォーマット仕様バージョン1.3"、RFC 1951、1996年5月。

[IANA] Internet Assigned Numbers Authority,


[PER] Information Processing Systems - Open Systems Interconnection -"Specification of Packed Encoding Rules for Abstract Syntax Notation One (ASN.1)", International Organization for Standardization, International Standard 8825-2.

[PER]情報処理システム - 開放型システム間相互接続 - 、国際標準化機構、国際標準8825から2「抽象構文記法1(ASN.1)のための圧縮符号化規則の仕様」。

[UCS] ISO/IEC 10646-1:1993. International Standard -- Information technology -- Universal Multiple-Octet Coded Character Set (UCS)

1993:[UCS] ISO / IEC 10646-1。国際規格 - 情報技術 - ユニバーサルマルチオクテット符号化文字セット(UCS)

[UTF8] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC 2279, January 1998.

[UTF8] Yergeau、F.、 "UTF8、ISO 10646の変換フォーマット"、RFC 2279、1998年1月。

17. Full Copyright Statement

Copyright (C) The Internet Society (2001). All Rights Reserved.


This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.


The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.






Funding for the RFC Editor function is currently provided by the Internet Society.

RFC Editor機能のための基金は現在、インターネット協会によって提供されます。