Internet Engineering Task Force (IETF)                   S. Shepler, Ed.
Request for Comments: 5661                               Storspeed, Inc.
Category: Standards Track                                 M. Eisler, Ed.
ISSN: 2070-1721                                           D. Noveck, Ed.
                                                            January 2010

Network File System (NFS) Version 4 Minor Version 1 Protocol




This document describes the Network File System (NFS) version 4 minor version 1, including features retained from the base protocol (NFS version 4 minor version 0, which is specified in RFC 3530) and protocol extensions made subsequently. Major extensions introduced in NFS version 4 minor version 1 include Sessions, Directory Delegations, and parallel NFS (pNFS). NFS version 4 minor version 1 has no dependencies on NFS version 4 minor version 0, and it is considered a separate protocol. Thus, this document neither updates nor obsoletes RFC 3530. NFS minor version 1 is deemed superior to NFS minor version 0 with no loss of functionality, and its use is preferred over version 0. Both NFS minor versions 0 and 1 can be used simultaneously on the same network, between the same client and server.

このドキュメントでは、ネットワークファイルシステム(NFS)バージョン4マイナーバージョン1について説明します。これには、基本プロトコル(NFSバージョン4マイナーバージョン0、RFC 3530で指定)から保持される機能、およびその後に行われるプロトコル拡張が含まれます。 NFSバージョン4マイナーバージョン1で導入された主要な拡張機能には、セッション、ディレクトリ委任、および並列NFS(pNFS)が含まれます。 NFSバージョン4のマイナーバージョン1はNFSバージョン4のマイナーバージョン0に依存せず、別個のプロトコルと見なされます。したがって、このドキュメントはRFC 3530を更新または廃止していません。NFSマイナーバージョン1は、機能を失うことなくNFSマイナーバージョン0よりも優れていると見なされており、バージョン0よりも優先的に使用されます。NFSマイナーバージョン0と1の両方を同時に使用できます。同じクライアントとサーバー間の同じネットワーク。

Status of This Memo


This is an Internet Standards Track document.

これはInternet Standards Trackドキュメントです。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。インターネット標準の詳細については、RFC 5741のセクション2をご覧ください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2010 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

この文書は、BCP 78およびこの文書の発行日に有効なIETF文書に関するIETFトラストの法的規定(の対象となります。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseのテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。

Table of Contents


   1. Introduction ....................................................9
      1.1. The NFS Version 4 Minor Version 1 Protocol .................9
      1.2. Requirements Language ......................................9
      1.3. Scope of This Document .....................................9
      1.4. NFSv4 Goals ...............................................10
      1.5. NFSv4.1 Goals .............................................10
      1.6. General Definitions .......................................11
      1.7. Overview of NFSv4.1 Features ..............................13
      1.8. Differences from NFSv4.0 ..................................17
   2. Core Infrastructure ............................................18
      2.1. Introduction ..............................................18
      2.2. RPC and XDR ...............................................19
      2.3. COMPOUND and CB_COMPOUND ..................................22
      2.4. Client Identifiers and Client Owners ......................23
      2.5. Server Owners .............................................28
      2.6. Security Service Negotiation ..............................29
      2.7. Minor Versioning ..........................................34
      2.8. Non-RPC-Based Security Services ...........................37
      2.9. Transport Layers ..........................................37
      2.10. Session ..................................................40
   3. Protocol Constants and Data Types ..............................86
      3.1. Basic Constants ...........................................86
      3.2. Basic Data Types ..........................................87
      3.3. Structured Data Types .....................................89
   4. Filehandles ....................................................97
      4.1. Obtaining the First Filehandle ............................98
      4.2. Filehandle Types ..........................................99
      4.3. One Method of Constructing a Volatile Filehandle .........101
      4.4. Client Recovery from Filehandle Expiration ...............102
   5. File Attributes ...............................................103
      5.1. REQUIRED Attributes ......................................104
      5.2. RECOMMENDED Attributes ...................................104
      5.3. Named Attributes .........................................105
      5.4. Classification of Attributes .............................106
      5.5. Set-Only and Get-Only Attributes .........................107
      5.6. REQUIRED Attributes - List and Definition References .....107
      5.7. RECOMMENDED Attributes - List and Definition References ..108
      5.8. Attribute Definitions ....................................110
      5.9. Interpreting owner and owner_group .......................119
      5.10. Character Case Attributes ...............................121
      5.11. Directory Notification Attributes .......................121
      5.12. pNFS Attribute Definitions ..............................122
      5.13. Retention Attributes ....................................123
   6. Access Control Attributes .....................................126
      6.1. Goals ....................................................126
      6.2. File Attributes Discussion ...............................128
      6.3. Common Methods ...........................................144
      6.4. Requirements .............................................147
   7. Single-Server Namespace .......................................153
      7.1. Server Exports ...........................................153
      7.2. Browsing Exports .........................................153
      7.3. Server Pseudo File System ................................154
      7.4. Multiple Roots ...........................................155
      7.5. Filehandle Volatility ....................................155
      7.6. Exported Root ............................................155
      7.7. Mount Point Crossing .....................................156
      7.8. Security Policy and Namespace Presentation ...............156
   8. State Management ..............................................157
      8.1. Client and Session ID ....................................158
      8.2. Stateid Definition .......................................158
      8.3. Lease Renewal ............................................167
      8.4. Crash Recovery ...........................................170
      8.5. Server Revocation of Locks ...............................181
      8.6. Short and Long Leases ....................................182
      8.7. Clocks, Propagation Delay, and Calculating Lease
           Expiration ...............................................182
      8.8. Obsolete Locking Infrastructure from NFSv4.0 .............183
   9. File Locking and Share Reservations ...........................184
      9.1. Opens and Byte-Range Locks ...............................184
      9.2. Lock Ranges ..............................................188
      9.3. Upgrading and Downgrading Locks ..........................188
      9.4. Stateid Seqid Values and Byte-Range Locks ................189
      9.5. Issues with Multiple Open-Owners .........................189
      9.6. Blocking Locks ...........................................190
      9.7. Share Reservations .......................................191
      9.8. OPEN/CLOSE Operations ....................................192
      9.9. Open Upgrade and Downgrade ...............................192
      9.10. Parallel OPENs ..........................................193
      9.11. Reclaim of Open and Byte-Range Locks ....................194
   10. Client-Side Caching ..........................................194
      10.1. Performance Challenges for Client-Side Caching ..........195
      10.2. Delegation and Callbacks ................................196
      10.3. Data Caching ............................................200
      10.4. Open Delegation .........................................205
      10.5. Data Caching and Revocation .............................216
      10.6. Attribute Caching .......................................218
      10.7. Data and Metadata Caching and Memory Mapped Files .......220
      10.8. Name and Directory Caching without Directory
            Delegations .............................................222
      10.9. Directory Delegations ...................................225
   11. Multi-Server Namespace .......................................228
      11.1. Location Attributes .....................................228
      11.2. File System Presence or Absence .........................229
      11.3. Getting Attributes for an Absent File System ............230
      11.4. Uses of Location Information ............................232
      11.5. Location Entries and Server Identity ....................236
      11.6. Additional Client-Side Considerations ...................237
      11.7. Effecting File System Transitions .......................238
      11.8. Effecting File System Referrals .........................251
      11.9. The Attribute fs_locations ..............................258
      11.10. The Attribute fs_locations_info ........................261
      11.11. The Attribute fs_status ................................273
   12. Parallel NFS (pNFS) ..........................................277
      12.1. Introduction ............................................277
      12.2. pNFS Definitions ........................................278
      12.3. pNFS Operations .........................................284
      12.4. pNFS Attributes .........................................285
      12.5. Layout Semantics ........................................285
      12.6. pNFS Mechanics ..........................................300
      12.7. Recovery ................................................302
      12.8. Metadata and Storage Device Roles .......................307
      12.9. Security Considerations for pNFS ........................307
   13. NFSv4.1 as a Storage Protocol in pNFS: the File Layout Type ..309
      13.1. Client ID and Session Considerations ....................309
      13.2. File Layout Definitions .................................312
      13.3. File Layout Data Types ..................................312
      13.4. Interpreting the File Layout ............................317
      13.5. Data Server Multipathing ................................324
      13.6. Operations Sent to NFSv4.1 Data Servers .................325
      13.7. COMMIT through Metadata Server ..........................327
      13.8. The Layout Iomode .......................................328
      13.9. Metadata and Data Server State Coordination .............329
      13.10. Data Server Component File Size ........................332
      13.11. Layout Revocation and Fencing ..........................333
      13.12. Security Considerations for the File Layout Type .......334
   14. Internationalization .........................................334
     14.1.  Stringprep profile for the utf8str_cs type ..............336
     14.2.  Stringprep profile for the utf8str_cis type .............337
     14.3.  Stringprep profile for the utf8str_mixed type ...........338
     14.4.  UTF-8 Capabilities ......................................340
     14.5.  UTF-8 Related Errors ....................................340
   15. Error Values .................................................341
      15.1. Error Definitions .......................................341
      15.2. Operations and Their Valid Errors .......................361
      15.3. Callback Operations and Their Valid Errors ..............376
      15.4. Errors and the Operations That Use Them .................379
   16. NFSv4.1 Procedures ...........................................391
      16.1. Procedure 0: NULL - No Operation ........................392
      16.2. Procedure 1: COMPOUND - Compound Operations .............392
   17. Operations: REQUIRED, RECOMMENDED, or OPTIONAL ...............403
   18. NFSv4.1 Operations ...........................................407
      18.1. Operation 3: ACCESS - Check Access Rights ...............407
      18.2. Operation 4: CLOSE - Close File .........................413
      18.3. Operation 5: COMMIT - Commit Cached Data ................414
      18.4. Operation 6: CREATE - Create a Non-Regular File Object ..417
      18.5. Operation 7: DELEGPURGE - Purge Delegations
            Awaiting Recovery .......................................419
      18.6. Operation 8: DELEGRETURN - Return Delegation ............420
      18.7. Operation 9: GETATTR - Get Attributes ...................421
      18.8. Operation 10: GETFH - Get Current Filehandle ............423
      18.9. Operation 11: LINK - Create Link to a File ..............424
      18.10. Operation 12: LOCK - Create Lock .......................426
      18.11. Operation 13: LOCKT - Test for Lock ....................430
      18.12. Operation 14: LOCKU - Unlock File ......................432
      18.13. Operation 15: LOOKUP - Lookup Filename .................433
      18.14. Operation 16: LOOKUPP - Lookup Parent Directory ........435
      18.15. Operation 17: NVERIFY - Verify Difference in
             Attributes .............................................436
      18.16. Operation 18: OPEN - Open a Regular File ...............437
      18.17. Operation 19: OPENATTR - Open Named Attribute
             Directory ..............................................458
      18.18. Operation 21: OPEN_DOWNGRADE - Reduce Open File
             Access .................................................459
      18.19. Operation 22: PUTFH - Set Current Filehandle ...........461
      18.20. Operation 23: PUTPUBFH - Set Public Filehandle .........461
      18.21. Operation 24: PUTROOTFH - Set Root Filehandle ..........463
      18.22. Operation 25: READ - Read from File ....................464
      18.23. Operation 26: READDIR - Read Directory .................466
      18.24. Operation 27: READLINK - Read Symbolic Link ............469
      18.25. Operation 28: REMOVE - Remove File System Object .......470
      18.26. Operation 29: RENAME - Rename Directory Entry ..........473
      18.27. Operation 31: RESTOREFH - Restore Saved Filehandle .....477
      18.28. Operation 32: SAVEFH - Save Current Filehandle .........478
      18.29. Operation 33: SECINFO - Obtain Available Security ......479
      18.30. Operation 34: SETATTR - Set Attributes .................482
      18.31. Operation 37: VERIFY - Verify Same Attributes ..........485
      18.32. Operation 38: WRITE - Write to File ....................486
      18.33. Operation 40: BACKCHANNEL_CTL - Backchannel Control ....491
      18.34. Operation 41: BIND_CONN_TO_SESSION - Associate
             Connection with Session ................................492
      18.35. Operation 42: EXCHANGE_ID - Instantiate Client ID ......495
      18.36. Operation 43: CREATE_SESSION - Create New
             Session and Confirm Client ID ..........................513
      18.37. Operation 44: DESTROY_SESSION - Destroy a Session ......523
      18.38. Operation 45: FREE_STATEID - Free Stateid with
             No Locks ...............................................525
      18.39. Operation 46: GET_DIR_DELEGATION - Get a
             Directory Delegation ...................................526
      18.40. Operation 47: GETDEVICEINFO - Get Device Information ...530
      18.41. Operation 48: GETDEVICELIST - Get All Device
             Mappings for a File System .............................533
      18.42. Operation 49: LAYOUTCOMMIT - Commit Writes Made
             Using a Layout .........................................534
      18.43. Operation 50: LAYOUTGET - Get Layout Information .......538
      18.44. Operation 51: LAYOUTRETURN - Release Layout
             Information ............................................547
      18.45. Operation 52: SECINFO_NO_NAME - Get Security on
             Unnamed Object .........................................552
      18.46. Operation 53: SEQUENCE - Supply Per-Procedure
             Sequencing and Control .................................553
      18.47. Operation 54: SET_SSV - Update SSV for a Client ID .....559
      18.48. Operation 55: TEST_STATEID - Test Stateids for
             Validity ...............................................561
      18.49. Operation 56: WANT_DELEGATION - Request Delegation .....563
      18.50. Operation 57: DESTROY_CLIENTID - Destroy a Client ID ...566
      18.51. Operation 58: RECLAIM_COMPLETE - Indicates
             Reclaims Finished ......................................567
      18.52. Operation 10044: ILLEGAL - Illegal Operation ...........569
   19. NFSv4.1 Callback Procedures ..................................570
      19.1. Procedure 0: CB_NULL - No Operation .....................570
      19.2. Procedure 1: CB_COMPOUND - Compound Operations ..........571
   20. NFSv4.1 Callback Operations ..................................574
      20.1. Operation 3: CB_GETATTR - Get Attributes ................574
      20.2. Operation 4: CB_RECALL - Recall a Delegation ............575
      20.3. Operation 5: CB_LAYOUTRECALL - Recall Layout
            from Client .............................................576
      20.4. Operation 6: CB_NOTIFY - Notify Client of
            Directory Changes .......................................580
      20.5. Operation 7: CB_PUSH_DELEG - Offer Previously
            Requested Delegation to Client ..........................583
      20.6. Operation 8: CB_RECALL_ANY - Keep Any N
            Recallable Objects ......................................584
      20.7. Operation 9: CB_RECALLABLE_OBJ_AVAIL - Signal
            Resources for Recallable Objects ........................588
      20.8. Operation 10: CB_RECALL_SLOT - Change Flow
            Control Limits ..........................................588
      20.9. Operation 11: CB_SEQUENCE - Supply Backchannel
            Sequencing and Control ..................................589
      20.10. Operation 12: CB_WANTS_CANCELLED - Cancel
             Pending Delegation Wants ...............................592
      20.11. Operation 13: CB_NOTIFY_LOCK - Notify Client of
             Possible Lock Availability .............................593
      20.12. Operation 14: CB_NOTIFY_DEVICEID - Notify
             Client of Device ID Changes ............................594
      20.13. Operation 10044: CB_ILLEGAL - Illegal Callback
             Operation ..............................................596
   21. Security Considerations ......................................597
   22. IANA Considerations ..........................................598
      22.1. Named Attribute Definitions .............................598
      22.2. Device ID Notifications .................................600
      22.3. Object Recall Types .....................................601
      22.4. Layout Types ............................................603
      22.5. Path Variable Definitions ...............................606
   23. References ...................................................609
      23.1. Normative References ....................................609
      23.2. Informative References ..................................612
   Appendix A.  Acknowledgments  ....................................615
1. Introduction
1. はじめに
1.1. The NFS Version 4 Minor Version 1 Protocol
1.1. NFSバージョン4マイナーバージョン1プロトコル

The NFS version 4 minor version 1 (NFSv4.1) protocol is the second minor version of the NFS version 4 (NFSv4) protocol. The first minor version, NFSv4.0, is described in [30]. It generally follows the guidelines for minor versioning that are listed in Section 10 of RFC 3530. However, it diverges from guidelines 11 ("a client and server that support minor version X must support minor versions 0 through X-1") and 12 ("no new features may be introduced as mandatory in a minor version"). These divergences are due to the introduction of the sessions model for managing non-idempotent operations and the RECLAIM_COMPLETE operation. These two new features are infrastructural in nature and simplify implementation of existing and other new features. Making them anything but REQUIRED would add undue complexity to protocol definition and implementation. NFSv4.1 accordingly updates the minor versioning guidelines (Section 2.7).

NFSバージョン4マイナーバージョン1(NFSv4.1)プロトコルは、NFSバージョン4(NFSv4)プロトコルの2番目のマイナーバージョンです。最初のマイナーバージョン、NFSv4.0は[30]で説明されています。これは通常、RFC 3530のセクション10に記載されているマイナーバージョン管理のガイドラインに従います。ただし、ガイドライン11(「マイナーバージョンXをサポートするクライアントとサーバーはマイナーバージョン0からX-1をサポートする必要があります」)および12( 「マイナーバージョンでは必須として新機能を導入することはできません」)。これらの相違は、非べき等操作とRECLAIM_COMPLETE操作を管理するためのセッションモデルの導入によるものです。これらの2つの新機能は本質的にインフラストラクチャであり、既存およびその他の新機能の実装を簡素化します。それらをREQUIRED以外のものにすると、プロトコルの定義と実装が過度に複雑になります。 NFSv4.1は、それに応じてマイナーバージョンのガイドラインを更新します(セクション2.7)。

As a minor version, NFSv4.1 is consistent with the overall goals for NFSv4, but extends the protocol so as to better meet those goals, based on experiences with NFSv4.0. In addition, NFSv4.1 has adopted some additional goals, which motivate some of the major extensions in NFSv4.1.


1.2. Requirements Language
1.2. 要件言語

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [1].

このドキュメントのキーワード「MUST」、「MUST NOT」、「REQUIRED」、「SHALL」、「SHALL NOT」、「SHOULD」、「SHOULD NOT」、「RECOMMENDED」、「MAY」、および「OPTIONAL」は、 RFC 2119 [1]で説明されているように解釈されます。

1.3. Scope of This Document
1.3. このドキュメントの範囲

This document describes the NFSv4.1 protocol. With respect to NFSv4.0, this document does not:

このドキュメントでは、NFSv4.1プロトコルについて説明します。 NFSv4.0に関して、このドキュメントは以下を行いません:

o describe the NFSv4.0 protocol, except where needed to contrast with NFSv4.1.

o NFSv4.1と対比する必要がある場合を除いて、NFSv4.0プロトコルについて説明します。

o modify the specification of the NFSv4.0 protocol.

o NFSv4.0プロトコルの仕様を変更します。

o clarify the NFSv4.0 protocol.

o NFSv4.0プロトコルを明確にします。

1.4. NFSv4 Goals
1.4. NFSv4の目標

The NFSv4 protocol is a further revision of the NFS protocol defined already by NFSv3 [31]. It retains the essential characteristics of previous versions: easy recovery; independence of transport protocols, operating systems, and file systems; simplicity; and good performance. NFSv4 has the following goals:

NFSv4プロトコルは、NFSv3 [31]によってすでに定義されているNFSプロトコルのさらなる改訂版です。以前のバージョンの本質的な特徴を保持しています。トランスポートプロトコル、オペレーティングシステム、およびファイルシステムの独立性。シンプルさ。そして良いパフォーマンス。 NFSv4には次の目標があります。

o Improved access and good performance on the Internet

o インターネットでのアクセスの向上と優れたパフォーマンス

The protocol is designed to transit firewalls easily, perform well where latency is high and bandwidth is low, and scale to very large numbers of clients per server.


o Strong security with negotiation built into the protocol

o プロトコルに組み込まれた交渉による強力なセキュリティ

The protocol builds on the work of the ONCRPC working group in supporting the RPCSEC_GSS protocol. Additionally, the NFSv4.1 protocol provides a mechanism to allow clients and servers the ability to negotiate security and require clients and servers to support a minimal set of security schemes.


o Good cross-platform interoperability

o 優れたクロスプラットフォームの相互運用性

The protocol features a file system model that provides a useful, common set of features that does not unduly favor one file system or operating system over another.


o Designed for protocol extensions

o プロトコル拡張用に設計

The protocol is designed to accept standard extensions within a framework that enables and encourages backward compatibility.


1.5. NFSv4.1 Goals
1.5. NFSv4.1の目標

NFSv4.1 has the following goals, within the framework established by the overall NFSv4 goals.


o To correct significant structural weaknesses and oversights discovered in the base protocol.

o 基本プロトコルで発見された重大な構造上の弱点と見落としを修正するため。

o To add clarity and specificity to areas left unaddressed or not addressed in sufficient detail in the base protocol. However, as stated in Section 1.3, it is not a goal to clarify the NFSv4.0 protocol in the NFSv4.1 specification.

o 基本プロトコルで十分に詳細に説明されていない、または説明されていない領域に明確さと特異性を追加するため。ただし、セクション1.3で述べたように、NFSv4.1仕様でNFSv4.0プロトコルを明確にすることは目標ではありません。

o To add specific features based on experience with the existing protocol and recent industry developments.

o 既存のプロトコルの経験と最近の業界の発展に基づいて特定の機能を追加します。

o To provide protocol support to take advantage of clustered server deployments including the ability to provide scalable parallel access to files distributed among multiple servers.

o 複数のサーバーに分散されたファイルへのスケーラブルな並列アクセスを提供する機能を含む、クラスター化されたサーバー展開を利用するためのプロトコルサポートを提供します。

1.6. General Definitions
1.6. 一般的な定義

The following definitions provide an appropriate context for the reader.


Byte: In this document, a byte is an octet, i.e., a datum exactly 8 bits in length.


Client: The client is the entity that accesses the NFS server's resources. The client may be an application that contains the logic to access the NFS server directly. The client may also be the traditional operating system client that provides remote file system services for a set of applications.


A client is uniquely identified by a client owner.


With reference to byte-range locking, the client is also the entity that maintains a set of locks on behalf of one or more applications. This client is responsible for crash or failure recovery for those locks it manages.


Note that multiple clients may share the same transport and connection and multiple clients may exist on the same network node.


Client ID: The client ID is a 64-bit quantity used as a unique, short-hand reference to a client-supplied verifier and client owner. The server is responsible for supplying the client ID.


Client Owner: The client owner is a unique string, opaque to the server, that identifies a client. Multiple network connections and source network addresses originating from those connections may share a client owner. The server is expected to treat requests from connections with the same client owner as coming from the same client.


File System: The file system is the collection of objects on a server (as identified by the major identifier of a server owner, which is defined later in this section) that share the same fsid attribute (see Section


Lease: A lease is an interval of time defined by the server for which the client is irrevocably granted locks. At the end of a lease period, locks may be revoked if the lease has not been extended. A lock must be revoked if a conflicting lock has been granted after the lease interval.


A server grants a client a single lease for all state.


Lock: The term "lock" is used to refer to byte-range (in UNIX environments, also known as record) locks, share reservations, delegations, or layouts unless specifically stated otherwise.


Secret State Verifier (SSV): The SSV is a unique secret key shared between a client and server. The SSV serves as the secret key for an internal (that is, internal to NFSv4.1) Generic Security Services (GSS) mechanism (the SSV GSS mechanism; see Section 2.10.9). The SSV GSS mechanism uses the SSV to compute message integrity code (MIC) and Wrap tokens. See Section for more details on how NFSv4.1 uses the SSV and the SSV GSS mechanism.

Secret State Verifier(SSV):SSVは、クライアントとサーバー間で共有される一意の秘密鍵です。 SSVは、内部(つまりNFSv4.1の内部)のGeneric Security Services(GSS)メカニズム(SSV GSSメカニズム。セクション2.10.9を参照)の秘密鍵として機能します。 SSV GSSメカニズムは、SSVを使用してメッセージ整合性コード(MIC)とラップトークンを計算します。 NFSv4.1がSSVおよびSSV GSSメカニズムを使用する方法の詳細については、セクション2.10.8.3を参照してください。

Server: The Server is the entity responsible for coordinating client access to a set of file systems and is identified by a server owner. A server can span multiple network addresses.


Server Owner: The server owner identifies the server to the client. The server owner consists of a major identifier and a minor identifier. When the client has two connections each to a peer with the same major identifier, the client assumes that both peers are the same server (the server namespace is the same via each connection) and that lock state is sharable across both connections. When each peer has both the same major and minor identifiers, the client assumes that each connection might be associable with the same session.


Stable Storage: Stable storage is storage from which data stored by an NFSv4.1 server can be recovered without data loss from multiple power failures (including cascading power failures, that is, several power failures in quick succession), operating system failures, and/or hardware failure of components other than the storage medium itself (such as disk, nonvolatile RAM, flash memory, etc.).


Some examples of stable storage that are allowable for an NFS server include: 1. Media commit of data; that is, the modified data has been successfully written to the disk media, for example, the disk platter.


2. An immediate reply disk drive with battery-backed, on-drive intermediate storage or uninterruptible power system (UPS).

2. バッテリバックアップ式のドライブ上の中間ストレージまたは無停電電源システム(UPS)を備えた即時応答ディスクドライブ。

3. Server commit of data with battery-backed intermediate storage and recovery software.

3. バッテリバックアップ式の中間ストレージおよびリカバリソフトウェアを使用した、サーバーによるデータのコミット。

4. Cache commit with uninterruptible power system (UPS) and recovery software.

4. 無停電電源システム(UPS)と回復ソフトウェアによるキャッシュコミット。

Stateid: A stateid is a 128-bit quantity returned by a server that uniquely defines the open and locking states provided by the server for a specific open-owner or lock-owner/open-owner pair for a specific file and type of lock.


Verifier: A verifier is a 64-bit quantity generated by the client that the server can use to determine if the client has restarted and lost all previous lock state.


1.7. Overview of NFSv4.1 Features
1.7. NFSv4.1機能の概要

The major features of the NFSv4.1 protocol will be reviewed in brief. This will be done to provide an appropriate context for both the reader who is familiar with the previous versions of the NFS protocol and the reader who is new to the NFS protocols. For the reader new to the NFS protocols, there is still a set of fundamental knowledge that is expected. The reader should be familiar with the External Data Representation (XDR) and Remote Procedure Call (RPC) protocols as described in [2] and [3]. A basic knowledge of file systems and distributed file systems is expected as well.

NFSv4.1プロトコルの主な機能について簡単に説明します。これは、NFSプロトコルの以前のバージョンに精通している読者と、NFSプロトコルに不慣れな読者の両方に適切なコンテキストを提供するために行われます。 NFSプロトコルを初めて使用する読者にとって、期待される基本的な知識のセットはまだあります。 [2]および[3]で説明されているように、読者は外部データ表現(XDR)およびリモートプロシージャコール(RPC)プロトコルに精通している必要があります。ファイルシステムと分散ファイルシステムの基本的な知識も必要です。

In general, this specification of NFSv4.1 will not distinguish those features added in minor version 1 from those present in the base protocol but will treat NFSv4.1 as a unified whole. See Section 1.8 for a summary of the differences between NFSv4.0 and NFSv4.1.

一般に、NFSv4.1のこの仕様は、マイナーバージョン1で追加された機能と基本プロトコルに存在する機能を区別しませんが、NFSv4.1を統一された全体として扱います。 NFSv4.0とNFSv4.1の違いの概要については、セクション1.8を参照してください。

1.7.1. RPC and Security
1.7.1. RPCとセキュリティ

As with previous versions of NFS, the External Data Representation (XDR) and Remote Procedure Call (RPC) mechanisms used for the NFSv4.1 protocol are those defined in [2] and [3]. To meet end-to-end security requirements, the RPCSEC_GSS framework [4] is used to extend the basic RPC security. With the use of RPCSEC_GSS, various mechanisms can be provided to offer authentication, integrity, and privacy to the NFSv4 protocol. Kerberos V5 is used as described in [5] to provide one security framework. With the use of RPCSEC_GSS, other mechanisms may also be specified and used for NFSv4.1 security.

以前のバージョンのNFSと同様に、NFSv4.1プロトコルに使用される外部データ表現(XDR)およびリモートプロシージャコール(RPC)メカニズムは、[2]および[3]で定義されたものです。エンドツーエンドのセキュリティ要件を満たすために、RPCSEC_GSSフレームワーク[4]を使用して、基本的なRPCセキュリティを拡張します。 RPCSEC_GSSを使用すると、NFSv4プロトコルに認証、整合性、およびプライバシーを提供するさまざまなメカニズムを提供できます。 Kerberos V5は、[5]で説明されているように使用され、1つのセキュリティフレームワークを提供します。 RPCSEC_GSSを使用すると、NFSv4.1セキュリティーのために他のメカニズムも指定および使用できます。

To enable in-band security negotiation, the NFSv4.1 protocol has operations that provide the client a method of querying the server about its policies regarding which security mechanisms must be used for access to the server's file system resources. With this, the client can securely match the security mechanism that meets the policies specified at both the client and server.


NFSv4.1 introduces parallel access (see Section, which is called pNFS. The security framework described in this section is significantly modified by the introduction of pNFS (see Section 12.9), because data access is sometimes not over RPC. The level of significance varies with the storage protocol (see Section 12.2.5) and can be as low as zero impact (see Section 13.12).


1.7.2. Protocol Structure
1.7.2. プロトコル構造 Core Protocol コアプロトコル

Unlike NFSv3, which used a series of ancillary protocols (e.g., NLM, NSM (Network Status Monitor), MOUNT), within all minor versions of NFSv4 a single RPC protocol is used to make requests to the server. Facilities that had been separate protocols, such as locking, are now integrated within a single unified protocol.

一連の補助プロトコル(NLM、NSM(ネットワークステータスモニター)、MOUNTなど)を使用したNFSv3とは異なり、NFSv4のすべてのマイナーバージョンでは、単一のRPCプロトコルを使用してサーバーにリクエストを送信します。ロックなどの個別のプロトコルであった機能は、現在、単一の統合プロトコルに統合されています。 Parallel Access 並列アクセス

Minor version 1 supports high-performance data access to a clustered server implementation by enabling a separation of metadata access and data access, with the latter done to multiple servers in parallel.


Such parallel data access is controlled by recallable objects known as "layouts", which are integrated into the protocol locking model. Clients direct requests for data access to a set of data servers specified by the layout via a data storage protocol which may be NFSv4.1 or may be another protocol.


Because the protocols used for parallel data access are not necessarily RPC-based, the RPC-based security model (Section 1.7.1) is obviously impacted (see Section 12.9). The degree of impact varies with the storage protocol (see Section 12.2.5) used for data access, and can be as low as zero (see Section 13.12).


1.7.3. File System Model
1.7.3. ファイルシステムモデル

The general file system model used for the NFSv4.1 protocol is the same as previous versions. The server file system is hierarchical with the regular files contained within being treated as opaque byte streams. In a slight departure, file and directory names are encoded with UTF-8 to deal with the basics of internationalization.


The NFSv4.1 protocol does not require a separate protocol to provide for the initial mapping between path name and filehandle. All file systems exported by a server are presented as a tree so that all file systems are reachable from a special per-server global root filehandle. This allows LOOKUP operations to be used to perform functions previously provided by the MOUNT protocol. The server provides any necessary pseudo file systems to bridge any gaps that arise due to unexported gaps between exported file systems.

NFSv4.1プロトコルは、パス名とファイルハンドル間の初期マッピングを提供するために、別個のプロトコルを必要としません。サーバーによってエクスポートされるすべてのファイルシステムはツリーとして表示されるため、すべてのファイルシステムはサーバーごとの特別なグローバルルートファイルハンドルから到達可能です。これにより、LOOKUP操作を使用して、以前にMOUNTプロトコルで提供されていた機能を実行できます。サーバーは、エクスポートされたファイルシステム間のエクスポートされていないギャップによって生じるギャップを埋めるために必要な疑似ファイルシステムを提供します。 Filehandles ファイルハンドル

As in previous versions of the NFS protocol, opaque filehandles are used to identify individual files and directories. Lookup-type and create operations translate file and directory names to filehandles, which are then used to identify objects in subsequent operations.


The NFSv4.1 protocol provides support for persistent filehandles, guaranteed to be valid for the lifetime of the file system object designated. In addition, it provides support to servers to provide filehandles with more limited validity guarantees, called volatile filehandles.

NFSv4.1プロトコルは、永続的なファイルハンドルのサポートを提供し、指定されたファイルシステムオブジェクトの存続期間中有効であることを保証します。さらに、それはサーバーにサポートを提供し、揮発性ファイルハンドルと呼ばれる、より限定された有効性保証を備えたファイルハンドルを提供します。 File Attributes ファイル属性

The NFSv4.1 protocol has a rich and extensible file object attribute structure, which is divided into REQUIRED, RECOMMENDED, and named attributes (see Section 5).


Several (but not all) of the REQUIRED attributes are derived from the attributes of NFSv3 (see the definition of the fattr3 data type in [31]). An example of a REQUIRED attribute is the file object's type (Section so that regular files can be distinguished from directories (also known as folders in some operating environments) and other types of objects. REQUIRED attributes are discussed in Section 5.1.

REQUIRED属性のいくつか(すべてではない)は、NFSv3の属性から派生しています([31]のfattr3データ型の定義を参照してください)。 REQUIRED属性の例は、ファイルオブジェクトのタイプ(項)です。これにより、通常のファイルをディレクトリ(一部の動作環境ではフォルダとも呼ばれます)や他のタイプのオブジェクトと区別できます。必須属性については、セクション5.1で説明します。

An example of three RECOMMENDED attributes are acl, sacl, and dacl. These attributes define an Access Control List (ACL) on a file object (Section 6). An ACL provides directory and file access control beyond the model used in NFSv3. The ACL definition allows for specification of specific sets of permissions for individual users and groups. In addition, ACL inheritance allows propagation of access permissions and restrictions down a directory tree as file system objects are created. RECOMMENDED attributes are discussed in Section 5.2.

3つのRECOMMENDED属性の例は、acl、sacl、daclです。これらの属性は、ファイルオブジェクトのアクセス制御リスト(ACL)を定義します(セクション6)。 ACLは、NFSv3で使用されるモデルを超えたディレクトリおよびファイルアクセス制御を提供します。 ACL定義では、個々のユーザーとグループに特定の権限セットを指定できます。さらに、ACLの継承により、ファイルシステムオブジェクトが作成されたときに、アクセス許可と制限をディレクトリツリーに伝達できます。推奨される属性については、セクション5.2で説明します。

A named attribute is an opaque byte stream that is associated with a directory or file and referred to by a string name. Named attributes are meant to be used by client applications as a method to associate application-specific data with a regular file or directory. NFSv4.1 modifies named attributes relative to NFSv4.0 by tightening the allowed operations in order to prevent the development of non-interoperable implementations. Named attributes are discussed in Section 5.3.

名前付き属性は、ディレクトリまたはファイルに関連付けられ、文字列名で参照される不透明なバイトストリームです。名前付き属性は、アプリケーション固有のデータを通常のファイルまたはディレクトリに関連付ける方法としてクライアントアプリケーションによって使用されることを意図しています。 NFSv4.1は、相互運用性のない実装の開発を防ぐために、許可される操作を厳しくすることにより、NFSv4.0に関連する名前付き属性を変更します。名前付き属性については、セクション5.3で説明します。 Multi-Server Namespace マルチサーバー名前空間

NFSv4.1 contains a number of features to allow implementation of namespaces that cross server boundaries and that allow and facilitate a non-disruptive transfer of support for individual file systems between servers. They are all based upon attributes that allow one file system to specify alternate or new locations for that file system.


These attributes may be used together with the concept of absent file systems, which provide specifications for additional locations but no actual file system content. This allows a number of important facilities:


o Location attributes may be used with absent file systems to implement referrals whereby one server may direct the client to a file system provided by another server. This allows extensive multi-server namespaces to be constructed.

o ロケーション属性は、存在しないファイルシステムで使用して紹介を実装することができます。これにより、あるサーバーが別のサーバーが提供するファイルシステムにクライアントを誘導できます。これにより、広範なマルチサーバー名前空間を構築できます。

o Location attributes may be provided for present file systems to provide the locations of alternate file system instances or replicas to be used in the event that the current file system instance becomes unavailable.

o 現在のファイルシステムインスタンスが使用できなくなった場合に使用される代替ファイルシステムインスタンスまたはレプリカの場所を提供するために、現在のファイルシステムに場所属性を提供できます。

o Location attributes may be provided when a previously present file system becomes absent. This allows non-disruptive migration of file systems to alternate servers.

o 以前に存在していたファイルシステムが存在しなくなったときに、場所属性が提供される場合があります。これにより、ファイルシステムを無停止で代替サーバーに移行できます。

1.7.4. Locking Facilities
1.7.4. ロック施設

As mentioned previously, NFSv4.1 is a single protocol that includes locking facilities. These locking facilities include support for many types of locks including a number of sorts of recallable locks.


Recallable locks such as delegations allow the client to be assured that certain events will not occur so long as that lock is held. When circumstances change, the lock is recalled via a callback request. The assurances provided by delegations allow more extensive caching to be done safely when circumstances allow it.


The types of locks are:


o Share reservations as established by OPEN operations.

o OPEN操作によって確立された予約を共有します。

o Byte-range locks.

o バイト範囲ロック。

o File delegations, which are recallable locks that assure the holder that inconsistent opens and file changes cannot occur so long as the delegation is held.

o ファイルの委任。これは、委任が保持されている限り、一貫性のないオープンとファイルの変更が発生しないことを保持者に保証するリコール可能なロックです。

o Directory delegations, which are recallable locks that assure the holder that inconsistent directory modifications cannot occur so long as the delegation is held.

o 委任が保持されている限り、一貫性のないディレクトリ変更が発生しないことを保持者に保証する、呼び出し可能なロックであるディレクトリ委任。

o Layouts, which are recallable objects that assure the holder that direct access to the file data may be performed directly by the client and that no change to the data's location that is inconsistent with that access may be made so long as the layout is held.

o レイアウトは、ファイルデータへの直接アクセスをクライアントが直接実行できること、およびレイアウトが保持されている限り、そのアクセスと矛盾するデータの場所への変更が行われないことを保証するリコール可能なオブジェクトです。

All locks for a given client are tied together under a single client-wide lease. All requests made on sessions associated with the client renew that lease. When the client's lease is not promptly renewed, the client's locks are subject to revocation. In the event of server restart, clients have the opportunity to safely reclaim their locks within a special grace period.


1.8. Differences from NFSv4.0
1.8. NFSv4.0との違い

The following summarizes the major differences between minor version 1 and the base protocol:


o Implementation of the sessions model (Section 2.10).

o セッションモデルの実装(セクション2.10)。

o Parallel access to data (Section 12).

o データへの並列アクセス(セクション12)。

o Addition of the RECLAIM_COMPLETE operation to better structure the lock reclamation process (Section 18.51).

o RECLAIM_COMPLETE操作を追加して、ロック再利用プロセスをより適切に構成します(セクション18.51)。

o Enhanced delegation support as follows.

o 次のように強化された委任サポート。

* Delegations on directories and other file types in addition to regular files (Section 18.39, Section 18.49).

* 通常のファイル(セクション18.39、セクション18.49)に加えて、ディレクトリおよびその他のファイルタイプの委任。

* Operations to optimize acquisition of recalled or denied delegations (Section 18.49, Section 20.5, Section 20.7).

* リコールまたは拒否された委任の取得を最適化する操作(セクション18.49、セクション20.5、セクション20.7)。

* Notifications of changes to files and directories (Section 18.39, Section 20.4).

* ファイルとディレクトリへの変更の通知(セクション18.39、セクション20.4)。

* A method to allow a server to indicate that it is recalling one or more delegations for resource management reasons, and thus a method to allow the client to pick which delegations to return (Section 20.6).

* サーバーがリソース管理上の理由で1つ以上の委任を呼び出していることを示すことができるメソッド。したがって、クライアントが返す委任を選択できるようにするメソッド(セクション20.6)。

o Attributes can be set atomically during exclusive file create via the OPEN operation (see the new EXCLUSIVE4_1 creation method in Section 18.16).

o 属性は、OPEN操作による排他的なファイルの作成中にアトミックに設定できます(セクション18.16の新しいEXCLUSIVE4_1作成メソッドを参照)。

o Open files can be preserved if removed and the hard link count ("hard link" is defined in an Open Group [Section 3.191 of Chapter 3 of Base Definitions of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version (, ISBN 1931624232"">6] standard) goes to zero, thus obviating the need for clients to rename deleted files to partially hidden names -- colloquially called "silly rename" (see the new OPEN4_RESULT_PRESERVE_UNLINKED reply flag in Section 18.16).

o オープンファイルは、削除されても保持され、ハードリンクカウント(「ハードリンク」はOpen Groupで定義されます[Open Group基本仕様のベース定義の第3章のセクション3.191、IEEE Std 1003.1、2004 Edition、HTMLバージョン(、ISBN 1931624232 ""> 6]標準)はゼロになり、クライアントが削除されたファイルの名前を部分的に非表示の名前に変更する必要がなくなります。セクション18.16)。

o Improved compatibility with Microsoft Windows for Access Control Lists (Section 6.2.3, Section 6.2.2, Section

o Microsoft Windowsとのアクセス制御リストの互換性が向上しました(セクション6.2.3、セクション6.2.2、セクション6.4.3.2)。

o Data retention (Section 5.13).

o データ保持(セクション5.13)。

o Identification of the implementation of the NFS client and server (Section 18.35).

o NFSクライアントとサーバーの実装の識別(セクション18.35)。

o Support for notification of the availability of byte-range locks (see the new OPEN4_RESULT_MAY_NOTIFY_LOCK reply flag in Section 18.16 and see Section 20.11).

o バイト範囲ロックの可用性の通知のサポート(セクション18.16の新しいOPEN4_RESULT_MAY_NOTIFY_LOCK応答フラグとセクション20.11を参照)。

o In NFSv4.1, LIPKEY and SPKM-3 are not required security mechanisms [32].

o NFSv4.1では、LIPKEYとSPKM-3は必須のセキュリティメカニズムではありません[32]。

2. Core Infrastructure
2. コアインフラストラクチャ
2.1. Introduction
2.1. はじめに

NFSv4.1 relies on core infrastructure common to nearly every operation. This core infrastructure is described in the remainder of this section.


2.2. RPC and XDR
2.2. RPCとXDR

The NFSv4.1 protocol is a Remote Procedure Call (RPC) application that uses RPC version 2 and the corresponding eXternal Data Representation (XDR) as defined in [3] and [2].


2.2.1. RPC-Based Security
2.2.1. RPCベースのセキュリティ

Previous NFS versions have been thought of as having a host-based authentication model, where the NFS server authenticates the NFS client, and trusts the client to authenticate all users. Actually, NFS has always depended on RPC for authentication. One of the first forms of RPC authentication, AUTH_SYS, had no strong authentication and required a host-based authentication approach. NFSv4.1 also depends on RPC for basic security services and mandates RPC support for a user-based authentication model. The user-based authentication model has user principals authenticated by a server, and in turn the server authenticated by user principals. RPC provides some basic security services that are used by NFSv4.1.

以前のNFSバージョンは、NFSサーバーがNFSクライアントを認証し、クライアントを信頼してすべてのユーザーを認証するホストベースの認証モデルを持つと考えられていました。実際、NFSは常にRPCに依存して認証を行ってきました。 RPC認証の最初の形式の1つであるAUTH_SYSには強力な認証がなく、ホストベースの認証アプローチが必要でした。 NFSv4.1は、基本的なセキュリティサービスをRPCに依存し、ユーザーベースの認証モデルのRPCサポートを義務付けています。ユーザーベースの認証モデルでは、サーバーによって認証されたユーザープリンシパルがあり、サーバーはユーザープリンシパルによって認証されています。 RPCは、NFSv4.1で使用されるいくつかの基本的なセキュリティサービスを提供します。 RPC Security Flavors RPCセキュリティフレーバー

As described in Section 7.2 ("Authentication") of [3], RPC security is encapsulated in the RPC header, via a security or authentication flavor, and information specific to the specified security flavor. Every RPC header conveys information used to identify and authenticate a client and server. As discussed in Section, some security flavors provide additional security services.


NFSv4.1 clients and servers MUST implement RPCSEC_GSS. (This requirement to implement is not a requirement to use.) Other flavors, such as AUTH_NONE and AUTH_SYS, MAY be implemented as well.

NFSv4.1クライアントとサーバーは、RPCSEC_GSSを実装する必要があります。 (この実装するための要件は、使用するための要件ではありません。)AUTH_NONEやAUTH_SYSなどの他のフレーバーも実装できます(MAY)。 RPCSEC_GSS and Security Services RPCSEC_GSSおよびセキュリティサービス

RPCSEC_GSS [4] uses the functionality of GSS-API [7]. This allows for the use of various security mechanisms by the RPC layer without the additional implementation overhead of adding RPC security flavors.

RPCSEC_GSS [4]は、GSS-API [7]の機能を使用します。これにより、RPCセキュリティフレーバーを追加することによる追加の実装オーバーヘッドなしで、RPCレイヤーによるさまざまなセキュリティメカニズムの使用が可能になります。 Identification, Authentication, Integrity, Privacy 識別、認証、完全性、プライバシー

Via the GSS-API, RPCSEC_GSS can be used to identify and authenticate users on clients to servers, and servers to users. It can also perform integrity checking on the entire RPC message, including the RPC header, and on the arguments or results. Finally, privacy, usually via encryption, is a service available with RPCSEC_GSS. Privacy is performed on the arguments and results. Note that if privacy is selected, integrity, authentication, and identification are enabled. If privacy is not selected, but integrity is selected, authentication and identification are enabled. If integrity and privacy are not selected, but authentication is enabled, identification is enabled. RPCSEC_GSS does not provide identification as a separate service.

GSS-APIを介して、RPCSEC_GSSを使用して、クライアントからサーバーへのユーザー、およびサーバーからユーザーへのユーザーを識別および認証できます。また、RPCヘッダーを含むRPCメッセージ全体、および引数や結果に対して整合性チェックを実行できます。最後に、通常は暗号化によるプライバシーは、RPCSEC_GSSで利用可能なサービスです。プライバシーは引数と結果に基づいて実行されます。プライバシーを選択すると、整合性、認証、および識別が有効になることに注意してください。プライバシーは選択されていないが、整合性は選択されている場合、認証と識別が有効になります。整合性とプライバシーが選択されていないが、認証が有効になっている場合、識別が有効になります。 RPCSEC_GSSは、個別のサービスとして識別を提供しません。

Although GSS-API has an authentication service distinct from its privacy and integrity services, GSS-API's authentication service is not used for RPCSEC_GSS's authentication service. Instead, each RPC request and response header is integrity protected with the GSS-API integrity service, and this allows RPCSEC_GSS to offer per-RPC authentication and identity. See [4] for more information.


NFSv4.1 client and servers MUST support RPCSEC_GSS's integrity and authentication service. NFSv4.1 servers MUST support RPCSEC_GSS's privacy service. NFSv4.1 clients SHOULD support RPCSEC_GSS's privacy service.

NFSv4.1クライアントとサーバーは、RPCSEC_GSSの整合性と認証サービスをサポートする必要があります。 NFSv4.1サーバーは、RPCSEC_GSSのプライバシーサービスをサポートする必要があります。 NFSv4.1クライアントはRPCSEC_GSSのプライバシーサービスをサポートする必要があります(SHOULD)。 Security Mechanisms for NFSv4.1 NFSv4.1のセキュリティメカニズム

RPCSEC_GSS, via GSS-API, normalizes access to mechanisms that provide security services. Therefore, NFSv4.1 clients and servers MUST support the Kerberos V5 security mechanism.

RPCSEC_GSSは、GSS-APIを介して、セキュリティサービスを提供するメカニズムへのアクセスを正規化します。したがって、NFSv4.1クライアントとサーバーはKerberos V5セキュリティメカニズムをサポートする必要があります。

The use of RPCSEC_GSS requires selection of mechanism, quality of protection (QOP), and service (authentication, integrity, privacy). For the mandated security mechanisms, NFSv4.1 specifies that a QOP of zero is used, leaving it up to the mechanism or the mechanism's configuration to map QOP zero to an appropriate level of protection. Each mandated mechanism specifies a minimum set of cryptographic algorithms for implementing integrity and privacy. NFSv4.1 clients and servers MUST be implemented on operating environments that comply with the REQUIRED cryptographic algorithms of each REQUIRED mechanism.

RPCSEC_GSSを使用するには、メカニズム、保護品質(QOP)、およびサービス(認証、整合性、プライバシー)を選択する必要があります。必須のセキュリティメカニズムの場合、NFSv4.1はゼロのQOPが使用されることを指定し、メカニズムまたはメカニズムの構成に任せて、QOPゼロを適切な保護レベルにマップします。各必須メカニズムは、整合性とプライバシーを実装するための暗号化アルゴリズムの最小セットを指定します。 NFSv4.1クライアントとサーバーは、各必須メカニズムの必須暗号化アルゴリズムに準拠する動作環境に実装する必要があります。 Kerberos V5 Kerberos V5

The Kerberos V5 GSS-API mechanism as described in [5] MUST be implemented with the RPCSEC_GSS services as specified in the following table:

[5]で説明されているKerberos V5 GSS-APIメカニズムは、次の表で指定されているRPCSEC_GSSサービスを使用して実装する必要があります。

      column descriptions:
      1 == number of pseudo flavor
      2 == name of pseudo flavor
      3 == mechanism's OID
      4 == RPCSEC_GSS service
      5 == NFSv4.1 clients MUST support
      6 == NFSv4.1 servers MUST support
      1      2        3                    4                     5   6
      390003 krb5     1.2.840.113554.1.2.2 rpc_gss_svc_none      yes yes
      390004 krb5i    1.2.840.113554.1.2.2 rpc_gss_svc_integrity yes yes
      390005 krb5p    1.2.840.113554.1.2.2 rpc_gss_svc_privacy    no yes

Note that the number and name of the pseudo flavor are presented here as a mapping aid to the implementor. Because the NFSv4.1 protocol includes a method to negotiate security and it understands the GSS-API mechanism, the pseudo flavor is not needed. The pseudo flavor is needed for the NFSv3 since the security negotiation is done via the MOUNT protocol as described in [33].

疑似フレーバーの数と名前は、実装者へのマッピング支援としてここに示されていることに注意してください。 NFSv4.1プロトコルには、セキュリティをネゴシエートするメソッドが含まれており、GSS-APIメカニズムを理解しているため、疑似フレーバーは必要ありません。 [33]で説明されているように、セキュリティネゴシエーションはMOUNTプロトコルを介して行われるため、NFSv3には疑似フレーバーが必要です。

At the time NFSv4.1 was specified, the Advanced Encryption Standard (AES) with HMAC-SHA1 was a REQUIRED algorithm set for Kerberos V5. In contrast, when NFSv4.0 was specified, weaker algorithm sets were REQUIRED for Kerberos V5, and were REQUIRED in the NFSv4.0 specification, because the Kerberos V5 specification at the time did not specify stronger algorithms. The NFSv4.1 specification does not specify REQUIRED algorithms for Kerberos V5, and instead, the implementor is expected to track the evolution of the Kerberos V5 standard if and when stronger algorithms are specified.

NFSv4.1が指定された当時、HMAC-SHA1を備えたAdvanced Encryption Standard(AES)は、Kerberos V5に必要なアルゴリズムセットでした。対照的に、NFSv4.0が指定された場合、Kerberos V5仕様はより強力なアルゴリズムを指定しなかったため、より弱いアルゴリズムセットはKerberos V5に必須であり、NFSv4.0仕様で必須でした。 NFSv4.1仕様では、Kerberos V5の必須アルゴリズムは指定されていません。代わりに、より強力なアルゴリズムが指定されている場合、実装者はKerberos V5標準の進化を追跡することが期待されています。 Security Considerations for Cryptographic Algorithms in Kerberos V5 Kerberos V5の暗号化アルゴリズムのセキュリティに関する考慮事項

When deploying NFSv4.1, the strength of the security achieved depends on the existing Kerberos V5 infrastructure. The algorithms of Kerberos V5 are not directly exposed to or selectable by the client or server, so there is some due diligence required by the user of NFSv4.1 to ensure that security is acceptable where needed.

NFSv4.1を導入する場合、達成されるセキュリティの強度は、既存のKerberos V5インフラストラクチャに依存します。 Kerberos V5のアルゴリズムは、クライアントやサーバーに直接公開されたり、選択したりすることができないため、NFSv4.1のユーザーは、必要な場所でセキュリティを確実に受け入れるために、ある程度の注意が必要です。 GSS Server Principal GSSサーバープリンシパル

Regardless of what security mechanism under RPCSEC_GSS is being used, the NFS server MUST identify itself in GSS-API via a GSS_C_NT_HOSTBASED_SERVICE name type. GSS_C_NT_HOSTBASED_SERVICE names are of the form:

RPCSEC_GSSで使用されているセキュリティメカニズムに関係なく、NFSサーバーはGSS_C_NT_HOSTBASED_SERVICE名前タイプを介してGSS-APIで自身を識別しなければなりません(MUST)。 GSS_C_NT_HOSTBASED_SERVICEの名前の形式は次のとおりです。


service @ hostname

For NFS, the "service" element is




Implementations of security mechanisms will convert nfs@hostname to various different forms. For Kerberos V5, the following form is RECOMMENDED:

セキュリティメカニズムを実装すると、nfs @ hostnameがさまざまな形式に変換されます。 Kerberos V5の場合、次の形式が推奨されます。


nfs /ホスト名


A significant departure from the versions of the NFS protocol before NFSv4 is the introduction of the COMPOUND procedure. For the NFSv4 protocol, in all minor versions, there are exactly two RPC procedures, NULL and COMPOUND. The COMPOUND procedure is defined as a series of individual operations and these operations perform the sorts of functions performed by traditional NFS procedures.

NFSv4より前のバージョンのNFSプロトコルとの大きな違いは、COMPOUNDプロシージャの導入です。 NFSv4プロトコルの場合、すべてのマイナーバージョンには、NULLとCOMPOUNDの2つのRPCプロシージャがあります。 COMPOUNDプロシージャは一連の個別の操作として定義され、これらの操作は従来のNFSプロシージャによって実行される種類の機能を実行します。

The operations combined within a COMPOUND request are evaluated in order by the server, without any atomicity guarantees. A limited set of facilities exist to pass results from one operation to another. Once an operation returns a failing result, the evaluation ends and the results of all evaluated operations are returned to the client.


With the use of the COMPOUND procedure, the client is able to build simple or complex requests. These COMPOUND requests allow for a reduction in the number of RPCs needed for logical file system operations. For example, multi-component look up requests can be constructed by combining multiple LOOKUP operations. Those can be further combined with operations such as GETATTR, READDIR, or OPEN plus READ to do more complicated sets of operation without incurring additional latency.


NFSv4.1 also contains a considerable set of callback operations in which the server makes an RPC directed at the client. Callback RPCs have a similar structure to that of the normal server requests. In all minor versions of the NFSv4 protocol, there are two callback RPC procedures: CB_NULL and CB_COMPOUND. The CB_COMPOUND procedure is defined in an analogous fashion to that of COMPOUND with its own set of callback operations.

NFSv4.1には、サーバーがRPCをクライアントに向けるコールバック操作のかなりのセットも含まれています。コールバックRPCは、通常のサーバー要求と同様の構造を持っています。 NFSv4プロトコルのすべてのマイナーバージョンには、CB_NULLとCB_COMPOUNDの2つのコールバックRPCプロシージャがあります。 CB_COMPOUNDプロシージャは、独自のコールバック操作のセットを持つCOMPOUNDのプロシージャと同様に定義されます。

The addition of new server and callback operations within the COMPOUND and CB_COMPOUND request framework provides a means of extending the protocol in subsequent minor versions.


Except for a small number of operations needed for session creation, server requests and callback requests are performed within the context of a session. Sessions provide a client context for every request and support robust reply protection for non-idempotent requests.


2.4. Client Identifiers and Client Owners
2.4. クライアント識別子とクライアント所有者

For each operation that obtains or depends on locking state, the specific client needs to be identifiable by the server.


Each distinct client instance is represented by a client ID. A client ID is a 64-bit identifier representing a specific client at a given time. The client ID is changed whenever the client re-initializes, and may change when the server re-initializes. Client IDs are used to support lock identification and crash recovery.


During steady state operation, the client ID associated with each operation is derived from the session (see Section 2.10) on which the operation is sent. A session is associated with a client ID when the session is created.


Unlike NFSv4.0, the only NFSv4.1 operations possible before a client ID is established are those needed to establish the client ID.


A sequence of an EXCHANGE_ID operation followed by a CREATE_SESSION operation using that client ID (eir_clientid as returned from EXCHANGE_ID) is required to establish and confirm the client ID on the server. Establishment of identification by a new incarnation of the client also has the effect of immediately releasing any locking state that a previous incarnation of that same client might have had on the server. Such released state would include all byte-range lock, share reservation, layout state, and -- where the server supports neither the CLAIM_DELEGATE_PREV nor CLAIM_DELEG_CUR_FH claim types -- all delegation state associated with the same client with the same identity. For discussion of delegation state recovery, see Section 10.2.1. For discussion of layout state recovery, see Section 12.7.1.


Releasing such state requires that the server be able to determine that one client instance is the successor of another. Where this cannot be done, for any of a number of reasons, the locking state will remain for a time subject to lease expiration (see Section 8.3) and the new client will need to wait for such state to be removed, if it makes conflicting lock requests.


   Client identification is encapsulated in the following client owner
   data type:
   struct client_owner4 {
           verifier4       co_verifier;
           opaque          co_ownerid<NFS4_OPAQUE_LIMIT>;

The first field, co_verifier, is a client incarnation verifier. The server will start the process of canceling the client's leased state if co_verifier is different than what the server has previously recorded for the identified client (as specified in the co_ownerid field).

最初のフィールドco_verifierは、クライアントインカネーションベリファイアです。 co_verifierが、識別されたクライアントに対してサーバーが以前に記録したもの(co_owneridフィールドで指定)と異なる場合、サーバーはクライアントのリース状態をキャンセルするプロセスを開始します。

The second field, co_ownerid, is a variable length string that uniquely defines the client so that subsequent instances of the same client bear the same co_ownerid with a different verifier.


There are several considerations for how the client generates the co_ownerid string:


o The string should be unique so that multiple clients do not present the same string. The consequences of two clients presenting the same string range from one client getting an error to one client having its leased state abruptly and unexpectedly cancelled.

o 複数のクライアントが同じ文字列を提示しないように、文字列は一意である必要があります。 2つのクライアントが同じ文字列を提示することによる影響は、1つのクライアントがエラーを取得することから、1つのクライアントがリース状態を突然予期せずにキャンセルすることまでさまざまです。

o The string should be selected so that subsequent incarnations (e.g., restarts) of the same client cause the client to present the same string. The implementor is cautioned from an approach that requires the string to be recorded in a local file because this precludes the use of the implementation in an environment where there is no local disk and all file access is from an NFSv4.1 server.

o 同じクライアントの後続のインカネーション(たとえば、再起動)がクライアントに同じ文字列を提示させるように、文字列を選択する必要があります。ローカルディスクがなく、すべてのファイルアクセスがNFSv4.1サーバーからである環境で実装を使用できないため、実装者は、文字列をローカルファイルに記録する必要があるアプローチから警告を受けます。

o The string should be the same for each server network address that the client accesses. This way, if a server has multiple interfaces, the client can trunk traffic over multiple network paths as described in Section 2.10.5. (Note: the precise opposite was advised in the NFSv4.0 specification [30].)

o 文字列は、クライアントがアクセスする各サーバーネットワークアドレスで同じである必要があります。このようにして、サーバーに複数のインターフェースがある場合、クライアントはセクション2.10.5で説明されているように複数のネットワークパスを介してトラフィックをトランクできます。 (注:NFSv4.0仕様[30]では、正反対が推奨されていました。)

o The algorithm for generating the string should not assume that the client's network address will not change, unless the client implementation knows it is using statically assigned network addresses. This includes changes between client incarnations and even changes while the client is still running in its current incarnation. Thus, with dynamic address assignment, if the client includes just the client's network address in the co_ownerid string, there is a real risk that after the client gives up the network address, another client, using a similar algorithm for generating the co_ownerid string, would generate a conflicting co_ownerid string.


Given the above considerations, an example of a well-generated co_ownerid string is one that includes:


o If applicable, the client's statically assigned network address.

o 該当する場合、クライアントに静的に割り当てられたネットワークアドレス。

o Additional information that tends to be unique, such as one or more of:

o 以下の1つ以上など、一意になる傾向がある追加情報。

* The client machine's serial number (for privacy reasons, it is best to perform some one-way function on the serial number).

* クライアントマシンのシリアル番号(プライバシー上の理由から、シリアル番号に対して一方向の機能を実行することをお勧めします)。

* A Media Access Control (MAC) address (again, a one-way function should be performed).

* メディアアクセスコントロール(MAC)アドレス(ここでも、一方向の機能を実行する必要があります)。

* The timestamp of when the NFSv4.1 software was first installed on the client (though this is subject to the previously mentioned caution about using information that is stored in a file, because the file might only be accessible over NFSv4.1).

* NFSv4.1ソフトウェアがクライアントに最初にインストールされたときのタイムスタンプ(ただし、ファイルにはNFSv4.1からしかアクセスできないため、ファイルに格納されている情報の使用に関する前述の注意が必要です)。

* A true random number. However, since this number ought to be the same between client incarnations, this shares the same problem as that of using the timestamp of the software installation.

* 真の乱数。ただし、この数はクライアントのインカネーション間で同じである必要があるため、ソフトウェアインストールのタイムスタンプを使用する場合と同じ問題を共有します。

o For a user-level NFSv4.1 client, it should contain additional information to distinguish the client from other user-level clients running on the same host, such as a process identifier or other unique sequence.

o ユーザーレベルのNFSv4.1クライアントの場合は、プロセス識別子や他の一意のシーケンスなど、同じホスト上で実行されている他のユーザーレベルのクライアントからクライアントを区別するための追加情報を含める必要があります。

The client ID is assigned by the server (the eir_clientid result from EXCHANGE_ID) and should be chosen so that it will not conflict with a client ID previously assigned by the server. This applies across server restarts.


In the event of a server restart, a client may find out that its current client ID is no longer valid when it receives an NFS4ERR_STALE_CLIENTID error. The precise circumstances depend on the characteristics of the sessions involved, specifically whether the session is persistent (see Section, but in each case the client will receive this error when it attempts to establish a new session with the existing client ID and receives the error NFS4ERR_STALE_CLIENTID, indicating that a new client ID needs to be obtained via EXCHANGE_ID and the new session established with that client ID.


When a session is not persistent, the client will find out that it needs to create a new session as a result of getting an NFS4ERR_BADSESSION, since the session in question was lost as part of a server restart. When the existing client ID is presented to a server as part of creating a session and that client ID is not recognized, as would happen after a server restart, the server will reject the request with the error NFS4ERR_STALE_CLIENTID.


In the case of the session being persistent, the client will re-establish communication using the existing session after the restart. This session will be associated with the existing client ID but may only be used to retransmit operations that the client previously transmitted and did not see replies to. Replies to operations that the server previously performed will come from the reply cache; otherwise, NFS4ERR_DEADSESSION will be returned. Hence, such a session is referred to as "dead". In this situation, in order to perform new operations, the client needs to establish a new session. If an attempt is made to establish this new session with the existing client ID, the server will reject the request with NFS4ERR_STALE_CLIENTID.


When NFS4ERR_STALE_CLIENTID is received in either of these situations, the client needs to obtain a new client ID by use of the EXCHANGE_ID operation, then use that client ID as the basis of a new session, and then proceed to any other necessary recovery for the server restart case (see Section 8.4.2).


See the descriptions of EXCHANGE_ID (Section 18.35) and CREATE_SESSION (Section 18.36) for a complete specification of these operations.


2.4.1. Upgrade from NFSv4.0 to NFSv4.1
2.4.1. NFSv4.0からNFSv4.1へのアップグレード

To facilitate upgrade from NFSv4.0 to NFSv4.1, a server may compare a value of data type client_owner4 in an EXCHANGE_ID with a value of data type nfs_client_id4 that was established using the SETCLIENTID operation of NFSv4.0. A server that does so will allow an upgraded client to avoid waiting until the lease (i.e., the lease established by the NFSv4.0 instance client) expires. This requires that the value of data type client_owner4 be constructed the same way as the value of data type nfs_client_id4. If the latter's contents included the server's network address (per the recommendations of the NFSv4.0 specification [30]), and the NFSv4.1 client does not wish to use a client ID that prevents trunking, it should send two EXCHANGE_ID operations. The first EXCHANGE_ID will have a client_owner4 equal to the nfs_client_id4. This will clear the state created by the NFSv4.0 client. The second EXCHANGE_ID will not have the server's network address. The state created for the second EXCHANGE_ID will not have to wait for lease expiration, because there will be no state to expire.

NFSv4.0からNFSv4.1へのアップグレードを容易にするために、サーバーはEXCHANGE_IDのデータ型client_owner4の値を、NFSv4.0のSETCLIENTID操作を使用して確立されたデータ型nfs_client_id4の値と比較する場合があります。これを行うサーバーにより、アップグレードされたクライアントは、リース(つまり、NFSv4.0インスタンスクライアントによって確立されたリース)が期限切れになるまで待機する必要がなくなります。これには、データ型client_owner4の値がデータ型nfs_client_id4の値と同じ方法で構築される必要があります。後者のコンテンツにサーバーのネットワークアドレスが含まれている場合(NFSv4.0仕様[30]の推奨に従って)、NFSv4.1クライアントはトランキングを妨げるクライアントIDを使用したくない場合、2つのEXCHANGE_ID操作を送信する必要があります。最初のEXCHANGE_IDには、nfs_client_id4と等しいclient_owner4があります。これにより、NFSv4.0クライアントによって作成された状態がクリアされます。 2番目のEXCHANGE_IDには、サーバーのネットワークアドレスは含まれません。 2番目のEXCHANGE_IDに対して作成された状態は、期限切れになる状態がないため、リースの期限切れを待つ必要はありません。

2.4.2. Server Release of Client ID
2.4.2. クライアントIDのサーバーリリース

NFSv4.1 introduces a new operation called DESTROY_CLIENTID (Section 18.50), which the client SHOULD use to destroy a client ID it no longer needs. This permits graceful, bilateral release of a client ID. The operation cannot be used if there are sessions associated with the client ID, or state with an unexpired lease.


If the server determines that the client holds no associated state for its client ID (associated state includes unrevoked sessions, opens, locks, delegations, layouts, and wants), the server MAY choose to unilaterally release the client ID in order to conserve resources. If the client contacts the server after this release, the server MUST ensure that the client receives the appropriate error so that it will use the EXCHANGE_ID/CREATE_SESSION sequence to establish a new client ID. The server ought to be very hesitant to release a client ID since the resulting work on the client to recover from such an event will be the same burden as if the server had failed and restarted. Typically, a server would not release a client ID unless there had been no activity from that client for many minutes. As long as there are sessions, opens, locks, delegations, layouts, or wants, the server MUST NOT release the client ID. See Section for discussion on releasing inactive sessions.

クライアントがそのクライアントIDに関連付けられた状態を保持していないとサーバーが判断した場合(関連付けられた状態には、取り消されていないセッション、オープン、ロック、委任、レイアウト、および要求が含まれます)、サーバーはリソースを節約するために一方的にクライアントIDを解放することを選択できます(MAY)。このリリース後にクライアントがサーバーに接続する場合、サーバーは、クライアントが適切なエラーを受信し、EXCHANGE_ID / CREATE_SESSIONシーケンスを使用して新しいクライアントIDを確立するようにする必要があります。そのようなイベントから回復するためのクライアントでの結果的な作業は、サーバーに障害が発生して再起動した場合と同じ負担になるため、サーバーはクライアントIDを解放することを非常にためらう必要があります。通常、サーバーは、そのクライアントから何分間もアクティビティがない場合を除いて、クライアントIDを解放しません。セッション、オープン、ロック、委任、レイアウト、または要求がある限り、サーバーはクライアントIDを解放してはなりません(MUST NOT)。非アクティブなセッションの解放については、項を参照してください。

2.4.3. Resolving Client Owner Conflicts
2.4.3. クライアント所有者の競合を解決する

When the server gets an EXCHANGE_ID for a client owner that currently has no state, or that has state but the lease has expired, the server MUST allow the EXCHANGE_ID and confirm the new client ID if followed by the appropriate CREATE_SESSION.


When the server gets an EXCHANGE_ID for a new incarnation of a client owner that currently has an old incarnation with state and an unexpired lease, the server is allowed to dispose of the state of the previous incarnation of the client owner if one of the following is true:


o The principal that created the client ID for the client owner is the same as the principal that is sending the EXCHANGE_ID operation. Note that if the client ID was created with SP4_MACH_CRED state protection (Section 18.35), the principal MUST be based on RPCSEC_GSS authentication, the RPCSEC_GSS service used MUST be integrity or privacy, and the same GSS mechanism and principal MUST be used as that used when the client ID was created.


o The client ID was established with SP4_SSV protection (Section 18.35, Section and the client sends the EXCHANGE_ID with the security flavor set to RPCSEC_GSS using the GSS SSV mechanism (Section 2.10.9).

o クライアントIDはSP4_SSV保護で確立され(セクション18.35、セクション2.10.8.3)、クライアントはGSS SSVメカニズムを使用してセキュリティフレーバーをRPCSEC_GSSに設定したEXCHANGE_IDを送信します(セクション2.10.9)。

o The client ID was established with SP4_SSV protection, and under the conditions described herein, the EXCHANGE_ID was sent with SP4_MACH_CRED state protection. Because the SSV might not persist across client and server restart, and because the first time a client sends EXCHANGE_ID to a server it does not have an SSV, the client MAY send the subsequent EXCHANGE_ID without an SSV RPCSEC_GSS handle. Instead, as with SP4_MACH_CRED protection, the principal MUST be based on RPCSEC_GSS authentication, the RPCSEC_GSS service used MUST be integrity or privacy, and the same GSS mechanism and principal MUST be used as that used when the client ID was created.

o クライアントIDはSP4_SSV保護で確立され、ここで説明されている条件下で、EXCHANGE_IDはSP4_MACH_CRED状態保護で送信されました。 SSVはクライアントとサーバーの再起動後は保持されない可能性があり、クライアントが初めてEXCHANGE_IDをサーバーに送信するときにSSVがないため、クライアントはSSV RPCSEC_GSSハンドルなしで後続のEXCHANGE_IDを送信できます(MAY)。代わりに、SP4_MACH_CRED保護と同様に、プリンシパルはRPCSEC_GSS認証に基づく必要があり、使用するRPCSEC_GSSサービスは整合性またはプライバシーである必要があり、クライアントIDの作成時に使用したものと同じGSSメカニズムとプリンシパルを使用する必要があります。

If none of the above situations apply, the server MUST return NFS4ERR_CLID_INUSE.


If the server accepts the principal and co_ownerid as matching that which created the client ID, and the co_verifier in the EXCHANGE_ID differs from the co_verifier used when the client ID was created, then after the server receives a CREATE_SESSION that confirms the client ID, the server deletes state. If the co_verifier values are the same (e.g., the client either is updating properties of the client ID (Section 18.35) or is attempting trunking (Section 2.10.5), the server MUST NOT delete state.

サーバーがプリンシパルとco_owneridをクライアントIDを作成したものと一致するものとして受け入れ、EXCHANGE_IDのco_verifierがクライアントIDの作成時に使用されたco_verifierと異なる場合、サーバーはクライアントIDを確認するCREATE_SESSIONを受信した後、サーバー状態を削除します。 co_verifierの値が同じ場合(たとえば、クライアントがクライアントIDのプロパティを更新している場合(セクション18.35)、またはトランキングを試行している場合(セクション2.10.5)、サーバーは状態を削除してはなりません(MUST NOT)。

2.5. Server Owners
2.5. サーバー所有者

The server owner is similar to a client owner (Section 2.4), but unlike the client owner, there is no shorthand server ID. The server owner is defined in the following data type:


   struct server_owner4 {
    uint64_t       so_minor_id;
    opaque         so_major_id<NFS4_OPAQUE_LIMIT>;

The server owner is returned from EXCHANGE_ID. When the so_major_id fields are the same in two EXCHANGE_ID results, the connections that each EXCHANGE_ID were sent over can be assumed to address the same server (as defined in Section 1.6). If the so_minor_id fields are also the same, then not only do both connections connect to the same server, but the session can be shared across both connections. The reader is cautioned that multiple servers may deliberately or accidentally claim to have the same so_major_id or so_major_id/ so_minor_id; the reader should examine Sections 2.10.5 and 18.35 in order to avoid acting on falsely matching server owner values.

サーバーの所有者はEXCHANGE_IDから返されます。 2つのEXCHANGE_ID結果でso_major_idフィールドが同じである場合、各EXCHANGE_IDが送信された接続は、同じサーバーをアドレス指定していると見なすことができます(セクション1.6で定義)。 so_minor_idフィールドも同じ場合、両方の接続が同じサーバーに接続するだけでなく、セッションを両方の接続間で共有できます。複数のサーバーが故意にまたは誤って同じso_major_idまたはso_major_id / so_minor_idを持っていると主張する可能性があることに注意してください。読者は、誤って一致するサーバー所有者の値に基づいて行動しないように、セクション2.10.5および18.35を調べる必要があります。

The considerations for generating a so_major_id are similar to that for generating a co_ownerid string (see Section 2.4). The consequences of two servers generating conflicting so_major_id values are less dire than they are for co_ownerid conflicts because the client can use RPCSEC_GSS to compare the authenticity of each server (see Section 2.10.5).


2.6. Security Service Negotiation
2.6. セキュリティサービスの交渉

With the NFSv4.1 server potentially offering multiple security mechanisms, the client needs a method to determine or negotiate which mechanism is to be used for its communication with the server. The NFS server may have multiple points within its file system namespace that are available for use by NFS clients. These points can be considered security policy boundaries, and, in some NFS implementations, are tied to NFS export points. In turn, the NFS server may be configured such that each of these security policy boundaries may have different or multiple security mechanisms in use.

NFSv4.1サーバーが複数のセキュリティメカニズムを提供する可能性がある場合、クライアントは、サーバーとの通信に使用するメカニズムを決定またはネゴシエートする方法を必要とします。 NFSサーバーのファイルシステム名前空間内には、NFSクライアントが使用できる複数のポイントがある場合があります。これらのポイントはセキュリティポリシーの境界と見なすことができ、一部のNFS実装では、NFSエクスポートポイントに関連付けられています。次に、NFSサーバーは、これらのセキュリティポリシー境界のそれぞれが、異なるまたは複数のセキュリティメカニズムを使用するように構成できます。

The security negotiation between client and server SHOULD be done with a secure channel to eliminate the possibility of a third party intercepting the negotiation sequence and forcing the client and server to choose a lower level of security than required or desired. See Section 21 for further discussion.


2.6.1. NFSv4.1 Security Tuples
2.6.1. NFSv4.1セキュリティタプル

An NFS server can assign one or more "security tuples" to each security policy boundary in its namespace. Each security tuple consists of a security flavor (see Section and, if the flavor is RPCSEC_GSS, a GSS-API mechanism Object Identifier (OID), a GSS-API quality of protection, and an RPCSEC_GSS service.



The SECINFO and SECINFO_NO_NAME operations allow the client to determine, on a per-filehandle basis, what security tuple is to be used for server access. In general, the client will not have to use either operation except during initial communication with the server or when the client crosses security policy boundaries at the server.


However, the server's policies may also change at any time and force the client to negotiate a new security tuple.


Where the use of different security tuples would affect the type of access that would be allowed if a request was sent over the same connection used for the SECINFO or SECINFO_NO_NAME operation (e.g., read-only vs. read-write) access, security tuples that allow greater access should be presented first. Where the general level of access is the same and different security flavors limit the range of principals whose privileges are recognized (e.g., allowing or disallowing root access), flavors supporting the greatest range of principals should be listed first.


2.6.3. Security Error
2.6.3. セキュリティエラー

Based on the assumption that each NFSv4.1 client and server MUST support a minimum set of security (i.e., Kerberos V5 under RPCSEC_GSS), the NFS client will initiate file access to the server with one of the minimal security tuples. During communication with the server, the client may receive an NFS error of NFS4ERR_WRONGSEC. This error allows the server to notify the client that the security tuple currently being used contravenes the server's security policy. The client is then responsible for determining (see Section what security tuples are available at the server and choosing one that is appropriate for the client.

各NFSv4.1クライアントとサーバーは最低限のセキュリティセット(つまり、RPCSEC_GSSでのKerberos V5)をサポートする必要があるという想定に基づいて、NFSクライアントは最小限のセキュリティタプルの1つでサーバーへのファイルアクセスを開始します。サーバーとの通信中に、クライアントはNFS4ERR_WRONGSECのNFSエラーを受け取る場合があります。このエラーにより、サーバーは、現在使用されているセキュリティタプルがサーバーのセキュリティポリシーに違反していることをクライアントに通知できます。次に、クライアントは、サーバーで使用可能なセキュリティタプルを決定し(セクション2.6.3.1を参照)、クライアントに適したセキュリティタプルを選択します。 Using NFS4ERR_WRONGSEC, SECINFO, and SECINFO_NO_NAME NFS4ERR_WRONGSEC、SECINFO、SECINFO_NO_NAMEの使用

This section explains the mechanics of NFSv4.1 security negotiation.

このセクションでは、NFSv4.1セキュリティネゴシエーションのメカニズムについて説明します。 Put Filehandle Operations ファイルハンドル操作を置く

The term "put filehandle operation" refers to PUTROOTFH, PUTPUBFH, PUTFH, and RESTOREFH. Each of the subsections herein describes how the server handles a subseries of operations that starts with a put filehandle operation.

「put filehandle操作」という用語は、PUTROOTFH、PUTPUBFH、PUTFH、およびRESTOREFHを指します。本書の各サブセクションでは、サーバーがput filehandle操作で始まる一連の操作を処理する方法について説明します。 Put Filehandle Operation + SAVEFH ファイルハンドル操作+ SAVEFHを置く

The client is saving a filehandle for a future RESTOREFH, LINK, or RENAME. SAVEFH MUST NOT return NFS4ERR_WRONGSEC. To determine whether or not the put filehandle operation returns NFS4ERR_WRONGSEC, the server implementation pretends SAVEFH is not in the series of operations and examines which of the situations described in the other subsections of Section apply.

クライアントは、将来のRESTOREFH、LINK、またはRENAMEのためにファイルハンドルを保存しています。 SAVEFHはNFS4ERR_WRONGSECを返してはなりません。 put filehandle操作がNFS4ERR_WRONGSECを返すかどうかを判断するために、サーバー実装はSAVEFHが一連の操作に含まれていないように見せかけ、セクション2.の他のサブセクションで説明されている状況のどれが当てはまるかを調べます。 Two or More Put Filehandle Operations 2つ以上のPut Filehandle操作

For a series of N put filehandle operations, the server MUST NOT return NFS4ERR_WRONGSEC to the first N-1 put filehandle operations. The Nth put filehandle operation is handled as if it is the first in a subseries of operations. For example, if the server received a COMPOUND request with this series of operations -- PUTFH, PUTROOTFH, LOOKUP -- then the PUTFH operation is ignored for NFS4ERR_WRONGSEC purposes, and the PUTROOTFH, LOOKUP subseries is processed as according to Section

一連のN putファイルハンドル操作の場合、サーバーは最初のN-1 putファイルハンドル操作にNFS4ERR_WRONGSECを返してはなりません(MUST NOT)。 N番目のファイルハンドル操作は、一連の操作の最初の操作であるかのように処理されます。たとえば、サーバーがこの一連の操作(PUTFH、PUTROOTFH、LOOKUP)でCOMPOUND要求を受信した場合、NFS4ERR_WRONGSECの目的ではPUTFH操作は無視され、PUTROOTFH、LOOKUPサブシリーズはセクション2.6.3.1に従って処理されます。 1.3。 Put Filehandle Operation + LOOKUP (or OPEN of an Existing Name) ファイルハンドル操作+ LOOKUP(または既存の名前のOPEN)を置く

This situation also applies to a put filehandle operation followed by a LOOKUP or an OPEN operation that specifies an existing component name.


In this situation, the client is potentially crossing a security policy boundary, and the set of security tuples the parent directory supports may differ from those of the child. The server implementation may decide whether to impose any restrictions on security policy administration. There are at least three approaches (sec_policy_child is the tuple set of the child export, sec_policy_parent is that of the parent).


(a) sec_policy_child <= sec_policy_parent (<= for subset). This means that the set of security tuples specified on the security policy of a child directory is always a subset of its parent directory.

(a)sec_policy_child <= sec_policy_parent(<=サブセットの場合)。つまり、子ディレクトリのセキュリティポリシーで指定されたセキュリティタプルのセットは、常にその親ディレクトリのサブセットです。

   (b)  sec_policy_child ^ sec_policy_parent != {} (^ for intersection,
        {} for the empty set).  This means that the set of security
        tuples specified on the security policy of a child directory
        always has a non-empty intersection with that of the parent.
   (c)  sec_policy_child ^ sec_policy_parent == {}.  This means that the
        set of security tuples specified on the security policy of a
        child directory may not intersect with that of the parent.  In
        other words, there are no restrictions on how the system
        administrator may set up these tuples.

In order for a server to support approaches (b) (for the case when a client chooses a flavor that is not a member of sec_policy_parent) and (c), the put filehandle operation cannot return NFS4ERR_WRONGSEC when there is a security tuple mismatch. Instead, it should be returned from the LOOKUP (or OPEN by existing component name) that follows.

サーバーがアプローチ(b)(クライアントがsec_policy_parentのメンバーではないフレーバーを選択した場合)と(c)をサポートするために、セキュリティタプルの不一致がある場合、put filehandle操作はNFS4ERR_WRONGSECを返すことができません。代わりに、後続のLOOKUP(または既存のコンポーネント名によるOPEN)から返される必要があります。

Since the above guideline does not contradict approach (a), it should be followed in general. Even if approach (a) is implemented, it is possible for the security tuple used to be acceptable for the target of LOOKUP but not for the filehandles used in the put filehandle operation. The put filehandle operation could be a PUTROOTFH or PUTPUBFH, where the client cannot know the security tuples for the root or public filehandle. Or the security policy for the filehandle used by the put filehandle operation could have changed since the time the filehandle was obtained.

上記のガイドラインは(a)のアプローチと矛盾しないため、一般にそれに従う必要があります。アプローチ(a)が実装されている場合でも、使用されているセキュリティタプルがLOOKUPのターゲットに受け入れられる可能性がありますが、put filehandle操作で使用されるファイルハンドルには受け入れられません。 put filehandle操作は、PUTROOTFHまたはPUTPUBFHである可能性があります。クライアントは、ルートまたはパブリックファイルハンドルのセキュリティタプルを認識できません。または、ファイルハンドルが取得されたときから、ファイルハンドルの書き込み操作で使用されるファイルハンドルのセキュリティポリシーが変更されている可能性があります。

Therefore, an NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC in response to the put filehandle operation if the operation is immediately followed by a LOOKUP or an OPEN by component name.

したがって、操作の直後にコンポーネント名によるLOOKUPまたはOPENが続く場合、NFSv4.1サーバーはput filehandle操作に応答してNFS4ERR_WRONGSECを返してはなりません(MUST NOT)。 Put Filehandle Operation + LOOKUPP ファイルハンドル操作+ LOOKUPの配置

Since SECINFO only works its way down, there is no way LOOKUPP can return NFS4ERR_WRONGSEC without SECINFO_NO_NAME. SECINFO_NO_NAME solves this issue via style SECINFO_STYLE4_PARENT, which works in the opposite direction as SECINFO. As with Section, a put filehandle operation that is followed by a LOOKUPP MUST NOT return NFS4ERR_WRONGSEC. If the server does not support SECINFO_NO_NAME, the client's only recourse is to send the put filehandle operation, LOOKUPP, GETFH sequence of operations with every security tuple it supports.

SECINFOはその機能を停止するだけなので、LOOKUPPがSECINFO_NO_NAMEなしでNFS4ERR_WRONGSECを返すことはできません。 SECINFO_NO_NAMEは、SECINFO_STYLE4_PARENTスタイルを介してこの問題を解決します。これは、SECINFOとは逆方向に機能します。セクション2.と同様に、LOOKUPPが後に続くput filehandle操作はNFS4ERR_WRONGSECを返してはなりません。サーバーがSECINFO_NO_NAMEをサポートしていない場合、クライアントの唯一の手段は、サポートするすべてのセキュリティタプルとともにput filehandle操作、LOOKUPP、GETFHシーケンスの操作を送信することです。

Regardless of whether SECINFO_NO_NAME is supported, an NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC in response to a put filehandle operation if the operation is immediately followed by a LOOKUPP.

SECINFO_NO_NAMEがサポートされているかどうかに関係なく、操作の直後にLOOKUPPが続く場合、NFSv4.1サーバーはputfilehandle操作に応答してNFS4ERR_WRONGSECを返してはなりません(MUST NOT)。 Put Filehandle Operation + SECINFO/SECINFO_NO_NAME ファイルハンドル操作+ SECINFO / SECINFO_NO_NAME

A security-sensitive client is allowed to choose a strong security tuple when querying a server to determine a file object's permitted security tuples. The security tuple chosen by the client does not have to be included in the tuple list of the security policy of either the parent directory indicated in the put filehandle operation or the child file object indicated in SECINFO (or any parent directory indicated in SECINFO_NO_NAME). Of course, the server has to be configured for whatever security tuple the client selects; otherwise, the request will fail at the RPC layer with an appropriate authentication error.


In theory, there is no connection between the security flavor used by SECINFO or SECINFO_NO_NAME and those supported by the security policy. But in practice, the client may start looking for strong flavors from those supported by the security policy, followed by those in the REQUIRED set.


The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC to a put filehandle operation that is immediately followed by SECINFO or SECINFO_NO_NAME. The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC from SECINFO or SECINFO_NO_NAME.

NFSv4.1サーバーは、直後にSECINFOまたはSECINFO_NO_NAMEが続くput filehandle操作にNFS4ERR_WRONGSECを返してはなりません(MUST NOT)。 NFSv4.1サーバーは、SECINFOまたはSECINFO_NO_NAMEからNFS4ERR_WRONGSECを返してはなりません(MUST NOT)。 Put Filehandle Operation + Nothing ファイルハンドル操作を置く+何もしない

The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC.

NFSv4.1サーバーはNFS4ERR_WRONGSECを返してはなりません(MUST NOT)。 Put Filehandle Operation + Anything Else ファイルハンドル操作とその他のものを置く

"Anything Else" includes OPEN by filehandle.


The security policy enforcement applies to the filehandle specified in the put filehandle operation. Therefore, the put filehandle operation MUST return NFS4ERR_WRONGSEC when there is a security tuple mismatch. This avoids the complexity of adding NFS4ERR_WRONGSEC as an allowable error to every other operation.


A COMPOUND containing the series put filehandle operation + SECINFO_NO_NAME (style SECINFO_STYLE4_CURRENT_FH) is an efficient way for the client to recover from NFS4ERR_WRONGSEC.

series putファイルハンドル操作+ SECINFO_NO_NAME(スタイルSECINFO_STYLE4_CURRENT_FH)を含むCOMPOUNDは、クライアントがNFS4ERR_WRONGSECから回復するための効率的な方法です。

The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC to any operation other than a put filehandle operation, LOOKUP, LOOKUPP, and OPEN (by component name).

NFSv4.1サーバーは、ファイルハンドルのput操作、LOOKUP、LOOKUPP、およびOPEN(コンポーネント名による)以外の操作にNFS4ERR_WRONGSECを返してはなりません(MUST NOT)。 Operations after SECINFO and SECINFO_NO_NAME SECINFOおよびSECINFO_NO_NAMEの後の操作

Suppose a client sends a COMPOUND procedure containing the series SEQUENCE, PUTFH, SECINFO_NONAME, READ, and suppose the security tuple used does not match that required for the target file. By rule (see Section, neither PUTFH nor SECINFO_NO_NAME can return NFS4ERR_WRONGSEC. By rule (see Section, READ cannot return NFS4ERR_WRONGSEC. The issue is resolved by the fact that SECINFO and SECINFO_NO_NAME consume the current filehandle (note that this is a change from NFSv4.0). This leaves no current filehandle for READ to use, and READ returns NFS4ERR_NOFILEHANDLE.

クライアントがシリーズSEQUENCE、PUTFH、SECINFO_NONAME、READを含むCOMPOUNDプロシージャを送信し、使用されるセキュリティタプルがターゲットファイルに必要なものと一致しないと仮定します。規則(を参照)では、PUTFHもSECINFO_NO_NAMEもNFS4ERR_WRONGSECを返すことができません。ルール(セクション2.を参照)では、READはNFS4ERR_WRONGSECを返すことができません。この問題は、SECINFOおよびSECINFO_NO_NAMEが現在のファイルハンドルを消費するという事実によって解決されます(これはNFSv4.0からの変更であることに注意してください)。これは、READが使用する現在のファイルハンドルを残さず、READはNFS4ERR_NOFILEHANDLEを返します。 LINK and RENAME リンクと名前の変更

The LINK and RENAME operations use both the current and saved filehandles. Technically, the server MAY return NFS4ERR_WRONGSEC from LINK or RENAME if the security policy of the saved filehandle rejects the security flavor used in the COMPOUND request's credentials. If the server does so, then if there is no intersection between the security policies of saved and current filehandles, this means that it will be impossible for the client to perform the intended LINK or RENAME operation.


For example, suppose the client sends this COMPOUND request: SEQUENCE, PUTFH bFH, SAVEFH, PUTFH aFH, RENAME "c" "d", where filehandles bFH and aFH refer to different directories. Suppose no common security tuple exists between the security policies of aFH and bFH. If the client sends the request using credentials acceptable to bFH's security policy but not aFH's policy, then the PUTFH aFH operation will fail with NFS4ERR_WRONGSEC. After a SECINFO_NO_NAME request, the client sends SEQUENCE, PUTFH bFH, SAVEFH, PUTFH aFH, RENAME "c" "d", using credentials acceptable to aFH's security policy but not bFH's policy. The server returns NFS4ERR_WRONGSEC on the RENAME operation.

たとえば、クライアントが次のCOMPOUNDリクエストを送信するとします。SEQUENCE、PUTFH bFH、SAVEFH、PUTFH aFH、RENAME "c" "d"。ここで、ファイルハンドルbFHとaFHは異なるディレクトリを参照します。 aFHとbFHのセキュリティポリシーの間に共通のセキュリティタプルが存在しないとします。クライアントがbFHのセキュリティポリシーでは受け入れられるが、aFHのポリシーでは受け入れられない資格情報を使用して要求を送信すると、PUTFH aFH操作はNFS4ERR_WRONGSECで失敗します。 SECINFO_NO_NAME要求の後、クライアントは、aFHのセキュリティポリシーでは受け入れられるがbFHのポリシーでは受け入れられない資格情報を使用して、SEQUENCE、PUTFH bFH、SAVEFH、PUTFH aFH、RENAME "c" "d"を送信します。サーバーは、RENAME操作でNFS4ERR_WRONGSECを返します。

To prevent a client from an endless sequence of a request containing LINK or RENAME, followed by a request containing SECINFO_NO_NAME or SECINFO, the server MUST detect when the security policies of the current and saved filehandles have no mutually acceptable security tuple, and MUST NOT return NFS4ERR_WRONGSEC from LINK or RENAME in that situation. Instead the server MUST do one of two things:


o The server can return NFS4ERR_XDEV.

o サーバーはNFS4ERR_XDEVを返すことができます。

o The server can allow the security policy of the current filehandle to override that of the saved filehandle, and so return NFS4_OK.

o サーバーは、現在のファイルハンドルのセキュリティポリシーが保存されたファイルハンドルのセキュリティポリシーを上書きすることを許可して、NFS4_OKを返すことができます。

2.7. Minor Versioning
2.7. マイナーバージョン管理

To address the requirement of an NFS protocol that can evolve as the need arises, the NFSv4.1 protocol contains the rules and framework to allow for future minor changes or versioning.


The base assumption with respect to minor versioning is that any future accepted minor version will be documented in one or more Standards Track RFCs. Minor version 0 of the NFSv4 protocol is represented by [30], and minor version 1 is represented by this RFC. The COMPOUND and CB_COMPOUND procedures support the encoding of the minor version being requested by the client.

マイナーバージョニングに関する基本的な前提は、将来受け入れられるマイナーバージョンは、1つ以上のStandards Track RFCに文書化されることです。 NFSv4プロトコルのマイナーバージョン0は[30]で表され、マイナーバージョン1はこのRFCで表されます。 COMPOUNDおよびCB_COMPOUNDプロシージャは、クライアントによって要求されているマイナーバージョンのエンコーディングをサポートします。

The following items represent the basic rules for the development of minor versions. Note that a future minor version may modify or add to the following rules as part of the minor version definition.


1. Procedures are not added or deleted.

1. プロシージャは追加または削除されません。

To maintain the general RPC model, NFSv4 minor versions will not add to or delete procedures from the NFS program.


2. Minor versions may add operations to the COMPOUND and CB_COMPOUND procedures.

2. マイナーバージョンでは、COMPOUNDおよびCB_COMPOUNDプロシージャに操作が追加される場合があります。

The addition of operations to the COMPOUND and CB_COMPOUND procedures does not affect the RPC model.


* Minor versions may append attributes to the bitmap4 that represents sets of attributes and to the fattr4 that represents sets of attribute values.

* マイナーバージョンでは、属性のセットを表すビットマップ4と属性値のセットを表すfattr4に属性を追加できます。

This allows for the expansion of the attribute model to allow for future growth or adaptation.


* Minor version X must append any new attributes after the last documented attribute.

* マイナーバージョンXでは、ドキュメント化された最後の属性の後に新しい属性を追加する必要があります。

Since attribute results are specified as an opaque array of per-attribute, XDR-encoded results, the complexity of adding new attributes in the midst of the current definitions would be too burdensome.


3. Minor versions must not modify the structure of an existing operation's arguments or results.

3. マイナーバージョンは、既存の操作の引数または結果の構造を変更してはなりません。

Again, the complexity of handling multiple structure definitions for a single operation is too burdensome. New operations should be added instead of modifying existing structures for a minor version.


This rule does not preclude the following adaptations in a minor version:


* adding bits to flag fields, such as new attributes to GETATTR's bitmap4 data type, and providing corresponding variants of opaque arrays, such as a notify4 used together with such bitmaps

* GETATTRのbitmap4データ型への新しい属性などのフラグフィールドにビットを追加し、そのようなビットマップと一緒に使用されるnotify4などの不透明な配列の対応するバリアントを提供する

* adding bits to existing attributes like ACLs that have flag words

* フラグワードを持つACLなどの既存の属性にビットを追加する

* extending enumerated types (including NFS4ERR_*) with new values

* 列挙型(NFS4ERR_ *を含む)を新しい値で拡張する

* adding cases to a switched union

* スイッチドユニオンへのケースの追加

4. Minor versions must not modify the structure of existing attributes.

4. マイナーバージョンは、既存の属性の構造を変更してはなりません。

5. Minor versions must not delete operations.

5. マイナーバージョンは操作を削除してはなりません。

This prevents the potential reuse of a particular operation "slot" in a future minor version.


6. Minor versions must not delete attributes.

6. マイナーバージョンは属性を削除してはなりません。

7. Minor versions must not delete flag bits or enumeration values.

7. マイナーバージョンは、フラグビットまたは列挙値を削除してはなりません。

8. Minor versions may declare an operation MUST NOT be implemented.

8. マイナーバージョンは、操作を実装してはならないことを宣言できます。

Specifying that an operation MUST NOT be implemented is equivalent to obsoleting an operation. For the client, it means that the operation MUST NOT be sent to the server. For the server, an NFS error can be returned as opposed to "dropping" the request as an XDR decode error. This approach allows for the obsolescence of an operation while maintaining its structure so that a future minor version can reintroduce the operation.


1. Minor versions may declare that an attribute MUST NOT be implemented.

1. マイナーバージョンは、属性を実装してはならないことを宣言する必要があります。

2. Minor versions may declare that a flag bit or enumeration value MUST NOT be implemented.

2. マイナーバージョンは、フラグビットまたは列挙値を実装してはならないことを宣言する場合があります。

9. Minor versions may downgrade features from REQUIRED to RECOMMENDED, or RECOMMENDED to OPTIONAL.

9. マイナーバージョンは、機能をREQUIREDからRECOMMENDEDに、またはRECOMMENDEDからOPTIONALにダウングレードする場合があります。

10. Minor versions may upgrade features from OPTIONAL to RECOMMENDED, or RECOMMENDED to REQUIRED.

10. マイナーバージョンは、機能をOPTIONALからRECOMMENDEDに、またはRECOMMENDEDからREQUIREDにアップグレードする場合があります。

11. A client and server that support minor version X SHOULD support minor versions zero through X-1 as well.

11. マイナーバージョンXをサポートするクライアントとサーバーは、マイナーバージョン0からX-1までもサポートする必要があります(SHOULD)。

12. Except for infrastructural changes, a minor version must not introduce REQUIRED new features.

12. インフラストラクチャの変更を除いて、マイナーバージョンは必須の新機能を導入してはなりません。

This rule allows for the introduction of new functionality and forces the use of implementation experience before designating a feature as REQUIRED. On the other hand, some classes of features are infrastructural and have broad effects. Allowing infrastructural features to be RECOMMENDED or OPTIONAL complicates implementation of the minor version.


13. A client MUST NOT attempt to use a stateid, filehandle, or similar returned object from the COMPOUND procedure with minor version X for another COMPOUND procedure with minor version Y, where X != Y.

13. クライアントは、マイナーバージョンXのCOMPOUNDプロシージャから返された状態ID、ファイルハンドル、または類似のオブジェクトを、マイナーバージョンYの別のCOMPOUNDプロシージャ(X!= Y)に使用してはなりません(MUST NOT)。

2.8. Non-RPC-Based Security Services
2.8. 非RPCベースのセキュリティサービス

As described in Section, NFSv4.1 relies on RPC for identification, authentication, integrity, and privacy. NFSv4.1 itself provides or enables additional security services as described in the next several subsections.


2.8.1. Authorization
2.8.1. 認可

Authorization to access a file object via an NFSv4.1 operation is ultimately determined by the NFSv4.1 server. A client can predetermine its access to a file object via the OPEN (Section 18.16) and the ACCESS (Section 18.1) operations.


Principals with appropriate access rights can modify the authorization on a file object via the SETATTR (Section 18.30) operation. Attributes that affect access rights include mode, owner, owner_group, acl, dacl, and sacl. See Section 5.


2.8.2. Auditing
2.8.2. 監査

NFSv4.1 provides auditing on a per-file object basis, via the acl and sacl attributes as described in Section 6. It is outside the scope of this specification to specify audit log formats or management policies.


2.8.3. Intrusion Detection
2.8.3. 侵入検知

NFSv4.1 provides alarm control on a per-file object basis, via the acl and sacl attributes as described in Section 6. Alarms may serve as the basis for intrusion detection. It is outside the scope of this specification to specify heuristics for detecting intrusion via alarms.


2.9. Transport Layers
2.9. トランスポート層
2.9.1. REQUIRED and RECOMMENDED Properties of Transports
2.9.1. トランスポートの必須および推奨プロパティ

NFSv4.1 works over Remote Direct Memory Access (RDMA) and non-RDMA-based transports with the following attributes: o The transport supports reliable delivery of data, which NFSv4.1 requires but neither NFSv4.1 nor RPC has facilities for ensuring [34].

NFSv4.1は、次の属性を持つリモートダイレクトメモリアクセス(RDMA)および非RDMAベースのトランスポート上で動作します。 34]。

o The transport delivers data in the order it was sent. Ordered delivery simplifies detection of transmit errors, and simplifies the sending of arbitrary sized requests and responses via the record marking protocol [3].

o トランスポートは、送信された順序でデータを配信します。順序付けられた配信は、送信エラーの検出を簡素化し、レコードマーキングプロトコルを介した任意のサイズの要求および応答の送信を簡素化します[3]。

Where an NFSv4.1 implementation supports operation over the IP network protocol, any transport used between NFS and IP MUST be among the IETF-approved congestion control transport protocols. At the time this document was written, the only two transports that had the above attributes were TCP and the Stream Control Transmission Protocol (SCTP). To enhance the possibilities for interoperability, an NFSv4.1 implementation MUST support operation over the TCP transport protocol.


Even if NFSv4.1 is used over a non-IP network protocol, it is RECOMMENDED that the transport support congestion control.


It is permissible for a connectionless transport to be used under NFSv4.1; however, reliable and in-order delivery of data combined with congestion control by the connectionless transport is REQUIRED. As a consequence, UDP by itself MUST NOT be used as an NFSv4.1 transport. NFSv4.1 assumes that a client transport address and server transport address used to send data over a transport together constitute a connection, even if the underlying transport eschews the concept of a connection.

コネクションレス型トランスポートをNFSv4.1で使用することは許可されています。ただし、コネクションレス型トランスポートによる輻輳制御と組み合わせた信頼性の高い順序どおりのデータ配信が必要です。その結果、UDP自体をNFSv4.1トランスポートとして使用してはなりません(MUST NOT)。 NFSv4.1は、トランスポートを介してデータを送信するために使用されるクライアントトランスポートアドレスとサーバートランスポートアドレスが接続を構成すると想定します。

2.9.2. Client and Server Transport Behavior
2.9.2. クライアントとサーバーのトランスポート動作

If a connection-oriented transport (e.g., TCP) is used, the client and server SHOULD use long-lived connections for at least three reasons:


1. This will prevent the weakening of the transport's congestion control mechanisms via short-lived connections.

1. これにより、短命の接続によるトランスポートの輻輳制御メカニズムの弱体化が防止されます。

2. This will improve performance for the WAN environment by eliminating the need for connection setup handshakes.

2. これにより、接続設定のハンドシェイクが不要になるため、WAN環境のパフォーマンスが向上します。

3. The NFSv4.1 callback model differs from NFSv4.0, and requires the client and server to maintain a client-created backchannel (see Section for the server to use.

3. NFSv4.1コールバックモデルはNFSv4.0とは異なり、サーバーが使用できるようにクライアントとサーバーがクライアント作成のバックチャネル(セクション2.10.3.1を参照)を維持する必要があります。

In order to reduce congestion, if a connection-oriented transport is used, and the request is not the NULL procedure: o A requester MUST NOT retry a request unless the connection the request was sent over was lost before the reply was received.


o A replier MUST NOT silently drop a request, even if the request is a retry. (The silent drop behavior of RPCSEC_GSS [4] does not apply because this behavior happens at the RPCSEC_GSS layer, a lower layer in the request processing.) Instead, the replier SHOULD return an appropriate error (see Section, or it MAY disconnect the connection.

o 要求が再試行であっても、リプライヤは要求を黙って破棄してはなりません。 (RPCSEC_GSS [4]のサイレントドロップ動作は適用されません。この動作は、要求処理の下位層であるRPCSEC_GSS層で発生するためです。)代わりに、返信者は適切なエラーを返す必要があります(セクション2.10.6.1を参照)。接続を切断することができます。

When sending a reply, the replier MUST send the reply to the same full network address (e.g., if using an IP-based transport, the source port of the requester is part of the full network address) from which the requester sent the request. If using a connection-oriented transport, replies MUST be sent on the same connection from which the request was received.


If a connection is dropped after the replier receives the request but before the replier sends the reply, the replier might have a pending reply. If a connection is established with the same source and destination full network address as the dropped connection, then the replier MUST NOT send the reply until the requester retries the request. The reason for this prohibition is that the requester MAY retry a request over a different connection (provided that connection is associated with the original request's session).

応答者が要求を受信した後、応答者が応答を送信する前に接続がドロップされた場合、応答者は応答を保留している可能性があります。ドロップされた接続と同じ送信元および宛先の完全なネットワークアドレスを使用して接続が確立された場合、リクエスタは要求者が要求を再試行するまで応答を送信してはなりません(MUST NOT)。この禁止の理由は、リクエスターが別の接続を介して要求を再試行する可能性があるためです(接続が元の要求のセッションに関連付けられている場合)。

When using RDMA transports, there are other reasons for not tolerating retries over the same connection:


o RDMA transports use "credits" to enforce flow control, where a credit is a right to a peer to transmit a message. If one peer were to retransmit a request (or reply), it would consume an additional credit. If the replier retransmitted a reply, it would certainly result in an RDMA connection loss, since the requester would typically only post a single receive buffer for each request. If the requester retransmitted a request, the additional credit consumed on the server might lead to RDMA connection failure unless the client accounted for it and decreased its available credit, leading to wasted resources.

o RDMAトランスポートは、「クレジット」を使用してフロー制御を実施します。クレジットは、ピアがメッセージを送信する権利です。 1つのピアが要求を再送信(または応答)した場合、追加のクレジットが消費されます。リプライアが応答を再送信した場合、リクエスタは通常、各リクエストに対して単一の受信バッファのみをポストするため、RDMA接続が失われます。リクエスターが要求を再送信した場合、サーバーで消費された追加のクレジットは、クライアントがそれを考慮に入れて使用可能なクレジットを減らし、リソースを浪費しない限り、RDMA接続の失敗につながる可能性があります。

o RDMA credits present a new issue to the reply cache in NFSv4.1. The reply cache may be used when a connection within a session is lost, such as after the client reconnects. Credit information is a dynamic property of the RDMA connection, and stale values must not be replayed from the cache. This implies that the reply cache contents must not be blindly used when replies are sent from it, and credit information appropriate to the channel must be refreshed by the RPC layer.

o RDMAクレジットは、NFSv4.1の応答キャッシュに新しい問題をもたらします。応答キャッシュは、クライアントが再接続した後など、セッション内の接続が失われたときに使用できます。クレジット情報はRDMA接続の動的プロパティであり、古い値をキャッシュから再生することはできません。これは、返信が送信されるときに返信キャッシュの内容を盲目的に使用してはならず、チャネルに適切なクレジット情報をRPCレイヤーで更新する必要があることを意味します。

In addition, as described in Section, while a session is active, the NFSv4.1 requester MUST NOT stop waiting for a reply.

さらに、セクション2.10.6.2で説明されているように、セッションがアクティブな間、NFSv4.1リクエスタは応答の待機を停止してはなりません(MUST NOT)。

2.9.3. Ports
2.9.3. ポート

Historically, NFSv3 servers have listened over TCP port 2049. The registered port 2049 [35] for the NFS protocol should be the default configuration. NFSv4.1 clients SHOULD NOT use the RPC binding protocols as described in [36].

歴史的に、NFSv3サーバーはTCPポート2049でリッスンしてきました。NFSプロトコル用の登録済みポート2049 [35]がデフォルトの構成である必要があります。 NFSv4.1クライアントは、[36]で説明されているRPCバインディングプロトコルを使用してはなりません(SHOULD NOT)。

2.10. Session
2.10. セッション

NFSv4.1 clients and servers MUST support and MUST use the session feature as described in this section.


2.10.1. Motivation and Overview
2.10.1. 動機と概要

Previous versions and minor versions of NFS have suffered from the following:


o Lack of support for Exactly Once Semantics (EOS). This includes lack of support for EOS through server failure and recovery.

o Exactly Once Semantics(EOS)のサポートの欠如。これには、サーバーの障害と回復によるEOSのサポートの欠如が含まれます。

o Limited callback support, including no support for sending callbacks through firewalls, and races between replies to normal requests and callbacks.

o ファイアウォールを介したコールバックの送信のサポートを含まない限定的なコールバックサポート、および通常のリクエストへの返信とコールバック間の競合。

o Limited trunking over multiple network paths.

o 複数のネットワークパスでの限定的なトランキング。

o Requiring machine credentials for fully secure operation.

o 完全に安全な操作のためにマシンの資格情報が必要です。

Through the introduction of a session, NFSv4.1 addresses the above shortfalls with practical solutions:


o EOS is enabled by a reply cache with a bounded size, making it feasible to keep the cache in persistent storage and enable EOS through server failure and recovery. One reason that previous revisions of NFS did not support EOS was because some EOS approaches often limited parallelism. As will be explained in Section 2.10.6, NFSv4.1 supports both EOS and unlimited parallelism.

o EOSは、サイズが制限された応答キャッシュによって有効にされるため、永続的なストレージにキャッシュを保持し、サーバーの障害と回復を通じてEOSを有効にすることが可能になります。以前のリビジョンのNFSがEOSをサポートしなかった理由の1つは、一部のEOSアプローチが並列処理を制限することが多かったためです。セクション2.10.6で説明するように、NFSv4.1はEOSと無制限の並列処理の両方をサポートします。

o The NFSv4.1 client (defined in Section 1.6, Paragraph 2) creates transport connections and provides them to the server to use for sending callback requests, thus solving the firewall issue (Section 18.34). Races between responses from client requests and

o NFSv4.1クライアント(セクション1.6、段落2で定義)はトランスポート接続を作成し、それらをサーバーに提供してコールバック要求の送信に使用することで、ファイアウォールの問題を解決します(セクション18.34)。クライアント要求からの応答と、

callbacks caused by the requests are detected via the session's sequencing properties that are a consequence of EOS (Section


o The NFSv4.1 client can associate an arbitrary number of connections with the session, and thus provide trunking (Section 2.10.5).

o NFSv4.1クライアントは、任意の数の接続をセッションに関連付けることができるため、トランキングを提供できます(2.10.5節)。

o The NFSv4.1 client and server produces a session key independent of client and server machine credentials which can be used to compute a digest for protecting critical session management operations (Section

o NFSv4.1クライアントおよびサーバーは、重要なセッション管理操作を保護するためのダイジェストを計算するために使用できるクライアントおよびサーバーマシンの認証情報とは独立したセッションキーを生成します(セクション2.10.8.3)。

o The NFSv4.1 client can also create secure RPCSEC_GSS contexts for use by the session's backchannel that do not require the server to authenticate to a client machine principal (Section

o NFSv4.1クライアントは、サーバーがクライアントマシンプリンシパルへの認証を必要としない、セッションのバックチャネルで使用する安全なRPCSEC_GSSコンテキストを作成することもできます(セクション2.10.8.2)。

A session is a dynamically created, long-lived server object created by a client and used over time from one or more transport connections. Its function is to maintain the server's state relative to the connection(s) belonging to a client instance. This state is entirely independent of the connection itself, and indeed the state exists whether or not the connection exists. A client may have one or more sessions associated with it so that client-associated state may be accessed using any of the sessions associated with that client's client ID, when connections are associated with those sessions. When no connections are associated with any of a client ID's sessions for an extended time, such objects as locks, opens, delegations, layouts, etc. are subject to expiration. The session serves as an object representing a means of access by a client to the associated client state on the server, independent of the physical means of access to that state.


A single client may create multiple sessions. A single session MUST NOT serve multiple clients.


2.10.2. NFSv4 Integration
2.10.2. NFSv4統合

Sessions are part of NFSv4.1 and not NFSv4.0. Normally, a major infrastructure change such as sessions would require a new major version number to an Open Network Computing (ONC) RPC program like NFS. However, because NFSv4 encapsulates its functionality in a single procedure, COMPOUND, and because COMPOUND can support an arbitrary number of operations, sessions have been added to NFSv4.1 with little difficulty. COMPOUND includes a minor version number field, and for NFSv4.1 this minor version is set to 1. When the NFSv4 server processes a COMPOUND with the minor version set to 1, it expects a different set of operations than it does for NFSv4.0.

セッションはNFSv4.1ではなくNFSv4.0の一部です。通常、セッションなどの大きなインフラストラクチャの変更には、NFSのようなOpen Network Computing(ONC)RPCプログラムの新しいメジャーバージョン番号が必要です。ただし、NFSv4はその機能を単一の手順COMPOUNDにカプセル化し、COMPOUNDは任意の数の操作をサポートできるため、セッションはほとんど問題なくNFSv4.1に追加されました。 COMPOUNDにはマイナーバージョン番号フィールドが含まれ、NFSv4.1の場合、このマイナーバージョンは1に設定されます。NFSv4サーバーは、マイナーバージョンが1に設定されたCOMPOUNDを処理するときに、NFSv4.0の場合とは異なる操作のセットを予期します。

NFSv4.1 defines the SEQUENCE operation, which is required for every COMPOUND that operates over an established session, with the exception of some session administration operations, such as DESTROY_SESSION (Section 18.37).

NFSv4.1は、DESTROY_SESSION(セクション18.37)などの一部のセッション管理操作を除いて、確立されたセッションで動作するすべてのCOMPOUNDに必要なSEQUENCE操作を定義します。 SEQUENCE and CB_SEQUENCE SEQUENCEおよびCB_SEQUENCE

In NFSv4.1, when the SEQUENCE operation is present, it MUST be the first operation in the COMPOUND procedure. The primary purpose of SEQUENCE is to carry the session identifier. The session identifier associates all other operations in the COMPOUND procedure with a particular session. SEQUENCE also contains required information for maintaining EOS (see Section 2.10.6). Session-enabled NFSv4.1 COMPOUND requests thus have the form:

NFSv4.1では、SEQUENCE操作が存在する場合、それはCOMPOUNDプロシージャの最初の操作でなければなりません。 SEQUENCEの主な目的は、セッション識別子を運ぶことです。セッション識別子は、COMPOUNDプロシージャ内の他のすべての操作を特定のセッションに関連付けます。 SEQUENCEには、EOSを維持するために必要な情報も含まれています(セクション2.10.6を参照)。したがって、セッション対応のNFSv4.1 COMPOUNDリクエストは次の形式になります。

       | tag | minorversion | numops    |SEQUENCE op | op + args | ...
       |     |   (== 1)     | (limited) |  + args    |           |

and the replies have the form:


       |last status | tag | numres |status + SEQUENCE op + results |  //
               // status + op + results | ...

A CB_COMPOUND procedure request and reply has a similar form to COMPOUND, but instead of a SEQUENCE operation, there is a CB_SEQUENCE operation. CB_COMPOUND also has an additional field called "callback_ident", which is superfluous in NFSv4.1 and MUST be ignored by the client. CB_SEQUENCE has the same information as SEQUENCE, and also includes other information needed to resolve callback races (Section

CB_COMPOUNDプロシージャの要求と応答はCOMPOUNDと同様の形式ですが、SEQUENCE操作の代わりにCB_SEQUENCE操作があります。 CB_COMPOUNDには、「callback_ident」と呼ばれる追加のフィールドもあります。これは、NFSv4.1では不要であり、クライアントによって無視される必要があります。 CB_SEQUENCEにはSEQUENCEと同じ情報があり、コールバックの競合を解決するために必要なその他の情報も含まれています(セクション2.10.6.3)。 Client ID and Session Association クライアントIDとセッションの関連付け

Each client ID (Section 2.4) can have zero or more active sessions. A client ID and associated session are required to perform file access in NFSv4.1. Each time a session is used (whether by a client sending a request to the server or the client replying to a callback request from the server), the state leased to its associated client ID is automatically renewed.

各クライアントID(2.4節)は、0個以上のアクティブセッションを持つことができます。 NFSv4.1でファイルアクセスを実行するには、クライアントIDと関連するセッションが必要です。セッションが使用されるたびに(クライアントがサーバーに要求を送信するか、クライアントがサーバーからのコールバック要求に応答するかに関係なく)、関連するクライアントIDにリースされた状態が自動的に更新されます。

State (which can consist of share reservations, locks, delegations, and layouts (Section 1.7.4)) is tied to the client ID. Client state is not tied to any individual session. Successive state changing operations from a given state owner MAY go over different sessions, provided the session is associated with the same client ID. A callback MAY arrive over a different session than that of the request that originally acquired the state pertaining to the callback. For example, if session A is used to acquire a delegation, a request to recall the delegation MAY arrive over session B if both sessions are associated with the same client ID. Sections and discuss the security considerations around callbacks.


2.10.3. Channels
2.10.3. チャンネル

A channel is not a connection. A channel represents the direction ONC RPC requests are sent.

チャネルは接続ではありません。チャネルは、ONC RPC要求が送信される方向を表します。

Each session has one or two channels: the fore channel and the backchannel. Because there are at most two channels per session, and because each channel has a distinct purpose, channels are not assigned identifiers.


The fore channel is used for ordinary requests from the client to the server, and carries COMPOUND requests and responses. A session always has a fore channel.


The backchannel is used for callback requests from server to client, and carries CB_COMPOUND requests and responses. Whether or not there is a backchannel is a decision made by the client; however, many features of NFSv4.1 require a backchannel. NFSv4.1 servers MUST support backchannels.

バックチャネルは、サーバーからクライアントへのコールバック要求に使用され、CB_COMPOUND要求と応答を伝送します。バックチャネルがあるかどうかは、クライアントが決定します。ただし、NFSv4.1の多くの機能にはバックチャネルが必要です。 NFSv4.1サーバーはバックチャネルをサポートする必要があります。

Each session has resources for each channel, including separate reply caches (see Section Note that even the backchannel requires a reply cache (or, at least, a slot table in order to detect retries) because some callback operations are nonidempotent.

各セッションには、個別の応答キャッシュを含む各チャネルのリソースがあります(セクション2.10.6.1を参照)。一部のコールバック操作は非べき等であるため、バックチャネルでも応答キャッシュ(または、少なくとも再試行を検出するためにスロットテーブル)が必要であることに注意してください。 Association of Connections, Channels, and Sessions 接続、チャネル、およびセッションの関連付け

Each channel is associated with zero or more transport connections (whether of the same transport protocol or different transport protocols). A connection can be associated with one channel or both channels of a session; the client and server negotiate whether a connection will carry traffic for one channel or both channels via the CREATE_SESSION (Section 18.36) and the BIND_CONN_TO_SESSION (Section 18.34) operations. When a session is created via CREATE_SESSION, the connection that transported the CREATE_SESSION request is automatically associated with the fore channel, and optionally the backchannel. If the client specifies no state protection (Section 18.35) when the session is created, then when SEQUENCE is transmitted on a different connection, the connection is automatically associated with the fore channel of the session specified in the SEQUENCE operation.

各チャネルは、ゼロまたはそれ以上のトランスポート接続に関連付けられます(同じトランスポートプロトコルでも異なるトランスポートプロトコルでも)。接続は、セッションの1つのチャネルまたは両方のチャネルに関連付けることができます。クライアントとサーバーは、接続がCREATE_SESSION(セクション18.36)およびBIND_CONN_TO_SESSION(セクション18.34)操作を介して1つのチャネルまたは両方のチャネルのトラフィックを伝送するかどうかについてネゴシエートします。 CREATE_SESSIONを介してセッションが作成されると、CREATE_SESSION要求を転送した接続は、フォアチャネルと、オプションでバックチャネルに自動的に関連付けられます。セッションの作成時にクライアントが状態保護を指定しない場合(セクション18.35)、SEQUENCEが別の接続で送信されると、接続はSEQUENCE操作で指定されたセッションのフォアチャネルに自動的に関連付けられます。

A connection's association with a session is not exclusive. A connection associated with the channel(s) of one session may be simultaneously associated with the channel(s) of other sessions including sessions associated with other client IDs.

接続とセッションの関連付けは排他的ではありません。 1つのセッションのチャネルに関連付けられた接続は、他のクライアントIDに関連付けられたセッションを含む他のセッションのチャネルに同時に関連付けられます。

It is permissible for connections of multiple transport types to be associated with the same channel. For example, both TCP and RDMA connections can be associated with the fore channel. In the event an RDMA and non-RDMA connection are associated with the same channel, the maximum number of slots SHOULD be at least one more than the total number of RDMA credits (Section This way, if all RDMA credits are used, the non-RDMA connection can have at least one outstanding request. If a server supports multiple transport types, it MUST allow a client to associate connections from each transport to a channel.

複数のトランスポートタイプの接続が同じチャネルに関連付けられていても問題ありません。たとえば、TCP接続とRDMA接続の両方をフォアチャネルに関連付けることができます。 RDMA接続と非RDMA接続が同じチャネルに関連付けられている場合、スロットの最大数は、RDMAクレジットの総数(セクション2.10.6.1)より少なくとも1多い必要があります(SHOULD)。このように、すべてのRDMAクレジットが使用されている場合、非RDMA接続は少なくとも1つの未処理の要求を持つことができます。サーバーが複数のトランスポートタイプをサポートしている場合、クライアントが各トランスポートからチャネルへの接続を関連付けることを許可する必要があります。

It is permissible for a connection of one type of transport to be associated with the fore channel, and a connection of a different type to be associated with the backchannel.


2.10.4. Server Scope
2.10.4. サーバーの範囲

Servers each specify a server scope value in the form of an opaque string eir_server_scope returned as part of the results of an EXCHANGE_ID operation. The purpose of the server scope is to allow a group of servers to indicate to clients that a set of servers sharing the same server scope value has arranged to use compatible values of otherwise opaque identifiers. Thus, the identifiers generated by one server of that set may be presented to another of that same scope.


The use of such compatible values does not imply that a value generated by one server will always be accepted by another. In most cases, it will not. However, a server will not accept a value generated by another inadvertently. When it does accept it, it will be because it is recognized as valid and carrying the same meaning as on another server of the same scope.


When servers are of the same server scope, this compatibility of values applies to the follow identifiers: o Filehandle values. A filehandle value accepted by two servers of the same server scope denotes the same object. A WRITE operation sent to one server is reflected immediately in a READ sent to the other, and locks obtained on one server conflict with those requested on the other.


o Session ID values. A session ID value accepted by two servers of the same server scope denotes the same session.

o セッションID値。同じサーバースコープの2つのサーバーが受け入れるセッションID値は、同じセッションを示します。

o Client ID values. A client ID value accepted as valid by two servers of the same server scope is associated with two clients with the same client owner and verifier.

o クライアントID値。同じサーバースコープの2つのサーバーによって有効であると受け入れられたクライアントID値は、同じクライアント所有者と検証者を持つ2つのクライアントに関連付けられています。

o State ID values. A state ID value is recognized as valid when the corresponding client ID is recognized as valid. If the same stateid value is accepted as valid on two servers of the same scope and the client IDs on the two servers represent the same client owner and verifier, then the two stateid values designate the same set of locks and are for the same file.

o 州ID値。状態ID値は、対応するクライアントIDが有効であると認識されると、有効であると認識されます。同じスコープの2つのサーバーで同じ状態ID値が有効として受け入れられ、2つのサーバーのクライアントIDが同じクライアント所有者と検証者を表す場合、2つの状態ID値は同じロックのセットを指定し、同じファイルに対するものです。

o Server owner values. When the server scope values are the same, server owner value may be validly compared. In cases where the server scope values are different, server owner values are treated as different even if they contain all identical bytes.

o サーバー所有者の値。サーバースコープの値が同じ場合、サーバーの所有者の値が有効に比較されることがあります。サーバースコープの値が異なる場合、サーバーの所有者の値は、同じバイトがすべて含まれている場合でも異なるものとして扱われます。

The coordination among servers required to provide such compatibility can be quite minimal, and limited to a simple partition of the ID space. The recognition of common values requires additional implementation, but this can be tailored to the specific situations in which that recognition is desired.


Clients will have occasion to compare the server scope values of multiple servers under a number of circumstances, each of which will be discussed under the appropriate functional section:


o When server owner values received in response to EXCHANGE_ID operations sent to multiple network addresses are compared for the purpose of determining the validity of various forms of trunking, as described in Section 2.10.5.

o セクション2.10.5で説明されているように、複数のネットワークアドレスに送信されたEXCHANGE_ID操作に応答して受信されたサーバー所有者の値が比較され、さまざまな形式のトランキングの有効性が判断されます。

o When network or server reconfiguration causes the same network address to possibly be directed to different servers, with the necessity for the client to determine when lock reclaim should be attempted, as described in Section

o ネットワークまたはサーバーの再構成により、同じネットワークアドレスが異なるサーバーに送信される可能性がある場合、項で説明するように、クライアントはロックの再利用をいつ試行するかを決定する必要があります。

o When file system migration causes the transfer of responsibility for a file system between servers and the client needs to determine whether state has been transferred with the file system (as described in Section 11.7.7) or whether the client needs to reclaim state on a similar basis as in the case of server restart, as described in Section 8.4.2.


When two replies from EXCHANGE_ID, each from two different server network addresses, have the same server scope, there are a number of ways a client can validate that the common server scope is due to two servers cooperating in a group.


o If both EXCHANGE_ID requests were sent with RPCSEC_GSS authentication and the server principal is the same for both targets, the equality of server scope is validated. It is RECOMMENDED that two servers intending to share the same server scope also share the same principal name.

o 両方のEXCHANGE_ID要求がRPCSEC_GSS認証で送信され、サーバープリンシパルが両方のターゲットで同じである場合、サーバースコープの同等性が検証されます。同じサーバースコープを共有する2つのサーバーも同じプリンシパル名を共有することをお勧めします。

o The client may accept the appearance of the second server in the fs_locations or fs_locations_info attribute for a relevant file system. For example, if there is a migration event for a particular file system or there are locks to be reclaimed on a particular file system, the attributes for that particular file system may be used. The client sends the GETATTR request to the first server for the fs_locations or fs_locations_info attribute with RPCSEC_GSS authentication. It may need to do this in advance of the need to verify the common server scope. If the client successfully authenticates the reply to GETATTR, and the GETATTR request and reply containing the fs_locations or fs_locations_info attribute refers to the second server, then the equality of server scope is supported. A client may choose to limit the use of this form of support to information relevant to the specific file system involved (e.g. a file system being migrated).

o クライアントは、関連するファイルシステムのfs_locationsまたはfs_locations_info属性で2番目のサーバーの外観を受け入れることができます。たとえば、特定のファイルシステムの移行イベントがある場合、または特定のファイルシステムで再利用されるロックがある場合、その特定のファイルシステムの属性を使用できます。クライアントは、RPCSEC_GSS認証を使用してfs_locationsまたはfs_locations_info属性のGETATTR要求を最初のサーバーに送信します。共通サーバーのスコープを検証する前に、これを行う必要がある場合があります。クライアントがGETATTRへの応答の認証に成功し、GETATTR要求とfs_locationsまたはfs_locations_info属性を含む応答が2番目のサーバーを参照している場合、サーバースコープの同等性がサポートされます。クライアントは、この形式のサポートの使用を、関連する特定のファイルシステム(移行されるファイルシステムなど)に関連する情報に制限することを選択できます。

2.10.5. Trunking
2.10.5. トランキング

Trunking is the use of multiple connections between a client and server in order to increase the speed of data transfer. NFSv4.1 supports two types of trunking: session trunking and client ID trunking.

トランキングとは、データ転送の速度を上げるために、クライアントとサーバー間の複数の接続を使用することです。 NFSv4.1は、セッショントランキングとクライアントIDトランキングの2種類のトランキングをサポートしています。

NFSv4.1 servers MUST support both forms of trunking within the context of a single server network address and MUST support both forms within the context of the set of network addresses used to access a single server. NFSv4.1 servers in a clustered configuration MAY allow network addresses for different servers to use client ID trunking.


Clients may use either form of trunking as long as they do not, when trunking between different server network addresses, violate the servers' mandates as to the kinds of trunking to be allowed (see below). With regard to callback channels, the client MUST allow the server to choose among all callback channels valid for a given client ID and MUST support trunking when the connections supporting the backchannel allow session or client ID trunking to be used for callbacks.


Session trunking is essentially the association of multiple connections, each with potentially different target and/or source network addresses, to the same session. When the target network addresses (server addresses) of the two connections are the same, the server MUST support such session trunking. When the target network addresses are different, the server MAY indicate such support using the data returned by the EXCHANGE_ID operation (see below).

セッショントランキングとは、基本的には、ターゲットやソースのネットワークアドレスが異なる可能性のある複数の接続を同じセッションに関連付けることです。 2つの接続のターゲットネットワークアドレス(サーバーアドレス)が同じ場合、サーバーはそのようなセッショントランキングをサポートする必要があります。ターゲットネットワークアドレスが異なる場合、サーバーは、EXCHANGE_IDオペレーションによって返されるデータを使用して、そのようなサポートを示す場合があります(下記参照)。

Client ID trunking is the association of multiple sessions to the same client ID. Servers MUST support client ID trunking for two target network addresses whenever they allow session trunking for those same two network addresses. In addition, a server MAY, by presenting the same major server owner ID (Section 2.5) and server scope (Section 2.10.4), allow an additional case of client ID trunking. When two servers return the same major server owner and server scope, it means that the two servers are cooperating on locking state management, which is a prerequisite for client ID trunking.

クライアントIDトランキングは、複数のセッションを同じクライアントIDに関連付けることです。サーバーは、同じ2つのネットワークアドレスのセッショントランキングを許可する場合は常に、2つのターゲットネットワークアドレスのクライアントIDトランキングをサポートする必要があります。さらに、サーバーは、同じメジャーサーバーオーナーID(セクション2.5)およびサーバースコープ(セクション2.10.4)を提示することにより、クライアントIDトランキングの追加のケースを許可する場合があります。 2つのサーバーが同じ主要サーバー所有者とサーバースコープを返す場合、2つのサーバーがロック状態の管理に協力していることを意味します。これは、クライアントIDトランキングの前提条件です。

Distinguishing when the client is allowed to use session and client ID trunking requires understanding how the results of the EXCHANGE_ID (Section 18.35) operation identify a server. Suppose a client sends EXCHANGE_IDs over two different connections, each with a possibly different target network address, but each EXCHANGE_ID operation has the same value in the eia_clientowner field. If the same NFSv4.1 server is listening over each connection, then each EXCHANGE_ID result MUST return the same values of eir_clientid, eir_server_owner.so_major_id, and eir_server_scope. The client can then treat each connection as referring to the same server (subject to verification; see Section later in this section), and it can use each connection to trunk requests and replies. The client's choice is whether session trunking or client ID trunking applies.


Session Trunking. If the eia_clientowner argument is the same in two different EXCHANGE_ID requests, and the eir_clientid, eir_server_owner.so_major_id, eir_server_owner.so_minor_id, and eir_server_scope results match in both EXCHANGE_ID results, then the client is permitted to perform session trunking. If the client has no session mapping to the tuple of eir_clientid, eir_server_owner.so_major_id, eir_server_scope, and eir_server_owner.so_minor_id, then it creates the session via a CREATE_SESSION operation over one of the connections, which associates the connection to the session. If there is a session for the tuple, the client can send BIND_CONN_TO_SESSION to associate the connection to the session.

セッショントランキング。 2つの異なるEXCHANGE_IDリクエストでeia_clientowner引数が同じであり、eir_clientid、eir_server_owner.so_major_id、eir_server_owner.so_minor_id、およびeir_server_scopeの結果が両方のEXCHANGE_IDの結果で一致する場合、クライアントはセッショントランキングを実行できます。クライアントにeir_clientid、eir_server_owner.so_major_id、eir_server_scope、eir_server_owner.so_minor_idのタプルへのセッションマッピングがない場合、接続をセッションに関連付ける接続の1つを介してCREATE_SESSION操作を介してセッションを作成します。タプルのセッションがある場合、クライアントはBIND_CONN_TO_SESSIONを送信して、接続をセッションに関連付けることができます。

Of course, if the client does not desire to use session trunking, it is not required to do so. It can invoke CREATE_SESSION on the connection. This will result in client ID trunking as described below. It can also decide to drop the connection if it does not choose to use trunking.


Client ID Trunking. If the eia_clientowner argument is the same in two different EXCHANGE_ID requests, and the eir_clientid, eir_server_owner.so_major_id, and eir_server_scope results match in both EXCHANGE_ID results, then the client is permitted to perform client ID trunking (regardless of whether the eir_server_owner.so_minor_id results match). The client can associate each connection with different sessions, where each session is associated with the same server.

クライアントIDトランキング。 2つの異なるEXCHANGE_IDリクエストでeia_clientowner引数が同じであり、eir_clientid、eir_server_owner.so_major_id、およびeir_server_scopeの結果が両方のEXCHANGE_ID結果で一致する場合、クライアントは(eir_server_owner.so_minor_id結果が一致するかどうかに関係なく)クライアントIDトランキングを実行できます)。クライアントは、各接続を異なるセッションに関連付けることができます。各セッションは同じサーバーに関連付けられています。

The client completes the act of client ID trunking by invoking CREATE_SESSION on each connection, using the same client ID that was returned in eir_clientid. These invocations create two sessions and also associate each connection with its respective session. The client is free to decline to use client ID trunking by simply dropping the connection at this point.


When doing client ID trunking, locking state is shared across sessions associated with that same client ID. This requires the server to coordinate state across sessions.


The client should be prepared for the possibility that eir_server_owner values may be different on subsequent EXCHANGE_ID requests made to the same network address, as a result of various sorts of reconfiguration events. When this happens and the changes result in the invalidation of previously valid forms of trunking, the client should cease to use those forms, either by dropping connections or by adding sessions. For a discussion of lock reclaim as it relates to such reconfiguration events, see Section

クライアントは、さまざまな種類の再構成イベントの結果として、同じネットワークアドレスに対して行われた後続のEXCHANGE_ID要求でeir_server_ownerの値が異なる可能性に備えて準備する必要があります。これが発生し、変更の結果として以前有効だったトランキングの形式が無効になった場合、クライアントは、接続をドロップするか、セッションを追加することにより、それらの形式の使用を中止する必要があります。このような再構成イベントに関連するロックの再利用については、項を参照してください。 Verifying Claims of Matching Server Identity 一致するサーバーIDの主張の確認

When two servers over two connections claim matching or partially matching eir_server_owner, eir_server_scope, and eir_clientid values, the client does not have to trust the servers' claims. The client may verify these claims before trunking traffic in the following ways: o For session trunking, clients SHOULD reliably verify if connections between different network paths are in fact associated with the same NFSv4.1 server and usable on the same session, and servers MUST allow clients to perform reliable verification. When a client ID is created, the client SHOULD specify that BIND_CONN_TO_SESSION is to be verified according to the SP4_SSV or SP4_MACH_CRED (Section 18.35) state protection options. For SP4_SSV, reliable verification depends on a shared secret (the SSV) that is established via the SET_SSV (Section 18.47) operation.

2つの接続上の2つのサーバーがeir_server_owner、eir_server_scope、eir_clientidの値と一致または部分的に一致することを要求する場合、クライアントはサーバーの要求を信頼する必要はありません。クライアントは、以下の方法でトラフィックをトランキングする前にこれらのクレームを検証できます:oセッショントランキングの場合、クライアントは、異なるネットワークパス間の接続が実際に同じNFSv4.1サーバーに関連付けられており、同じセッションで使用できるかどうかを確実に検証する必要があり、サーバーはクライアントが信頼できる検証を実行できるようにします。クライアントIDが作成されると、クライアントは、SP4_SSVまたはSP4_MACH_CRED(セクション18.35)状態保護オプションに従ってBIND_CONN_TO_SESSIONを検証するように指定する必要があります(SHOULD)。 SP4_SSVの場合、信頼できる検証は、SET_SSV(セクション18.47)操作によって確立される共有シークレット(SSV)に依存します。

When a new connection is associated with the session (via the BIND_CONN_TO_SESSION operation, see Section 18.34), if the client specified SP4_SSV state protection for the BIND_CONN_TO_SESSION operation, the client MUST send the BIND_CONN_TO_SESSION with RPCSEC_GSS protection, using integrity or privacy, and an RPCSEC_GSS handle created with the GSS SSV mechanism (Section 2.10.9).

新しい接続がセッションに関連付けられている場合(BIND_CONN_TO_SESSION操作を介して、セクション18.34を参照)、クライアントがBIND_CONN_TO_SESSION操作に対してSP4_SSV状態保護を指定した場合、クライアントは整合性またはプライバシー、およびRPCSEC_GSSを使用して、RPCSEC_GSS保護付きのBIND_CONN_TO_SESSIONを送信する必要があります。 GSS SSVメカニズム(セクション2.10.9)で作成されたハンドル。

If the client mistakenly tries to associate a connection to a session of a wrong server, the server will either reject the attempt because it is not aware of the session identifier of the BIND_CONN_TO_SESSION arguments, or it will reject the attempt because the RPCSEC_GSS authentication fails. Even if the server mistakenly or maliciously accepts the connection association attempt, the RPCSEC_GSS verifier it computes in the response will not be verified by the client, so the client will know it cannot use the connection for trunking the specified session.


If the client specified SP4_MACH_CRED state protection, the BIND_CONN_TO_SESSION operation will use RPCSEC_GSS integrity or privacy, using the same credential that was used when the client ID was created. Mutual authentication via RPCSEC_GSS assures the client that the connection is associated with the correct session of the correct server.

クライアントがSP4_MACH_CRED状態保護を指定した場合、BIND_CONN_TO_SESSION操作は、クライアントIDの作成時に使用されたのと同じ資格情報を使用して、RPCSEC_GSS整合性またはプライバシーを使用します。 RPCSEC_GSSによる相互認証は、接続が正しいサーバーの正しいセッションに関連付けられていることをクライアントに保証します。

o For client ID trunking, the client has at least two options for verifying that the same client ID obtained from two different EXCHANGE_ID operations came from the same server. The first option is to use RPCSEC_GSS authentication when sending each EXCHANGE_ID operation. Each time an EXCHANGE_ID is sent with RPCSEC_GSS authentication, the client notes the principal name of the GSS target. If the EXCHANGE_ID results indicate that client ID trunking is possible, and the GSS targets' principal names are the same, the servers are the same and client ID trunking is allowed.

o クライアントIDトランキングの場合、クライアントには、2つの異なるEXCHANGE_ID操作から取得された同じクライアントIDが同じサーバーからのものであることを確認するための少なくとも2つのオプションがあります。最初のオプションは、各EXCHANGE_ID操作を送信するときにRPCSEC_GSS認証を使用することです。 EXCHANGE_IDがRPCSEC_GSS認証で送信されるたびに、クライアントはGSSターゲットのプリンシパル名を記録します。 EXCHANGE_IDの結果がクライアントIDトランキングが可能であることを示し、GSSターゲットのプリンシパル名が同じである場合、サーバーは同じであり、クライアントIDトランキングは許可されます。

The second option for verification is to use SP4_SSV protection. When the client sends EXCHANGE_ID, it specifies SP4_SSV protection. The first EXCHANGE_ID the client sends always has to be confirmed by a CREATE_SESSION call. The client then sends SET_SSV. Later, the client sends EXCHANGE_ID to a second destination network address different from the one the first EXCHANGE_ID was sent to. The client checks that each EXCHANGE_ID reply has the same eir_clientid, eir_server_owner.so_major_id, and eir_server_scope. If so, the client verifies the claim by sending a CREATE_SESSION operation to the second destination address, protected with RPCSEC_GSS integrity using an RPCSEC_GSS handle returned by the second EXCHANGE_ID. If the server accepts the CREATE_SESSION request, and if the client verifies the RPCSEC_GSS verifier and integrity codes, then the client has proof the second server knows the SSV, and thus the two servers are cooperating for the purposes of specifying server scope and client ID trunking.

検証の2番目のオプションは、SP4_SSV保護を使用することです。クライアントがEXCHANGE_IDを送信するとき、クライアントはSP4_SSV保護を指定します。クライアントが常に送信する最初のEXCHANGE_IDは、CREATE_SESSION呼び出しで確認する必要があります。次に、クライアントはSET_SSVを送信します。その後、クライアントはEXCHANGE_IDを、最初のEXCHANGE_IDが送信されたアドレスとは異なる2番目の宛先ネットワークアドレスに送信します。クライアントは、各EXCHANGE_ID応答に同じeir_clientid、eir_server_owner.so_major_id、およびeir_server_scopeがあることを確認します。その場合、クライアントは、2番目のEXCHANGE_IDによって返されたRPCSEC_GSSハンドルを使用してRPCSEC_GSS整合性で保護された2番目の宛先アドレスにCREATE_SESSION操作を送信することにより、クレームを検証します。サーバーがCREATE_SESSIONリクエストを受け入れ、クライアントがRPCSEC_GSSベリファイアと整合性コードを検証する場合、クライアントは2番目のサーバーがSSVを認識していることを証明しているため、2つのサーバーはサーバースコープとクライアントIDトランキングを指定する目的で協力しています。 。

2.10.6. Exactly Once Semantics
2.10.6. 正確に一度のセマンティクス

Via the session, NFSv4.1 offers exactly once semantics (EOS) for requests sent over a channel. EOS is supported on both the fore channel and backchannel.

NFSv4.1は、セッションを介して、チャネルを介して送信された要求に対して正確に1回限りのセマンティクス(EOS)を提供します。 EOSは、フォアチャネルとバックチャネルの両方でサポートされています。

Each COMPOUND or CB_COMPOUND request that is sent with a leading SEQUENCE or CB_SEQUENCE operation MUST be executed by the receiver exactly once. This requirement holds regardless of whether the request is sent with reply caching specified (see Section The requirement holds even if the requester is sending the request over a session created between a pNFS data client and pNFS data server. To understand the rationale for this requirement, divide the requests into three classifications:


o Non-idempotent requests.

o 非べき等のリクエスト。

o Idempotent modifying requests.

o べき等の変更要求。

o Idempotent non-modifying requests.

o べき等の非変更リクエスト。

An example of a non-idempotent request is RENAME. Obviously, if a replier executes the same RENAME request twice, and the first execution succeeds, the re-execution will fail. If the replier returns the result from the re-execution, this result is incorrect. Therefore, EOS is required for non-idempotent requests.


An example of an idempotent modifying request is a COMPOUND request containing a WRITE operation. Repeated execution of the same WRITE has the same effect as execution of that WRITE a single time. Nevertheless, enforcing EOS for WRITEs and other idempotent modifying requests is necessary to avoid data corruption.


Suppose a client sends WRITE A to a noncompliant server that does not enforce EOS, and receives no response, perhaps due to a network partition. The client reconnects to the server and re-sends WRITE A. Now, the server has outstanding two instances of A. The server can be in a situation in which it executes and replies to the retry of A, while the first A is still waiting in the server's internal I/O system for some resource. Upon receiving the reply to the second attempt of WRITE A, the client believes its WRITE is done so it is free to send WRITE B, which overlaps the byte-range of A. When the original A is dispatched from the server's I/O system and executed (thus the second time A will have been written), then what has been written by B can be overwritten and thus corrupted.

クライアントがEOSを適用しない非準拠サーバーにWRITE Aを送信し、おそらくネットワークパーティションが原因で応答を受信しないとします。クライアントはサーバーに再接続してWRITE Aを再送信します。これで、サーバーにはAの未解決の2つのインスタンスがあります。サーバーは、最初のAがまだ待機している間に、サーバーが実行されてAの再試行に応答する状況になる可能性があります。サーバーの内部I / Oシステムの一部のリソース。 WRITE Aの2回目の試行に対する応答を受信すると、クライアントはそのWRITEが完了したと信じているため、Aのバイト範囲と重複するWRITE Bを自由に送信できます。元のAがサーバーのI / Oシステムからディスパッチされるとき実行されると(Aが2回目に書き込まれるため)、Bによって書き込まれたものが上書きされ、破損する可能性があります。

An example of an idempotent non-modifying request is a COMPOUND containing SEQUENCE, PUTFH, READLINK, and nothing else. The re-execution of such a request will not cause data corruption or produce an incorrect result. Nonetheless, to keep the implementation simple, the replier MUST enforce EOS for all requests, whether or not idempotent and non-modifying.


Note that true and complete EOS is not possible unless the server persists the reply cache in stable storage, and unless the server is somehow implemented to never require a restart (indeed, if such a server exists, the distinction between a reply cache kept in stable storage versus one that is not is one without meaning). See Section for a discussion of persistence in the reply cache. Regardless, even if the server does not persist the reply cache, EOS improves robustness and correctness over previous versions of NFS because the legacy duplicate request/reply caches were based on the ONC RPC transaction identifier (XID). Section explains the shortcomings of the XID as a basis for a reply cache and describes how NFSv4.1 sessions improve upon the XID.

サーバーが安定したストレージに応答キャッシュを永続化しない限り、そしてサーバーが何らかの方法で再起動を必要としないように実装されていない限り、真の完全なEOSは不可能であることに注意してくださいストレージとそうでないものは意味のないものです)。応答キャッシュでの永続性については、項を参照してください。とにかく、サーバーが応答キャッシュを永続化しない場合でも、レガシーの重複する要求/応答キャッシュはONC RPCトランザクション識別子(XID)に基づいていたため、EOSは以前のバージョンのNFSよりも堅牢性と正確性を向上させます。セクション2.10.6.1では、応答キャッシュの基礎としてのXIDの欠点について説明し、NFSv4.1セッションがXIDをどのように改善するかについて説明します。 Slot Identifiers and Reply Cache スロット識別子と応答キャッシュ

The RPC layer provides a transaction ID (XID), which, while required to be unique, is not convenient for tracking requests for two reasons. First, the XID is only meaningful to the requester; it cannot be interpreted by the replier except to test for equality with previously sent requests. When consulting an RPC-based duplicate request cache, the opaqueness of the XID requires a computationally expensive look up (often via a hash that includes XID and source address). NFSv4.1 requests use a non-opaque slot ID, which is an index into a slot table, which is far more efficient. Second, because RPC requests can be executed by the replier in any order, there is no bound on the number of requests that may be outstanding at any time. To achieve perfect EOS, using ONC RPC would require storing all replies in the reply cache. XIDs are 32 bits; storing over four billion (2^32) replies in the reply cache is not practical. In practice, previous versions of NFS have chosen to store a fixed number of replies in the cache, and to use a least recently used (LRU) approach to replacing cache entries with new entries when the cache is full. In NFSv4.1, the number of outstanding requests is bounded by the size of the slot table, and a sequence ID per slot is used to tell the replier when it is safe to delete a cached reply.

RPCレイヤーはトランザクションID(XID)を提供しますが、これは一意である必要がありますが、2つの理由で要求の追跡には適していません。まず、XIDはリクエスタにとってのみ意味があります。以前に送信されたリクエストと等しいかどうかをテストする場合を除いて、返信者が解釈することはできません。 RPCベースの重複リクエストキャッシュを参照する場合、XIDの不透明性により、計算に負荷のかかるルックアップが必要になります(多くの場合、XIDと送信元アドレスを含むハッシュを介して)。 NFSv4.1要求は、不透明ではないスロットIDを使用します。これはスロットテーブルへのインデックスであり、はるかに効率的です。第2に、RPC要求はリプライヤによって任意の順序で実行できるため、いつでも未解決の可能性がある要求の数に制限はありません。完全なEOSを実現するには、ONC RPCを使用するには、すべての応答を応答キャッシュに格納する必要があります。 XIDは32ビットです。 40億(2 ^ 32)を超える応答を応答キャッシュに格納することは現実的ではありません。実際には、NFSの以前のバージョンでは、固定数の応答をキャッシュに保存し、キャッシュがいっぱいになったときにキャッシュエントリを新しいエントリに置き換えるために、Leastly Used(LRU)アプローチを使用することを選択しました。 NFSv4.1では、未解決の要求の数はスロットテーブルのサイズによって制限され、スロットごとのシーケンスIDを使用して、キャッシュされた応答を安全に削除できる場合に応答者に通知します。

In the NFSv4.1 reply cache, when the requester sends a new request, it selects a slot ID in the range 0..N, where N is the replier's current maximum slot ID granted to the requester on the session over which the request is to be sent. The value of N starts out as equal to ca_maxrequests - 1 (Section 18.36), but can be adjusted by the response to SEQUENCE or CB_SEQUENCE as described later in this section. The slot ID must be unused by any of the requests that the requester has already active on the session. "Unused" here means the requester has no outstanding request for that slot ID.

NFSv4.1応答キャッシュでは、リクエスターが新しい要求を送信すると、0からNの範囲のスロットIDを選択します。ここで、Nは、要求が行われたセッションでリクエスターに付与されたリプライアの現在の最大スロットIDです。送信されます。 Nの値は、ca_maxrequests-1(セクション18.36)と同じですが、このセクションで後述するように、SEQUENCEまたはCB_SEQUENCEへの応答によって調整できます。スロットIDは、リクエスターがセッションですでにアクティブになっているすべての要求で未使用でなければなりません。ここで「未使用」とは、リクエスターがそのスロットIDに対して未解決のリクエストをしていないことを意味します。

A slot contains a sequence ID and the cached reply corresponding to the request sent with that sequence ID. The sequence ID is a 32-bit unsigned value, and is therefore in the range 0..0xFFFFFFFF (2^32 - 1). The first time a slot is used, the requester MUST specify a sequence ID of one (Section 18.36). Each time a slot is reused, the request MUST specify a sequence ID that is one greater than that of the previous request on the slot. If the previous sequence ID was 0xFFFFFFFF, then the next request for the slot MUST have the sequence ID set to zero (i.e., (2^32 - 1) + 1 mod 2^32).

スロットには、シーケンスIDと、そのシーケンスIDで送信された要求に対応するキャッシュされた応答が含まれます。シーケンスIDは32ビットの符号なしの値であるため、範囲は0..0xFFFFFFFF(2 ^ 32-1)です。スロットが初めて使用されるとき、リクエスタは1のシーケンスIDを指定する必要があります(セクション18.36)。スロットが再利用されるたびに、リクエストは、スロットでの前のリクエストのシーケンスIDよりも1つ大きいシーケンスIDを指定する必要があります。以前のシーケンスIDが0xFFFFFFFFの場合、スロットの次のリクエストではシーケンスIDをゼロに設定する必要があります(つまり、(2 ^ 32-1)+ 1 mod 2 ^ 32)。

The sequence ID accompanies the slot ID in each request. It is for the critical check at the replier: it used to efficiently determine whether a request using a certain slot ID is a retransmit or a new, never-before-seen request. It is not feasible for the requester to assert that it is retransmitting to implement this, because for any given request the requester cannot know whether the replier has seen it unless the replier actually replies. Of course, if the requester has seen the reply, the requester would not retransmit.


The replier compares each received request's sequence ID with the last one previously received for that slot ID, to see if the new request is: o A new request, in which the sequence ID is one greater than that previously seen in the slot (accounting for sequence wraparound). The replier proceeds to execute the new request, and the replier MUST increase the slot's sequence ID by one.


o A retransmitted request, in which the sequence ID is equal to that currently recorded in the slot. If the original request has executed to completion, the replier returns the cached reply. See Section for direction on how the replier deals with retries of requests that are still in progress.

o シーケンスIDが現在スロットに記録されているものと等しい、再送信された要求。元のリクエストが完了するまで実行された場合、返信者はキャッシュされた返信を返します。応答者がまだ進行中の要求の再試行をどのように処理するかについては、セクション2.10.6.2を参照してください。

o A misordered retry, in which the sequence ID is less than (accounting for sequence wraparound) that previously seen in the slot. The replier MUST return NFS4ERR_SEQ_MISORDERED (as the result from SEQUENCE or CB_SEQUENCE).

o シーケンスIDが以前にスロットで見られたものよりも小さい(シーケンスラップアラウンドを考慮して)順序が間違っている再試行。リプライヤはNFS4ERR_SEQ_MISORDEREDを返さなければなりません(SEQUENCEまたはCB_SEQUENCEの結果として)。

o A misordered new request, in which the sequence ID is two or more than (accounting for sequence wraparound) that previously seen in the slot. Note that because the sequence ID MUST wrap around to zero once it reaches 0xFFFFFFFF, a misordered new request and a misordered retry cannot be distinguished. Thus, the replier MUST return NFS4ERR_SEQ_MISORDERED (as the result from SEQUENCE or CB_SEQUENCE).

o シーケンスIDが以前にスロットで見られたもの(シーケンスラップアラウンドを考慮したもの)の2以上である、誤った順序の新しいリクエスト。シーケンスIDは0xFFFFFFFFに到達するとゼロにラップアラウンドする必要があるため、順序が正しくない新しい要求と順序が間違っている再試行を区別できないことに注意してください。したがって、返信者はNFS4ERR_SEQ_MISORDEREDを(SEQUENCEまたはCB_SEQUENCEからの結果として)返す必要があります。

Unlike the XID, the slot ID is always within a specific range; this has two implications. The first implication is that for a given session, the replier need only cache the results of a limited number of COMPOUND requests. The second implication derives from the first, which is that unlike XID-indexed reply caches (also known as duplicate request caches - DRCs), the slot ID-based reply cache cannot be overflowed. Through use of the sequence ID to identify retransmitted requests, the replier does not need to actually cache the request itself, reducing the storage requirements of the reply cache further. These facilities make it practical to maintain all the required entries for an effective reply cache.

XIDとは異なり、スロットIDは常に特定の範囲内にあります。これには2つの意味があります。最初の意味は、特定のセッションでは、リプライアは限られた数のCOMPOUNDリクエストの結果をキャッシュするだけでよいことです。 2番目の影響は1番目の影響から派生します。つまり、XIDインデックス付きの応答キャッシュ(重複要求キャッシュ-DRCとも呼ばれます)とは異なり、スロットIDベースの応答キャッシュはオーバーフローできません。シーケンスIDを使用して再送信された要求を識別することにより、応答者は実際に要求自体をキャッシュする必要がなくなり、応答キャッシュのストレージ要件をさらに削減できます。これらの機能により、効果的な応答キャッシュに必要なすべてのエントリを維持することが現実的になります。

The slot ID, sequence ID, and session ID therefore take over the traditional role of the XID and source network address in the replier's reply cache implementation. This approach is considerably more portable and completely robust -- it is not subject to the reassignment of ports as clients reconnect over IP networks. In addition, the RPC XID is not used in the reply cache, enhancing robustness of the cache in the face of any rapid reuse of XIDs by the requester. While the replier does not care about the XID for the purposes of reply cache management (but the replier MUST return the same XID that was in the request), nonetheless there are considerations for the XID in NFSv4.1 that are the same as all other previous versions of NFS. The RPC XID remains in each message and needs to be formulated in NFSv4.1 requests as in any other ONC RPC request. The reasons include:

したがって、スロットID、シーケンスID、およびセッションIDは、返信者の返信キャッシュ実装におけるXIDおよび送信元ネットワークアドレスの従来の役割を引き継ぎます。このアプローチは、移植性が非常に高く、完全に堅牢です。クライアントがIPネットワークを介して再接続するときに、ポートを再割り当てする必要はありません。さらに、RPC XIDは応答キャッシュで使用されないため、リクエスターによるXIDの迅速な再利用に直面してキャッシュの堅牢性が向上します。返信者は返信キャッシュ管理の目的でXIDを気にしません(ただし、返信者はリクエストに含まれていたものと同じXIDを返す必要があります)が、NFSv4.1のXIDには他のすべてと同じ考慮事項があります以前のバージョンのNFS。 RPC XIDは各メッセージに残り、他のONC RPC要求と同様にNFSv4.1要求で定式化する必要があります。理由は次のとおりです。

o The RPC layer retains its existing semantics and implementation.

o RPCレイヤーは、既存のセマンティクスと実装を保持します。

o The requester and replier must be able to interoperate at the RPC layer, prior to the NFSv4.1 decoding of the SEQUENCE or CB_SEQUENCE operation.

o リクエスタとリプライヤは、SEQUENCEまたはCB_SEQUENCE操作のNFSv4.1デコードの前に、RPCレイヤで相互運用できる必要があります。

o If an operation is being used that does not start with SEQUENCE or CB_SEQUENCE (e.g., BIND_CONN_TO_SESSION), then the RPC XID is needed for correct operation to match the reply to the request.

o SEQUENCEまたはCB_SEQUENCEで始まらない操作(BIND_CONN_TO_SESSIONなど)が使用されている場合、RPC XIDは、正しい操作が要求への応答と一致するために必要です。

o The SEQUENCE or CB_SEQUENCE operation may generate an error. If so, the embedded slot ID, sequence ID, and session ID (if present) in the request will not be in the reply, and the requester has only the XID to match the reply to the request.

o SEQUENCEまたはCB_SEQUENCE操作はエラーを生成する場合があります。その場合、要求に埋め込まれたスロットID、シーケンスID、およびセッションID(存在する場合)は応答に含まれず、要求者は要求への応答と一致するXIDしか持っていません。

Given that well-formulated XIDs continue to be required, this begs the question: why do SEQUENCE and CB_SEQUENCE replies have a session ID, slot ID, and sequence ID? Having the session ID in the reply means that the requester does not have to use the XID to look up the session ID, which would be necessary if the connection were associated with multiple sessions. Having the slot ID and sequence ID in the reply means that the requester does not have to use the XID to look up the slot ID and sequence ID. Furthermore, since the XID is only 32 bits, it is too small to guarantee the re-association of a reply with its request [37]; having session ID, slot ID, and sequence ID in the reply allows the client to validate that the reply in fact belongs to the matched request.


The SEQUENCE (and CB_SEQUENCE) operation also carries a "highest_slotid" value, which carries additional requester slot usage information. The requester MUST always indicate the slot ID representing the outstanding request with the highest-numbered slot value. The requester should in all cases provide the most conservative value possible, although it can be increased somewhat above the actual instantaneous usage to maintain some minimum or optimal level. This provides a way for the requester to yield unused request slots back to the replier, which in turn can use the information to reallocate resources.

SEQUENCE(およびCB_SEQUENCE)操作は、 "highest_slotid"値も伝送します。この値は、追加のリクエスタースロットの使用情報を伝送します。リクエスターは常に、最も大きい番号のスロット値を持つ未解決の要求を表すスロットIDを示さなければなりません(MUST)。リクエスタは、可能な限り最も保守的な値を提供する必要がありますが、実際の瞬間的な使用量よりもいくらか増やして、最小または最適なレベルを維持することができます。これは、リクエスタが未使用のリクエストスロットをリプライヤに返す方法を提供します。リプライヤは、情報を使用してリソースを再割り当てできます。

The replier responds with both a new target highest_slotid and an enforced highest_slotid, described as follows: o The target highest_slotid is an indication to the requester of the highest_slotid the replier wishes the requester to be using. This permits the replier to withdraw (or add) resources from a requester that has been found to not be using them, in order to more fairly share resources among a varying level of demand from other requesters. The requester must always comply with the replier's value updates, since they indicate newly established hard limits on the requester's access to session resources. However, because of request pipelining, the requester may have active requests in flight reflecting prior values; therefore, the replier must not immediately require the requester to comply.


o The enforced highest_slotid indicates the highest slot ID the requester is permitted to use on a subsequent SEQUENCE or CB_SEQUENCE operation. The replier's enforced highest_slotid SHOULD be no less than the highest_slotid the requester indicated in the SEQUENCE or CB_SEQUENCE arguments.

o 実施されるhighest_slotidは、リクエスターが後続のSEQUENCEまたはCB_SEQUENCE操作で使用することを許可されている最高のスロットIDを示します。リプライヤの実施されるhighest_slotidは、SEQUENCEまたはCB_SEQUENCE引数で要求者が示したhighest_slotid以上である必要があります。

A requester can be intransigent with respect to lowering its highest_slotid argument to a Sequence operation, i.e. the requester continues to ignore the target highest_slotid in the response to a Sequence operation, and continues to set its highest_slotid argument to be higher than the target highest_slotid. This can be considered particularly egregious behavior when the replier knows there are no outstanding requests with slot IDs higher than its target highest_slotid. When faced with such intransigence, the replier is free to take more forceful action, and MAY reply with a new enforced highest_slotid that is less than its previous enforced highest_slotid. Thereafter, if the requester continues to send requests with a highest_slotid that is greater than the replier's new enforced highest_slotid, the server MAY return NFS4ERR_BAD_HIGH_SLOT, unless the slot ID in the request is greater than the new enforced highest_slotid and the request is a retry.


The replier SHOULD retain the slots it wants to retire until the requester sends a request with a highest_slotid less than or equal to the replier's new enforced highest_slotid.


The requester can also be intransigent with respect to sending non-retry requests that have a slot ID that exceeds the replier's highest_slotid. Once the replier has forcibly lowered the enforced highest_slotid, the requester is only allowed to send retries on slots that exceed the replier's highest_slotid. If a request is received with a slot ID that is higher than the new enforced highest_slotid, and the sequence ID is one higher than what is in the slot's reply cache, then the server can both retire the slot and return NFS4ERR_BADSLOT (however, the server MUST NOT do one and not the other). The reason it is safe to retire the slot is because by using the next sequence ID, the requester is indicating it has received the previous reply for the slot.


o The requester SHOULD use the lowest available slot when sending a new request. This way, the replier may be able to retire slot entries faster. However, where the replier is actively adjusting its granted highest_slotid, it will not be able to use only the receipt of the slot ID and highest_slotid in the request. Neither the slot ID nor the highest_slotid used in a request may reflect the replier's current idea of the requester's session limit, because the request may have been sent from the requester before the update was received. Therefore, in the downward adjustment case, the replier may have to retain a number of reply cache entries at least as large as the old value of maximum requests outstanding, until it can infer that the requester has seen a reply containing the new granted highest_slotid. The replier can infer that the requester has seen such a reply when it receives a new request with the same slot ID as the request replied to and the next higher sequence ID.

o リクエスタは、新しいリクエストを送信するときに、利用可能な最小のスロットを使用する必要があります(SHOULD)。このように、返信者はスロットエントリをより早くリタイアできる場合があります。ただし、リプライアが許可されたhighest_slotidをアクティブに調整している場合、リクエストでスロットIDとhighest_slotidの受信のみを使用することはできません。リクエストで使用されたスロットIDも、highest_slotidも、リクエスタのセッション制限に関するリプライアの現在の考えを反映していない可能性があります。更新が受信される前にリクエスタからリクエストが送信された可能性があるためです。したがって、下方調整の場合、リプライアは、リクエスタが新しく付与されたhighest_slotidを含む応答を確認できるまで、少なくとも未処理の最大リクエスト数の古い値と同じ数のリプライキャッシュエントリを保持する必要があります。リプライアは、リクエスタが応答したのと同じスロットIDと次に高いシーケンスIDを持つ新しいリクエストを受信したときに、リクエスタがそのような応答を見たことを推測できます。 Caching of SEQUENCE and CB_SEQUENCE Replies SEQUENCEおよびCB_SEQUENCE応答のキャッシュ

When a SEQUENCE or CB_SEQUENCE operation is successfully executed, its reply MUST always be cached. Specifically, session ID, sequence ID, and slot ID MUST be cached in the reply cache. The reply from SEQUENCE also includes the highest slot ID, target highest slot ID, and status flags. Instead of caching these values, the server MAY re-compute the values from the current state of the fore channel, session, and/or client ID as appropriate. Similarly, the reply from CB_SEQUENCE includes a highest slot ID and target highest slot ID. The client MAY re-compute the values from the current state of the session as appropriate.

SEQUENCEまたはCB_SEQUENCE操作が正常に実行された場合、その応答は常にキャッシュされる必要があります。具体的には、セッションID、シーケンスID、およびスロットIDを応答キャッシュにキャッシュする必要があります。 SEQUENCEからの応答には、最大のスロットID、ターゲットの最大のスロットID、およびステータスフラグも含まれます。これらの値をキャッシュする代わりに、サーバーは、必要に応じて、フォアチャネル、セッション、クライアントIDの現在の状態から値を再計算できます(MAY)。同様に、CB_SEQUENCEからの応答には、最高のスロットIDとターゲットの最高のスロットIDが含まれます。クライアントは、必要に応じてセッションの現在の状態から値を再計算できます(MAY)。

Regardless of whether or not a replier is re-computing highest slot ID, target slot ID, and status on replies to retries, the requester MUST NOT assume that the values are being re-computed whenever it receives a reply after a retry is sent, since it has no way of knowing whether the reply it has received was sent by the replier in response to the retry or is a delayed response to the original request. Therefore, it may be the case that highest slot ID, target slot ID, or status bits may reflect the state of affairs when the request was first executed. Although acting based on such delayed information is valid, it may cause the receiver of the reply to do unneeded work. Requesters MAY choose to send additional requests to get the current state of affairs or use the state of affairs reported by subsequent requests, in preference to acting immediately on data that might be out of date.

リプライヤが最高のスロットID、ターゲットスロットID、および再試行に対する返信のステータスを再計算しているかどうかに関係なく、リクエスタは、再試行が送信された後に応答を受信するたびに値が再計算されていると想定してはなりません。これは、受け取った応答が再試行に応答して応答者によって送信されたものか、元の要求に対する遅延応答かを知る方法がないためです。したがって、リクエストが最初に実行されたときの最大のスロットID、ターゲットスロットID、またはステータスビットが状況を反映している場合があります。このような遅延した情報に基づいて行動することは有効ですが、応答の受信者が不要な作業を行う可能性があります。要求者は、最新の状況を取得するために追加の要求を送信するか、または古くなっている可能性のあるデータにすぐに対処するよりも、後続の要求によって報告された状況を使用することを選択できます。 Errors from SEQUENCE and CB_SEQUENCE SEQUENCEおよびCB_SEQUENCEからのエラー

Any time SEQUENCE or CB_SEQUENCE returns an error, the sequence ID of the slot MUST NOT change. The replier MUST NOT modify the reply cache entry for the slot whenever an error is returned from SEQUENCE or CB_SEQUENCE.

SEQUENCEまたはCB_SEQUENCEがエラーを返すときは常に、スロットのシーケンスIDを変更してはなりません(MUST NOT)。 SEQUENCEまたはCB_SEQUENCEからエラーが返された場合、リプライヤはスロットの応答キャッシュエントリを変更してはなりません(MUST NOT)。 Optional Reply Caching オプションの返信キャッシュ

On a per-request basis, the requester can choose to direct the replier to cache the reply to all operations after the first operation (SEQUENCE or CB_SEQUENCE) via the sa_cachethis or csa_cachethis fields of the arguments to SEQUENCE or CB_SEQUENCE. The reason it would not direct the replier to cache the entire reply is that the request is composed of all idempotent operations [34]. Caching the reply may offer little benefit. If the reply is too large (see Section, it may not be cacheable anyway. Even if the reply to idempotent request is small enough to cache, unnecessarily caching the reply slows down the server and increases RPC latency.


Whether or not the requester requests the reply to be cached has no effect on the slot processing. If the results of SEQUENCE or CB_SEQUENCE are NFS4_OK, then the slot's sequence ID MUST be incremented by one. If a requester does not direct the replier to cache the reply, the replier MUST do one of following:

リクエスタが応答のキャッシュを要求するかどうかは、スロット処理には影響しません。 SEQUENCEまたはCB_SEQUENCEの結果がNFS4_OKの場合、スロットのシーケンスIDは1ずつ増加する必要があります。リクエスタが返信をキャッシュするように返信者に指示しない場合、返信者は次のいずれかを実行する必要があります。

o The replier can cache the entire original reply. Even though sa_cachethis or csa_cachethis is FALSE, the replier is always free to cache. It may choose this approach in order to simplify implementation.

o 返信者は元の返信全体をキャッシュできます。 sa_cachethisまたはcsa_cachethisがFALSEであっても、リプライヤは常に自由にキャッシュできます。実装を簡素化するために、このアプローチを選択する場合があります。

o The replier enters into its reply cache a reply consisting of the original results to the SEQUENCE or CB_SEQUENCE operation, and with the next operation in COMPOUND or CB_COMPOUND having the error NFS4ERR_RETRY_UNCACHED_REP. Thus, if the requester later retries the request, it will get NFS4ERR_RETRY_UNCACHED_REP. If a replier receives a retried Sequence operation where the reply to the COMPOUND or CB_COMPOUND was not cached, then the replier,

o 返信者は、SEQUENCEまたはCB_SEQUENCE操作に対する元の結果からなる返信を返信キャッシュに入力し、COMPOUNDまたはCB_COMPOUNDの次の操作でエラーNFS4ERR_RETRY_UNCACHED_REPが発生します。したがって、リクエスターが後で要求を再試行すると、NFS4ERR_RETRY_UNCACHED_REPが取得されます。返信者がCOMPOUNDまたはCB_COMPOUNDへの返信がキャッシュされていない再試行されたシーケンス操作を受け取った場合、返信者は、

* MAY return NFS4ERR_RETRY_UNCACHED_REP in reply to a Sequence operation if the Sequence operation is not the first operation (granted, a requester that does so is in violation of the NFSv4.1 protocol).

* シーケンス操作が最初の操作ではない場合、シーケンス操作への応答としてNFS4ERR_RETRY_UNCACHED_REPを返す場合があります(許可されている場合、リクエスターはNFSv4.1プロトコルに違反しています)。

* MUST NOT return NFS4ERR_RETRY_UNCACHED_REP in reply to a Sequence operation if the Sequence operation is the first operation.

* シーケンス操作が最初の操作である場合、シーケンス操作への応答としてNFS4ERR_RETRY_UNCACHED_REPを返してはなりません(MUST NOT)。

o If the second operation is an illegal operation, or an operation that was legal in a previous minor version of NFSv4 and MUST NOT be supported in the current minor version (e.g., SETCLIENTID), the replier MUST NOT ever return NFS4ERR_RETRY_UNCACHED_REP. Instead the replier MUST return NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or NFS4ERR_NOTSUPP as appropriate.

o 2番目の操作が不正な操作である場合、またはNFSv4の以前のマイナーバージョンで合法であり、現在のマイナーバージョン(たとえば、SETCLIENTID)でサポートされてはならない操作の場合、返信者はNFS4ERR_RETRY_UNCACHED_REPを返してはなりません。代わりに、返信者はNFS4ERR_OP_ILLEGALまたはNFS4ERR_BADXDRまたはNFS4ERR_NOTSUPPを必要に応じて返す必要があります。

o If the second operation can result in another error status, the replier MAY return a status other than NFS4ERR_RETRY_UNCACHED_REP, provided the operation is not executed in such a way that the state of the replier is changed. Examples of such an error status include: NFS4ERR_NOTSUPP returned for an operation that is legal but not REQUIRED in the current minor versions, and thus not supported by the replier; NFS4ERR_SEQUENCE_POS; and NFS4ERR_REQ_TOO_BIG.

o 2番目の操作で別のエラーステータスが発生する可能性がある場合、リプライアの状態が変更されるような方法で操作が実行されない限り、リプライアはNFS4ERR_RETRY_UNCACHED_REP以外のステータスを返す可能性があります。このようなエラーステータスの例は次のとおりです。NFS4ERR_NOTSUPPは、現在のマイナーバージョンでは正当であるが必須ではない操作に対して返されたため、返信者によってサポートされていません。 NFS4ERR_SEQUENCE_POS;およびNFS4ERR_REQ_TOO_BIG。

The discussion above assumes that the retried request matches the original one. Section discusses what the replier might do, and MUST do when original and retried requests do not match. Since the replier may only cache a small amount of the information that would be required to determine whether this is a case of a false retry, the replier may send to the client any of the following responses:


o The cached reply to the original request (if the replier has cached it in its entirety and the users of the original request and retry match).

o 元の要求に対するキャッシュされた応答(応答者が全体をキャッシュし、元の要求のユーザーと再試行が一致した場合)。

o A reply that consists only of the Sequence operation with the error NFS4ERR_FALSE_RETRY.

o エラーNFS4ERR_FALSE_RETRYを持つシーケンス操作のみで構成される応答。

o A reply consisting of the response to Sequence with the status NFS4_OK, together with the second operation as it appeared in the retried request with an error of NFS4ERR_RETRY_UNCACHED_REP or other error as described above.

o ステータスがNFS4_OKのシーケンスへの応答と、NFS4ERR_RETRY_UNCACHED_REPのエラーまたは上記のその他のエラーで再試行された要求に表示された2番目の操作からなる応答。

o A reply that consists of the response to Sequence with the status NFS4_OK, together with the second operation as it appeared in the original request with an error of NFS4ERR_RETRY_UNCACHED_REP or other error as described above.

o ステータスがNFS4_OKのSequenceへの応答と、NFS4ERR_RETRY_UNCACHED_REPのエラーまたは上記のその他のエラーを含む元の要求に表示された2番目の操作からなる応答。 False Retry 誤った再試行

If a requester sent a Sequence operation with a slot ID and sequence ID that are in the reply cache but the replier detected that the retried request is not the same as the original request, including a retry that has different operations or different arguments in the operations from the original and a retry that uses a different principal in the RPC request's credential field that translates to a different user, then this is a false retry. When the replier detects a false retry, it is permitted (but not always obligated) to return NFS4ERR_FALSE_RETRY in response to the Sequence operation when it detects a false retry.


Translations of particularly privileged user values to other users due to the lack of appropriately secure credentials, as configured on the replier, should be applied before determining whether the users are the same or different. If the replier determines the users are different between the original request and a retry, then the replier MUST return NFS4ERR_FALSE_RETRY.


If an operation of the retry is an illegal operation, or an operation that was legal in a previous minor version of NFSv4 and MUST NOT be supported in the current minor version (e.g., SETCLIENTID), the replier MAY return NFS4ERR_FALSE_RETRY (and MUST do so if the users of the original request and retry differ). Otherwise, the replier MAY return NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or NFS4ERR_NOTSUPP as appropriate. Note that the handling is in contrast for how the replier deals with retries requests with no cached reply. The difference is due to NFS4ERR_FALSE_RETRY being a valid error for only Sequence operations, whereas NFS4ERR_RETRY_UNCACHED_REP is a valid error for all operations except illegal operations and operations that MUST NOT be supported in the current minor version of NFSv4.

再試行の操作が不正な操作であるか、NFSv4の以前のマイナーバージョンで合法であり、現在のマイナーバージョン(たとえば、SETCLIENTID)でサポートされてはならない操作である場合、リプライアはNFS4ERR_FALSE_RETRYを返すことができます(そうする必要があります)元のリクエストと再試行のユーザーが異なる場合)。それ以外の場合、リプライアはNFS4ERR_OP_ILLEGALまたはNFS4ERR_BADXDRまたはNFS4ERR_NOTSUPPを必要に応じて返します。この処理は、リプライヤがキャッシュされた応答なしで再試行要求を処理する方法と対照的であることに注意してください。 NFS4ERR_RETRY_UNCACHED_REPは、NFSv4の現在のマイナーバージョンでサポートされてはならない不正な操作と操作を除くすべての操作で有効なエラーですが、NFS4ERR_FALSE_RETRYはシーケンス操作でのみ有効なエラーです。 Retry and Replay of Reply 返信の再試行と再生

A requester MUST NOT retry a request, unless the connection it used to send the request disconnects. The requester can then reconnect and re-send the request, or it can re-send the request over a different connection that is associated with the same session.

リクエスタは、リクエストの送信に使用した接続が切断されない限り、リクエストを再試行してはなりません(MUST NOT)。その後、リクエスタは再接続してリクエストを再送信するか、同じセッションに関連付けられている別の接続を介してリクエストを再送信できます。

If the requester is a server wanting to re-send a callback operation over the backchannel of a session, the requester of course cannot reconnect because only the client can associate connections with the backchannel. The server can re-send the request over another connection that is bound to the same session's backchannel. If there is no such connection, the server MUST indicate that the session has no backchannel by setting the SEQ4_STATUS_CB_PATH_DOWN_SESSION flag bit in the response to the next SEQUENCE operation from the client. The client MUST then associate a connection with the session (or destroy the session).


Note that it is not fatal for a requester to retry without a disconnect between the request and retry. However, the retry does consume resources, especially with RDMA, where each request, retry or not, consumes a credit. Retries for no reason, especially retries sent shortly after the previous attempt, are a poor use of network bandwidth and defeat the purpose of a transport's inherent congestion control system.


A requester MUST wait for a reply to a request before using the slot for another request. If it does not wait for a reply, then the requester does not know what sequence ID to use for the slot on its next request. For example, suppose a requester sends a request with sequence ID 1, and does not wait for the response. The next time it uses the slot, it sends the new request with sequence ID 2. If the replier has not seen the request with sequence ID 1, then the replier is not expecting sequence ID 2, and rejects the requester's new request with NFS4ERR_SEQ_MISORDERED (as the result from SEQUENCE or CB_SEQUENCE).

リクエスタは、別のリクエストにスロットを使用する前に、リクエストへの応答を待つ必要があります。応答を待たない場合、リクエスタは次のリクエストでスロットに使用するシーケンスIDを知りません。たとえば、リクエスタがシーケンスID 1のリクエストを送信し、応答を待たないとします。次にスロットを使用するときに、シーケンスID 2の新しいリクエストを送信します。返信者がシーケンスID 1のリクエストを確認していない場合、返信者はシーケンスID 2を予期しておらず、NFS4ERR_SEQ_MISORDERED( SEQUENCEまたはCB_SEQUENCEの結果として)。

RDMA fabrics do not guarantee that the memory handles (Steering Tags) within each RPC/RDMA "chunk" [8] are valid on a scope outside that of a single connection. Therefore, handles used by the direct operations become invalid after connection loss. The server must ensure that any RDMA operations that must be replayed from the reply cache use the newly provided handle(s) from the most recent request.

RDMAファブリックは、各RPC / RDMA "チャンク" [8]内のメモリハンドル(ステアリングタグ)が単一接続のスコープ外のスコープで有効であることを保証しません。したがって、直接操作で使用されるハンドルは、接続が失われた後に無効になります。サーバーは、応答キャッシュから再生する必要のあるすべてのRDMA操作が、最新の要求から新しく提供されたハンドルを使用することを確認する必要があります。

A retry might be sent while the original request is still in progress on the replier. The replier SHOULD deal with the issue by returning NFS4ERR_DELAY as the reply to SEQUENCE or CB_SEQUENCE operation, but implementations MAY return NFS4ERR_MISORDERED. Since errors from SEQUENCE and CB_SEQUENCE are never recorded in the reply cache, this approach allows the results of the execution of the original request to be properly recorded in the reply cache (assuming that the requester specified the reply to be cached).

元の要求がリプライアでまだ進行中に、再試行が送信される場合があります。リプライヤは、SEQUENCEまたはCB_SEQUENCE操作への応答としてNFS4ERR_DELAYを返すことで問題に対処する必要がありますが、実装はNFS4ERR_MISORDEREDを返す場合があります。 SEQUENCEおよびCB_SEQUENCEからのエラーが応答キャッシュに記録されることはないため、このアプローチにより、元の要求の実行結果を応答キャッシュに適切に記録できます(要求者が応答をキャッシュするように指定したと想定)。 Resolving Server Callback Races サーバーコールバックレースの解決

It is possible for server callbacks to arrive at the client before the reply from related fore channel operations. For example, a client may have been granted a delegation to a file it has opened, but the reply to the OPEN (informing the client of the granting of the delegation) may be delayed in the network. If a conflicting operation arrives at the server, it will recall the delegation using the backchannel, which may be on a different transport connection, perhaps even a different network, or even a different session associated with the same client ID.


The presence of a session between the client and server alleviates this issue. When a session is in place, each client request is uniquely identified by its { session ID, slot ID, sequence ID } triple. By the rules under which slot entries (reply cache entries) are retired, the server has knowledge whether the client has "seen" each of the server's replies. The server can therefore provide sufficient information to the client to allow it to disambiguate between an erroneous or conflicting callback race condition.

クライアントとサーバー間のセッションの存在は、この問題を軽減します。セッションが確立されている場合、各クライアント要求は、その{セッションID、スロットID、シーケンスID}トリプルによって一意に識別されます。スロットエントリ(応答キャッシュエントリ)を廃止するルールにより、サーバーは、クライアントが各サーバーの応答を "確認"したかどうかを認識します。したがって、サーバーはクライアントに十分な情報を提供して、誤ったまたは競合するコールバックの競合状態を明確にすることができます。

For each client operation that might result in some sort of server callback, the server SHOULD "remember" the { session ID, slot ID, sequence ID } triple of the client request until the slot ID retirement rules allow the server to determine that the client has, in fact, seen the server's reply. Until the time the { session ID, slot ID, sequence ID } request triple can be retired, any recalls of the associated object MUST carry an array of these referring identifiers (in the CB_SEQUENCE operation's arguments), for the benefit of the client. After this time, it is not necessary for the server to provide this information in related callbacks, since it is certain that a race condition can no longer occur.

何らかのサーバーコールバックが発生する可能性のあるクライアント操作ごとに、サーバーは、スロットIDの廃止ルールによってサーバーがクライアントを決定できるようになるまで、クライアントリクエストの{セッションID、スロットID、シーケンスID}の3倍を「記憶」する必要があります(SHOULD)。実際には、サーバーの応答を見てきました。 {セッションID、スロットID、シーケンスID}のリクエストトリプルが廃止されるまで、関連オブジェクトのリコールは、クライアントの利益のために、これらの参照識別子の配列(CB_SEQUENCE操作の引数内)を運ぶ必要があります。この後は、サーバーがこの情報を関連するコールバックで提供する必要はありません。これは、競合状態が発生しなくなることが確実であるためです。

The CB_SEQUENCE operation that begins each server callback carries a list of "referring" { session ID, slot ID, sequence ID } triples. If the client finds the request corresponding to the referring session ID, slot ID, and sequence ID to be currently outstanding (i.e., the server's reply has not been seen by the client), it can determine that the callback has raced the reply, and act accordingly. If the client does not find the request corresponding to the referring triple to be outstanding (including the case of a session ID referring to a destroyed session), then there is no race with respect to this triple. The server SHOULD limit the referring triples to requests that refer to just those that apply to the objects referred to in the CB_COMPOUND procedure.


The client must not simply wait forever for the expected server reply to arrive before responding to the CB_COMPOUND that won the race, because it is possible that it will be delayed indefinitely. The client should assume the likely case that the reply will arrive within the average round-trip time for COMPOUND requests to the server, and wait that period of time. If that period of time expires, it can respond to the CB_COMPOUND with NFS4ERR_DELAY. There are other scenarios under which callbacks may race replies. Among them are pNFS layout recalls as described in Section

クライアントは、レースに勝ったCB_COMPOUNDに応答する前に、予期されるサーバー応答が到着するのを単に永遠に待つ必要はありません。無限に遅延する可能性があるためです。クライアントは、サーバーへのCOMPOUND要求の平均往復時間内に応答が到着する可能性が高いと想定して、その期間待機する必要があります。その期間が満了すると、NFS4ERR_DELAYでCB_COMPOUNDに応答できます。コールバックが応答を競合させる他のシナリオがあります。その中には、で説明されているpNFSレイアウトのリコールがあります。 COMPOUND and CB_COMPOUND Construction Issues COMPOUNDおよびCB_COMPOUNDの構築に関する問題

Very large requests and replies may pose both buffer management issues (especially with RDMA) and reply cache issues. When the session is created (Section 18.36), for each channel (fore and back), the client and server negotiate the maximum-sized request they will send or process (ca_maxrequestsize), the maximum-sized reply they will return or process (ca_maxresponsesize), and the maximum-sized reply they will store in the reply cache (ca_maxresponsesize_cached).

要求と応答が非常に大きいと、バッファ管理の問題(特にRDMAの場合)と応答キャッシュの問題の両方が発生する可能性があります。セッションが作成されると(セクション18.36)、各チャネル(前後)で、クライアントとサーバーは、それらが送信または処理する最大サイズのリクエスト(ca_maxrequestsize)、それらが返すまたは処理する最大サイズの応答(ca_maxresponsesize)についてネゴシエートします。 )、および返信キャッシュに保存される最大サイズの返信(ca_maxresponsesize_cached)。

If a request exceeds ca_maxrequestsize, the reply will have the status NFS4ERR_REQ_TOO_BIG. A replier MAY return NFS4ERR_REQ_TOO_BIG as the status for the first operation (SEQUENCE or CB_SEQUENCE) in the request (which means that no operations in the request executed and that the state of the slot in the reply cache is unchanged), or it MAY opt to return it on a subsequent operation in the same COMPOUND or CB_COMPOUND request (which means that at least one operation did execute and that the state of the slot in the reply cache does change). The replier SHOULD set NFS4ERR_REQ_TOO_BIG on the operation that exceeds ca_maxrequestsize.


If a reply exceeds ca_maxresponsesize, the reply will have the status NFS4ERR_REP_TOO_BIG. A replier MAY return NFS4ERR_REP_TOO_BIG as the status for the first operation (SEQUENCE or CB_SEQUENCE) in the request, or it MAY opt to return it on a subsequent operation (in the same COMPOUND or CB_COMPOUND reply). A replier MAY return NFS4ERR_REP_TOO_BIG in the reply to SEQUENCE or CB_SEQUENCE, even if the response would still exceed ca_maxresponsesize.


If sa_cachethis or csa_cachethis is TRUE, then the replier MUST cache a reply except if an error is returned by the SEQUENCE or CB_SEQUENCE operation (see Section If the reply exceeds ca_maxresponsesize_cached (and sa_cachethis or csa_cachethis is TRUE), then the server MUST return NFS4ERR_REP_TOO_BIG_TO_CACHE. Even if NFS4ERR_REP_TOO_BIG_TO_CACHE (or any other error for that matter) is returned on an operation other than the first operation (SEQUENCE or CB_SEQUENCE), then the reply MUST be cached if sa_cachethis or csa_cachethis is TRUE. For example, if a COMPOUND has eleven operations, including SEQUENCE, the fifth operation is a RENAME, and the tenth operation is a READ for one million bytes, the server may return NFS4ERR_REP_TOO_BIG_TO_CACHE on the tenth operation. Since the server executed several operations, especially the non-idempotent RENAME, the client's request to cache the reply needs to be honored in order for the correct operation of exactly once semantics. If the client retries the request, the server will have cached a reply that contains results for ten of the eleven requested operations, with the tenth operation having a status of NFS4ERR_REP_TOO_BIG_TO_CACHE.

sa_cachethisまたはcsa_cachethisがTRUEの場合、SEQUENCEまたはCB_SEQUENCE操作によってエラーが返された場合を除いて、返信者は返信をキャッシュする必要があります(を参照)。応答がca_maxresponsesize_cachedを超えている(そしてsa_cachethisまたはcsa_cachethisがTRUEである)場合、サーバーはNFS4ERR_REP_TOO_BIG_TO_CACHEを返す必要があります。 NFS4ERR_REP_TOO_BIG_TO_CACHE(またはその他のエラー)が最初の操作(SEQUENCEまたはCB_SEQUENCE)以外の操作で返された場合でも、sa_cachethisまたはcsa_cachethisがTRUEの場合、応答をキャッシュする必要があります。たとえば、COMPOUNDにSEQUENCEを含む11の操作があり、5番目の操作がRENAMEであり、10番目の操作が100万バイトのREADである場合、サーバーは10番目の操作でNFS4ERR_REP_TOO_BIG_TO_CACHEを返すことがあります。サーバーがいくつかの操作、特に非べき等のRENAMEを実行したため、正確に1回だけのセマンティクスの正しい操作を行うには、クライアントの応答をキャッシュする要求を尊重する必要があります。クライアントが要求を再試行する場合、サーバーは11の要求された操作のうち10の結果を含む応答をキャッシュし、10番目の操作のステータスはNFS4ERR_REP_TOO_BIG_TO_CACHEになります。

A client needs to take care that when sending operations that change the current filehandle (except for PUTFH, PUTPUBFH, PUTROOTFH, and RESTOREFH), it not exceed the maximum reply buffer before the GETFH operation. Otherwise, the client will have to retry the operation that changed the current filehandle, in order to obtain the desired filehandle. For the OPEN operation (see Section 18.16), retry is not always available as an option. The following guidelines for the handling of filehandle-changing operations are advised: o Within the same COMPOUND procedure, a client SHOULD send GETFH immediately after a current filehandle-changing operation. A client MUST send GETFH after a current filehandle-changing operation that is also non-idempotent (e.g., the OPEN operation), unless the operation is RESTOREFH. RESTOREFH is an exception, because even though it is non-idempotent, the filehandle RESTOREFH produced originated from an operation that is either idempotent (e.g., PUTFH, LOOKUP), or non-idempotent (e.g., OPEN, CREATE). If the origin is non-idempotent, then because the client MUST send GETFH after the origin operation, the client can recover if RESTOREFH returns an error.

クライアントは、現在のファイルハンドルを変更する操作(PUTFH、PUTPUBFH、PUTROOTFH、およびRESTOREFHを除く)を送信するときに、GETFH操作前の最大応答バッファーを超えないように注意する必要があります。それ以外の場合、クライアントは、目的のファイルハンドルを取得するために、現在のファイルハンドルを変更した操作を再試行する必要があります。 OPEN操作(セクション18.16を参照)の場合、再試行は常にオプションとして使用できるわけではありません。ファイルハンドル変更操作の処理に関する次のガイドラインをお勧めします。o同じCOMPOUNDプロシージャ内で、クライアントは現在のファイルハンドル変更操作の直後にGETFHを送信する必要があります(SHOULD)。操作がRESTOREFHでない限り、クライアントは、現在のファイルハンドル変更操作(べき等ではない操作(OPEN操作など))の後にGETFHを送信する必要があります。 RESTOREFHは例外です。なぜなら、それがべき等ではない場合でも、生成されるファイルハンドルRESTOREFHは、べき等(PUTFH、LOOKUPなど)またはべき等ではない(OPEN、CREATEなど)の操作から発生したものだからです。オリジンがべき等でない場合、クライアントはオリジン操作の後にGETFHを送信する必要があるため、RESTOREFHがエラーを返した場合、クライアントは回復できます。

o A server MAY return NFS4ERR_REP_TOO_BIG or NFS4ERR_REP_TOO_BIG_TO_CACHE (if sa_cachethis is TRUE) on a filehandle-changing operation if the reply would be too large on the next operation.

o 次の操作で応答が大きすぎる場合、サーバーはファイルハンドル変更操作でNFS4ERR_REP_TOO_BIGまたはNFS4ERR_REP_TOO_BIG_TO_CACHE(sa_cachethisがTRUEの場合)を返す場合があります。

o A server SHOULD return NFS4ERR_REP_TOO_BIG or NFS4ERR_REP_TOO_BIG_TO_CACHE (if sa_cachethis is TRUE) on a filehandle-changing, non-idempotent operation if the reply would be too large on the next operation, especially if the operation is OPEN.

o 次の操作で応答が大きすぎる場合、特に操作がOPENの場合、サーバーはファイルハンドルを変更する、べき等ではない操作でNFS4ERR_REP_TOO_BIGまたはNFS4ERR_REP_TOO_BIG_TO_CACHE(sa_cachethisがTRUEの場合)を返す必要があります。

o A server MAY return NFS4ERR_UNSAFE_COMPOUND to a non-idempotent current filehandle-changing operation, if it looks at the next operation (in the same COMPOUND procedure) and finds it is not GETFH. The server SHOULD do this if it is unable to determine in advance whether the total response size would exceed ca_maxresponsesize_cached or ca_maxresponsesize.

o サーバーは、次の操作(同じCOMPOUNDプロシージャ内)を調べ、GETFHではないことを検出した場合、NFS4ERR_UNSAFE_COMPOUNDをべき等でない現在のファイルハンドル変更操作に返すことができます(MAY)。合計応答サイズがca_maxresponsesize_cachedまたはca_maxresponsesizeを超えるかどうかを事前に判断できない場合、サーバーはこれを行う必要があります。 Persistence 持続性

Since the reply cache is bounded, it is practical for the reply cache to persist across server restarts. The replier MUST persist the following information if it agreed to persist the session (when the session was created; see Section 18.36):


o The session ID.

o セッションID。

o The slot table including the sequence ID and cached reply for each slot.

o 各スロットのシーケンスIDとキャッシュされた応答を含むスロットテーブル。

The above are sufficient for a replier to provide EOS semantics for any requests that were sent and executed before the server restarted. If the replier is a client, then there is no need for it to persist any more information, unless the client will be persisting all other state across client restart, in which case, the server will never see any NFSv4.1-level protocol manifestation of a client restart. If the replier is a server, with just the slot table and session ID persisting, any requests the client retries after the server restart will return the results that are cached in the reply cache, and any new requests (i.e., the sequence ID is one greater than the slot's sequence ID) MUST be rejected with NFS4ERR_DEADSESSION (returned by SEQUENCE). Such a session is considered dead. A server MAY re-animate a session after a server restart so that the session will accept new requests as well as retries. To re-animate a session, the server needs to persist additional information through server restart:


o The client ID. This is a prerequisite to let the client create more sessions associated with the same client ID as the re-animated session.

o クライアントID。これは、クライアントが、再アニメーション化されたセッションと同じクライアントIDに関連付けられたセッションをさらに作成するための前提条件です。

o The client ID's sequence ID that is used for creating sessions (see Sections 18.35 and 18.36). This is a prerequisite to let the client create more sessions.

o セッションの作成に使用されるクライアントIDのシーケンスID(セクション18.35および18.36を参照)。これは、クライアントがより多くのセッションを作成できるようにするための前提条件です。

o The principal that created the client ID. This allows the server to authenticate the client when it sends EXCHANGE_ID.

o クライアントIDを作成したプリンシパル。これにより、サーバーはEXCHANGE_IDを送信するときにクライアントを認証できます。

o The SSV, if SP4_SSV state protection was specified when the client ID was created (see Section 18.35). This lets the client create new sessions, and associate connections with the new and existing sessions.

o SSV(クライアントIDの作成時にSP4_SSV状態保護が指定された場合(セクション18.35を参照))。これにより、クライアントは新しいセッションを作成し、接続を新規および既存のセッションに関連付けることができます。

o The properties of the client ID as defined in Section 18.35.

o セクション18.35で定義されているクライアントIDのプロパティ。

A persistent reply cache places certain demands on the server. The execution of the sequence of operations (starting with SEQUENCE) and placement of its results in the persistent cache MUST be atomic. If a client retries a sequence of operations that was previously executed on the server, the only acceptable outcomes are either the original cached reply or an indication that the client ID or session has been lost (indicating a catastrophic loss of the reply cache or a session that has been deleted because the client failed to use the session for an extended period of time).


A server could fail and restart in the middle of a COMPOUND procedure that contains one or more non-idempotent or idempotent-but-modifying operations. This creates an even higher challenge for atomic execution and placement of results in the reply cache. One way to view the problem is as a single transaction consisting of each operation in the COMPOUND followed by storing the result in persistent storage, then finally a transaction commit. If there is a failure before the transaction is committed, then the server rolls back the transaction. If the server itself fails, then when it restarts, its recovery logic could roll back the transaction before starting the NFSv4.1 server.


While the description of the implementation for atomic execution of the request and caching of the reply is beyond the scope of this document, an example implementation for NFSv2 [38] is described in [39].

要求のアトミック実行と応答のキャッシングの実装の説明はこのドキュメントの範囲を超えていますが、NFSv2 [38]の実装例は[39]で説明されています。

2.10.7. RDMA Considerations
2.10.7. RDMAに関する考慮事項

A complete discussion of the operation of RPC-based protocols over RDMA transports is in [8]. A discussion of the operation of NFSv4, including NFSv4.1, over RDMA is in [9]. Where RDMA is considered, this specification assumes the use of such a layering; it addresses only the upper-layer issues relevant to making best use of RPC/RDMA.

RDMAトランスポートを介したRPCベースのプロトコルの操作に関する完全な議論は[8]にあります。 RDMAを介したNFSv4.1を含むNFSv4の操作についての議論は[9]にあります。 RDMAを検討する場合、この仕様ではこのような階層化の使用を想定しています。 RPC / RDMAを最大限に活用することに関連する上位層の問題のみを扱います。 RDMA Connection Resources RDMA接続リソース

RDMA requires its consumers to register memory and post buffers of a specific size and number for receive operations.


Registration of memory can be a relatively high-overhead operation, since it requires pinning of buffers, assignment of attributes (e.g., readable/writable), and initialization of hardware translation. Preregistration is desirable to reduce overhead. These registrations are specific to hardware interfaces and even to RDMA connection endpoints; therefore, negotiation of their limits is desirable to manage resources effectively.


Following basic registration, these buffers must be posted by the RPC layer to handle receives. These buffers remain in use by the RPC/ NFSv4.1 implementation; the size and number of them must be known to the remote peer in order to avoid RDMA errors that would cause a fatal error on the RDMA connection.

基本的な登録に続いて、これらのバッファーは、受信を処理するためにRPCレイヤーによってポストされる必要があります。これらのバッファーは、RPC / NFSv4.1実装で引き続き使用されています。 RDMA接続で致命的なエラーを引き起こすRDMAエラーを回避するために、それらのサイズと数はリモートピアに認識されている必要があります。

NFSv4.1 manages slots as resources on a per-session basis (see Section 2.10), while RDMA connections manage credits on a per-connection basis. This means that in order for a peer to send data over RDMA to a remote buffer, it has to have both an NFSv4.1 slot and an RDMA credit. If multiple RDMA connections are associated with a session, then if the total number of credits across all RDMA connections associated with the session is X, and the number of slots in the session is Y, then the maximum number of outstanding requests is the lesser of X and Y.

NFSv4.1は、スロットをセッションごとにリソースとして管理し(セクション2.10を参照)、RDMA接続は接続ごとにクレジットを管理します。つまり、ピアがRDMA経由でリモートバッファーにデータを送信するには、NFSv4.1スロットとRDMAクレジットの両方が必要です。複数のRDMA接続がセッションに関連付けられている場合、セッションに関連付けられているすべてのRDMA接続全体のクレジットの総数がXで、セッションのスロット数がYの場合、未処理のリクエストの最大数は少なくなります。 XとY。 Flow Control フロー制御

Previous versions of NFS do not provide flow control; instead, they rely on the windowing provided by transports like TCP to throttle requests. This does not work with RDMA, which provides no operation flow control and will terminate a connection in error when limits are exceeded. Limits such as maximum number of requests outstanding are therefore negotiated when a session is created (see the ca_maxrequests field in Section 18.36). These limits then provide the maxima within which each connection associated with the session's channel(s) must remain. RDMA connections are managed within these limits as described in Section 3.3 of [8]; if there are multiple RDMA connections, then the maximum number of requests for a channel will be divided among the RDMA connections. Put a different way, the onus is on the replier to ensure that the total number of RDMA credits across all connections associated with the replier's channel does exceed the channel's maximum number of outstanding requests.

NFSの以前のバージョンはフロー制御を提供していません。代わりに、TCPなどのトランスポートが提供するウィンドウ処理に依存して、リクエストを抑制します。これはRDMAでは機能しません。RDMAは操作フロー制御を提供せず、制限を超えるとエラーで接続を終了します。したがって、未処理のリクエストの最大数などの制限は、セッションの作成時にネゴシエートされます(セクション18.36のca_maxrequestsフィールドを参照)。これらの制限は、セッションのチャネルに関連付けられた各接続を維持する必要がある最大値を提供します。 [8]のセクション3.3で説明されているように、RDMA接続はこれらの制限内で管理されます。複数のRDMA接続がある場合、チャネルの最大リクエスト数はRDMA接続間で分割されます。別の言い方をすれば、責任はリプライヤにあり、リプライヤのチャネルに関連付けられたすべての接続にわたるRDMAクレジットの総数がチャネルの未処理の要求の最大数を超えないようにします。

The limits may also be modified dynamically at the replier's choosing by manipulating certain parameters present in each NFSv4.1 reply. In addition, the CB_RECALL_SLOT callback operation (see Section 20.8) can be sent by a server to a client to return RDMA credits to the server, thereby lowering the maximum number of requests a client can have outstanding to the server.

制限は、各NFSv4.1応答に存在する特定のパラメーターを操作することにより、応答者の選択で動的に変更することもできます。さらに、CB_RECALL_SLOTコールバック操作(セクション20.8を参照)をサーバーからクライアントに送信して、RDMAクレジットをサーバーに返すことができるため、クライアントがサーバーに対して未処理にできるリクエストの最大数を減らすことができます。 Padding パディング

Header padding is requested by each peer at session initiation (see the ca_headerpadsize argument to CREATE_SESSION in Section 18.36), and subsequently used by the RPC RDMA layer, as described in [8]. Zero padding is permitted.

ヘッダーパディングは、セッション開始時に各ピアによって要求され(セクション18.36のCREATE_SESSIONへのca_headerpadsize引数を参照)、[8]で説明されているように、その後RPC RDMAレイヤーによって使用されます。ゼロ埋め込みが許可されています。

Padding leverages the useful property that RDMA preserve alignment of data, even when they are placed into anonymous (untagged) buffers. If requested, client inline writes will insert appropriate pad bytes within the request header to align the data payload on the specified boundary. The client is encouraged to add sufficient padding (up to the negotiated size) so that the "data" field of the WRITE operation is aligned. Most servers can make good use of such padding, which allows them to chain receive buffers in such a way that any data carried by client requests will be placed into appropriate buffers at the server, ready for file system processing. The receiver's RPC layer encounters no overhead from skipping over pad bytes, and the RDMA layer's high performance makes the insertion and transmission of padding on the sender a significant optimization. In this way, the need for servers to perform RDMA Read to satisfy all but the largest client writes is obviated. An added benefit is the reduction of message round trips on the network -- a potentially good trade, where latency is present.


The value to choose for padding is subject to a number of criteria. A primary source of variable-length data in the RPC header is the authentication information, the form of which is client-determined, possibly in response to server specification. The contents of COMPOUNDs, sizes of strings such as those passed to RENAME, etc. all go into the determination of a maximal NFSv4.1 request size and therefore minimal buffer size. The client must select its offered value carefully, so as to avoid overburdening the server, and vice versa. The benefit of an appropriate padding value is higher performance.

パディングに選択する値は、いくつかの基準に従います。 RPCヘッダー内の可変長データの主なソースは認証情報です。認証情報の形式はクライアントによって決定され、サーバーの仕様に応じている可能性があります。 COMPOUNDの内容、RENAMEに渡される文字列のサイズなどはすべて、最大のNFSv4.1リクエストサイズ、したがって最小のバッファサイズの決定に使用されます。クライアントはサーバーに過大な負荷をかけないように、またその逆も同様に、提示された値を慎重に選択する必要があります。適切なパディング値の利点は、より高いパフォーマンスです。

                    Sender gather:
        |RPC Request|Pad  bytes|Length| -> |User data...|
        \------+----------------------/      \
                \                             \
                 \    Receiver scatter:        \-----------+- ...
            /-----+----------------\            \           \
            |RPC Request|Pad|Length|   ->  |FS buffer|->|FS buffer|->...

In the above case, the server may recycle unused buffers to the next posted receive if unused by the actual received request, or may pass the now-complete buffers by reference for normal write processing. For a server that can make use of it, this removes any need for data copies of incoming data, without resorting to complicated end-to-end buffer advertisement and management. This includes most kernel-based and integrated server designs, among many others. The client may perform similar optimizations, if desired.

上記の場合、サーバーは、実際に受信した要求で使用されていない場合、未使用のバッファーを次のポストされた受信にリサイクルするか、通常の書き込み処理の参照により完全なバッファーを渡します。これを利用できるサーバーの場合、これにより、複雑なエンドツーエンドのバッファーアドバタイズメントと管理に頼らずに、着信データのデータコピーが不要になります。これには、とりわけカーネルベースの統合サーバー設計のほとんどが含まれます。クライアントは、必要に応じて、同様の最適化を実行できます。 Dual RDMA and Non-RDMA Transports デュアルRDMAおよび非RDMAトランスポート

Some RDMA transports (e.g., RFC 5040 [10]) permit a "streaming" (non-RDMA) phase, where ordinary traffic might flow before "stepping up" to RDMA mode, commencing RDMA traffic. Some RDMA transports start connections always in RDMA mode. NFSv4.1 allows, but does not assume, a streaming phase before RDMA mode. When a connection is associated with a session, the client and server negotiate whether the connection is used in RDMA or non-RDMA mode (see Sections 18.36 and 18.34).

一部のRDMAトランスポート(RFC 5040 [10]など)は、「ストリーミング」(非RDMA)フェーズを許可します。このフェーズでは、通常のトラフィックがRDMAモードに「ステップアップ」する前に流れ、RDMAトラフィックが開始されます。一部のRDMAトランスポートは、常にRDMAモードで接続を開始します。 NFSv4.1は、RDMAモードの前のストリーミングフェーズを許可しますが、想定しません。接続がセッションに関連付けられると、クライアントとサーバーは、接続がRDMAモードで使用されているか非RDMAモードで使用されているかをネゴシエートします(セクション18.36および18.34を参照)。

2.10.8. Session Security
2.10.8. セッションのセキュリティ Session Callback Security セッションコールバックのセキュリティ

Via session/connection association, NFSv4.1 improves security over that provided by NFSv4.0 for the backchannel. The connection is client-initiated (see Section 18.34) and subject to the same firewall and routing checks as the fore channel. At the client's option (see Section 18.35), connection association is fully authenticated before being activated (see Section 18.34). Traffic from the server over the backchannel is authenticated exactly as the client specifies (see Section

セッション/接続の関連付けにより、NFSv4.1は、バックチャネル用にNFSv4.0によって提供されるものよりもセキュリティを向上させます。接続はクライアントによって開始され(セクション18.34を参照)、フォアチャネルと同じファイアウォールおよびルーティングチェックが適用されます。クライアントのオプションで(セクション18.35を参照)、接続の関連付けはアクティブ化される前に完全に認証されます(セクション18.34を参照)。バックチャネルを介したサーバーからのトラフィックは、クライアントが指定したとおりに認証されます(セクション2.10.8.2を参照)。 Backchannel RPC Security バックチャネルRPCセキュリティ

When the NFSv4.1 client establishes the backchannel, it informs the server of the security flavors and principals to use when sending requests. If the security flavor is RPCSEC_GSS, the client expresses the principal in the form of an established RPCSEC_GSS context. The server is free to use any of the flavor/principal combinations the client offers, but it MUST NOT use unoffered combinations. This way, the client need not provide a target GSS principal for the backchannel as it did with NFSv4.0, nor does the server have to implement an RPCSEC_GSS initiator as it did with NFSv4.0 [30].


The CREATE_SESSION (Section 18.36) and BACKCHANNEL_CTL (Section 18.33) operations allow the client to specify flavor/ principal combinations.


Also note that the SP4_SSV state protection mode (see Sections 18.35 and has the side benefit of providing SSV-derived RPCSEC_GSS contexts (Section 2.10.9).

また、SP4_SSV状態保護モード(セクション18.35および2.10.8.3を参照)には、SSVから派生したRPCSEC_GSSコンテキスト(セクション2.10.9)を提供するという副次的な利点があることに注意してください。 Protection from Unauthorized State Changes 不正な状態変化からの保護

As described to this point in the specification, the state model of NFSv4.1 is vulnerable to an attacker that sends a SEQUENCE operation with a forged session ID and with a slot ID that it expects the legitimate client to use next. When the legitimate client uses the slot ID with the same sequence number, the server returns the attacker's result from the reply cache, which disrupts the legitimate client and thus denies service to it. Similarly, an attacker could send a CREATE_SESSION with a forged client ID to create a new session associated with the client ID. The attacker could send requests using the new session that change locking state, such as LOCKU operations to release locks the legitimate client has acquired. Setting a security policy on the file that requires RPCSEC_GSS credentials when manipulating the file's state is one potential work around, but has the disadvantage of preventing a legitimate client from releasing state when RPCSEC_GSS is required to do so, but a GSS context cannot be obtained (possibly because the user has logged off the client).


NFSv4.1 provides three options to a client for state protection, which are specified when a client creates a client ID via EXCHANGE_ID (Section 18.35).


The first (SP4_NONE) is to simply waive state protection.


The other two options (SP4_MACH_CRED and SP4_SSV) share several traits:


o An RPCSEC_GSS-based credential is used to authenticate client ID and session maintenance operations, including creating and destroying a session, associating a connection with the session, and destroying the client ID.

o RPCSEC_GSSベースの資格情報は、セッションの作成と破棄、接続とセッションの関連付け、クライアントIDの破棄など、クライアントIDとセッションメンテナンス操作を認証するために使用されます。

o Because RPCSEC_GSS is used to authenticate client ID and session maintenance, the attacker cannot associate a rogue connection with a legitimate session, or associate a rogue session with a legitimate client ID in order to maliciously alter the client ID's lock state via CLOSE, LOCKU, DELEGRETURN, LAYOUTRETURN, etc.

o RPCSEC_GSSはクライアントIDとセッションメンテナンスの認証に使用されるため、攻撃者は不正な接続を正当なセッションに関連付けたり、不正なセッションを正当なクライアントIDに関連付けたりして、CLOSE、LOCKU、DELEGRETURNを介してクライアントIDのロック状態を故意に変更することはできません。 、LAYOUTRETURNなど

o In cases where the server's security policies on a portion of its namespace require RPCSEC_GSS authentication, a client may have to use an RPCSEC_GSS credential to remove per-file state (e.g., LOCKU, CLOSE, etc.). The server may require that the principal that removes the state match certain criteria (e.g., the principal might have to be the same as the one that acquired the state). However, the client might not have an RPCSEC_GSS context for such a principal, and might not be able to create such a context (perhaps because the user has logged off). When the client establishes SP4_MACH_CRED or SP4_SSV protection, it can specify a list of operations that the server MUST allow using the machine credential (if SP4_MACH_CRED is used) or the SSV credential (if SP4_SSV is used).

o 名前空間の一部に対するサーバーのセキュリティポリシーでRPCSEC_GSS認証が必要な場合、クライアントはRPCSEC_GSS資格を使用してファイルごとの状態(LOCKU、CLOSEなど)を削除する必要がある場合があります。サーバーは、状態を削除するプリンシパルが特定の基準に一致することを要求する場合があります(たとえば、プリンシパルは状態を取得したものと同じである必要がある場合があります)。ただし、クライアントには、そのようなプリンシパル用のRPCSEC_GSSコンテキストがない可能性があり、そのようなコンテキストを作成できない可能性があります(おそらくユーザーがログオフしたため)。クライアントがSP4_MACH_CREDまたはSP4_SSV保護を確立すると、サーバーは、マシン資格情報(SP4_MACH_CREDが使用されている場合)またはSSV資格情報(SP4_SSVが使用されている場合)の使用を許可する必要がある操作のリストを指定できます。

The SP4_MACH_CRED state protection option uses a machine credential where the principal that creates the client ID MUST also be the principal that performs client ID and session maintenance operations. The security of the machine credential state protection approach depends entirely on safe guarding the per-machine credential. Assuming a proper safeguard using the per-machine credential for operations like CREATE_SESSION, BIND_CONN_TO_SESSION, DESTROY_SESSION, and DESTROY_CLIENTID will prevent an attacker from associating a rogue connection with a session, or associating a rogue session with a client ID.

SP4_MACH_CRED状態保護オプションは、マシンIDを使用して、クライアントIDを作成するプリンシパルが、クライアントIDとセッションメンテナンス操作を実行するプリンシパルでもある必要があります。マシン資格情報の状態保護アプローチのセキュリティは、マシンごとの資格情報を安全に保護することに完全に依存しています。 CREATE_SESSION、BIND_CONN_TO_SESSION、DESTROY_SESSION、およびDESTROY_CLIENTIDなどの操作にマシンごとの認証情報を使用する適切な保護手段を想定すると、攻撃者は不正な接続をセッションに関連付けたり、不正なセッションをクライアントIDに関連付けたりできなくなります。

There are at least three scenarios for the SP4_MACH_CRED option:


1. The system administrator configures a unique, permanent per-machine credential for one of the mandated GSS mechanisms (e.g., if Kerberos V5 is used, a "keytab" containing a principal derived from a client host name could be used).

1. システム管理者は、必須のGSSメカニズムの1つに対して、マシンごとに固有の永続的な資格情報を構成します(たとえば、Kerberos V5が使用されている場合、クライアントのホスト名から派生したプリンシパルを含む「キータブ」を使用できます)。

2. The client is used by a single user, and so the client ID and its sessions are used by just that user. If the user's credential expires, then session and client ID maintenance cannot occur, but since the client has a single user, only that user is inconvenienced.

2. クライアントは単一のユーザーによって使用されるため、クライアントIDとそのセッションはそのユーザーだけが使用します。ユーザーの資格情報の有効期限が切れた場合、セッションとクライアントIDのメンテナンスは発生しませんが、クライアントには単一のユーザーがいるため、そのユーザーのみが不便になります。

3. The physical client has multiple users, but the client implementation has a unique client ID for each user. This is effectively the same as the second scenario, but a disadvantage is that each user needs to be allocated at least one session each, so the approach suffers from lack of economy.

3. 物理クライアントには複数のユーザーがいますが、クライアントの実装にはユーザーごとに一意のクライアントIDがあります。これは実質的に2番目のシナリオと同じですが、欠点は、各ユーザーに少なくとも1つのセッションを割り当てる必要があるため、このアプローチでは経済性が損なわれることです。

The SP4_SSV protection option uses the SSV (Section 1.6), via RPCSEC_GSS and the SSV GSS mechanism (Section 2.10.9), to protect state from attack. The SP4_SSV protection option is intended for the situation comprised of a client that has multiple active users and a system administrator who wants to avoid the burden of installing a permanent machine credential on each client. The SSV is established and updated on the server via SET_SSV (see Section 18.47). To prevent eavesdropping, a client SHOULD send SET_SSV via RPCSEC_GSS with the privacy service. Several aspects of the SSV make it intractable for an attacker to guess the SSV, and thus associate rogue connections with a session, and rogue sessions with a client ID:

SP4_SSV保護オプションは、RPCSEC_GSSおよびSSV GSSメカニズム(セクション2.10.9)を介してSSV(セクション1.6)を使用して、状態を攻撃から保護します。 SP4_SSV保護オプションは、複数のアクティブユーザーがいるクライアントと、各クライアントに永続的なマシン資格情報をインストールする負担を避けたいシステム管理者で構成される状況を対象としています。 SSVは、SET_SSVを介してサーバー上で確立および更新されます(セクション18.47を参照)。盗聴を防止するために、クライアントはプライバシーサービスと共にRPCSEC_GSSを介してSET_SSVを送信する必要があります(SHOULD)。 SSVのいくつかの側面により、攻撃者がSSVを推測することが困難になり、不正な接続をセッションに関連付け、不正なセッションをクライアントIDに関連付けることができます。

o The arguments to and results of SET_SSV include digests of the old and new SSV, respectively.

o SET_SSVの引数と結果には、それぞれ新旧のSSVのダイジェストが含まれます。

o Because the initial value of the SSV is zero, therefore known, the client that opts for SP4_SSV protection and opts to apply SP4_SSV protection to BIND_CONN_TO_SESSION and CREATE_SESSION MUST send at least one SET_SSV operation before the first BIND_CONN_TO_SESSION operation or before the second CREATE_SESSION operation on a client ID. If it does not, the SSV mechanism will not generate tokens (Section 2.10.9). A client SHOULD send SET_SSV as soon as a session is created.

o SSVの初期値はゼロであるため、既知であるため、SP4_SSV保護を選択し、SP4_SSV保護をBIND_CONN_TO_SESSIONおよびCREATE_SESSIONに適用することを選択したクライアントは、最初のBIND_CONN_TO_SESSION操作の前、またはクライアントID。そうでない場合、SSVメカニズムはトークンを生成しません(セクション2.10.9)。クライアントは、セッションが作成されるとすぐにSET_SSVを送信する必要があります(SHOULD)。

o A SET_SSV request does not replace the SSV with the argument to SET_SSV. Instead, the current SSV on the server is logically exclusive ORed (XORed) with the argument to SET_SSV. Each time a new principal uses a client ID for the first time, the client SHOULD send a SET_SSV with that principal's RPCSEC_GSS credentials, with RPCSEC_GSS service set to RPC_GSS_SVC_PRIVACY.

o SET_SSV要求は、SSVをSET_SSVへの引数で置き換えません。代わりに、サーバー上の現在のSSVは、SET_SSVへの引数と論理的に排他的OR(XOR)されます。新しいプリンシパルがクライアントIDを初めて使用するたびに、クライアントは、RPCSEC_GSSサービスがRPC_GSS_SVC_PRIVACYに設定されたプリンシパルのRPCSEC_GSS資格情報を使用してSET_SSVを送信する必要があります(SHOULD)。

Here are the types of attacks that can be attempted by an attacker named Eve on a victim named Bob, and how SP4_SSV protection foils each attack:


o Suppose Eve is the first user to log into a legitimate client. Eve's use of an NFSv4.1 file system will cause the legitimate client to create a client ID with SP4_SSV protection, specifying that the BIND_CONN_TO_SESSION operation MUST use the SSV credential. Eve's use of the file system also causes an SSV to be created. The SET_SSV operation that creates the SSV will be protected by the RPCSEC_GSS context created by the legitimate client, which uses Eve's GSS principal and credentials. Eve can eavesdrop on the network while her RPCSEC_GSS context is created and the SET_SSV using her context is sent. Even if the legitimate client sends the SET_SSV with RPC_GSS_SVC_PRIVACY, because Eve knows her own credentials, she can decrypt the SSV. Eve can compute an RPCSEC_GSS credential that BIND_CONN_TO_SESSION will accept, and so associate a new connection with the legitimate session. Eve can change the slot ID and sequence state of a legitimate session, and/or the SSV state, in such a way that when Bob accesses the server via the same legitimate client, the legitimate client will be unable to use the session.

o Eveが正当なクライアントにログインする最初のユーザーであるとします。 EveがNFSv4.1ファイルシステムを使用すると、正当なクライアントがSP4_SSV保護を備えたクライアントIDを作成し、BIND_CONN_TO_SESSION操作でSSV資格情報を使用する必要があることを指定します。 Eveがファイルシステムを使用すると、SSVも作成されます。 SSVを作成するSET_SSV操作は、EveのGSSプリンシパルと資格情報を使用する正当なクライアントによって作成されたRPCSEC_GSSコンテキストによって保護されます。 Eveは、RPCSEC_GSSコンテキストが作成され、そのコンテキストを使用するSET_SSVが送信されている間、ネットワークを盗聴できます。正当なクライアントがRPC_GSS_SVC_PRIVACYを使用してSET_SSVを送信した場合でも、イブは自分の資格情報を知っているため、SSVを復号化できます。 Eveは、BIND_CONN_TO_SESSIONが受け入れるRPCSEC_GSS資格情報を計算して、新しい接続を正当なセッションに関連付けることができます。 Eveは、ボブが同じ正当なクライアントを介してサーバーにアクセスしたときに、正当なクライアントがセッションを使用できないように、正当なセッションのスロットIDとシーケンス状態、SSV状態を変更できます。

The client's only recourse is to create a new client ID for Bob to use, and establish a new SSV for the client ID. The client will be unable to delete the old client ID, and will let the lease on the old client ID expire.


Once the legitimate client establishes an SSV over the new session using Bob's RPCSEC_GSS context, Eve can use the new session via the legitimate client, but she cannot disrupt Bob. Moreover, because the client SHOULD have modified the SSV due to Eve using the new session, Bob cannot get revenge on Eve by associating a rogue connection with the session.


The question is how did the legitimate client detect that Eve has hijacked the old session? When the client detects that a new principal, Bob, wants to use the session, it SHOULD have sent a SET_SSV, which leads to the following sub-scenarios:


* Let us suppose that from the rogue connection, Eve sent a SET_SSV with the same slot ID and sequence ID that the legitimate client later uses. The server will assume the SET_SSV sent with Bob's credentials is a retry, and return to the legitimate client the reply it sent Eve. However, unless Eve can correctly guess the SSV the legitimate client will use, the digest verification checks in the SET_SSV response will fail. That is an indication to the client that the session has apparently been hijacked.

* 不正な接続から、イブが正当なクライアントが後で使用するのと同じスロットIDとシーケンスIDを使用してSET_SSVを送信したとします。サーバーは、ボブの資格情報とともに送信されたSET_SSVが再試行であると想定し、イブが送信した応答を正当なクライアントに返します。ただし、イブが正当なクライアントが使用するSSVを正しく推測できない限り、SET_SSV応答のダイジェスト検証チェックは失敗します。これは、セッションが明らかにハイジャックされたことをクライアントに示しています。

* Alternatively, Eve sent a SET_SSV with a different slot ID than the legitimate client uses for its SET_SSV. Then the digest verification of the SET_SSV sent with Bob's credentials fails on the server, and the error returned to the client makes it apparent that the session has been hijacked.

* または、イブは、正当なクライアントがSET_SSVに使用するのとは異なるスロットIDでSET_SSVを送信しました。次に、Bobの資格情報とともに送信されたSET_SSVのダイジェスト検証がサーバーで失敗し、クライアントに返されたエラーにより、セッションが乗っ取られたことが明らかになります。

* Alternatively, Eve sent an operation other than SET_SSV, but with the same slot ID and sequence that the legitimate client uses for its SET_SSV. The server returns to the legitimate client the response it sent Eve. The client sees that the response is not at all what it expects. The client assumes either session hijacking or a server bug, and either way destroys the old session.

* または、イブはSET_SSV以外の操作を送信しましたが、正当なクライアントがSET_SSVに使用するのと同じスロットIDとシーケンスを使用しています。サーバーは、イブに送信した応答を正当なクライアントに返します。クライアントは、応答が期待どおりではないことを確認します。クライアントは、セッションの乗っ取りまたはサーバーのバグのいずれかを想定し、どちらの方法でも古いセッションを破棄します。

o Eve associates a rogue connection with the session as above, and then destroys the session. Again, Bob goes to use the server from the legitimate client, which sends a SET_SSV using Bob's credentials. The client receives an error that indicates that the session does not exist. When the client tries to create a new session, this will fail because the SSV it has does not match that which the server has, and now the client knows the session was hijacked. The legitimate client establishes a new client ID.

o Eveは上記のように不正な接続をセッションに関連付けてから、セッションを破棄します。ここでも、ボブはボブの資格情報を使用してSET_SSVを送信する正当なクライアントからサーバーを使用します。クライアントは、セッションが存在しないことを示すエラーを受け取ります。クライアントが新しいセッションを作成しようとすると、そのSSVがサーバーが持っているものと一致せず、セッションがハイジャックされたことがクライアントで認識されるため、これは失敗します。正当なクライアントが新しいクライアントIDを確立します。

o If Eve creates a connection before the legitimate client establishes an SSV, because the initial value of the SSV is zero and therefore known, Eve can send a SET_SSV that will pass the digest verification check. However, because the new connection has not been associated with the session, the SET_SSV is rejected for that reason.

o 正当なクライアントがSSVを確立する前にイブが接続を作成する場合、SSVの初期値はゼロであり、したがって既知であるため、イブは、ダイジェスト検証チェックに合格するSET_SSVを送信できます。ただし、新しい接続はセッションに関連付けられていないため、SET_SSVはその理由で拒否されます。

In summary, an attacker's disruption of state when SP4_SSV protection is in use is limited to the formative period of a client ID, its first session, and the establishment of the SSV. Once a non-malicious user uses the client ID, the client quickly detects any hijack and rectifies the situation. Once a non-malicious user successfully modifies the SSV, the attacker cannot use NFSv4.1 operations to disrupt the non-malicious user.


Note that neither the SP4_MACH_CRED nor SP4_SSV protection approaches prevent hijacking of a transport connection that has previously been associated with a session. If the goal of a counter-threat strategy is to prevent connection hijacking, the use of IPsec is RECOMMENDED.


If a connection hijack occurs, the hijacker could in theory change locking state and negatively impact the service to legitimate clients. However, if the server is configured to require the use of RPCSEC_GSS with integrity or privacy on the affected file objects, and if EXCHGID4_FLAG_BIND_PRINC_STATEID capability (Section 18.35) is in force, this will thwart unauthorized attempts to change locking state.


2.10.9. The Secret State Verifier (SSV) GSS Mechanism
2.10.9. 秘密状態検証(SSV)GSSメカニズム

The SSV provides the secret key for a GSS mechanism internal to NFSv4.1 that NFSv4.1 uses for state protection. Contexts for this mechanism are not established via the RPCSEC_GSS protocol. Instead, the contexts are automatically created when EXCHANGE_ID specifies SP4_SSV protection. The only tokens defined are the PerMsgToken (emitted by GSS_GetMIC) and the SealedMessage token (emitted by GSS_Wrap).


The mechanism OID for the SSV mechanism is Eisler.nfs.ssv_mech ( While the SSV mechanism does not define any initial context tokens, the OID can be used to let servers indicate that the SSV mechanism is acceptable whenever the client sends a SECINFO or SECINFO_NO_NAME operation (see Section 2.6).

SSVメカニズムのメカニズムOIDは、 Eisler.nfs.ssv_mech(です。 SSVメカニズムは初期コンテキストトークンを定義しませんが、OIDを使用して、クライアントがSECINFOまたはSECINFO_NO_NAMEオペレーションを送信するたびに、SSVメカニズムが受け入れ可能であることをサーバーに示すことができます(セクション2.6を参照)。

The SSV mechanism defines four subkeys derived from the SSV value. Each time SET_SSV is invoked, the subkeys are recalculated by the client and server. The calculation of each of the four subkeys depends on each of the four respective ssv_subkey4 enumerated values. The calculation uses the HMAC [11] algorithm, using the current SSV as the key, the one-way hash algorithm as negotiated by EXCHANGE_ID, and the input text as represented by the XDR encoded enumeration value for that subkey of data type ssv_subkey4. If the length of the output of the HMAC algorithm exceeds the length of key of the encryption algorithm (which is also negotiated by EXCHANGE_ID), then the subkey MUST be truncated from the HMAC output, i.e., if the subkey is of N bytes long, then the first N bytes of the HMAC output MUST be used for the subkey. The specification of EXCHANGE_ID states that the length of the output of the HMAC algorithm MUST NOT be less than the length of subkey needed for the encryption algorithm (see Section 18.35).

SSVメカニズムは、SSV値から派生した4つのサブキーを定義します。 SET_SSVが呼び出されるたびに、サブキーはクライアントとサーバーによって再計算されます。 4つのサブキーのそれぞれの計算は、4つのそれぞれのssv_subkey4列挙値のそれぞれに依存します。この計算では、HMAC [11]アルゴリズムを使用し、現在のSSVをキー、一方向ハッシュアルゴリズムをEXCHANGE_IDでネゴシエートし、入力テキストをデータ型ssv_subkey4のそのサブキーのXDRエンコード列挙値で表しています。 HMACアルゴリズムの出力の長さが暗号化アルゴリズムのキーの長さ(これもEXCHANGE_IDによってネゴシエートされる)を超える場合、サブキーはHMAC出力から切り捨てられなければなりません(つまり、サブキーの長さがNバイトの場合)。次に、HMAC出力の最初のNバイトをサブキーに使用する必要があります。 EXCHANGE_IDの仕様では、HMACアルゴリズムの出力の長さは、暗号化アルゴリズムに必要なサブキーの長さよりも短くてはならない(MUST 18.35を参照)。

   /* Input for computing subkeys */
   enum ssv_subkey4 {
           SSV4_SUBKEY_MIC_I2T     = 1,
           SSV4_SUBKEY_MIC_T2I     = 2,
           SSV4_SUBKEY_SEAL_I2T    = 3,
           SSV4_SUBKEY_SEAL_T2I    = 4

The subkey derived from SSV4_SUBKEY_MIC_I2T is used for calculating message integrity codes (MICs) that originate from the NFSv4.1 client, whether as part of a request over the fore channel or a response over the backchannel. The subkey derived from SSV4_SUBKEY_MIC_T2I is used for MICs originating from the NFSv4.1 server. The subkey derived from SSV4_SUBKEY_SEAL_I2T is used for encryption text originating from the NFSv4.1 client, and the subkey derived from SSV4_SUBKEY_SEAL_T2I is used for encryption text originating from the NFSv4.1 server.

SSV4_SUBKEY_MIC_I2Tから派生したサブキーは、NFSv4.1クライアントから発信されたメッセージ整合性コード(MIC)を計算するために使用されます(フォアチャネルを介した要求の一部としても、バックチャネルを介した応答の一部としても)。 SSV4_SUBKEY_MIC_T2Iから派生したサブキーは、NFSv4.1サーバーからのMICに使用されます。 SSV4_SUBKEY_SEAL_I2Tから派生したサブキーは、NFSv4.1クライアントからの暗号化テキストに使用され、SSV4_SUBKEY_SEAL_T2Iから派生したサブキーは、NFSv4.1サーバーからの暗号化テキストに使用されます。

The PerMsgToken description is based on an XDR definition:


   /* Input for computing smt_hmac */
   struct ssv_mic_plain_tkn4 {
     uint32_t        smpt_ssv_seq;
     opaque          smpt_orig_plain<>;
   /* SSV GSS PerMsgToken token */
   struct ssv_mic_tkn4 {
     uint32_t        smt_ssv_seq;
     opaque          smt_hmac<>;

The field smt_hmac is an HMAC calculated by using the subkey derived from SSV4_SUBKEY_MIC_I2T or SSV4_SUBKEY_MIC_T2I as the key, the one-way hash algorithm as negotiated by EXCHANGE_ID, and the input text as represented by data of type ssv_mic_plain_tkn4. The field smpt_ssv_seq is the same as smt_ssv_seq. The field smpt_orig_plain is the "message" input passed to GSS_GetMIC() (see Section 2.3.1 of [7]). The caller of GSS_GetMIC() provides a pointer to a buffer containing the plain text. The SSV mechanism's entry point for GSS_GetMIC() encodes this into an opaque array, and the encoding will include an initial four-byte length, plus any necessary padding. Prepended to this will be the XDR encoded value of smpt_ssv_seq, thus making up an XDR encoding of a value of data type ssv_mic_plain_tkn4, which in turn is the input into the HMAC.

フィールドsmt_hmacは、SSV4_SUBKEY_MIC_I2TまたはSSV4_SUBKEY_MIC_T2Iから派生したサブキーをキーとして使用し、EXCHANGE_IDによってネゴシエートされた一方向ハッシュアルゴリズムと、タイプssv_mic_plain_tkn4のデータによって表される入力テキストを使用して計算されたHMACです。フィールドsmpt_ssv_seqは、smt_ssv_seqと同じです。フィールドsmpt_orig_plainは、GSS_GetMIC()に渡される「メッセージ」入力です([7]のセクション2.3.1を参照)。 GSS_GetMIC()の呼び出し元は、プレーンテキストを含むバッファへのポインタを提供します。 SSVメカニズムのGSS_GetMIC()のエントリポイントは、これを不透明な配列にエンコードします。エンコードには、最初の4バイトの長さと必要なパディングが含まれます。これに付加されるのは、smpt_ssv_seqのXDRエンコードされた値であり、したがって、HMACへの入力であるデータ型ssv_mic_plain_tkn4の値のXDRエンコードを構成します。

The token emitted by GSS_GetMIC() is XDR encoded and of XDR data type ssv_mic_tkn4. The field smt_ssv_seq comes from the SSV sequence number, which is equal to one after SET_SSV (Section 18.47) is called the first time on a client ID. Thereafter, the SSV sequence number is incremented on each SET_SSV. Thus, smt_ssv_seq represents the version of the SSV at the time GSS_GetMIC() was called. As noted in Section 18.35, the client and server can maintain multiple concurrent versions of the SSV. This allows the SSV to be changed without serializing all RPC calls that use the SSV mechanism with SET_SSV operations. Once the HMAC is calculated, it is XDR encoded into smt_hmac, which will include an initial four-byte length, and any necessary padding. Prepended to this will be the XDR encoded value of smt_ssv_seq.

GSS_GetMIC()によって発行されたトークンは、XDRエンコードされ、XDRデータ型ssv_mic_tkn4です。フィールドsmt_ssv_seqはSSVシーケンス番号から取得されます。これは、SET_SSV(セクション18.47)がクライアントIDで初めて呼び出された後の1に等しいです。その後、SSVシーケンス番号が各SET_SSVで増分されます。したがって、smt_ssv_seqは、GSS_GetMIC()が呼び出されたときのSSVのバージョンを表します。セクション18.35で説明したように、クライアントとサーバーは、SSVの複数の同時バージョンを維持できます。これにより、SET_SSV操作でSSVメカニズムを使用するすべてのRPC呼び出しをシリアル化することなく、SSVを変更できます。 HMACが計算されると、HDRはsmt_hmacにXDRエンコードされ、初期の4バイトの長さと必要なパディングが含まれます。これに付加されるのは、smd_ssv_seqのXDRエンコードされた値です。

The SealedMessage description is based on an XDR definition:


   /* Input for computing ssct_encr_data and ssct_hmac */
   struct ssv_seal_plain_tkn4 {
     opaque          sspt_confounder<>;
     uint32_t        sspt_ssv_seq;
     opaque          sspt_orig_plain<>;
     opaque          sspt_pad<>;
   /* SSV GSS SealedMessage token */
   struct ssv_seal_cipher_tkn4 {
     uint32_t      ssct_ssv_seq;
     opaque        ssct_iv<>;
     opaque        ssct_encr_data<>;
     opaque        ssct_hmac<>;

The token emitted by GSS_Wrap() is XDR encoded and of XDR data type ssv_seal_cipher_tkn4.


The ssct_ssv_seq field has the same meaning as smt_ssv_seq.


The ssct_encr_data field is the result of encrypting a value of the XDR encoded data type ssv_seal_plain_tkn4. The encryption key is the subkey derived from SSV4_SUBKEY_SEAL_I2T or SSV4_SUBKEY_SEAL_T2I, and the encryption algorithm is that negotiated by EXCHANGE_ID.


The ssct_iv field is the initialization vector (IV) for the encryption algorithm (if applicable) and is sent in clear text. The content and size of the IV MUST comply with the specification of the encryption algorithm. For example, the id-aes256-CBC algorithm MUST use a 16-byte initialization vector (IV), which MUST be unpredictable for each instance of a value of data type ssv_seal_plain_tkn4 that is encrypted with a particular SSV key.

ssct_ivフィールドは、暗号化アルゴリズム(該当する場合)の初期化ベクトル(IV)であり、クリアテキストで送信されます。 IVのコンテンツとサイズは、暗号化アルゴリズムの仕様に準拠する必要があります。たとえば、id-aes256-CBCアルゴリズムは、16バイトの初期化ベクトル(IV)を使用する必要があります。これは、特定のSSVキーで暗号化されたデータ型ssv_seal_plain_tkn4の値のインスタンスごとに予測不可能でなければなりません(MUST)。

The ssct_hmac field is the result of computing an HMAC using the value of the XDR encoded data type ssv_seal_plain_tkn4 as the input text. The key is the subkey derived from SSV4_SUBKEY_MIC_I2T or SSV4_SUBKEY_MIC_T2I, and the one-way hash algorithm is that negotiated by EXCHANGE_ID.


The sspt_confounder field is a random value.


The sspt_ssv_seq field is the same as ssvt_ssv_seq.


The field sspt_orig_plain field is the original plaintext and is the "input_message" input passed to GSS_Wrap() (see Section 2.3.3 of [7]). As with the handling of the plaintext by the SSV mechanism's GSS_GetMIC() entry point, the entry point for GSS_Wrap() expects a pointer to the plaintext, and will XDR encode an opaque array into sspt_orig_plain representing the plain text, along with the other fields of an instance of data type ssv_seal_plain_tkn4.

フィールドsspt_orig_plainフィールドは元の平文であり、GSS_Wrap()に渡される「input_message」入力です([7]のセクション2.3.3を参照)。 SSVメカニズムのGSS_GetMIC()エントリポイントによるプレーンテキストの処理と同様に、GSS_Wrap()のエントリポイントはプレーンテキストへのポインタを予期し、XDRは不透明な配列をプレーンテキストを表すsspt_orig_plainにエンコードします。データ型ssv_seal_plain_tkn4のインスタンスの。

The sspt_pad field is present to support encryption algorithms that require inputs to be in fixed-sized blocks. The content of sspt_pad is zero filled except for the length. Beware that the XDR encoding of ssv_seal_plain_tkn4 contains three variable-length arrays, and so each array consumes four bytes for an array length, and each array that follows the length is always padded to a multiple of four bytes per the XDR standard.

sspt_padフィールドは、入力を固定サイズのブロックにする必要がある暗号化アルゴリズムをサポートするために存在します。 sspt_padの内容は、長さを除いてゼロで埋められます。 ssv_seal_plain_tkn4のXDRエンコーディングには3つの可変長配列が含まれているため、各配列は配列の長さとして4バイトを消費し、長さに続く各配列はXDR標準に従って常に4バイトの倍数にパディングされます。

For example, suppose the encryption algorithm uses 16-byte blocks, and the sspt_confounder is three bytes long, and the sspt_orig_plain field is 15 bytes long. The XDR encoding of sspt_confounder uses eight bytes (4 + 3 + 1 byte pad), the XDR encoding of sspt_ssv_seq uses four bytes, the XDR encoding of sspt_orig_plain uses 20 bytes (4 + 15 + 1 byte pad), and the smallest XDR encoding of the sspt_pad field is four bytes. This totals 36 bytes. The next multiple of 16 is 48; thus, the length field of sspt_pad needs to be set to 12 bytes, or a total encoding of 16 bytes. The total number of XDR encoded bytes is thus 8 + 4 + 20 + 16 = 48.

たとえば、暗号化アルゴリズムが16バイトのブロックを使用し、sspt_confounderが3バイトの長さで、sspt_orig_plainフィールドが15バイトの長さであるとします。 sspt_confounderのXDRエンコーディングは8バイト(4 + 3 + 1バイトパッド)を使用し、sspt_ssv_seqのXDRエンコーディングは4バイトを使用し、sspt_orig_plainのXDRエンコーディングは20バイト(4 + 15 + 1バイトパッド)を使用し、最小のXDRエンコーディングsspt_padフィールドの4バイトです。これは合計36バイトです。次の16の倍数は48です。したがって、sspt_padの長さフィールドは、12バイト、または合計16バイトのエンコードに設定する必要があります。したがって、XDRエンコードされたバイトの総数は8 + 4 + 20 + 16 = 48です。

GSS_Wrap() emits a token that is an XDR encoding of a value of data type ssv_seal_cipher_tkn4. Note that regardless of whether or not the caller of GSS_Wrap() requests confidentiality, the token always has confidentiality. This is because the SSV mechanism is for RPCSEC_GSS, and RPCSEC_GSS never produces GSS_wrap() tokens without confidentiality.

GSS_Wrap()は、データ型ssv_seal_cipher_tkn4の値のXDRエンコーディングであるトークンを発行します。 GSS_Wrap()の呼び出し元が機密性を要求するかどうかに関係なく、トークンには常に機密性があることに注意してください。これは、SSVメカニズムがRPCSEC_GSS用であり、RPCSEC_GSSが機密性なしにGSS_wrap()トークンを生成することはないためです。

There is one SSV per client ID. There is a single GSS context for a client ID / SSV pair. All SSV mechanism RPCSEC_GSS handles of a client ID / SSV pair share the same GSS context. SSV GSS contexts do not expire except when the SSV is destroyed (causes would include the client ID being destroyed or a server restart). Since one purpose of context expiration is to replace keys that have been in use for "too long", hence vulnerable to compromise by brute force or accident, the client can replace the SSV key by sending periodic SET_SSV operations, which is done by cycling through different users' RPCSEC_GSS credentials. This way, the SSV is replaced without destroying the SSV's GSS contexts.

クライアントIDごとに1つのSSVがあります。クライアントIDとSSVのペアには、単一のGSSコンテキストがあります。すべてのSSVメカニズム、クライアントID / SSVペアのRPCSEC_GSSハンドルは、同じGSSコンテキストを共有します。 SSV GSSコンテキストは、SSVが破棄された場合を除いて期限切れになりません(原因としては、クライアントIDの破棄またはサーバーの再起動が含まれます)。コンテキストの有効期限の目的の1つは、「長すぎる」ために使用されていたキーを置き換えることであり、ブルートフォースや事故による侵害に対して脆弱であるため、クライアントは定期的なSET_SSV操作を送信してSSVキーを置き換えることができます。異なるユーザーのRPCSEC_GSS資格。このようにして、SSVは、SSVのGSSコンテキストを破壊することなく置き換えられます。

SSV RPCSEC_GSS handles can be expired or deleted by the server at any time, and the EXCHANGE_ID operation can be used to create more SSV RPCSEC_GSS handles. Expiration of SSV RPCSEC_GSS handles does not imply that the SSV or its GSS context has expired.

SSV RPCSEC_GSSハンドルはサーバーによっていつでも期限切れまたは削除でき、EXCHANGE_ID操作を使用してさらにSSV RPCSEC_GSSハンドルを作成できます。 SSV RPCSEC_GSSハンドルの期限切れは、SSVまたはそのGSSコンテキストが期限切れであることを意味しません。

The client MUST establish an SSV via SET_SSV before the SSV GSS context can be used to emit tokens from GSS_Wrap() and GSS_GetMIC(). If SET_SSV has not been successfully called, attempts to emit tokens MUST fail.

クライアントは、SSV GSSコンテキストを使用してGSS_Wrap()およびGSS_GetMIC()からトークンを発行する前に、SET_SSVを介してSSVを確立する必要があります。 SET_SSVが正常に呼び出されなかった場合、トークンを発行する試みは失敗する必要があります。

The SSV mechanism does not support replay detection and sequencing in its tokens because RPCSEC_GSS does not use those features (See Section 5.2.2, "Context Creation Requests", in [4]). However, Section 2.10.10 discusses special considerations for the SSV mechanism when used with RPCSEC_GSS.


2.10.10. Security Considerations for RPCSEC_GSS When Using the SSV Mechanism

2.10.10. SSVメカニズムを使用する場合のRPCSEC_GSSのセキュリティに関する考慮事項

When a client ID is created with SP4_SSV state protection (see Section 18.35), the client is permitted to associate multiple RPCSEC_GSS handles with the single SSV GSS context (see Section 2.10.9). Because of the way RPCSEC_GSS (both version 1 and version 2, see [4] and [12]) calculate the verifier of the reply, special care must be taken by the implementation of the NFSv4.1 client to prevent attacks by a man-in-the-middle. The verifier of an RPCSEC_GSS reply is the output of GSS_GetMIC() applied to the input value of the seq_num field of the RPCSEC_GSS credential (data type rpc_gss_cred_ver_1_t) (see Section of [4]). If multiple RPCSEC_GSS handles share the same GSS context, then if one handle is used to send a request with the same seq_num value as another handle, an attacker could block the reply, and replace it with the verifier used for the other handle.

クライアントIDがSP4_SSV状態保護(セクション18.35を参照)で作成されると、クライアントは複数のRPCSEC_GSSハンドルを単一のSSV GSSコンテキストに関連付けることが許可されます(セクション2.10.9を参照)。 RPCSEC_GSS(バージョン1とバージョン2の両方)が応答のベリファイアを計算する方法のため、NFSv4.1クライアントの実装では、人による攻撃を防ぐために特別な注意が必要です途中で。 RPCSEC_GSS応答のベリファイアは、RPCSEC_GSSクレデンシャルのseq_numフィールドの入力値に適用されるGSS_GetMIC()の出力です(データ型rpc_gss_cred_ver_1_t)([4]のセクション5.3.3.2を参照)。複数のRPCSEC_GSSハンドルが同じGSSコンテキストを共有している場合、1つのハンドルを使用して別のハンドルと同じseq_num値のリクエストを送信すると、攻撃者は応答をブロックし、それを他のハンドルに使用されているベリファイアに置き換える可能性があります。

There are multiple ways to prevent the attack on the SSV RPCSEC_GSS verifier in the reply. The simplest is believed to be as follows.

応答のSSV RPCSEC_GSSベリファイアへの攻撃を防ぐ方法はいくつかあります。最も単純なものは次のように考えられています。

o Each time one or more new SSV RPCSEC_GSS handles are created via EXCHANGE_ID, the client SHOULD send a SET_SSV operation to modify the SSV. By changing the SSV, the new handles will not result in the re-use of an SSV RPCSEC_GSS verifier in a reply.

o EXCHANGE_IDを介して1つ以上の新しいSSV RPCSEC_GSSハンドルが作成されるたびに、クライアントは、SET_SSV操作を送信してSSVを変更する必要があります(SHOULD)。 SSVを変更することにより、新しいハンドルは応答でSSV RPCSEC_GSS検証を再利用しません。

o When a requester decides to use N SSV RPCSEC_GSS handles, it SHOULD assign a unique and non-overlapping range of seq_nums to each SSV RPCSEC_GSS handle. The size of each range SHOULD be equal to MAXSEQ / N (see Section 5 of [4] for the definition of MAXSEQ). When an SSV RPCSEC_GSS handle reaches its maximum, it SHOULD force the replier to destroy the handle by sending a NULL RPC request with seq_num set to MAXSEQ + 1 (see Section of [4]).

o リクエスターがN個のSSV RPCSEC_GSSハンドルを使用することを決定すると、seq_numsの一意で重複しない範囲を各SSV RPCSEC_GSSハンドルに割り当てる必要があります(SHOULD)。各範囲のサイズは、MAXSEQ / Nに等しい必要があります(MAXSEQの定義については、[4]のセクション5を参照してください)。 SSV RPCSEC_GSSハンドルが最大値に達すると、seq_numをMAXSEQ + 1に設定してNULL RPC要求を送信することにより、応答者にハンドルを破棄するよう強制する必要があります([4]のセクション5.3.3.3を参照)。

o When the requester wants to increase or decrease N, it SHOULD force the replier to destroy all N handles by sending a NULL RPC request on each handle with seq_num set to MAXSEQ + 1. If the requester is the client, it SHOULD send a SET_SSV operation before using new handles. If the requester is the server, then the client SHOULD send a SET_SSV operation when it detects that the server has forced it to destroy a backchannel's SSV RPCSEC_GSS handle. By sending a SET_SSV operation, the SSV will change, and so the attacker will be unavailable to successfully replay a previous verifier in a reply to the requester.

o リクエスターがNを増やしたり減らしたりしたい場合は、seq_numがMAXSEQ + 1に設定された各ハンドルでNULL RPC要求を送信することにより、リプライアーにすべてのNハンドルを強制的に破棄する必要があります(SHOULD)。リクエスターがクライアントの場合、SET_SSV操作を送信する必要があります(SHOULD)。新しいハンドルを使用する前。リクエスターがサーバーである場合、クライアントは、サーバーがバックチャネルのSSV RPCSEC_GSSハンドルの破棄を強制したことを検出したときに、SET_SSV操作を送信する必要があります(SHOULD)。 SET_SSV操作を送信することにより、SSVが変更されるため、攻撃者はリクエスターへの応答で以前のベリファイアを正常に再生できなくなります。

Note that if the replier carefully creates the SSV RPCSEC_GSS handles, the related risk of a man-in-the-middle splicing a forged SSV RPCSEC_GSS credential with a verifier for another handle does not exist. This is because the verifier in an RPCSEC_GSS request is computed from input that includes both the RPCSEC_GSS handle and seq_num (see Section 5.3.1 of [4]). Provided the replier takes care to avoid re-using the value of an RPCSEC_GSS handle that it creates, such as by including a generation number in the handle, the man-in-the-middle will not be able to successfully replay a previous verifier in the request to a replier.

返信者がSSV RPCSEC_GSSハンドルを慎重に作成した場合、中間者が偽造SSV RPCSEC_GSS資格情報を別のハンドルのベリファイアとスプライスするという関連するリスクは存在しないことに注意してください。これは、RPCSEC_GSS要求のベリファイアが、RPCSEC_GSSハンドルとseq_numの両方を含む入力から計算されるためです([4]のセクション5.3.1を参照)。応答番号が生成するRPCSEC_GSSハンドルの値を再利用しないように注意する場合(ハンドルに世代番号を含めるなど)、中間者は以前の検証を正常に再生できません返信者へのリクエスト。

2.10.11. Session Mechanics - Steady State
2.10.11. セッションの仕組み-定常状態 Obligations of the Server サーバーの義務

The server has the primary obligation to monitor the state of backchannel resources that the client has created for the server (RPCSEC_GSS contexts and backchannel connections). If these resources vanish, the server takes action as specified in Section

サーバーには、クライアントがサーバー用に作成したバックチャネルリソースの状態(RPCSEC_GSSコンテキストとバックチャネル接続)を監視する主要な義務があります。これらのリソースが消失すると、サーバーはセクション2.10.13.2で指定されたアクションを実行します。 Obligations of the Client クライアントの義務

The client SHOULD honor the following obligations in order to utilize the session:


o Keep a necessary session from going idle on the server. A client that requires a session but nonetheless is not sending operations risks having the session be destroyed by the server. This is because sessions consume resources, and resource limitations may force the server to cull an inactive session. A server MAY consider a session to be inactive if the client has not used the session before the session inactivity timer (Section 2.10.12) has expired.

o サーバーで必要なセッションがアイドル状態にならないようにします。セッションを必要とするがそれでも操作を送信していないクライアントは、サーバーによってセッションが破壊されるリスクがあります。これは、セッションがリソースを消費するためであり、リソースの制限により、サーバーが非アクティブなセッションを強制的に削除する可能性があります。セッション非アクティブタイマー(2.10.12項)が期限切れになる前にクライアントがセッションを使用しなかった場合、サーバーはセッションを非アクティブと見なしてもよい(MAY)。

o Destroy the session when not needed. If a client has multiple sessions, one of which has no requests waiting for replies, and has been idle for some period of time, it SHOULD destroy the session.

o 不要なときにセッションを破棄します。クライアントに複数のセッションがあり、そのうちの1つに応答を待つ要求がなく、一定期間アイドル状態であった場合、セッションを破棄する必要があります(SHOULD)。

o Maintain GSS contexts and RPCSEC_GSS handles for the backchannel. If the client requires the server to use the RPCSEC_GSS security flavor for callbacks, then it needs to be sure the RPCSEC_GSS handles and/or their GSS contexts that are handed to the server via BACKCHANNEL_CTL or CREATE_SESSION are unexpired.

o バックチャネルのGSSコンテキストとRPCSEC_GSSハンドルを維持します。クライアントがサーバーにコールバックにRPCSEC_GSSセキュリティフレーバーを使用することを要求する場合、BACKCHANNEL_CTLまたはCREATE_SESSIONを介してサーバーに渡されるRPCSEC_GSSハンドルまたはGSSコンテキスト、あるいはその両方が期限切れになっていないことを確認する必要があります。

o Preserve a connection for a backchannel. The server requires a backchannel in order to gracefully recall recallable state or notify the client of certain events. Note that if the connection is not being used for the fore channel, there is no way for the client to tell if the connection is still alive (e.g., the server restarted without sending a disconnect). The onus is on the server, not the client, to determine if the backchannel's connection is alive, and to indicate in the response to a SEQUENCE operation when the last connection associated with a session's backchannel has disconnected.

o バックチャネルの接続を保持します。サーバーは、再呼び出し可能な状態を適切に呼び出したり、特定のイベントをクライアントに通知したりするためにバックチャネルを必要とします。接続がフォアチャネルに使用されていない場合、クライアントが接続がまだ生きているかどうかを確認する方法がないことに注意してください(たとえば、サーバーは切断を送信せずに再起動しました)。責任はクライアントではなくサーバー上にあり、バックチャネルの接続が有効かどうかを判断し、SEQUENCE操作への応答で、セッションのバックチャネルに関連付けられた最後の接続が切断されたことを示します。 Steps the Client Takes to Establish a Session クライアントがセッションを確立するために実行する手順

If the client does not have a client ID, the client sends EXCHANGE_ID to establish a client ID. If it opts for SP4_MACH_CRED or SP4_SSV protection, in the spo_must_enforce list of operations, it SHOULD at minimum specify CREATE_SESSION, DESTROY_SESSION, BIND_CONN_TO_SESSION, BACKCHANNEL_CTL, and DESTROY_CLIENTID. If it opts for SP4_SSV protection, the client needs to ask for SSV-based RPCSEC_GSS handles.

クライアントにクライアントIDがない場合、クライアントはEXCHANGE_IDを送信してクライアントIDを確立します。 SP4_MACH_CREDまたはSP4_SSV保護を選択する場合は、操作のspo_must_enforceリストで、最低でもCREATE_SESSION、DESTROY_SESSION、BIND_CONN_TO_SESSION、BACKCHANNEL_CTL、およびDESTROY_CLIENTIDを指定する必要があります。 SP4_SSV保護を選択する場合、クライアントはSSVベースのRPCSEC_GSSハンドルを要求する必要があります。

The client uses the client ID to send a CREATE_SESSION on a connection to the server. The results of CREATE_SESSION indicate whether or not the server will persist the session reply cache through a server that has restarted, and the client notes this for future reference.

クライアントはクライアントIDを使用して、サーバーへの接続でCREATE_SESSIONを送信します。 CREATE_SESSIONの結果は、サーバーが再起動したサーバーを介してセッション応答キャッシュを永続化するかどうかを示し、クライアントはこれを後で参照できるようにメモします。

If the client specified SP4_SSV state protection when the client ID was created, then it SHOULD send SET_SSV in the first COMPOUND after the session is created. Each time a new principal goes to use the client ID, it SHOULD send a SET_SSV again.


If the client wants to use delegations, layouts, directory notifications, or any other state that requires a backchannel, then it needs to add a connection to the backchannel if CREATE_SESSION did not already do so. The client creates a connection, and calls BIND_CONN_TO_SESSION to associate the connection with the session and the session's backchannel. If CREATE_SESSION did not already do so, the client MUST tell the server what security is required in order for the client to accept callbacks. The client does this via BACKCHANNEL_CTL. If the client selected SP4_MACH_CRED or SP4_SSV protection when it called EXCHANGE_ID, then the client SHOULD specify that the backchannel use RPCSEC_GSS contexts for security.

クライアントが委任、レイアウト、ディレクトリ通知、またはバックチャネルを必要とするその他の状態を使用する場合、CREATE_SESSIONがまだそうしていない場合は、バックチャネルへの接続を追加する必要があります。クライアントは接続を作成し、BIND_CONN_TO_SESSIONを呼び出して、接続をセッションおよびセッションのバックチャネルに関連付けます。 CREATE_SESSIONがまだ行っていない場合、クライアントは、クライアントがコールバックを受け入れるために必要なセキュリティをサーバーに通知する必要があります。クライアントはBACKCHANNEL_CTLを介してこれを行います。クライアントがEXCHANGE_IDを呼び出したときにSP4_MACH_CREDまたはSP4_SSV保護を選択した場合、クライアントはバックチャネルがセキュリティのためにRPCSEC_GSSコンテキストを使用することを指定する必要があります(SHOULD)。

If the client wants to use additional connections for the backchannel, then it needs to call BIND_CONN_TO_SESSION on each connection it wants to use with the session. If the client wants to use additional connections for the fore channel, then it needs to call BIND_CONN_TO_SESSION if it specified SP4_SSV or SP4_MACH_CRED state protection when the client ID was created.


At this point, the session has reached steady state.


2.10.12. Session Inactivity Timer
2.10.12. セッション非活動タイマー

The server MAY maintain a session inactivity timer for each session. If the session inactivity timer expires, then the server MAY destroy the session. To avoid losing a session due to inactivity, the client MUST renew the session inactivity timer. The length of session inactivity timer MUST NOT be less than the lease_time attribute (Section As with lease renewal (Section 8.3), when the server receives a SEQUENCE operation, it resets the session inactivity timer, and MUST NOT allow the timer to expire while the rest of the operations in the COMPOUND procedure's request are still executing. Once the last operation has finished, the server MUST set the session inactivity timer to expire no sooner than the sum of the current time and the value of the lease_time attribute.

サーバーは、各セッションのセッション非アクティブタイマーを維持する場合があります。セッション非活動タイマーが期限切れになると、サーバーはセッションを破棄する場合があります。非アクティブが原因でセッションが失われないようにするために、クライアントはセッション非アクティブタイマーを更新する必要があります。セッション非活動タイマーの長さは、lease_time属性(節)より短くてはなりません(MUST NOT)。リースの更新(セクション8.3)と同様に、サーバーがSEQUENCE操作を受信すると、セッション非アクティブタイマーをリセットし、COMPOUNDプロシージャのリクエスト内の残りの操作がまだ実行されている間にタイマーが期限切れにならないようにする必要があります。最後の操作が完了すると、サーバーはセッション非アクティブタイマーが現在の時間とlease_time属性の値の合計よりも早く期限切れになるように設定する必要があります。

2.10.13. Session Mechanics - Recovery
2.10.13. セッションの仕組み-回復 Events Requiring Client Action クライアントのアクションが必要なイベント

The following events require client action to recover.

次のイベントを回復するには、クライアントのアクションが必要です。 RPCSEC_GSS Context Loss by Callback Path コールバックパスによるRPCSEC_GSSコンテキストの損失

If all RPCSEC_GSS handles granted by the client to the server for callback use have expired, the client MUST establish a new handle via BACKCHANNEL_CTL. The sr_status_flags field of the SEQUENCE results indicates when callback handles are nearly expired, or fully expired (see Section 18.46.3).

コールバック用にクライアントからサーバーに付与されたすべてのRPCSEC_GSSハンドルが期限切れになった場合、クライアントはBACKCHANNEL_CTLを介して新しいハンドルを確立する必要があります。 SEQUENCE結果のsr_status_flagsフィールドは、コールバックハンドルがほぼ期限切れになるか、完全に期限切れになる時期を示します(セクション18.46.3を参照)。 Connection Loss 接続の喪失

If the client loses the last connection of the session and wants to retain the session, then it needs to create a new connection, and if, when the client ID was created, BIND_CONN_TO_SESSION was specified in the spo_must_enforce list, the client MUST use BIND_CONN_TO_SESSION to associate the connection with the session.


If there was a request outstanding at the time of connection loss, then if the client wants to continue to use the session, it MUST retry the request, as described in Section Note that it is not necessary to retry requests over a connection with the same source network address or the same destination network address as the lost connection. As long as the session ID, slot ID, and sequence ID in the retry match that of the original request, the server will recognize the request as a retry if it executed the request prior to disconnect.


If the connection that was lost was the last one associated with the backchannel, and the client wants to retain the backchannel and/or prevent revocation of recallable state, the client needs to reconnect, and if it does, it MUST associate the connection to the session and backchannel via BIND_CONN_TO_SESSION. The server SHOULD indicate when it has no callback connection via the sr_status_flags result from SEQUENCE.

失われた接続がバックチャネルに関連付けられた最後の接続であり、クライアントがバックチャネルを保持したり、呼び出し可能状態の取り消しを防止したりする場合、クライアントは再接続する必要があります。再接続する場合は、接続をBIND_CONN_TO_SESSIONを介したセッションとバックチャネル。サーバーは、SEQUENCEの結果であるsr_status_flagsを介して、コールバック接続がない場合を示す必要があります(SHOULD)。 Backchannel GSS Context Loss バックチャネルGSSコンテキストの損失

Via the sr_status_flags result of the SEQUENCE operation or other means, the client will learn if some or all of the RPCSEC_GSS contexts it assigned to the backchannel have been lost. If the client wants to retain the backchannel and/or not put recallable state subject to revocation, the client needs to use BACKCHANNEL_CTL to assign new contexts.

SEQUENCE操作またはその他の手段のsr_status_flags結果を介して、クライアントは、バックチャネルに割り当てられたRPCSEC_GSSコンテキストの一部またはすべてが失われたかどうかを学習します。クライアントがバックチャネルを保持したり、取り消しの対象となる再呼び出し可能な状態にしたくない場合、クライアントはBACKCHANNEL_CTLを使用して新しいコンテキストを割り当てる必要があります。 Loss of Session セッションの喪失

The replier might lose a record of the session. Causes include:


o Replier failure and restart.

o リプライヤの失敗と再起動。

o A catastrophe that causes the reply cache to be corrupted or lost on the media on which it was stored. This applies even if the replier indicated in the CREATE_SESSION results that it would persist the cache.

o 格納されたメディアで応答キャッシュが破損または失われるような大災害。これは、CREATE_SESSIONに示されている返信者がキャッシュを永続化する結果になった場合でも適用されます。

o The server purges the session of a client that has been inactive for a very extended period of time.

o サーバーは、長期間非アクティブであったクライアントのセッションを削除します。

o As a result of configuration changes among a set of clustered servers, a network address previously connected to one server becomes connected to a different server that has no knowledge of the session in question. Such a configuration change will generally only happen when the original server ceases to function for a time.

o クラスター化されたサーバーのセット間の構成変更の結果、以前に1つのサーバーに接続されていたネットワークアドレスが、問題のセッションを認識していない別のサーバーに接続されます。このような構成変更は、通常、元のサーバーがしばらく機能しなくなった場合にのみ発生します。

Loss of reply cache is equivalent to loss of session. The replier indicates loss of session to the requester by returning NFS4ERR_BADSESSION on the next operation that uses the session ID that refers to the lost session.


After an event like a server restart, the client may have lost its connections. The client assumes for the moment that the session has not been lost. It reconnects, and if it specified connection association enforcement when the session was created, it invokes BIND_CONN_TO_SESSION using the session ID. Otherwise, it invokes SEQUENCE. If BIND_CONN_TO_SESSION or SEQUENCE returns NFS4ERR_BADSESSION, the client knows the session is not available to it when communicating with that network address. If the connection survives session loss, then the next SEQUENCE operation the client sends over the connection will get back NFS4ERR_BADSESSION. The client again knows the session was lost.

サーバーの再起動などのイベントの後、クライアントが接続を失った可能性があります。クライアントは、セッションが失われていないことを想定しています。再接続し、セッションの作成時に接続の関連付けの強制を指定した場合は、セッションIDを使用してBIND_CONN_TO_SESSIONを呼び出します。それ以外の場合は、SEQUENCEを呼び出します。 BIND_CONN_TO_SESSIONまたはSEQUENCEがNFS4ERR_BADSESSIONを返す場合、クライアントは、そのネットワークアドレスと通信しているときにセッションが利用できないことを認識しています。接続がセッション損失に耐えた場合、クライアントが接続を介して送信する次のSEQUENCE操作はNFS4ERR_BADSESSIONを返します。クライアントは、セッションが失われたことを再度認識します。

Here is one suggested algorithm for the client when it gets NFS4ERR_BADSESSION. It is not obligatory in that, if a client does not want to take advantage of such features as trunking, it may omit parts of it. However, it is a useful example that draws attention to various possible recovery issues:


1. If the client has other connections to other server network addresses associated with the same session, attempt a COMPOUND with a single operation, SEQUENCE, on each of the other connections.

1. クライアントが同じセッションに関連付けられている他のサーバーネットワークアドレスへの他の接続を持っている場合は、他の各接続で単一の操作SEQUENCEを使用してCOMPOUNDを試行します。

2. If the attempts succeed, the session is still alive, and this is a strong indicator that the server's network address has moved. The client might send an EXCHANGE_ID on the connection that returned NFS4ERR_BADSESSION to see if there are opportunities for client ID trunking (i.e., the same client ID and so_major are returned). The client might use DNS to see if the moved network address was replaced with another, so that the performance and availability benefits of session trunking can continue.

2. 試行が成功した場合、セッションはまだ存続しており、これはサーバーのネットワークアドレスが移動したことを示す強力なインジケータです。クライアントは、NFS4ERR_BADSESSIONを返した接続でEXCHANGE_IDを送信して、クライアントIDトランキングの機会があるかどうかを確認します(つまり、同じクライアントIDとso_majorが返されます)。クライアントはDNSを使用して、移動されたネットワークアドレスが別のアドレスに置き換えられたかどうかを確認し、セッショントランキングのパフォーマンスと可用性のメリットを継続できるようにします。

3. If the SEQUENCE requests fail with NFS4ERR_BADSESSION, then the session no longer exists on any of the server network addresses for which the client has connections associated with that session ID. It is possible the session is still alive and available on other network addresses. The client sends an EXCHANGE_ID on all the connections to see if the server owner is still listening on those network addresses. If the same server owner is returned but a new client ID is returned, this is a strong indicator of a server restart. If both the same server owner and same client ID are returned, then this is a strong indication that the server did delete the session, and the client will need to send a CREATE_SESSION if it has no other sessions for that client ID. If a different server owner is returned, the client can use DNS to find other network addresses. If it does not, or if DNS does not find any other addresses for the server, then the client will be unable to provide NFSv4.1 service, and fatal errors should be returned to processes that were using the server. If the client is using a "mount" paradigm, unmounting the server is advised.

3. SEQUENCE要求がNFS4ERR_BADSESSIONで失敗した場合、そのセッションは、クライアントがそのセッションIDに関連付けられている接続を持つサーバーネットワークアドレスのいずれにも存在しません。セッションがまだ存続しており、他のネットワークアドレスで使用できる可能性があります。クライアントはすべての接続でEXCHANGE_IDを送信して、サーバーの所有者がそれらのネットワークアドレスをまだリッスンしているかどうかを確認します。同じサーバー所有者が返されたが、新しいクライアントIDが返された場合、これはサーバーの再起動の強力なインジケーターです。同じサーバー所有者と同じクライアントIDの両方が返された場合、これはサーバーがセッションを削除したことを強く示しており、そのクライアントIDに対して他のセッションがない場合、クライアントはCREATE_SESSIONを送信する必要があります。別のサーバー所有者が返された場合、クライアントはDNSを使用して他のネットワークアドレスを見つけることができます。そうでない場合、またはDNSがサーバーの他のアドレスを見つけられない場合、クライアントはNFSv4.1サービスを提供できず、サーバーを使用していたプロセスに致命的なエラーが返されます。クライアントが「マウント」パラダイムを使用している場合は、サーバーをアンマウントすることをお勧めします。

4. If the client knows of no other connections associated with the session ID and server network addresses that are, or have been, associated with the session ID, then the client can use DNS to find other network addresses. If it does not, or if DNS does not find any other addresses for the server, then the client will be unable to provide NFSv4.1 service, and fatal errors should be returned to processes that were using the server. If the client is using a "mount" paradigm, unmounting the server is advised.

4. クライアントが、セッションIDに関連付けられている、またはセッションIDに関連付けられている、または関連付けられているサーバーネットワークアドレスに他の接続がないことを知っている場合、クライアントはDNSを使用して他のネットワークアドレスを見つけることができます。そうでない場合、またはDNSがサーバーの他のアドレスを見つけられない場合、クライアントはNFSv4.1サービスを提供できず、サーバーを使用していたプロセスに致命的なエラーが返されます。クライアントが「マウント」パラダイムを使用している場合は、サーバーをアンマウントすることをお勧めします。

If there is a reconfiguration event that results in the same network address being assigned to servers where the eir_server_scope value is different, it cannot be guaranteed that a session ID generated by the first will be recognized as invalid by the first. Therefore, in managing server reconfigurations among servers with different server scope values, it is necessary to make sure that all clients have disconnected from the first server before effecting the reconfiguration. Nonetheless, clients should not assume that servers will always adhere to this requirement; clients MUST be prepared to deal with unexpected effects of server reconfigurations. Even where a session ID is inappropriately recognized as valid, it is likely either that the connection will not be recognized as valid or that a sequence value for a slot will not be correct. Therefore, when a client receives results indicating such unexpected errors, the use of EXCHANGE_ID to determine the current server configuration is RECOMMENDED.


A variation on the above is that after a server's network address moves, there is no NFSv4.1 server listening, e.g., no listener on port 2049. In this example, one of the following occur: the NFSv4 server returns NFS4ERR_MINOR_VERS_MISMATCH, the NFS server returns a PROG_MISMATCH error, the RPC listener on 2049 returns PROG_UNVAIL, or attempts to reconnect to the network address timeout. These SHOULD be treated as equivalent to SEQUENCE returning NFS4ERR_BADSESSION for these purposes.


When the client detects session loss, it needs to call CREATE_SESSION to recover. Any non-idempotent operations that were in progress might have been performed on the server at the time of session loss. The client has no general way to recover from this.


Note that loss of session does not imply loss of byte-range lock, open, delegation, or layout state because locks, opens, delegations, and layouts are tied to the client ID and depend on the client ID, not the session. Nor does loss of byte-range lock, open, delegation, or layout state imply loss of session state, because the session depends on the client ID; loss of client ID however does imply loss of session, byte-range lock, open, delegation, and layout state. See Section 8.4.2. A session can survive a server restart, but lock recovery may still be needed.


It is possible that CREATE_SESSION will fail with NFS4ERR_STALE_CLIENTID (e.g., the server restarts and does not preserve client ID state). If so, the client needs to call EXCHANGE_ID, followed by CREATE_SESSION.

CREATE_SESSIONがNFS4ERR_STALE_CLIENTIDで失敗する可能性があります(たとえば、サーバーが再起動し、クライアントIDの状態が保持されない)。その場合、クライアントはEXCHANGE_IDを呼び出してから、CREATE_SESSIONを呼び出す必要があります。 Events Requiring Server Action サーバーアクションを必要とするイベント

The following events require server action to recover.

次のイベントを回復するには、サーバーアクションが必要です。 Client Crash and Restart クライアントのクラッシュと再起動

As described in Section 18.35, a restarted client sends EXCHANGE_ID in such a way that it causes the server to delete any sessions it had.

セクション18.35で説明されているように、再起動されたクライアントは、サーバーにセッションを削除させるような方法でEXCHANGE_IDを送信します。 Client Crash with No Restart 再起動なしでクライアントがクラッシュする

If a client crashes and never comes back, it will never send EXCHANGE_ID with its old client owner. Thus, the server has session state that will never be used again. After an extended period of time, and if the server has resource constraints, it MAY destroy the old session as well as locking state.

クライアントがクラッシュして戻ってこない場合は、元のクライアント所有者にEXCHANGE_IDを送信することはありません。したがって、サーバーには、再び使用されることのないセッション状態があります。長期間経過した後、サーバーにリソースの制約がある場合は、古いセッションとロック状態が破棄される場合があります。 Extended Network Partition 拡張ネットワークパーティション

To the server, the extended network partition may be no different from a client crash with no restart (see Section Unless the server can discern that there is a network partition, it is free to treat the situation as if the client has crashed permanently.

サーバーにとって、拡張ネットワークパーティションは、再起動なしのクライアントクラッシュと同じです(セクション2.を参照)。サーバーがネットワークパーティションの存在を認識できない場合を除き、クライアントが永続的にクラッシュしたかのように状況を自由に扱うことができます。 Backchannel Connection Loss バックチャネル接続の喪失

If there were callback requests outstanding at the time of a connection loss, then the server MUST retry the requests, as described in Section Note that it is not necessary to retry requests over a connection with the same source network address or the same destination network address as the lost connection. As long as the session ID, slot ID, and sequence ID in the retry match that of the original request, the callback target will recognize the request as a retry even if it did see the request prior to disconnect.


If the connection lost is the last one associated with the backchannel, then the server MUST indicate that in the sr_status_flags field of every SEQUENCE reply until the backchannel is re-established. There are two situations, each of which uses different status flags: no connectivity for the session's backchannel and no connectivity for any session backchannel of the client. See Section 18.46 for a description of the appropriate flags in sr_status_flags.

失われた接続がバックチャネルに関連付けられた最後の接続である場合、サーバーは、バックチャネルが再確立されるまで、すべてのSEQUENCE応答のsr_status_flagsフィールドでそのことを示さなければなりません(MUST)。 2つの状況があり、それぞれが異なるステータスフラグを使用します。セッションのバックチャネルへの接続がない場合と、クライアントのセッションバックチャネルへの接続がない場合です。 sr_status_flagsの適切なフラグの説明については、セクション18.46を参照してください。 GSS Context Loss GSSコンテキストの損失

The server SHOULD monitor when the number of RPCSEC_GSS handles assigned to the backchannel reaches one, and when that one handle is near expiry (i.e., between one and two periods of lease time), and indicate so in the sr_status_flags field of all SEQUENCE replies. The server MUST indicate when all of the backchannel's assigned RPCSEC_GSS handles have expired via the sr_status_flags field of all SEQUENCE replies.


2.10.14. Parallel NFS and Sessions
2.10.14. 並列NFSおよびセッション

A client and server can potentially be a non-pNFS implementation, a metadata server implementation, a data server implementation, or two or three types of implementations. The EXCHGID4_FLAG_USE_NON_PNFS, EXCHGID4_FLAG_USE_PNFS_MDS, and EXCHGID4_FLAG_USE_PNFS_DS flags (not mutually exclusive) are passed in the EXCHANGE_ID arguments and results to allow the client to indicate how it wants to use sessions created under the client ID, and to allow the server to indicate how it will allow the sessions to be used. See Section 13.1 for pNFS sessions considerations.

クライアントとサーバーは、非pNFS実装、メタデータサーバー実装、データサーバー実装、または2つか3つのタイプの実装になる可能性があります。 EXCHGID4_FLAG_USE_NON_PNFS、EXCHGID4_FLAG_USE_PNFS_MDS、およびEXCHGID4_FLAG_USE_PNFS_DSフラグ(相互に排他的ではない)は、EXCHANGE_ID引数と結果で渡され、クライアントがクライアントIDで作成されたセッションをどのように使用するかを示し、サーバーがどのようにサーバーを許可できるかを示します。使用するセッション。 pNFSセッションの考慮事項については、セクション13.1を参照してください。

3. Protocol Constants and Data Types
3. プロトコル定数とデータ型

The syntax and semantics to describe the data types of the NFSv4.1 protocol are defined in the XDR RFC 4506 [2] and RPC RFC 5531 [3] documents. The next sections build upon the XDR data types to define constants, types, and structures specific to this protocol. The full list of XDR data types is in [13].

NFSv4.1プロトコルのデータ型を記述するための構文とセマンティクスは、XDR RFC 4506 [2]およびRPC RFC 5531 [3]のドキュメントで定義されています。次のセクションでは、XDRデータ型に基づいて、このプロトコルに固有の定数、型、および構造を定義します。 XDRデータ型の完全なリストは[13]にあります。

3.1. Basic Constants
3.1. 基本定数
   const NFS4_FHSIZE               = 128;
   const NFS4_VERIFIER_SIZE        = 8;
   const NFS4_OPAQUE_LIMIT         = 1024;
   const NFS4_SESSIONID_SIZE       = 16;
   const NFS4_INT64_MAX            = 0x7fffffffffffffff;
   const NFS4_UINT64_MAX           = 0xffffffffffffffff;
   const NFS4_INT32_MAX            = 0x7fffffff;
   const NFS4_UINT32_MAX           = 0xffffffff;
   const NFS4_MAXFILELEN           = 0xffffffffffffffff;
   const NFS4_MAXFILEOFF           = 0xfffffffffffffffe;

Except where noted, all these constants are defined in bytes.


o NFS4_FHSIZE is the maximum size of a filehandle.

o NFS4_FHSIZEは、ファイルハンドルの最大サイズです。

o NFS4_VERIFIER_SIZE is the fixed size of a verifier.

o NFS4_VERIFIER_SIZEは、ベリファイアの固定サイズです。

o NFS4_OPAQUE_LIMIT is the maximum size of certain opaque information.

o NFS4_OPAQUE_LIMITは、特定の不透明な情報の最大サイズです。

o NFS4_SESSIONID_SIZE is the fixed size of a session identifier.

o NFS4_SESSIONID_SIZEは、セッション識別子の固定サイズです。

o NFS4_INT64_MAX is the maximum value of a signed 64-bit integer.

o NFS4_INT64_MAXは、符号付き64ビット整数の最大値です。

o NFS4_UINT64_MAX is the maximum value of an unsigned 64-bit integer.

o NFS4_UINT64_MAXは、符号なし64ビット整数の最大値です。

o NFS4_INT32_MAX is the maximum value of a signed 32-bit integer.

o NFS4_INT32_MAXは、符号付き32ビット整数の最大値です。

o NFS4_UINT32_MAX is the maximum value of an unsigned 32-bit integer.

o NFS4_UINT32_MAXは、符号なし32ビット整数の最大値です。

o NFS4_MAXFILELEN is the maximum length of a regular file.

o NFS4_MAXFILELENは、通常のファイルの最大長です。

o NFS4_MAXFILEOFF is the maximum offset into a regular file.

o NFS4_MAXFILEOFFは、通常のファイルへの最大オフセットです。

3.2. Basic Data Types
3.2. 基本的なデータ型

These are the base NFSv4.1 data types.


   | Data Type     | Definition                                        |
   | int32_t       | typedef int int32_t;                              |
   | uint32_t      | typedef unsigned int uint32_t;                    |
   | int64_t       | typedef hyper int64_t;                            |
   | uint64_t      | typedef unsigned hyper uint64_t;                  |
   | attrlist4     | typedef opaque attrlist4<>;                       |
   |               | Used for file/directory attributes.               |
   | bitmap4       | typedef uint32_t bitmap4<>;                       |
   |               | Used in attribute array encoding.                 |
   | changeid4     | typedef uint64_t changeid4;                       |
   |               | Used in the definition of change_info4.           |
   | clientid4     | typedef uint64_t clientid4;                       |
   |               | Shorthand reference to client identification.     |
   | count4        | typedef uint32_t count4;                          |
   |               | Various count parameters (READ, WRITE, COMMIT).   |
   | length4       | typedef uint64_t length4;                         |
   |               | The length of a byte-range within a file.         |
   | mode4         | typedef uint32_t mode4;                           |
   |               | Mode attribute data type.                         |
   | nfs_cookie4   | typedef uint64_t nfs_cookie4;                     |
   |               | Opaque cookie value for READDIR.                  |
   | nfs_fh4       | typedef opaque nfs_fh4<NFS4_FHSIZE>;              |
   |               | Filehandle definition.                            |
   | nfs_ftype4    | enum nfs_ftype4;                                  |
   |               | Various defined file types.                       |
   | nfsstat4      | enum nfsstat4;                                    |
   |               | Return value for operations.                      |
   | offset4       | typedef uint64_t offset4;                         |
   |               | Various offset designations (READ, WRITE, LOCK,   |
   |               | COMMIT).                                          |
   | qop4          | typedef uint32_t qop4;                            |
   |               | Quality of protection designation in SECINFO.     |
   | sec_oid4      | typedef opaque sec_oid4<>;                        |
   |               | Security Object Identifier.  The sec_oid4 data    |
   |               | type is not really opaque.  Instead, it contains  |
   |               | an ASN.1 OBJECT IDENTIFIER as used by GSS-API in  |
   |               | the mech_type argument to GSS_Init_sec_context.   |
   |               | See [7] for details.                              |
   | sequenceid4   | typedef uint32_t sequenceid4;                     |
   |               | Sequence number used for various session          |
   |               | operations (EXCHANGE_ID, CREATE_SESSION,          |
   |               | SEQUENCE, CB_SEQUENCE).                           |
   | seqid4        | typedef uint32_t seqid4;                          |
   |               | Sequence identifier used for locking.             |
   | sessionid4    | typedef opaque sessionid4[NFS4_SESSIONID_SIZE];   |
   |               | Session identifier.                               |
   | slotid4       | typedef uint32_t slotid4;                         |
   |               | Sequencing artifact for various session           |
   |               | operations (SEQUENCE, CB_SEQUENCE).               |
   | utf8string    | typedef opaque utf8string<>;                      |
   |               | UTF-8 encoding for strings.                       |
   | utf8str_cis   | typedef utf8string utf8str_cis;                   |
   |               | Case-insensitive UTF-8 string.                    |
   | utf8str_cs    | typedef utf8string utf8str_cs;                    |
   |               | Case-sensitive UTF-8 string.                      |
   | utf8str_mixed | typedef utf8string utf8str_mixed;                 |
   |               | UTF-8 strings with a case-sensitive prefix and a  |
   |               | case-insensitive suffix.                          |
   | component4    | typedef utf8str_cs component4;                    |
   |               | Represents pathname components.                   |
   | linktext4     | typedef utf8str_cs linktext4;                     |
   |               | Symbolic link contents ("symbolic link" is        |
   |               | defined in an Open Group [Section 3.372 of Chapter 3 of Base Definitions of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version (, ISBN 1931624232"">14] standard).          |
   | pathname4     | typedef component4 pathname4<>;                   |
   |               | Represents pathname for fs_locations.             |
   | verifier4     | typedef opaque verifier4[NFS4_VERIFIER_SIZE];     |
   |               | Verifier used for various operations (COMMIT,     |
   |               | CREATE, EXCHANGE_ID, OPEN, READDIR, WRITE)        |
   |               | NFS4_VERIFIER_SIZE is defined as 8.               |

End of Base Data Types


Table 1


3.3. Structured Data Types
3.3. 構造化データタイプ
3.3.1. nfstime4
3.3.1. nfstime4
   struct nfstime4 {
           int64_t         seconds;
           uint32_t        nseconds;

The nfstime4 data type gives the number of seconds and nanoseconds since midnight or zero hour January 1, 1970 Coordinated Universal Time (UTC). Values greater than zero for the seconds field denote dates after the zero hour January 1, 1970. Values less than zero for the seconds field denote dates before the zero hour January 1, 1970. In both cases, the nseconds field is to be added to the seconds field for the final time representation. For example, if the time to be represented is one-half second before zero hour January 1, 1970, the seconds field would have a value of negative one (-1) and the nseconds field would have a value of one-half second (500000000). Values greater than 999,999,999 for nseconds are invalid.

nfstime4データ型は、1970年1月1日の午前0時またはゼロ時からの秒数およびナノ秒数を示します。協定世界時(UTC)。秒フィールドのゼロより大きい値は、1970年1月1日のゼロ時より後の日付を示します。秒フィールドのゼロより小さい値は、1970年1月1日のゼロ時より前の日付を示します。どちらの場合も、n秒フィールドが追加されます。最終時刻表現の秒フィールド。たとえば、表現される時間が1970年1月1日の0時間前の0.5秒である場合、秒フィールドの値は負の1(-1)になり、n秒フィールドの値は0.5秒( 500000000)。 n秒の999,999,999より大きい値は無効です。

This data type is used to pass time and date information. A server converts to and from its local representation of time when processing time values, preserving as much accuracy as possible. If the precision of timestamps stored for a file system object is less than defined, loss of precision can occur. An adjunct time maintenance protocol is RECOMMENDED to reduce client and server time skew.


3.3.2. time_how4
3.3.2. time_how4
   enum time_how4 {
           SET_TO_SERVER_TIME4 = 0,
           SET_TO_CLIENT_TIME4 = 1
3.3.3. settime4
3.3.3. 第7 4
   union settime4 switch (time_how4 set_it) {
            nfstime4       time;

The time_how4 and settime4 data types are used for setting timestamps in file object attributes. If set_it is SET_TO_SERVER_TIME4, then the server uses its local representation of time for the time value.

time_how4およびsettime4データ型は、ファイルオブジェクト属性でタイムスタンプを設定するために使用されます。 set_itがSET_TO_SERVER_TIME4の場合、サーバーは時間の値としてローカルの時間表現を使用します。

3.3.4. specdata4
3.3.4. specdata4
   struct specdata4 {
    uint32_t specdata1; /* major device number */
    uint32_t specdata2; /* minor device number */

This data type represents the device numbers for the device file types NF4CHR and NF4BLK.


3.3.5. fsid4
3.3.5. fsid4
   struct fsid4 {
           uint64_t        major;
           uint64_t        minor;
3.3.6. change_policy4
3.3.6. change_policy4
   struct change_policy4 {
           uint64_t        cp_major;
           uint64_t        cp_minor;

The change_policy4 data type is used for the change_policy RECOMMENDED attribute. It provides change sequencing indication analogous to the change attribute. To enable the server to present a value valid across server re-initialization without requiring persistent storage, two 64-bit quantities are used, allowing one to be a server instance ID and the second to be incremented non-persistently, within a given server instance.

change_policy4データ型は、change_policy RECOMMENDED属性に使用されます。これは、変更属性に類似した変更順序指示を提供します。サーバーが永続的なストレージを必要とせずにサーバーの再初期化全体で有効な値を提示できるようにするために、2つの64ビット数量が使用されます。 。

3.3.7. fattr4
3.3.7. fattr4
   struct fattr4 {
           bitmap4         attrmask;
           attrlist4       attr_vals;

The fattr4 data type is used to represent file and directory attributes.


The bitmap is a counted array of 32-bit integers used to contain bit values. The position of the integer in the array that contains bit n can be computed from the expression (n / 32), and its bit within that integer is (n mod 32).

ビットマップは、ビット値を含めるために使用される32ビット整数のカウントされた配列です。ビットnを含む配列内の整数の位置は、式(n / 32)から計算でき、その整数内のビットは(n mod 32)です。

   0            1
   |  count    | 31  ..  0 | 63  .. 32 |
3.3.8. change_info4
3.3.8. change_info4
   struct change_info4 {
           bool            atomic;
           changeid4       before;
           changeid4       after;

This data type is used with the CREATE, LINK, OPEN, REMOVE, and RENAME operations to let the client know the value of the change attribute for the directory in which the target file system object resides.


3.3.9. netaddr4
3.3.9. netaddr4
   struct netaddr4 {
           /* see struct rpcb in RFC 1833 */
           string na_r_netid<>; /* network id */
           string na_r_addr<>;  /* universal address */

The netaddr4 data type is used to identify network transport endpoints. The r_netid and r_addr fields respectively contain a netid and uaddr. The netid and uaddr concepts are defined in [15]. The netid and uaddr formats for TCP over IPv4 and TCP over IPv6 are defined in [15], specifically Tables 2 and 3 and Sections and

netaddr4データ型は、ネットワーク転送エンドポイントを識別するために使用されます。 r_netidおよびr_addrフィールドには、それぞれnetidおよびuaddrが含まれています。 netidとuaddrの概念は[15]で定義されています。 TCP over IPv4およびTCP over IPv6のnetidおよびuaddr形式は、[15]で定義されています。具体的には、表2および3とセクション5.2.3.3および5.2.3.4です。

3.3.10. state_owner4
3.3.10. state_owner4
   struct state_owner4 {
           clientid4       clientid;
           opaque          owner<NFS4_OPAQUE_LIMIT>;
   typedef state_owner4 open_owner4;
   typedef state_owner4 lock_owner4;

The state_owner4 data type is the base type for the open_owner4 (Section and lock_owner4 (Section

state_owner4データ型は、open_owner4(セクション3.3.10.1)およびlock_owner4(セクション3.3.10.2)の基本タイプです。 open_owner4 open_owner4

This data type is used to identify the owner of OPEN state.

このデータ型は、OPEN状態の所有者を識別するために使用されます。 lock_owner4 lock_owner4

This structure is used to identify the owner of byte-range locking state.


3.3.11. open_to_lock_owner4
3.3.11. open_to_lock_owner4
   struct open_to_lock_owner4 {
           seqid4          open_seqid;
           stateid4        open_stateid;
           seqid4          lock_seqid;
           lock_owner4     lock_owner;

This data type is used for the first LOCK operation done for an open_owner4. It provides both the open_stateid and lock_owner, such that the transition is made from a valid open_stateid sequence to that of the new lock_stateid sequence. Using this mechanism avoids the confirmation of the lock_owner/lock_seqid pair since it is tied to established state in the form of the open_stateid/open_seqid.

このデータ型は、open_owner4に対して実行される最初のLOCK操作に使用されます。有効なopen_stateidシーケンスから新しいlock_stateidシーケンスへの移行が行われるように、open_stateidとlock_ownerの両方を提供します。このメカニズムを使用すると、open_stateid / open_seqidの形式で確立された状態に関連付けられるため、lock_owner / lock_seqidペアの確認が回避されます。

3.3.12. stateid4
3.3.12. stateid4
   struct stateid4 {
           uint32_t        seqid;
           opaque          other[12];

This data type is used for the various state sharing mechanisms between the client and server. The client never modifies a value of data type stateid. The starting value of the "seqid" field is undefined. The server is required to increment the "seqid" field by one at each transition of the stateid. This is important since the client will inspect the seqid in OPEN stateids to determine the order of OPEN processing done by the server.

このデータ型は、クライアントとサーバー間のさまざまな状態共有メカニズムに使用されます。クライアントがデータ型stateidの値を変更することはありません。 「seqid」フィールドの開始値は未定義です。サーバーは、stateidの遷移ごとに「seqid」フィールドを1つずつ増やす必要があります。クライアントはOPENステートIDのseqidを検査して、サーバーが行うOPEN処理の順序を決定するため、これは重要です。

3.3.13. layouttype4
3.3.13. layouttype4
   enum layouttype4 {
           LAYOUT4_NFSV4_1_FILES   = 0x1,
           LAYOUT4_OSD2_OBJECTS    = 0x2,
           LAYOUT4_BLOCK_VOLUME    = 0x3

This data type indicates what type of layout is being used. The file server advertises the layout types it supports through the fs_layout_type file system attribute (Section 5.12.1). A client asks for layouts of a particular type in LAYOUTGET, and processes those layouts in its layout-type-specific logic.


The layouttype4 data type is 32 bits in length. The range represented by the layout type is split into three parts. Type 0x0 is reserved. Types within the range 0x00000001-0x7FFFFFFF are globally unique and are assigned according to the description in Section 22.4; they are maintained by IANA. Types within the range 0x80000000-0xFFFFFFFF are site specific and for private use only.

layouttype4データ型は32ビット長です。レイアウトタイプによって表される範囲は3つの部分に分割されます。タイプ0x0は予約されています。 0x00000001-0x7FFFFFFFの範囲内のタイプはグローバルに一意であり、セクション22.4の説明に従って割り当てられます。それらはIANAによって維持されます。 0x80000000-0xFFFFFFFFの範囲内のタイプはサイト固有であり、私的使用のみを目的としています。

The LAYOUT4_NFSV4_1_FILES enumeration specifies that the NFSv4.1 file layout type, as defined in Section 13, is to be used. The LAYOUT4_OSD2_OBJECTS enumeration specifies that the object layout, as defined in [40], is to be used. Similarly, the LAYOUT4_BLOCK_VOLUME enumeration specifies that the block/volume layout, as defined in [41], is to be used.

LAYOUT4_NFSV4_1_FILES列挙は、セクション13で定義されているNFSv4.1ファイルレイアウトタイプが使用されることを指定します。 LAYOUT4_OSD2_OBJECTS列挙は、[40]で定義されているオブジェクトレイアウトを使用することを指定します。同様に、LAYOUT4_BLOCK_VOLUME列挙は、[41]で定義されているブロック/ボリュームレイアウトが使用されることを指定します。

3.3.14. deviceid4
3.3.14. deviceid4

const NFS4_DEVICEID4_SIZE = 16;

const NFS4_DEVICEID4_SIZE = 16;

typedef opaque deviceid4[NFS4_DEVICEID4_SIZE];

typedef opaque deviceid4 [NFS4_DEVICEID4_SIZE];

Layout information includes device IDs that specify a storage device through a compact handle. Addressing and type information is obtained with the GETDEVICEINFO operation. Device IDs are not guaranteed to be valid across metadata server restarts. A device ID is unique per client ID and layout type. See Section 12.2.10 for more details.


3.3.15. device_addr4
3.3.15. device_addr4
   struct device_addr4 {
           layouttype4             da_layout_type;
           opaque                  da_addr_body<>;

The device address is used to set up a communication channel with the storage device. Different layout types will require different data types to define how they communicate with storage devices. The opaque da_addr_body field is interpreted based on the specified da_layout_type field.


This document defines the device address for the NFSv4.1 file layout (see Section 13.3), which identifies a storage device by network IP address and port number. This is sufficient for the clients to communicate with the NFSv4.1 storage devices, and may be sufficient for other layout types as well. Device types for object-based storage devices and block storage devices (e.g., Small Computer System Interface (SCSI) volume labels) are defined by their respective layout specifications.

このドキュメントでは、ネットワークIPアドレスとポート番号によってストレージデバイスを識別するNFSv4.1ファイルレイアウト(セクション13.3を参照)のデバイスアドレスを定義します。これは、クライアントがNFSv4.1ストレージデバイスと通信するのに十分であり、他のレイアウトタイプにも十分な場合があります。オブジェクトベースのストレージデバイスとブロックストレージデバイスのデバイスタイプ(SCSI(Small Computer System Interface)ボリュームラベルなど)は、それぞれのレイアウト仕様によって定義されます。

3.3.16. layout_content4
3.3.16. layout_content4
   struct layout_content4 {
           layouttype4 loc_type;
           opaque      loc_body<>;

The loc_body field is interpreted based on the layout type (loc_type). This document defines the loc_body for the NFSv4.1 file layout type; see Section 13.3 for its definition.


3.3.17. layout4
3.3.17. レイアウト4
   struct layout4 {
           offset4                 lo_offset;
           length4                 lo_length;
           layoutiomode4           lo_iomode;
           layout_content4         lo_content;

The layout4 data type defines a layout for a file. The layout type specific data is opaque within lo_content. Since layouts are sub-dividable, the offset and length together with the file's filehandle, the client ID, iomode, and layout type identify the layout.


3.3.18. layoutupdate4
3.3.18. layoutupdate4
   struct layoutupdate4 {
           layouttype4             lou_type;
           opaque                  lou_body<>;

The layoutupdate4 data type is used by the client to return updated layout information to the metadata server via the LAYOUTCOMMIT (Section 18.42) operation. This data type provides a channel to pass layout type specific information (in field lou_body) back to the metadata server. For example, for the block/volume layout type, this could include the list of reserved blocks that were written. The contents of the opaque lou_body argument are determined by the layout type. The NFSv4.1 file-based layout does not use this data type; if lou_type is LAYOUT4_NFSV4_1_FILES, the lou_body field MUST have a zero length.

クライアントは、layoutupdate4データ型を使用して、LAYOUTCOMMIT(セクション18.42)操作を介して、更新されたレイアウト情報をメタデータサーバーに返します。このデータ型は、レイアウト型固有の情報(フィールドlou_body)をメタデータサーバーに渡すためのチャネルを提供します。たとえば、ブロック/ボリュームレイアウトタイプの場合、これには、書き込まれた予約済みブロックのリストを含めることができます。不透明なlou_body引数の内容は、レイアウトタイプによって決まります。 NFSv4.1ファイルベースのレイアウトはこのデータ型を使用しません。 lou_typeがLAYOUT4_NFSV4_1_FILESの場合、lou_bodyフィールドの長さはゼロでなければなりません。

3.3.19. layouthint4
3.3.19. レイアウトヒント4
   struct layouthint4 {
           layouttype4             loh_type;
           opaque                  loh_body<>;

The layouthint4 data type is used by the client to pass in a hint about the type of layout it would like created for a particular file. It is the data type specified by the layout_hint attribute described in Section 5.12.4. The metadata server may ignore the hint or may selectively ignore fields within the hint. This hint should be provided at create time as part of the initial attributes within OPEN. The loh_body field is specific to the type of layout (loh_type). The NFSv4.1 file-based layout uses the nfsv4_1_file_layouthint4 data type as defined in Section 13.3.

クライアントは、layouthint4データ型を使用して、特定のファイルに対して作成するレイアウトのタイプに関するヒントを渡します。これは、5.12.4項で説明されているlayout_hint属性で指定されたデータ型です。メタデータサーバーはヒントを無視するか、ヒント内のフィールドを選択的に無視します。このヒントは、OPEN内の初期属性の一部として作成時に提供する必要があります。 loh_bodyフィールドは、レイアウトのタイプ(loh_type)に固有です。 NFSv4.1ファイルベースのレイアウトでは、セクション13.3で定義されているnfsv4_1_file_layouthint4データ型を使用します。

3.3.20. layoutiomode4
3.3.20. layoutiomode4
   enum layoutiomode4 {
           LAYOUTIOMODE4_READ      = 1,
           LAYOUTIOMODE4_RW        = 2,
           LAYOUTIOMODE4_ANY       = 3

The iomode specifies whether the client intends to just read or both read and write the data represented by the layout. While the LAYOUTIOMODE4_ANY iomode MUST NOT be used in the arguments to the LAYOUTGET operation, it MAY be used in the arguments to the LAYOUTRETURN and CB_LAYOUTRECALL operations. The LAYOUTIOMODE4_ANY iomode specifies that layouts pertaining to both LAYOUTIOMODE4_READ and LAYOUTIOMODE4_RW iomodes are being returned or recalled, respectively. The metadata server's use of the iomode may depend on the layout type being used. The storage devices MAY validate I/O accesses against the iomode and reject invalid accesses.

iomodeは、クライアントがレイアウトで表されるデータを読み取るだけか、読み取りと書き込みの両方を行うかを指定します。 LAYOUTIOMODE4_ANY iomodeは、LAYOUTGET操作の引数で使用してはなりませんが、LAYOUTRETURNおよびCB_LAYOUTRECALL操作の引数で使用できます。 LAYOUTIOMODE4_ANY iomodeは、LAYOUTIOMODE4_READとLAYOUTIOMODE4_RW iomodeの両方に関連するレイアウトがそれぞれ返されるか再呼び出しされることを指定します。メタデータサーバーによるiomodeの使用は、使用されているレイアウトタイプによって異なる場合があります。ストレージデバイスは、I / Oアクセスをiomodeに対して検証し、無効なアクセスを拒否する場合があります。

3.3.21. nfs_impl_id4
3.3.21. nfs_impl_id4
   struct nfs_impl_id4 {
           utf8str_cis   nii_domain;
           utf8str_cs    nii_name;
           nfstime4      nii_date;

This data type is used to identify client and server implementation details. The nii_domain field is the DNS domain name with which the implementor is associated. The nii_name field is the product name of the implementation and is completely free form. It is RECOMMENDED that the nii_name be used to distinguish machine architecture, machine platforms, revisions, versions, and patch levels. The nii_date field is the timestamp of when the software instance was published or built.

このデータ型は、クライアントとサーバーの実装の詳細を識別するために使用されます。 nii_domainフィールドは、実装者が関連付けられているDNSドメイン名です。 nii_nameフィールドは実装の製品名であり、完全に自由な形式です。マシンのアーキテクチャ、マシンのプラットフォーム、リビジョン、バージョン、パッチレベルを区別するためにnii_nameを使用することをお勧めします。 nii_dateフィールドは、ソフトウェアインスタンスが公開またはビルドされたときのタイムスタンプです。

3.3.22. threshold_item4
3.3.22. threshold_item4
   struct threshold_item4 {
           layouttype4     thi_layout_type;
           bitmap4         thi_hintset;
           opaque          thi_hintlist<>;

This data type contains a list of hints specific to a layout type for helping the client determine when it should send I/O directly through the metadata server versus the storage devices. The data type consists of the layout type (thi_layout_type), a bitmap (thi_hintset) describing the set of hints supported by the server (they may differ based on the layout type), and a list of hints (thi_hintlist) whose content is determined by the hintset bitmap. See the mdsthreshold attribute for more details.

このデータ型には、クライアントがメタデータサーバーとストレージデバイスのどちらを介してI / Oを直接送信する必要があるかをクライアントが判断するのに役立つ、レイアウトタイプに固有のヒントのリストが含まれています。データ型は、レイアウトタイプ(thi_layout_type)、サーバーがサポートするヒントのセットを記述するビットマップ(thi_hintset)(レイアウトタイプによって異なる場合があります)、および内容が次のように決定されるヒントのリスト(thi_hintlist)で構成されます。ヒントセットビットマップ。詳細については、mdsthreshold属性を参照してください。

The thi_hintset field is a bitmap of the following values:


   | name                    | # | Data    | Description               |
   |                         |   | Type    |                           |
   | threshold4_read_size    | 0 | length4 | If a file's length is     |
   |                         |   |         | less than the value of    |
   |                         |   |         | threshold4_read_size,     |
   |                         |   |         | then it is RECOMMENDED    |
   |                         |   |         | that the client read from |
   |                         |   |         | the file via the MDS and  |
   |                         |   |         | not a storage device.     |
   | threshold4_write_size   | 1 | length4 | If a file's length is     |
   |                         |   |         | less than the value of    |
   |                         |   |         | threshold4_write_size,    |
   |                         |   |         | then it is RECOMMENDED    |
   |                         |   |         | that the client write to  |
   |                         |   |         | the file via the MDS and  |
   |                         |   |         | not a storage device.     |
   | threshold4_read_iosize  | 2 | length4 | For read I/O sizes below  |
   |                         |   |         | this threshold, it is     |
   |                         |   |         | RECOMMENDED to read data  |
   |                         |   |         | through the MDS.          |
   | threshold4_write_iosize | 3 | length4 | For write I/O sizes below |
   |                         |   |         | this threshold, it is     |
   |                         |   |         | RECOMMENDED to write data |
   |                         |   |         | through the MDS.          |
3.3.23. mdsthreshold4
3.3.23. mdsthreshold4
   struct mdsthreshold4 {
           threshold_item4 mth_hints<>;

This data type holds an array of elements of data type threshold_item4, each of which is valid for a particular layout type. An array is necessary because a server can support multiple layout types for a single file.


4. Filehandles
4. ファイルハンドル

The filehandle in the NFS protocol is a per-server unique identifier for a file system object. The contents of the filehandle are opaque to the client. Therefore, the server is responsible for translating the filehandle to an internal representation of the file system object.


4.1. Obtaining the First Filehandle
4.1. 最初のファイルハンドルを取得する

The operations of the NFS protocol are defined in terms of one or more filehandles. Therefore, the client needs a filehandle to initiate communication with the server. With the NFSv3 protocol (RFC 1813 [31]), there exists an ancillary protocol to obtain this first filehandle. The MOUNT protocol, RPC program number 100005, provides the mechanism of translating a string-based file system pathname to a filehandle, which can then be used by the NFS protocols.

NFSプロトコルの操作は、1つ以上のファイルハンドルで定義されます。したがって、クライアントはサーバーとの通信を開始するためにファイルハンドルを必要とします。 NFSv3プロトコル(RFC 1813 [31])では、この最初のファイルハンドルを取得するための補助的なプロトコルが存在します。 MOUNTプロトコル、RPCプログラム番号100005は、文字列ベースのファイルシステムパス名をファイルハンドルに変換するメカニズムを提供します。これは、NFSプロトコルで使用できます。

The MOUNT protocol has deficiencies in the area of security and use via firewalls. This is one reason that the use of the public filehandle was introduced in RFC 2054 [42] and RFC 2055 [43]. With the use of the public filehandle in combination with the LOOKUP operation in the NFSv3 protocol, it has been demonstrated that the MOUNT protocol is unnecessary for viable interaction between NFS client and server.

MOUNTプロトコルには、セキュリティおよびファイアウォール経由の使用の分野での欠点があります。これは、パブリックファイルハンドルの使用がRFC 2054 [42]およびRFC 2055 [43]で導入された1つの理由です。 NFSv3プロトコルのLOOKUP操作と組み合わせてパブリックファイルハンドルを使用すると、NFSクライアントとサーバー間の実行可能な対話にはMOUNTプロトコルが不要であることが実証されています。

Therefore, the NFSv4.1 protocol will not use an ancillary protocol for translation from string-based pathnames to a filehandle. Two special filehandles will be used as starting points for the NFS client.

したがって、NFSv4.1プロトコルは、文字列ベースのパス名からファイルハンドルへの変換に補助プロトコルを使用しません。 NFSクライアントの開始点として、2つの特別なファイルハンドルが使用されます。

4.1.1. Root Filehandle
4.1.1. ルートファイルハンドル

The first of the special filehandles is the ROOT filehandle. The ROOT filehandle is the "conceptual" root of the file system namespace at the NFS server. The client uses or starts with the ROOT filehandle by employing the PUTROOTFH operation. The PUTROOTFH operation instructs the server to set the "current" filehandle to the ROOT of the server's file tree. Once this PUTROOTFH operation is used, the client can then traverse the entirety of the server's file tree with the LOOKUP operation. A complete discussion of the server namespace is in Section 7.

最初の特別なファイルハンドルはROOTファイルハンドルです。 ROOTファイルハンドルは、NFSサーバーでのファイルシステム名前空間の「概念的な」ルートです。クライアントは、PUTROOTFH操作を使用して、ROOTファイルハンドルを使用するか、ROOTファイルハンドルで開始します。 PUTROOTFH操作は、「現在の」ファイルハンドルをサーバーのファイルツリーのROOTに設定するようサーバーに指示します。このPUTROOTFH操作を使用すると、クライアントはLOOKUP操作を使用してサーバーのファイルツリー全体をトラバースできます。サーバーの名前空間の詳細については、セクション7を参照してください。

4.1.2. Public Filehandle
4.1.2. 公開ファイルハンドル

The second special filehandle is the PUBLIC filehandle. Unlike the ROOT filehandle, the PUBLIC filehandle may be bound or represent an arbitrary file system object at the server. The server is responsible for this binding. It may be that the PUBLIC filehandle and the ROOT filehandle refer to the same file system object. However, it is up to the administrative software at the server and the policies of the server administrator to define the binding of the PUBLIC filehandle and server file system object. The client may not make any assumptions about this binding. The client uses the PUBLIC filehandle via the PUTPUBFH operation.

2番目の特別なファイルハンドルはPUBLICファイルハンドルです。 ROOTファイルハンドルとは異なり、PUBLICファイルハンドルはバインドされるか、サーバーで任意のファイルシステムオブジェクトを表す場合があります。サーバーはこのバインディングを担当します。 PUBLICファイルハンドルとROOTファイルハンドルが同じファイルシステムオブジェクトを参照している可能性があります。ただし、PUBLICファイルハンドルとサーバーファイルシステムオブジェクトのバインディングを定義するのは、サーバーの管理ソフトウェアとサーバー管理者のポリシー次第です。クライアントは、このバインディングについて何も想定していません。クライアントは、PUTPUBFH操作を介してPUBLICファイルハンドルを使用します。

4.2. Filehandle Types
4.2. ファイルハンドルのタイプ

In the NFSv3 protocol, there was one type of filehandle with a single set of semantics. This type of filehandle is termed "persistent" in NFSv4.1. The semantics of a persistent filehandle remain the same as before. A new type of filehandle introduced in NFSv4.1 is the "volatile" filehandle, which attempts to accommodate certain server environments.

NFSv3プロトコルでは、単一のセマンティクスのセットを持つ1種類のファイルハンドルがありました。このタイプのファイルハンドルは、NFSv4.1では「永続的」と呼ばれています。永続ファイルハンドルのセマンティクスは以前と同じままです。 NFSv4.1で導入された新しいタイプのファイルハンドルは、「揮発性」ファイルハンドルで、特定のサーバー環境に対応しようとします。

The volatile filehandle type was introduced to address server functionality or implementation issues that make correct implementation of a persistent filehandle infeasible. Some server environments do not provide a file-system-level invariant that can be used to construct a persistent filehandle. The underlying server file system may not provide the invariant or the server's file system programming interfaces may not provide access to the needed invariant. Volatile filehandles may ease the implementation of server functionality such as hierarchical storage management or file system reorganization or migration. However, the volatile filehandle increases the implementation burden for the client.


Since the client will need to handle persistent and volatile filehandles differently, a file attribute is defined that may be used by the client to determine the filehandle types being returned by the server.


4.2.1. General Properties of a Filehandle
4.2.1. ファイルハンドルの一般的なプロパティ

The filehandle contains all the information the server needs to distinguish an individual file. To the client, the filehandle is opaque. The client stores filehandles for use in a later request and can compare two filehandles from the same server for equality by doing a byte-by-byte comparison. However, the client MUST NOT otherwise interpret the contents of filehandles. If two filehandles from the same server are equal, they MUST refer to the same file. Servers SHOULD try to maintain a one-to-one correspondence between filehandles and files, but this is not required. Clients MUST use filehandle comparisons only to improve performance, not for correct behavior. All clients need to be prepared for situations in which it cannot be determined whether two filehandles denote the same object and in such cases, avoid making invalid assumptions that might cause incorrect behavior. Further discussion of filehandle and attribute comparison in the context of data caching is presented in Section 10.3.4.

ファイルハンドルには、サーバーが個々のファイルを区別するために必要なすべての情報が含まれています。クライアントにとって、ファイルハンドルは不透明です。クライアントは、後の要求で使用するためにファイルハンドルを格納し、バイトごとの比較を行うことにより、同じサーバーからの2つのファイルハンドルが等しいかどうかを比較できます。ただし、クライアントはファイルハンドルの内容を別の方法で解釈してはなりません(MUST NOT)。同じサーバーからの2つのファイルハンドルが等しい場合、それらは同じファイルを参照する必要があります。サーバーは、ファイルハンドルとファイル間の1対1の対応を維持するように努めるべきですが、これは必須ではありません。クライアントは、正しい動作ではなく、パフォーマンスを向上させるためにのみファイルハンドル比較を使用する必要があります。すべてのクライアントは、2つのファイルハンドルが同じオブジェクトを示しているかどうかを判断できない状況に備える必要があります。そのような場合は、不正な動作を引き起こす可能性のある無効な仮定を行わないでください。データキャッシュのコンテキストでのファイルハンドルと属性比較の詳細については、セクション10.3.4で説明します。

As an example, in the case that two different pathnames when traversed at the server terminate at the same file system object, the server SHOULD return the same filehandle for each path. This can occur if a hard link (see [Section 3.191 of Chapter 3 of Base Definitions of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version (, ISBN 1931624232"">6]) is used to create two file names that refer to the same underlying file object and associated data. For example, if paths /a/b/c and /a/d/c refer to the same file, the server SHOULD return the same filehandle for both pathnames' traversals.

例として、サーバーでトラバースしたときに2つの異なるパス名が同じファイルシステムオブジェクトで終了する場合、サーバーは各パスに対して同じファイルハンドルを返す必要があります(SHOULD)。これは、ハードリンク([Open Group Base Specifications Issue 6 IEEE Std 1003.1、2004 Edition、HTML Version(、ISBN 1931624232 ""> 6]の基本定義の第3章のセクション3.191を参照)の場合に発生する可能性があります。 )を使用して、同じ基礎となるファイルオブジェクトと関連データを参照する2つのファイル名を作成します。たとえば、パス/ a / b / cと/ a / d / cが同じファイルを参照している場合、サーバーは両方のパス名のトラバーサルに対して同じファイルハンドルを返す必要があります(SHOULD)。

4.2.2. Persistent Filehandle
4.2.2. 永続的なファイルハンドル

A persistent filehandle is defined as having a fixed value for the lifetime of the file system object to which it refers. Once the server creates the filehandle for a file system object, the server MUST accept the same filehandle for the object for the lifetime of the object. If the server restarts, the NFS server MUST honor the same filehandle value as it did in the server's previous instantiation. Similarly, if the file system is migrated, the new NFS server MUST honor the same filehandle as the old NFS server.


The persistent filehandle will be become stale or invalid when the file system object is removed. When the server is presented with a persistent filehandle that refers to a deleted object, it MUST return an error of NFS4ERR_STALE. A filehandle may become stale when the file system containing the object is no longer available. The file system may become unavailable if it exists on removable media and the media is no longer available at the server or the file system in whole has been destroyed or the file system has simply been removed from the server's namespace (i.e., unmounted in a UNIX environment).


4.2.3. Volatile Filehandle
4.2.3. 揮発性ファイルハンドル

A volatile filehandle does not share the same longevity characteristics of a persistent filehandle. The server may determine that a volatile filehandle is no longer valid at many different points in time. If the server can definitively determine that a volatile filehandle refers to an object that has been removed, the server should return NFS4ERR_STALE to the client (as is the case for persistent filehandles). In all other cases where the server determines that a volatile filehandle can no longer be used, it should return an error of NFS4ERR_FHEXPIRED.


The REQUIRED attribute "fh_expire_type" is used by the client to determine what type of filehandle the server is providing for a particular file system. This attribute is a bitmask with the following values: FH4_PERSISTENT The value of FH4_PERSISTENT is used to indicate a persistent filehandle, which is valid until the object is removed from the file system. The server will not return NFS4ERR_FHEXPIRED for this filehandle. FH4_PERSISTENT is defined as a value in which none of the bits specified below are set.

必須属性「fh_expire_type」は、サーバーが特定のファイルシステムに提供するファイルハンドルのタイプを決定するためにクライアントによって使用されます。この属性は、次の値を持つビットマスクです。FH4_PERSISTENT FH4_PERSISTENTの値は、オブジェクトがファイルシステムから削除されるまで有効な永続的なファイルハンドルを示すために使用されます。サーバーは、このファイルハンドルに対してNFS4ERR_FHEXPIREDを返しません。 FH4_PERSISTENTは、以下に指定されたビットが設定されていない値として定義されます。

FH4_VOLATILE_ANY The filehandle may expire at any time, except as specifically excluded (i.e., FH4_NO_EXPIRE_WITH_OPEN).


FH4_NOEXPIRE_WITH_OPEN May only be set when FH4_VOLATILE_ANY is set. If this bit is set, then the meaning of FH4_VOLATILE_ANY is qualified to exclude any expiration of the filehandle when it is open.

FH4_NOEXPIRE_WITH_OPEN FH4_VOLATILE_ANYが設定されている場合にのみ設定できます。このビットが設定されている場合、FH4_VOLATILE_ANYの意味は、ファイルハンドルが開いているときにファイルハンドルの有効期限を除外するように修飾されます。

FH4_VOL_MIGRATION The filehandle will expire as a result of a file system transition (migration or replication), in those cases in which the continuity of filehandle use is not specified by handle class information within the fs_locations_info attribute. When this bit is set, clients without access to fs_locations_info information should assume that filehandles will expire on file system transitions.

FH4_VOL_MIGRATION fs_locations_info属性内のハンドルクラス情報によってファイルハンドルの使用の継続性が指定されていない場合、ファイルハンドルはファイルシステムの移行(移行またはレプリケーション)の結果として期限切れになります。このビットが設定されている場合、fs_locations_info情報にアクセスできないクライアントは、ファイルシステムの移行時にファイルハンドルが期限切れになると想定する必要があります。

FH4_VOL_RENAME The filehandle will expire during rename. This includes a rename by the requesting client or a rename by any other client. If FH4_VOL_ANY is set, FH4_VOL_RENAME is redundant.

FH4_VOL_RENAMEファイルハンドルは名前変更中に期限切れになります。これには、要求元クライアントによる名前変更、または他のクライアントによる名前変更が含まれます。 FH4_VOL_ANYが設定されている場合、FH4_VOL_RENAMEは冗長です。

Servers that provide volatile filehandles that can expire while open require special care as regards handling of RENAMEs and REMOVEs. This situation can arise if FH4_VOL_MIGRATION or FH4_VOL_RENAME is set, if FH4_VOLATILE_ANY is set and FH4_NOEXPIRE_WITH_OPEN is not set, or if a non-read-only file system has a transition target in a different handle class. In these cases, the server should deny a RENAME or REMOVE that would affect an OPEN file of any of the components leading to the OPEN file. In addition, the server should deny all RENAME or REMOVE requests during the grace period, in order to make sure that reclaims of files where filehandles may have expired do not do a reclaim for the wrong file.


Volatile filehandles are especially suitable for implementation of the pseudo file systems used to bridge exports. See Section 7.5 for a discussion of this.


4.3. One Method of Constructing a Volatile Filehandle
4.3. 揮発性ファイルハンドルを構築する1つの方法

A volatile filehandle, while opaque to the client, could contain:


[volatile bit = 1 | server boot time | slot | generation number] o slot is an index in the server volatile filehandle table

[揮発性ビット= 1 |サーバーの起動時間|スロット|世代番号] oスロットは、サーバーの揮発性ファイルハンドルテーブルのインデックスです。

o generation number is the generation number for the table entry/ slot

o 世代番号は、テーブルエントリ/スロットの世代番号です。

When the client presents a volatile filehandle, the server makes the following checks, which assume that the check for the volatile bit has passed. If the server boot time is less than the current server boot time, return NFS4ERR_FHEXPIRED. If slot is out of range, return NFS4ERR_BADHANDLE. If the generation number does not match, return NFS4ERR_FHEXPIRED.


When the server restarts, the table is gone (it is volatile).


If the volatile bit is 0, then it is a persistent filehandle with a different structure following it.


4.4. Client Recovery from Filehandle Expiration
4.4. ファイルハンドルの有効期限からのクライアントの回復

If possible, the client SHOULD recover from the receipt of an NFS4ERR_FHEXPIRED error. The client must take on additional responsibility so that it may prepare itself to recover from the expiration of a volatile filehandle. If the server returns persistent filehandles, the client does not need these additional steps.


For volatile filehandles, most commonly the client will need to store the component names leading up to and including the file system object in question. With these names, the client should be able to recover by finding a filehandle in the namespace that is still available or by starting at the root of the server's file system namespace.


If the expired filehandle refers to an object that has been removed from the file system, obviously the client will not be able to recover from the expired filehandle.


It is also possible that the expired filehandle refers to a file that has been renamed. If the file was renamed by another client, again it is possible that the original client will not be able to recover. However, in the case that the client itself is renaming the file and the file is open, it is possible that the client may be able to recover. The client can determine the new pathname based on the processing of the rename request. The client can then regenerate the new filehandle based on the new pathname. The client could also use the COMPOUND procedure to construct a series of operations like:




Note that the COMPOUND procedure does not provide atomicity. This example only reduces the overhead of recovering from an expired filehandle.


5. File Attributes
5. ファイル属性

To meet the requirements of extensibility and increased interoperability with non-UNIX platforms, attributes need to be handled in a flexible manner. The NFSv3 fattr3 structure contains a fixed list of attributes that not all clients and servers are able to support or care about. The fattr3 structure cannot be extended as new needs arise and it provides no way to indicate non-support. With the NFSv4.1 protocol, the client is able to query what attributes the server supports and construct requests with only those supported attributes (or a subset thereof).

UNIX以外のプラットフォームとの拡張性と相互運用性の要件を満たすには、属性を柔軟に処理する必要があります。 NFSv3 fattr3構造には、すべてのクライアントとサーバーがサポートまたは処理できる属性の固定リストが含まれています。新しい必要性が生じた場合、fattr3構造は拡張できず、サポートされていないことを示す方法はありません。 NFSv4.1プロトコルを使用すると、クライアントはサーバーがサポートする属性を照会し、サポートされている属性(またはそのサブセット)のみを使用して要求を作成できます。

To this end, attributes are divided into three groups: REQUIRED, RECOMMENDED, and named. Both REQUIRED and RECOMMENDED attributes are supported in the NFSv4.1 protocol by a specific and well-defined encoding and are identified by number. They are requested by setting a bit in the bit vector sent in the GETATTR request; the server response includes a bit vector to list what attributes were returned in the response. New REQUIRED or RECOMMENDED attributes may be added to the NFSv4 protocol as part of a new minor version by publishing a Standards Track RFC that allocates a new attribute number value and defines the encoding for the attribute. See Section 2.7 for further discussion.

このために、属性はREQUIRED、RECOMMENDED、およびnamedという3つのグループに分けられます。 REQUIRED属性とRECOMMENDED属性の両方が、NFSv4.1プロトコルで特定の明確に定義されたエンコーディングによってサポートされ、番号で識別されます。これらは、GETATTR要求で送信されたビットベクトルにビットを設定することによって要求されます。サーバー応答には、応答で返された属性をリストするビットベクトルが含まれています。新しい属性番号の値を割り当て、属性のエンコーディングを定義するStandards Track RFCを公開することにより、新しいREQUIREDまたはRECOMMENDED属性を新しいマイナーバージョンの一部としてNFSv4プロトコルに追加できます。詳細については、セクション2.7を参照してください。

Named attributes are accessed by the new OPENATTR operation, which accesses a hidden directory of attributes associated with a file system object. OPENATTR takes a filehandle for the object and returns the filehandle for the attribute hierarchy. The filehandle for the named attributes is a directory object accessible by LOOKUP or READDIR and contains files whose names represent the named attributes and whose data bytes are the value of the attribute. For example:

名前付き属性は、ファイルシステムオブジェクトに関連付けられた属性の非表示ディレクトリにアクセスする新しいOPENATTR操作によってアクセスされます。 OPENATTRはオブジェクトのファイルハンドルを受け取り、属性階層のファイルハンドルを返します。名前付き属性のファイルハンドルは、LOOKUPまたはREADDIRによってアクセス可能なディレクトリオブジェクトであり、名前が名前付き属性を表し、データバイトが属性の値であるファイルが含まれています。例えば:

        | LOOKUP   | "foo"     | ; look up file                  |
        | GETATTR  | attrbits  |                                 |
        | OPENATTR |           | ; access foo's named attributes |
        | LOOKUP   | "x11icon" | ; look up specific attribute    |
        | READ     | 0,4096    | ; read stream of bytes          |

Named attributes are intended for data needed by applications rather than by an NFS client implementation. NFS implementors are strongly encouraged to define their new attributes as RECOMMENDED attributes by bringing them to the IETF Standards Track process.

名前付き属性は、NFSクライアント実装ではなく、アプリケーションが必要とするデータを対象としています。 NFSの実装者は、IETF標準トラックプロセスにそれらを持ち込むことにより、推奨属性として新しい属性を定義することを強くお勧めします。

The set of attributes that are classified as REQUIRED is deliberately small since servers need to do whatever it takes to support them. A server should support as many of the RECOMMENDED attributes as possible but, by their definition, the server is not required to support all of them. Attributes are deemed REQUIRED if the data is both needed by a large number of clients and is not otherwise reasonably computable by the client when support is not provided on the server.


Note that the hidden directory returned by OPENATTR is a convenience for protocol processing. The client should not make any assumptions about the server's implementation of named attributes and whether or not the underlying file system at the server has a named attribute directory. Therefore, operations such as SETATTR and GETATTR on the named attribute directory are undefined.


5.1. REQUIRED Attributes
5.1. 必須の属性

These MUST be supported by every NFSv4.1 client and server in order to ensure a minimum level of interoperability. The server MUST store and return these attributes, and the client MUST be able to function with an attribute set limited to these attributes. With just the REQUIRED attributes some client functionality may be impaired or limited in some ways. A client may ask for any of these attributes to be returned by setting a bit in the GETATTR request, and the server MUST return their value.

最小レベルの相互運用性を確保するために、これらはすべてのNFSv4.1クライアントとサーバーでサポートされる必要があります。サーバーはこれらの属性を格納して返す必要があり、クライアントはこれらの属性に限定された属性セットで機能できる必要があります。 REQUIRED属性だけでは、一部のクライアント機能が何らかの方法で損なわれたり制限されたりする場合があります。クライアントは、GETATTR要求にビットを設定することにより、これらの属性のいずれかが返されるように要求する場合があり、サーバーはそれらの属性を返す必要があります。

5.2. RECOMMENDED Attributes
5.2. 推奨属性

These attributes are understood well enough to warrant support in the NFSv4.1 protocol. However, they may not be supported on all clients and servers. A client may ask for any of these attributes to be returned by setting a bit in the GETATTR request but must handle the case where the server does not return them. A client MAY ask for the set of attributes the server supports and SHOULD NOT request attributes the server does not support. A server should be tolerant of requests for unsupported attributes and simply not return them rather than considering the request an error. It is expected that servers will support all attributes they comfortably can and only fail to support attributes that are difficult to support in their operating environments. A server should provide attributes whenever they don't have to "tell lies" to the client. For example, a file modification time should be either an accurate time or should not be supported by the server. At times this will be difficult for clients, but a client is better positioned to decide whether and how to fabricate or construct an attribute or whether to do without the attribute.

これらの属性は、NFSv4.1プロトコルでのサポートを保証するのに十分に理解されています。ただし、すべてのクライアントとサーバーでサポートされているとは限りません。クライアントは、GETATTR要求にビットを設定することにより、これらの属性のいずれかが返されるように要求できますが、サーバーがそれらの属性を返さない場合を処理する必要があります。クライアントは、サーバーがサポートする属性のセットを要求する場合があり、サーバーがサポートしない属性を要求してはなりません(SHOULD NOT)。サーバーは、サポートされていない属性の要求に対して寛容であり、要求をエラーと見なすのではなく、単にそれらを返さないようにする必要があります。サーバーは快適に使用できるすべての属性をサポートし、オペレーティング環境でサポートするのが難しい属性のみをサポートすることが期待されます。サーバーは、クライアントに「嘘をつく」必要がない場合はいつでも属性を提供する必要があります。たとえば、ファイルの変更時刻は正確な時刻であるか、サーバーでサポートされていない必要があります。これはクライアントにとって困難な場合がありますが、クライアントは、属性を作成または構築するかどうか、どのように作成するか、または属性なしで実行するかどうかを決定するのに適しています。

5.3. Named Attributes
5.3. 名前付き属性

These attributes are not supported by direct encoding in the NFSv4 protocol but are accessed by string names rather than numbers and correspond to an uninterpreted stream of bytes that are stored with the file system object. The namespace for these attributes may be accessed by using the OPENATTR operation. The OPENATTR operation returns a filehandle for a virtual "named attribute directory", and further perusal and modification of the namespace may be done using operations that work on more typical directories. In particular, READDIR may be used to get a list of such named attributes, and LOOKUP and OPEN may select a particular attribute. Creation of a new named attribute may be the result of an OPEN specifying file creation.

これらの属性は、NFSv4プロトコルの直接エンコーディングではサポートされていませんが、数値ではなく文字列名でアクセスされ、ファイルシステムオブジェクトと共に格納される解釈されないバイトストリームに対応しています。これらの属性の名前空間には、OPENATTR操作を使用してアクセスできます。 OPENATTR操作は、仮想の「名前付き属性ディレクトリ」のファイルハンドルを返します。さらに一般的なディレクトリで機能する操作を使用して、名前空間の詳細を調べたり変更したりできます。特に、READDIRはそのような名前付き属性のリストを取得するために使用でき、LOOKUPとOPENは特定の属性を選択できます。新しい名前付き属性の作成は、OPENを指定したファイル作成の結果である可能性があります。

Once an OPEN is done, named attributes may be examined and changed by normal READ and WRITE operations using the filehandles and stateids returned by OPEN.


Named attributes and the named attribute directory may have their own (non-named) attributes. Each of these objects MUST have all of the REQUIRED attributes and may have additional RECOMMENDED attributes. However, the set of attributes for named attributes and the named attribute directory need not be, and typically will not be, as large as that for other objects in that file system.


Named attributes and the named attribute directory might be the target of delegations (in the case of the named attribute directory, these will be directory delegations). However, since granting delegations is at the server's discretion, a server need not support delegations on named attributes or the named attribute directory.


It is RECOMMENDED that servers support arbitrary named attributes. A client should not depend on the ability to store any named attributes in the server's file system. If a server does support named attributes, a client that is also able to handle them should be able to copy a file's data and metadata with complete transparency from one location to another; this would imply that names allowed for regular directory entries are valid for named attribute names as well.


In NFSv4.1, the structure of named attribute directories is restricted in a number of ways, in order to prevent the development of non-interoperable implementations in which some servers support a fully general hierarchical directory structure for named attributes while others support a limited but adequate structure for named attributes. In such an environment, clients or applications might come to depend on non-portable extensions. The restrictions are:


o CREATE is not allowed in a named attribute directory. Thus, such objects as symbolic links and special files are not allowed to be named attributes. Further, directories may not be created in a named attribute directory, so no hierarchical structure of named attributes for a single object is allowed.

o 名前付き属性ディレクトリではCREATEは許可されていません。したがって、シンボリックリンクや特殊ファイルなどのオブジェクトを名前付き属性にすることはできません。さらに、名前付き属性ディレクトリにディレクトリを作成できないため、単一オブジェクトの名前付き属性の階層構造は許可されません。

o If OPENATTR is done on a named attribute directory or on a named attribute, the server MUST return NFS4ERR_WRONG_TYPE.

o OPENATTRが名前付き属性ディレクトリまたは名前付き属性で行われる場合、サーバーはNFS4ERR_WRONG_TYPEを返さなければなりません(MUST)。

o Doing a RENAME of a named attribute to a different named attribute directory or to an ordinary (i.e., non-named-attribute) directory is not allowed.

o 名前付き属性のRENAMEを別の名前付き属性ディレクトリまたは通常の(つまり、非名前付き属性)ディレクトリに実行することはできません。

o Creating hard links between named attribute directories or between named attribute directories and ordinary directories is not allowed.

o 名前付き属性ディレクトリ間、または名前付き属性ディレクトリと通常のディレクトリ間にハードリンクを作成することはできません。

Names of attributes will not be controlled by this document or other IETF Standards Track documents. See Section 22.1 for further discussion.


5.4. Classification of Attributes
5.4. 属性の分類

Each of the REQUIRED and RECOMMENDED attributes can be classified in one of three categories: per server (i.e., the value of the attribute will be the same for all file objects that share the same server owner; see Section 2.5 for a definition of server owner), per file system (i.e., the value of the attribute will be the same for some or all file objects that share the same fsid attribute (Section and server owner), or per file system object. Note that it is possible that some per file system attributes may vary within the file system, depending on the value of the "homogeneous" (Section attribute. Note that the attributes time_access_set and time_modify_set are not listed in this section because they are write-only attributes corresponding to time_access and time_modify, and are used in a special instance of SETATTR.

REQUIRED属性とRECOMMENDED属性は、次の3つのカテゴリのいずれかに分類できます。サーバーごと(つまり、属性の値は、同じサーバー所有者を共有するすべてのファイルオブジェクトで同じです。サーバー所有者の定義については、セクション2.5を参照してください) )、ファイルシステムごと(つまり、属性の値は、同じfsid属性(セクション5.8.1.9)とサーバー所有者を共有する一部またはすべてのファイルオブジェクトで同じ)、またはファイルシステムオブジェクトごとです。 「同種」(節)属性の値に応じて、ファイルシステムごとの属性の一部がファイルシステム内で異なる可能性があることに注意してください。属性time_access_setおよびtime_modify_setは、time_accessおよびtime_modifyに対応する書き込み専用属性であり、SETATTRの特別なインスタンスで使用されるため、このセクションにはリストされていません。

o The per-server attribute is:

o サーバーごとの属性は次のとおりです。



o The per-file system attributes are:

o ファイルごとのシステム属性は次のとおりです。

supported_attrs, suppattr_exclcreat, fh_expire_type, link_support, symlink_support, unique_handles, aclsupport, cansettime, case_insensitive, case_preserving, chown_restricted, files_avail, files_free, files_total, fs_locations, homogeneous, maxfilesize, maxname, maxread, maxwrite, no_trunc, space_avail, space_free, space_total, time_delta, change_policy, fs_status, fs_layout_type, fs_locations_info, fs_charset_cap

supported_attrs、suppattr_exclcreat、fh_expire_type、link_support、symlink_support、unique_handles、aclsupport、cansettime、case_insensitive、case_preserving、chown_restricted、files_avail、files_free、files_total、fs_locations、smooth_space_free_space_free_space_total_space_free_space_total_space_total_space_free_space_total_avail_max_avail_space change_policy、fs_status、fs_layout_type、fs_locations_info、fs_charset_cap

o The per-file system object attributes are:

o ファイルシステムオブジェクトごとの属性は次のとおりです。

type, change, size, named_attr, fsid, rdattr_error, filehandle, acl, archive, fileid, hidden, maxlink, mimetype, mode, numlinks, owner, owner_group, rawdev, space_used, system, time_access, time_backup, time_create, time_metadata, time_modify, mounted_on_fileid, dir_notif_delay, dirent_notif_delay, dacl, sacl, layout_type, layout_hint, layout_blksize, layout_alignment, mdsthreshold, retention_get, retention_set, retentevt_get, retentevt_set, retention_hold, mode_set_masked

タイプ、変更、サイズ、named_attr、fsid、rdattr_error、filehandle、acl、archive、fileid、hidden、maxlink、mimetype、mode、numlinks、owner、owner_group、rawdev、space_used、system、time_access、time_backup、time_create、time_metadata、time_modify、 Mounted_on_fileid、dir_notif_delay、dirent_notif_delay、dacl、sacl、layout_type、layout_hint、layout_blksize、layout_alignment、mdsthreshold、retention_get、retention_set、retentevt_get、retentevt_set、retention_hold、mode_set_masked

For quota_avail_hard, quota_avail_soft, and quota_used, see their definitions below for the appropriate classification.


5.5. Set-Only and Get-Only Attributes
5.5. Set-OnlyおよびGet-Only属性

Some REQUIRED and RECOMMENDED attributes are set-only; i.e., they can be set via SETATTR but not retrieved via GETATTR. Similarly, some REQUIRED and RECOMMENDED attributes are get-only; i.e., they can be retrieved via GETATTR but not set via SETATTR. If a client attempts to set a get-only attribute or get a set-only attributes, the server MUST return NFS4ERR_INVAL.


5.6. REQUIRED Attributes - List and Definition References
5.6. 必須属性-リストと定義の参照

The list of REQUIRED attributes appears in Table 2. The meaning of the columns of the table are:


o Name: The name of the attribute.

o 名前:属性の名前。

o Id: The number assigned to the attribute. In the event of conflicts between the assigned number and [13], the latter is likely authoritative, but should be resolved with Errata to this document and/or [13]. See [44] for the Errata process.

o Id:属性に割り当てられた番号。割り当てられた番号と[13]の間に矛盾がある場合、後者は信頼できると思われますが、このドキュメントまたは[13]へのエラッタで解決する必要があります。 Errataプロセスについては[44]を参照してください。

o Data Type: The XDR data type of the attribute.

o データ型:属性のXDRデータ型。

o Acc: Access allowed to the attribute. R means read-only (GETATTR may retrieve, SETATTR may not set). W means write-only (SETATTR may set, GETATTR may not retrieve). R W means read/write (GETATTR may retrieve, SETATTR may set).

o Acc:属性へのアクセスが許可されています。 Rは読み取り専用を意味します(GETATTRは取得、SETATTRは設定されない場合があります)。 Wは書き込み専用を意味します(SETATTRが設定され、GETATTRが取得されない場合があります)。 R Wは読み取り/書き込みを意味します(GETATTRは取得、SETATTRは設定可能)。

o Defined in: The section of this specification that describes the attribute.

o 定義先:属性を説明するこの仕様のセクション。

     | Name               | Id | Data Type  | Acc | Defined in:      |
     | supported_attrs    | 0  | bitmap4    | R   | Section  |
     | type               | 1  | nfs_ftype4 | R   | Section  |
     | fh_expire_type     | 2  | uint32_t   | R   | Section  |
     | change             | 3  | uint64_t   | R   | Section  |
     | size               | 4  | uint64_t   | R W | Section  |
     | link_support       | 5  | bool       | R   | Section  |
     | symlink_support    | 6  | bool       | R   | Section  |
     | named_attr         | 7  | bool       | R   | Section  |
     | fsid               | 8  | fsid4      | R   | Section  |
     | unique_handles     | 9  | bool       | R   | Section |
     | lease_time         | 10 | nfs_lease4 | R   | Section |
     | rdattr_error       | 11 | enum       | R   | Section |
     | filehandle         | 19 | nfs_fh4    | R   | Section |
     | suppattr_exclcreat | 75 | bitmap4    | R   | Section |

Table 2


5.7. RECOMMENDED Attributes - List and Definition References
5.7. 推奨属性-リストおよび定義の参照

The RECOMMENDED attributes are defined in Table 3. The meanings of the column headers are the same as Table 2; see Section 5.6 for the meanings.


   | Name               | Id | Data Type      | Acc | Defined in:      |
   | acl                | 12 | nfsace4<>      | R W | Section 6.2.1    |
   | aclsupport         | 13 | uint32_t       | R   | Section  |
   | archive            | 14 | bool           | R W | Section  |
   | cansettime         | 15 | bool           | R   | Section  |
   | case_insensitive   | 16 | bool           | R   | Section  |
   | case_preserving    | 17 | bool           | R   | Section  |
   | change_policy      | 60 | chg_policy4    | R   | Section  |
   | chown_restricted   | 18 | bool           | R   | Section  |
   | dacl               | 58 | nfsacl41       | R W | Section 6.2.2    |
   | dir_notif_delay    | 56 | nfstime4       | R   | Section 5.11.1   |
   | dirent_notif_delay | 57 | nfstime4       | R   | Section 5.11.2   |
   | fileid             | 20 | uint64_t       | R   | Section  |
   | files_avail        | 21 | uint64_t       | R   | Section  |
   | files_free         | 22 | uint64_t       | R   | Section  |
   | files_total        | 23 | uint64_t       | R   | Section |
   | fs_charset_cap     | 76 | uint32_t       | R   | Section |
   | fs_layout_type     | 62 | layouttype4<>  | R   | Section 5.12.1   |
   | fs_locations       | 24 | fs_locations   | R   | Section |
   | fs_locations_info  | 67 | *              | R   | Section |
   | fs_status          | 61 | fs4_status     | R   | Section |
   | hidden             | 25 | bool           | R W | Section |
   | homogeneous        | 26 | bool           | R   | Section |
   | layout_alignment   | 66 | uint32_t       | R   | Section 5.12.2   |
   | layout_blksize     | 65 | uint32_t       | R   | Section 5.12.3   |
   | layout_hint        | 63 | layouthint4    |   W | Section 5.12.4   |
   | layout_type        | 64 | layouttype4<>  | R   | Section 5.12.5   |
   | maxfilesize        | 27 | uint64_t       | R   | Section |
   | maxlink            | 28 | uint32_t       | R   | Section |
   | maxname            | 29 | uint32_t       | R   | Section |
   | maxread            | 30 | uint64_t       | R   | Section |
   | maxwrite           | 31 | uint64_t       | R   | Section |
   | mdsthreshold       | 68 | mdsthreshold4  | R   | Section 5.12.6   |
   | mimetype           | 32 | utf8str_cs     | R W | Section |
   | mode               | 33 | mode4          | R W | Section 6.2.4    |
   | mode_set_masked    | 74 | mode_masked4   |   W | Section 6.2.5    |
   | mounted_on_fileid  | 55 | uint64_t       | R   | Section |
   | no_trunc           | 34 | bool           | R   | Section |
   | numlinks           | 35 | uint32_t       | R   | Section |
   | owner              | 36 | utf8str_mixed  | R W | Section |
   | owner_group        | 37 | utf8str_mixed  | R W | Section |
   | quota_avail_hard   | 38 | uint64_t       | R   | Section |
   | quota_avail_soft   | 39 | uint64_t       | R   | Section |
   | quota_used         | 40 | uint64_t       | R   | Section |
   | rawdev             | 41 | specdata4      | R   | Section |
   | retentevt_get      | 71 | retention_get4 | R   | Section 5.13.3   |
   | retentevt_set      | 72 | retention_set4 |   W | Section 5.13.4   |
   | retention_get      | 69 | retention_get4 | R   | Section 5.13.1   |
   | retention_hold     | 73 | uint64_t       | R W | Section 5.13.5   |
   | retention_set      | 70 | retention_set4 |   W | Section 5.13.2   |
   | sacl               | 59 | nfsacl41       | R W | Section 6.2.3    |
   | space_avail        | 42 | uint64_t       | R   | Section |
   | space_free         | 43 | uint64_t       | R   | Section |
   | space_total        | 44 | uint64_t       | R   | Section |
   | space_used         | 45 | uint64_t       | R   | Section |
   | system             | 46 | bool           | R W | Section |
   | time_access        | 47 | nfstime4       | R   | Section |
   | time_access_set    | 48 | settime4       |   W | Section |
   | time_backup        | 49 | nfstime4       | R W | Section |
   | time_create        | 50 | nfstime4       | R W | Section |
   | time_delta         | 51 | nfstime4       | R   | Section |
   | time_metadata      | 52 | nfstime4       | R   | Section |
   | time_modify        | 53 | nfstime4       | R   | Section |
   | time_modify_set    | 54 | settime4       |   W | Section |

Table 3


* fs_locations_info4

* fs_locations_info4

5.8. Attribute Definitions
5.8. 属性の定義
5.8.1. Definitions of REQUIRED Attributes
5.8.1. 必須属性の定義 Attribute 0: supported_attrs 属性0:supported_attrs

The bit vector that would retrieve all REQUIRED and RECOMMENDED attributes that are supported for this object. The scope of this attribute applies to all objects with a matching fsid.

このオブジェクトでサポートされているすべてのREQUIREDおよびRECOMMENDED属性を取得するビットベクトル。この属性のスコープは、一致するfsidを持つすべてのオブジェクトに適用されます。 Attribute 1: type 属性1:タイプ

Designates the type of an object in terms of one of a number of special constants:


o NF4REG designates a regular file.

o NF4REGは通常のファイルを指定します。

o NF4DIR designates a directory.

o NF4DIRはディレクトリを指定します。

o NF4BLK designates a block device special file.

o NF4BLKは、ブロックデバイス特殊ファイルを指定します。

o NF4CHR designates a character device special file.

o NF4CHRは、キャラクタデバイススペシャルファイルを指定します。

o NF4LNK designates a symbolic link.

o NF4LNKはシンボリックリンクを指定します。

o NF4SOCK designates a named socket special file.

o NF4SOCKは、名前付きソケット特殊ファイルを指定します。

o NF4FIFO designates a fifo special file.

o NF4FIFOは、FIFOスペシャルファイルを指定します。

o NF4ATTRDIR designates a named attribute directory.

o NF4ATTRDIRは、名前付き属性ディレクトリを指定します。

o NF4NAMEDATTR designates a named attribute.

o NF4NAMEDATTRは名前付き属性を指定します。

Within the explanatory text and operation descriptions, the following phrases will be used with the meanings given below:


o The phrase "is a directory" means that the object's type attribute is NF4DIR or NF4ATTRDIR.

o 「is a directory」という語句は、オブジェクトのtype属性がNF4DIRまたはNF4ATTRDIRであることを意味します。

o The phrase "is a special file" means that the object's type attribute is NF4BLK, NF4CHR, NF4SOCK, or NF4FIFO.

o 「特殊ファイルです」という語句は、オブジェクトのタイプ属性がNF4BLK、NF4CHR、NF4SOCK、またはNF4FIFOであることを意味します。

o The phrases "is an ordinary file" and "is a regular file" mean that the object's type attribute is NF4REG or NF4NAMEDATTR.

o 「通常のファイルです」および「通常のファイルです」というフレーズは、オブジェクトのタイプ属性がNF4REGまたはNF4NAMEDATTRであることを意味します。 Attribute 2: fh_expire_type 属性2:fh_expire_type

Server uses this to specify filehandle expiration behavior to the client. See Section 4 for additional description.

サーバーはこれを使用して、ファイルハンドルの有効期限の動作をクライアントに指定します。詳細については、セクション4を参照してください。 Attribute 3: change 属性3:変更

A value created by the server that the client can use to determine if file data, directory contents, or attributes of the object have been modified. The server may return the object's time_metadata attribute for this attribute's value, but only if the file system object cannot be updated more frequently than the resolution of time_metadata.

サーバーが作成した値で、クライアントがオブジェクトのファイルデータ、ディレクトリの内容、または属性が変更されているかどうかを判断するために使用できます。サーバーは、この属性の値に対してオブジェクトのtime_metadata属性を返すことがありますが、それは、ファイルシステムオブジェクトがtime_metadataの解像度よりも頻繁に更新できない場合に限られます。 Attribute 4: size 属性4:サイズ

The size of the object in bytes.

オブジェクトのサイズ(バイト単位)。 Attribute 5: link_support 属性5:link_support

TRUE, if the object's file system supports hard links.

オブジェクトのファイルシステムがハードリンクをサポートしている場合はTRUE。 Attribute 6: symlink_support 属性6:symlink_support

TRUE, if the object's file system supports symbolic links.

オブジェクトのファイルシステムがシンボリックリンクをサポートしている場合はTRUE。 Attribute 7: named_attr 属性7:named_attr

TRUE, if this object has named attributes. In other words, object has a non-empty named attribute directory.

このオブジェクトに名前付き属性がある場合はTRUE。つまり、オブジェクトには空でない名前付き属性ディレクトリがあります。 Attribute 8: fsid 属性8:fsid

Unique file system identifier for the file system holding this object. The fsid attribute has major and minor components, each of which are of data type uint64_t.

このオブジェクトを保持するファイルシステムの一意のファイルシステム識別子。 fsid属性には、メジャーコンポーネントとマイナーコンポーネントがあり、それぞれデータタイプuint64_tです。 Attribute 9: unique_handles 属性9:unique_handles

TRUE, if two distinct filehandles are guaranteed to refer to two different file system objects.

2つの異なるファイルハンドルが2つの異なるファイルシステムオブジェクトを参照することが保証されている場合はTRUE。 Attribute 10: lease_time 属性10:lease_time

Duration of the lease at server in seconds.

サーバーでのリース期間(秒単位)。 Attribute 11: rdattr_error 属性11:rdattr_error

Error returned from an attempt to retrieve attributes during a READDIR operation.

READDIR操作中に属性を取得しようとしたときに返されたエラー。 Attribute 19: filehandle 属性19:ファイルハンドル

The filehandle of this object (primarily for READDIR requests).

このオブジェクトのファイルハンドル(主にREADDIRリクエスト用)。 Attribute 75: suppattr_exclcreat 属性75:suppattr_exclcreat

The bit vector that would set all REQUIRED and RECOMMENDED attributes that are supported by the EXCLUSIVE4_1 method of file creation via the OPEN operation. The scope of this attribute applies to all objects with a matching fsid.


5.8.2. Definitions of Uncategorized RECOMMENDED Attributes
5.8.2. 未分類の推奨属性の定義

The definitions of most of the RECOMMENDED attributes follow. Collections that share a common category are defined in other sections.

ほとんどのRECOMMENDED属性の定義は次のとおりです。共通のカテゴリを共有するコレクションは、他のセクションで定義されています。 Attribute 14: archive 属性14:アーカイブ

TRUE, if this file has been archived since the time of last modification (deprecated in favor of time_backup).

TRUE、このファイルが最後に変更された時刻以降にアーカイブされている場合(time_backupのために非推奨)。 Attribute 15: cansettime 属性15:cansettime

TRUE, if the server is able to change the times for a file system object as specified in a SETATTR operation.

サーバーがSETATTR操作で指定されたファイルシステムオブジェクトの時間を変更できる場合はTRUE。 Attribute 16: case_insensitive 属性16:case_insensitive

TRUE, if file name comparisons on this file system are case insensitive.

このファイルシステムでのファイル名の比較で大文字と小文字が区別されない場合はTRUE。 Attribute 17: case_preserving 属性17:case_preserving

TRUE, if file name case on this file system is preserved.

このファイルシステムのファイル名の大文字と小文字が保持される場合はTRUE。 Attribute 60: change_policy 属性60:change_policy

A value created by the server that the client can use to determine if some server policy related to the current file system has been subject to change. If the value remains the same, then the client can be sure that the values of the attributes related to fs location and the fss_type field of the fs_status attribute have not changed. On the other hand, a change in this value does necessarily imply a change in policy. It is up to the client to interrogate the server to determine if some policy relevant to it has changed. See Section 3.3.6 for details.


This attribute MUST change when the value returned by the fs_locations or fs_locations_info attribute changes, when a file system goes from read-only to writable or vice versa, or when the allowable set of security flavors for the file system or any part thereof is changed.

この属性は、fs_locationsまたはfs_locations_info属性によって返される値が変更された場合、ファイルシステムが読み取り専用から書き込み可能に変更された場合、またはその逆の場合、またはファイルシステムまたはその一部のセキュリティフレーバーの許容セットが変更された場合に変更する必要があります。 Attribute 18: chown_restricted 属性18:chown_restricted

If TRUE, the server will reject any request to change either the owner or the group associated with a file if the caller is not a privileged user (for example, "root" in UNIX operating environments or, in Windows 2000, the "Take Ownership" privilege).

TRUEの場合、呼び出し元が特権ユーザー(たとえば、UNIXオペレーティング環境の「root」、Windows 2000の場合は「Take Ownership」の場合、サーバーはファイルに関連付けられた所有者またはグループのいずれかを変更する要求を拒否します。 「特権)。 Attribute 20: fileid 属性20:fileid

A number uniquely identifying the file within the file system.

ファイルシステム内でファイルを一意に識別する番号。 Attribute 21: files_avail 属性21:files_avail

File slots available to this user on the file system containing this object -- this should be the smallest relevant limit.

このオブジェクトを含むファイルシステムでこのユーザーが使用できるファイルスロット-これは、関連する最小の制限です。 Attribute 22: files_free 属性22:files_free

Free file slots on the file system containing this object -- this should be the smallest relevant limit.

このオブジェクトを含むファイルシステムの空きファイルスロット-これは、関連する最小の制限です。 Attribute 23: files_total 属性23:files_total

Total file slots on the file system containing this object.

このオブジェクトを含むファイルシステム上の合計ファイルスロット。 Attribute 76: fs_charset_cap 属性76:fs_charset_cap

Character set capabilities for this file system. See Section 14.4.

このファイルシステムの文字セット機能。セクション14.4を参照してください。 Attribute 24: fs_locations 属性24:fs_locations

Locations where this file system may be found. If the server returns NFS4ERR_MOVED as an error, this attribute MUST be supported. See Section 11.9 for more details.

このファイルシステムが見つかる可能性のある場所。サーバーがエラーとしてNFS4ERR_MOVEDを返す場合、この属性はサポートされている必要があります。詳細については、セクション11.9を参照してください。 Attribute 67: fs_locations_info 属性67:fs_locations_info

Full function file system location. See Section 11.10 for more details.

全機能ファイルシステムの場所。詳細については、セクション11.10を参照してください。 Attribute 61: fs_status 属性61:fs_status

Generic file system type information. See Section 11.11 for more details.

汎用ファイルシステムタイプ情報。詳細については、セクション11.11を参照してください。 Attribute 25: hidden 属性25:非表示

TRUE, if the file is considered hidden with respect to the Windows API.

Windows APIに関してファイルが非表示と見なされる場合はTRUE。 Attribute 26: homogeneous 属性26:同種

TRUE, if this object's file system is homogeneous; i.e., all objects in the file system (all objects on the server with the same fsid) have common values for all per-file-system attributes.

このオブジェクトのファイルシステムが同種の場合はTRUE。つまり、ファイルシステム内のすべてのオブジェクト(同じfsidを持つサーバー上のすべてのオブジェクト)は、ファイルシステムごとのすべての属性に共通の値を持っています。 Attribute 27: maxfilesize 属性27:maxfilesize

Maximum supported file size for the file system of this object.

このオブジェクトのファイルシステムでサポートされる最大ファイルサイズ。 Attribute 28: maxlink 属性28:maxlink

Maximum number of links for this object.

このオブジェクトのリンクの最大数。 Attribute 29: maxname 属性29:maxname

Maximum file name size supported for this object.

このオブジェクトでサポートされる最大ファイル名サイズ。 Attribute 30: maxread 属性30:maxread

Maximum amount of data the READ operation will return for this object.

このオブジェクトに対してREAD操作が返すデータの最大量。 Attribute 31: maxwrite 属性31:maxwrite

Maximum amount of data the WRITE operation will accept for this object. This attribute SHOULD be supported if the file is writable. Lack of this attribute can lead to the client either wasting bandwidth or not receiving the best performance.

このオブジェクトに対してWRITE操作が受け入れるデータの最大量。ファイルが書き込み可能である場合、この属性はサポートされるべきです(SHOULD)。この属性がないと、クライアントが帯域幅を浪費したり、最高のパフォーマンスを受け取っていない可能性があります。 Attribute 32: mimetype 属性32:mimetype

MIME body type/subtype of this object.

このオブジェクトのMIME本文タイプ/サブタイプ。 Attribute 55: mounted_on_fileid 属性55:Mounted_on_fileid

Like fileid, but if the target filehandle is the root of a file system, this attribute represents the fileid of the underlying directory.


UNIX-based operating environments connect a file system into the namespace by connecting (mounting) the file system onto the existing file object (the mount point, usually a directory) of an existing file system. When the mount point's parent directory is read via an API like readdir(), the return results are directory entries, each with a component name and a fileid. The fileid of the mount point's directory entry will be different from the fileid that the stat() system call returns. The stat() system call is returning the fileid of the root of the mounted file system, whereas readdir() is returning the fileid that stat() would have returned before any file systems were mounted on the mount point.

UNIXベースのオペレーティング環境では、ファイルシステムを既存のファイルシステムの既存のファイルオブジェクト(マウントポイント、通常はディレクトリ)に接続(マウント)することにより、ファイルシステムをネームスペースに接続します。マウントポイントの親ディレクトリがreaddir()のようなAPIを介して読み取られると、返される結果はディレクトリエントリであり、それぞれにコンポーネント名とファイルIDがあります。マウントポイントのディレクトリエントリのファイルIDは、stat()システムコールが返すファイルIDとは異なります。 stat()システムコールはマウントされたファイルシステムのルートのファイルIDを返しますが、readdir()は、ファイルシステムがマウントポイントにマウントされる前にstat()が返したはずのファイルIDを返します。

Unlike NFSv3, NFSv4.1 allows a client's LOOKUP request to cross other file systems. The client detects the file system crossing whenever the filehandle argument of LOOKUP has an fsid attribute different from that of the filehandle returned by LOOKUP. A UNIX-based client will consider this a "mount point crossing". UNIX has a legacy scheme for allowing a process to determine its current working directory. This relies on readdir() of a mount point's parent and stat() of the mount point returning fileids as previously described. The mounted_on_fileid attribute corresponds to the fileid that readdir() would have returned as described previously.

NFSv3とは異なり、NFSv4.1では、クライアントのLOOKUP要求が他のファイルシステムを通過することができます。クライアントは、LOOKUPのfilehandle引数に、LOOKUPから返されたファイルハンドルのfsid属性とは異なるfsid属性がある場合に、ファイルシステムの交差を検出します。 UNIXベースのクライアントは、これを「マウントポイントクロッシング」と見なします。 UNIXには、プロセスが現在の作業ディレクトリを決定できるようにするためのレガシースキームがあります。これは、前述のように、マウントポイントの親のreaddir()とマウントポイントのstat()がファイルIDを返すことに依存しています。 Mounted_on_fileid属性は、前述のようにreaddir()が返すはずのファイルIDに対応します。

While the NFSv4.1 client could simply fabricate a fileid corresponding to what mounted_on_fileid provides (and if the server does not support mounted_on_fileid, the client has no choice), there is a risk that the client will generate a fileid that conflicts with one that is already assigned to another object in the file system. Instead, if the server can provide the mounted_on_fileid, the potential for client operational problems in this area is eliminated.


If the server detects that there is no mounted point at the target file object, then the value for mounted_on_fileid that it returns is the same as that of the fileid attribute.


The mounted_on_fileid attribute is RECOMMENDED, so the server SHOULD provide it if possible, and for a UNIX-based server, this is straightforward. Usually, mounted_on_fileid will be requested during a READDIR operation, in which case it is trivial (at least for UNIX-based servers) to return mounted_on_fileid since it is equal to the fileid of a directory entry returned by readdir(). If mounted_on_fileid is requested in a GETATTR operation, the server should obey an invariant that has it returning a value that is equal to the file object's entry in the object's parent directory, i.e., what readdir() would have returned. Some operating environments allow a series of two or more file systems to be mounted onto a single mount point. In this case, for the server to obey the aforementioned invariant, it will need to find the base mount point, and not the intermediate mount points.

Mounted_on_fileid属性は推奨されるので、サーバーは可能であればそれを提供する必要があります(SHOULD)。UNIXベースのサーバーの場合、これは簡単です。通常、mounted_on_fileidはREADDIR操作中に要求されます。その場合、readdir()によって返されるディレクトリエントリのfileidと等しいため、mounted_on_fileidを返すのは(少なくともUNIXベースのサーバーの場合)簡単です。 GETATTR操作でMounted_on_fileidが要求された場合、サーバーは、オブジェクトの親ディレクトリにあるファイルオブジェクトのエントリと等しい値を返す不変条件に従う必要があります。つまり、readdir()が返す結果になります。一部の動作環境では、一連の2つ以上のファイルシステムを単一のマウントポイントにマウントできます。この場合、サーバーが前述の不変式に従うためには、中間マウントポイントではなく、ベースマウントポイントを見つける必要があります。 Attribute 34: no_trunc 属性34:no_trunc

If this attribute is TRUE, then if the client uses a file name longer than name_max, an error will be returned instead of the name being truncated.

この属性がTRUEの場合、クライアントがname_maxより長いファイル名を使用すると、名前が切り捨てられる代わりにエラーが返されます。 Attribute 35: numlinks 属性35:numlinks

Number of hard links to this object.

このオブジェクトへのハードリンクの数。 Attribute 36: owner 属性36:所有者

The string name of the owner of this object.

このオブジェクトの所有者の文字列名。 Attribute 37: owner_group 属性37:owner_group

The string name of the group ownership of this object.

このオブジェクトのグループ所有権の文字列名。 Attribute 38: quota_avail_hard 属性38:quota_avail_hard

The value in bytes that represents the amount of additional disk space beyond the current allocation that can be allocated to this file or directory before further allocations will be refused. It is understood that this space may be consumed by allocations to other files or directories.

これ以上の割り当てが拒否される前に、このファイルまたはディレクトリに割り当てることができる現在の割り当てを超える追加のディスク領域の量を表すバイト単位の値。このスペースは、他のファイルまたはディレクトリへの割り当てによって消費される可能性があることを理解してください。 Attribute 39: quota_avail_soft 属性39:quota_avail_soft

The value in bytes that represents the amount of additional disk space that can be allocated to this file or directory before the user may reasonably be warned. It is understood that this space may be consumed by allocations to other files or directories though there is a rule as to which other files or directories.

ユーザーに警告が出る前にこのファイルまたはディレクトリに割り当てることができる追加のディスク容量を表すバイト単位の値。このスペースは、他のファイルまたはディレクトリに関する規則はありますが、他のファイルまたはディレクトリへの割り当てによって消費される可能性があることは理解されています。 Attribute 40: quota_used 属性40:quota_used

The value in bytes that represents the amount of disk space used by this file or directory and possibly a number of other similar files or directories, where the set of "similar" meets at least the criterion that allocating space to any file or directory in the set will reduce the "quota_avail_hard" of every other file or directory in the set.


Note that there may be a number of distinct but overlapping sets of files or directories for which a quota_used value is maintained, e.g., "all files with a given owner", "all files with a given group owner", etc. The server is at liberty to choose any of those sets when providing the content of the quota_used attribute, but should do so in a repeatable way. The rule may be configured per file system or may be "choose the set with the smallest quota".

quota_used値が維持されるファイルまたはディレクトリのセットは、重複している場合があります。たとえば、「特定の所有者を持つすべてのファイル」、「特定のグループ所有者を持つすべてのファイル」などです。サーバーはquota_used属性のコンテンツを提供するときに、これらのセットのいずれかを自由に選択できますが、繰り返し可能な方法で行う必要があります。ルールはファイルシステムごとに構成することも、「クォータが最小のセットを選択する」こともできます。 Attribute 41: rawdev 属性41:rawdev

Raw device number of file of type NF4BLK or NF4CHR. The device number is split into major and minor numbers. If the file's type attribute is not NF4BLK or NF4CHR, the value returned SHOULD NOT be considered useful.

タイプNF4BLKまたはNF4CHRのファイルのrawデバイス番号。デバイス番号は、メジャー番号とマイナー番号に分かれています。ファイルのtype属性がNF4BLKまたはNF4CHRでない場合、返される値は有用であるとは見なされません(SHOULD NOT)。 Attribute 42: space_avail 属性42:space_avail

Disk space in bytes available to this user on the file system containing this object -- this should be the smallest relevant limit.

このオブジェクトを含むファイルシステム上でこのユーザーが使用できるディスク容量(バイト単位)-これは、関連する最小の制限です。 Attribute 43: space_free 属性43:space_free

Free disk space in bytes on the file system containing this object -- this should be the smallest relevant limit.

このオブジェクトを含むファイルシステムの空きディスク容量(バイト単位)-これは、関連する最小の制限です。 Attribute 44: space_total 属性44:space_total

Total disk space in bytes on the file system containing this object.

このオブジェクトを含むファイルシステムの合計ディスク容量(バイト単位)。 Attribute 45: space_used 属性45:space_used

Number of file system bytes allocated to this object.

このオブジェクトに割り当てられているファイルシステムのバイト数。 Attribute 46: system 属性46:システム

This attribute is TRUE if this file is a "system" file with respect to the Windows operating environment.

このファイルがWindowsオペレーティング環境に関して「システム」ファイルである場合、この属性はTRUEです。 Attribute 47: time_access 属性47:time_access

The time_access attribute represents the time of last access to the object by a READ operation sent to the server. The notion of what is an "access" depends on the server's operating environment and/or the server's file system semantics. For example, for servers obeying Portable Operating System Interface (POSIX) semantics, time_access would be updated only by the READ and READDIR operations and not any of the operations that modify the content of the object [16], [17], [18]. Of course, setting the corresponding time_access_set attribute is another way to modify the time_access attribute.

time_access属性は、サーバーに送信されたREAD操作によるオブジェクトへの最後のアクセスの時刻を表します。 「アクセス」とは何かの概念は、サーバーの動作環境やサーバーのファイルシステムのセマンティクスによって異なります。たとえば、ポータブルオペレーティングシステムインターフェイス(POSIX)セマンティクスに従うサーバーの場合、time_accessはREADおよびREADDIR操作によってのみ更新され、オブジェクトのコンテンツを変更する操作では更新されません[16]、[17]、[18] 。もちろん、対応するtime_access_set属性を設定することは、time_access属性を変更するもう1つの方法です。

Whenever the file object resides on a writable file system, the server should make its best efforts to record time_access into stable storage. However, to mitigate the performance effects of doing so, and most especially whenever the server is satisfying the read of the object's content from its cache, the server MAY cache access time updates and lazily write them to stable storage. It is also acceptable to give administrators of the server the option to disable time_access updates.

ファイルオブジェクトが書き込み可能なファイルシステムに存在する場合は常に、サーバーはtime_accessを安定したストレージに記録するために最善を尽くす必要があります。ただし、そうすることによるパフォーマンスへの影響を軽減するために、特にサーバーがキャッシュからのオブジェクトのコンテンツの読み取りを満たしている場合は常に、サーバーはアクセス時間の更新をキャッシュして、それらを安定したストレージに遅延書き込みする場合があります。サーバーの管理者に、time_access更新を無効にするオプションを与えることもできます。 Attribute 48: time_access_set 属性48:time_access_set

Sets the time of last access to the object. SETATTR use only.

オブジェクトに最後にアクセスした時刻を設定します。 SETATTRの使用のみ。 Attribute 49: time_backup 属性49:time_backup

The time of last backup of the object.

オブジェクトの最後のバックアップの時刻。 Attribute 50: time_create 属性50:time_create

The time of creation of the object. This attribute does not have any relation to the traditional UNIX file attribute "ctime" or "change time".

オブジェクトの作成時刻。この属性は、従来のUNIXファイル属性「ctime」または「change time」とは関係ありません。 Attribute 51: time_delta 属性51:time_delta

Smallest useful server time granularity.

最小の有用なサーバー時間の細分性。 Attribute 52: time_metadata 属性52:time_metadata

The time of last metadata modification of the object.

オブジェクトのメタデータが最後に変更された時刻。 Attribute 53: time_modify 属性53:time_modify

The time of last modification to the object.

オブジェクトが最後に変更された時刻。 Attribute 54: time_modify_set 属性54:time_modify_set

Sets the time of last modification to the object. SETATTR use only.

オブジェクトの最終変更時刻を設定します。 SETATTRの使用のみ。

5.9. Interpreting owner and owner_group
5.9. ownerおよびowner_groupの解釈

The RECOMMENDED attributes "owner" and "owner_group" (and also users and groups within the "acl" attribute) are represented in terms of a UTF-8 string. To avoid a representation that is tied to a particular underlying implementation at the client or server, the use of the UTF-8 string has been chosen. Note that Section 6.1 of RFC 2624 [45] provides additional rationale. It is expected that the client and server will have their own local representation of owner and owner_group that is used for local storage or presentation to the end user. Therefore, it is expected that when these attributes are transferred between the client and server, the local representation is translated to a syntax of the form "user@dns_domain". This will allow for a client and server that do not use the same local representation the ability to translate to a common syntax that can be interpreted by both.

推奨属性「owner」と「owner_group」(および「acl」属性内のユーザーとグループ)は、UTF-8文字列で表されます。クライアントまたはサーバーで特定の基本的な実装に関連付けられている表現を回避するために、UTF-8文字列の使用が選択されています。 RFC 2624 [45]のセクション6.1が追加の根拠を提供していることに注意してください。クライアントとサーバーは、ローカルストレージまたはエンドユーザーへの提示に使用される所有者とowner_groupの独自のローカル表現を持つことが期待されます。したがって、これらの属性がクライアントとサーバーの間で転送されると、ローカル表現が「user @ dns_domain」の形式の構文に変換されることが予想されます。これにより、同じローカル表現を使用しないクライアントとサーバーが、両方で解釈できる共通の構文に変換できるようになります。

Similarly, security principals may be represented in different ways by different security mechanisms. Servers normally translate these representations into a common format, generally that used by local storage, to serve as a means of identifying the users corresponding to these security principals. When these local identifiers are translated to the form of the owner attribute, associated with files created by such principals, they identify, in a common format, the users associated with each corresponding set of security principals.


The translation used to interpret owner and group strings is not specified as part of the protocol. This allows various solutions to be employed. For example, a local translation table may be consulted that maps a numeric identifier to the user@dns_domain syntax. A name service may also be used to accomplish the translation. A server may provide a more general service, not limited by any particular translation (which would only translate a limited set of possible strings) by storing the owner and owner_group attributes in local storage without any translation or it may augment a translation method by storing the entire string for attributes for which no translation is available while using the local representation for those cases in which a translation is available.

所有者とグループの文字列を解釈するために使用される変換は、プロトコルの一部として指定されていません。これにより、さまざまなソリューションを使用できます。たとえば、数値識別子をuser @ dns_domain構文にマップするローカル変換テーブルが参照される場合があります。ネームサービスを使用して、変換を行うこともできます。サーバーは、owner属性とowner_group属性をローカルストレージに翻訳なしで保存することにより、特定の翻訳に限定されない(可能な文字列の限られたセットのみを翻訳する)より一般的なサービスを提供するか、または翻訳が利用可能な場合にローカル表現を使用しているときに、翻訳が利用できない属性の文字列全体。

Servers that do not provide support for all possible values of the owner and owner_group attributes SHOULD return an error (NFS4ERR_BADOWNER) when a string is presented that has no translation, as the value to be set for a SETATTR of the owner, owner_group, or acl attributes. When a server does accept an owner or owner_group value as valid on a SETATTR (and similarly for the owner and group strings in an acl), it is promising to return that same string when a corresponding GETATTR is done. Configuration changes (including changes from the mapping of the string to the local representation) and ill-constructed name translations (those that contain aliasing) may make that promise impossible to honor. Servers should make appropriate efforts to avoid a situation in which these attributes have their values changed when no real change to ownership has occurred.


The "dns_domain" portion of the owner string is meant to be a DNS domain name, for example, Servers should accept as valid a set of users for at least one domain. A server may treat other domains as having no valid translations. A more general service is provided when a server is capable of accepting users for multiple domains, or for all domains, subject to security constraints.

所有者文字列の「dns_domain」の部分は、user @ example.orgなどのDNSドメイン名であることを意味します。サーバーは、少なくとも1つのドメインのユーザーのセットを有効なものとして受け入れる必要があります。サーバーは他のドメインを有効な翻訳がないものとして扱う場合があります。サーバーが複数のドメインまたはすべてのドメインのユーザーを受け入れることができる場合、より一般的なサービスが提供され、セキュリティの制約を受けます。

In the case where there is no translation available to the client or server, the attribute value will be constructed without the "@". Therefore, the absence of the @ from the owner or owner_group attribute signifies that no translation was available at the sender and that the receiver of the attribute should not use that string as a basis for translation into its own internal format. Even though the attribute value cannot be translated, it may still be useful. In the case of a client, the attribute string may be used for local display of ownership.


To provide a greater degree of compatibility with NFSv3, which identified users and groups by 32-bit unsigned user identifiers and group identifiers, owner and group strings that consist of decimal numeric values with no leading zeros can be given a special interpretation by clients and servers that choose to provide such support. The receiver may treat such a user or group string as representing the same user as would be represented by an NFSv3 uid or gid having the corresponding numeric value. A server is not obligated to accept such a string, but may return an NFS4ERR_BADOWNER instead. To avoid this mechanism being used to subvert user and group translation, so that a client might pass all of the owners and groups in numeric form, a server SHOULD return an NFS4ERR_BADOWNER error when there is a valid translation for the user or owner designated in this way. In that case, the client must use the appropriate name@domain string and not the special form for compatibility.

32ビットの署名されていないユーザー識別子とグループ識別子によってユーザーとグループを識別したNFSv3との互換性を高めるために、先行ゼロのない10進数の数値で構成される所有者とグループの文字列に、クライアントとサーバーによる特別な解釈を与えることができます。そのようなサポートを提供することを選択します。受信者は、そのようなユーザーまたはグループ文字列を、対応する数値を持つNFSv3 uidまたはgidによって表されるのと同じユーザーを表すものとして扱うことができます。サーバーはそのような文字列を受け入れる義務はありませんが、代わりにNFS4ERR_BADOWNERを返す場合があります。このメカニズムがユーザーとグループの変換を覆すために使用されないようにして、クライアントがすべての所有者とグループを数値形式で渡すことができるように、サーバーは、これで指定されたユーザーまたは所有者の有効な変換があるときにNFS4ERR_BADOWNERエラーを返す必要があります。仕方。その場合、クライアントは、互換性のための特別な形式ではなく、適切なname @ domain文字列を使用する必要があります。

The owner string "nobody" may be used to designate an anonymous user, which will be associated with a file created by a security principal that cannot be mapped through normal means to the owner attribute. Users and implementations of NFSv4.1 SHOULD NOT use "nobody" to designate a real user whose access is not anonymous.

所有者文字列「nobody」は、匿名ユーザーを指定するために使用できます。匿名ユーザーは、通常の方法では所有者属性にマップできないセキュリティプリンシパルによって作成されたファイルに関連付けられます。 NFSv4.1のユーザーと実装は、「nobody」を使用して、アクセスが匿名ではない実際のユーザーを指定してはなりません(SHOULD NOT)。

5.10. Character Case Attributes
5.10. 文字ケース属性

With respect to the case_insensitive and case_preserving attributes, each UCS-4 character (which UTF-8 encodes) can be mapped according to Appendix B.2 of RFC 3454 [19]. For general character handling and internationalization issues, see Section 14.

case_insensitiveおよびcase_preserving属性に関して、各UCS-4文字(UTF-8がエンコード)は、RFC 3454 [19]の付録B.2に従ってマッピングできます。一般的な文字処理と国際化の問題については、セクション14を参照してください。

5.11. Directory Notification Attributes
5.11. ディレクトリ通知属性

As described in Section 18.39, the client can request a minimum delay for notifications of changes to attributes, but the server is free to ignore what the client requests. The client can determine in advance what notification delays the server will accept by sending a GETATTR operation for either or both of two directory notification attributes. When the client calls the GET_DIR_DELEGATION operation and asks for attribute change notifications, it should request notification delays that are no less than the values in the server-provided attributes.


5.11.1. Attribute 56: dir_notif_delay
5.11.1. 属性56:dir_notif_delay

The dir_notif_delay attribute is the minimum number of seconds the server will delay before notifying the client of a change to the directory's attributes.


5.11.2. Attribute 57: dirent_notif_delay
5.11.2. 属性57:dirent_notif_delay

The dirent_notif_delay attribute is the minimum number of seconds the server will delay before notifying the client of a change to a file object that has an entry in the directory.


5.12. pNFS Attribute Definitions
5.12. pNFS属性の定義
5.12.1. Attribute 62: fs_layout_type
5.12.1. 属性62:fs_layout_type

The fs_layout_type attribute (see Section 3.3.13) applies to a file system and indicates what layout types are supported by the file system. When the client encounters a new fsid, the client SHOULD obtain the value for the fs_layout_type attribute associated with the new file system. This attribute is used by the client to determine if the layout types supported by the server match any of the client's supported layout types.


5.12.2. Attribute 66: layout_alignment
5.12.2. 属性66:layout_alignment

When a client holds layouts on files of a file system, the layout_alignment attribute indicates the preferred alignment for I/O to files on that file system. Where possible, the client should send READ and WRITE operations with offsets that are whole multiples of the layout_alignment attribute.

クライアントがファイルシステムのファイルのレイアウトを保持している場合、layout_alignment属性は、そのファイルシステムのファイルへのI / Oの優先配置を示します。可能であれば、クライアントは、layout_alignment属性の整数倍のオフセットを指定して、READおよびWRITE操作を送信する必要があります。

5.12.3. Attribute 65: layout_blksize
5.12.3. 属性65:layout_blksize

When a client holds layouts on files of a file system, the layout_blksize attribute indicates the preferred block size for I/O to files on that file system. Where possible, the client should send READ operations with a count argument that is a whole multiple of layout_blksize, and WRITE operations with a data argument of size that is a whole multiple of layout_blksize.

クライアントがファイルシステムのファイルのレイアウトを保持している場合、layout_blksize属性は、そのファイルシステムのファイルへのI / Oの優先ブロックサイズを示します。可能な場合、クライアントは、layout_blksizeの整数倍のcount引数を使用してREAD操作を送信し、layout_blksizeの整数倍のサイズのdata引数を使用してWRITE操作を送信する必要があります。

5.12.4. Attribute 63: layout_hint
5.12.4. 属性63:layout_hint

The layout_hint attribute (see Section 3.3.19) may be set on newly created files to influence the metadata server's choice for the file's layout. If possible, this attribute is one of those set in the initial attributes within the OPEN operation. The metadata server may choose to ignore this attribute. The layout_hint attribute is a subset of the layout structure returned by LAYOUTGET. For example, instead of specifying particular devices, this would be used to suggest the stripe width of a file. The server implementation determines which fields within the layout will be used.

ファイルのレイアウトに関するメタデータサーバーの選択に影響を与えるために、layout_hint属性(セクション3.3.19を参照)を新しく作成したファイルに設定できます。可能な場合、この属性は、OPEN操作の初期属性で設定された属性の1つです。メタデータサーバーは、この属性を無視することを選択できます。 layout_hint属性は、LAYOUTGETによって返されるレイアウト構造のサブセットです。たとえば、特定のデバイスを指定する代わりに、これを使用してファイルのストライプ幅を提案します。サーバーの実装により、レイアウト内のどのフィールドが使用されるかが決まります。

5.12.5. Attribute 64: layout_type
5.12.5. 属性64:layout_type

This attribute lists the layout type(s) available for a file. The value returned by the server is for informational purposes only. The client will use the LAYOUTGET operation to obtain the information needed in order to perform I/O, for example, the specific device information for the file and its layout.

この属性は、ファイルで使用可能なレイアウトタイプをリストします。サーバーから返される値は、情報提供のみを目的としています。クライアントは、LAYOUTGET操作を使用して、I / Oを実行するために必要な情報(ファイルの特定のデバイス情報やそのレイアウトなど)を取得します。

5.12.6. Attribute 68: mdsthreshold
5.12.6. 属性68:mdsthreshold

This attribute is a server-provided hint used to communicate to the client when it is more efficient to send READ and WRITE operations to the metadata server or the data server. The two types of thresholds described are file size thresholds and I/O size thresholds. If a file's size is smaller than the file size threshold, data accesses SHOULD be sent to the metadata server. If an I/O request has a length that is below the I/O size threshold, the I/O SHOULD be sent to the metadata server. Each threshold type is specified separately for read and write.

この属性は、サーバーが提供するヒントであり、READおよびWRITE操作をメタデータサーバーまたはデータサーバーに送信する方が効率的である場合に、クライアントとの通信に使用されます。説明されている2種類のしきい値は、ファイルサイズのしきい値とI / Oサイズのしきい値です。ファイルのサイズがファイルサイズのしきい値よりも小さい場合、データアクセスはメタデータサーバーに送信される必要があります(SHOULD)。 I / O要求の長さがI / Oサイズのしきい値を下回っている場合は、I / Oをメタデータサーバーに送信する必要があります(SHOULD)。各しきい値タイプは、読み取りと書き込みに対して個別に指定されます。

The server MAY provide both types of thresholds for a file. If both file size and I/O size are provided, the client SHOULD reach or exceed both thresholds before sending its read or write requests to the data server. Alternatively, if only one of the specified thresholds is reached or exceeded, the I/O requests are sent to the metadata server.

サーバーは、ファイルに対して両方のタイプのしきい値を提供する場合があります。ファイルサイズとI / Oサイズの両方が指定されている場合、クライアントは、データサーバーに読み取り要求または書き込み要求を送信する前に、両方のしきい値に達するか超える必要があります(SHOULD)。または、指定されたしきい値の1つのみに到達または超過した場合、I / O要求はメタデータサーバーに送信されます。

For each threshold type, a value of zero indicates no READ or WRITE should be sent to the metadata server, while a value of all ones indicates that all READs or WRITEs should be sent to the metadata server.


The attribute is available on a per-filehandle basis. If the current filehandle refers to a non-pNFS file or directory, the metadata server should return an attribute that is representative of the filehandle's file system. It is suggested that this attribute is queried as part of the OPEN operation. Due to dynamic system changes, the client should not assume that the attribute will remain constant for any specific time period; thus, it should be periodically refreshed.


5.13. Retention Attributes
5.13. 保持属性

Retention is a concept whereby a file object can be placed in an immutable, undeletable, unrenamable state for a fixed or infinite duration of time. Once in this "retained" state, the file cannot be moved out of the state until the duration of retention has been reached.


When retention is enabled, retention MUST extend to the data of the file, and the name of file. The server MAY extend retention to any other property of the file, including any subset of REQUIRED, RECOMMENDED, and named attributes, with the exceptions noted in this section.


Servers MAY support or not support retention on any file object type.


The five retention attributes are explained in the next subsections.


5.13.1. Attribute 69: retention_get
5.13.1. 属性69:retention_get

If retention is enabled for the associated file, this attribute's value represents the retention begin time of the file object. This attribute's value is only readable with the GETATTR operation and MUST NOT be modified by the SETATTR operation (Section 5.5). The value of the attribute consists of:


   const RET4_DURATION_INFINITE    = 0xffffffffffffffff;
   struct retention_get4 {
           uint64_t        rg_duration;
           nfstime4        rg_begin_time<1>;

The field rg_duration is the duration in seconds indicating how long the file will be retained once retention is enabled. The field rg_begin_time is an array of up to one absolute time value. If the array is zero length, no beginning retention time has been established, and retention is not enabled. If rg_duration is equal to RET4_DURATION_INFINITE, the file, once retention is enabled, will be retained for an infinite duration.

フィールドrg_durationは、保持が有効になったときにファイルが保持される期間を示す秒単位の期間です。フィールドrg_begin_timeは、最大1つの絶対時間値の配列です。アレイの長さがゼロの場合、開始保持時間が確立されておらず、保持は有効になっていません。 rg_durationがRET4_DURATION_INFINITEと等しい場合、保持が有効になると、ファイルは無期限に保持されます。

If (as soon as) rg_duration is zero, then rg_begin_time will be of zero length, and again, retention is not (no longer) enabled.


5.13.2. Attribute 70: retention_set
5.13.2. 属性70:retention_set

This attribute is used to set the retention duration and optionally enable retention for the associated file object. This attribute is only modifiable via the SETATTR operation and MUST NOT be retrieved by the GETATTR operation (Section 5.5). This attribute corresponds to retention_get. The value of the attribute consists of:

この属性を使用して、保持期間を設定し、オプションで関連ファイルオブジェクトの保持を有効にします。この属性はSETATTR操作を介してのみ変更可能であり、GETATTR操作(セクション5.5)によって取得してはなりません(MUST NOT)。この属性は、retention_getに対応しています。属性の値は、次のもので構成されます。

   struct retention_set4 {
           bool            rs_enable;
           uint64_t        rs_duration<1>;

If the client sets rs_enable to TRUE, then it is enabling retention on the file object with the begin time of retention starting from the server's current time and date. The duration of the retention can also be provided if the rs_duration array is of length one. The duration is the time in seconds from the begin time of retention, and if set to RET4_DURATION_INFINITE, the file is to be retained forever. If retention is enabled, with no duration specified in either this SETATTR or a previous SETATTR, the duration defaults to zero seconds. The server MAY restrict the enabling of retention or the duration of retention on the basis of the ACE4_WRITE_RETENTION ACL permission.

クライアントがrs_enableをTRUEに設定すると、サーバーの現在の日付と時刻から始まる保存の開始時刻でファイルオブジェクトの保存が有効になります。 rs_duration配列の長さが1の場合、保持期間も指定できます。期間は保存の開始時刻からの秒単位の時間であり、RET4_DURATION_INFINITEに設定すると、ファイルは永久に保存されます。このSETATTRまたは以前のSETATTRで期間が指定されていない保持が有効な場合、期間はデフォルトでゼロ秒になります。サーバーは、ACE4_WRITE_RETENTION ACL権限に基づいて、保持の有効化または保持期間を制限してもよい(MAY)。

The enabling of retention MUST NOT prevent the enabling of event-based retention or the modification of the retention_hold attribute.

保持の有効化は、イベントベースの保持の有効化や、retention_hold属性の変更を妨げてはなりません(MUST NOT)。

The following rules apply to both the retention_set and retentevt_set attributes.


o As long as retention is not enabled, the client is permitted to decrease the duration.

o 保持が有効になっていない限り、クライアントは期間を短縮できます。

o The duration can always be set to an equal or higher value, even if retention is enabled. Note that once retention is enabled, the actual duration (as returned by the retention_get or retentevt_get attributes; see Section 5.13.1 or Section 5.13.3) is constantly counting down to zero (one unit per second), unless the duration was set to RET4_DURATION_INFINITE. Thus, it will not be possible for the client to precisely extend the duration on a file that has retention enabled.

o 保存期間が有効になっている場合でも、期間は常に同じかそれ以上の値に設定できます。保存が有効になると、実際の継続時間(retention_getまたはretentevt_get属性によって返されるように、セクション5.13.1またはセクション5.13.3を参照)は、継続時間が0に設定されていない限り、常にゼロまでカウントダウンされます(1秒あたり1ユニット) RET4_DURATION_INFINITE。したがって、保持が有効になっているファイルの期間をクライアントが正確に延長することはできません。

o While retention is enabled, attempts to disable retention or decrease the retention's duration MUST fail with the error NFS4ERR_INVAL.

o 保存が有効になっている間、保存を無効にするか、保存期間を短縮しようとすると、エラーNFS4ERR_INVALで失敗する必要があります。

o If the principal attempting to change retention_set or retentevt_set does not have ACE4_WRITE_RETENTION permissions, the attempt MUST fail with NFS4ERR_ACCESS.

o Retention_setまたはretentevt_setを変更しようとするプリンシパルにACE4_WRITE_RETENTION権限がない場合、NFS4ERR_ACCESSで失敗する必要があります。

5.13.3. Attribute 71: retentevt_get
5.13.3. 属性71:retentevt_get

Gets the event-based retention duration, and if enabled, the event-based retention begin time of the file object. This attribute is like retention_get, but refers to event-based retention. The event that triggers event-based retention is not defined by the NFSv4.1 specification.


5.13.4. Attribute 72: retentevt_set
5.13.4. 属性72:retentevt_set

Sets the event-based retention duration, and optionally enables event-based retention on the file object. This attribute corresponds to retentevt_get and is like retention_set, but refers to event-based retention. When event-based retention is set, the file MUST be retained even if non-event-based retention has been set, and the duration of non-event-based retention has been reached. Conversely, when non-event-based retention has been set, the file MUST be retained even if event-based retention has been set, and the duration of event-based retention has been reached. The server MAY restrict the enabling of event-based retention or the duration of event-based retention on the basis of the ACE4_WRITE_RETENTION ACL permission. The enabling of event-based retention MUST NOT prevent the enabling of non-event-based retention or the modification of the retention_hold attribute.

イベントベースの保存期間を設定し、オプションでファイルオブジェクトのイベントベースの保存を有効にします。この属性はretentevt_getに対応し、retention_setに似ていますが、イベントベースの保持を指します。イベントベースの保存が設定されている場合、非イベントベースの保存が設定されていて、非イベントベースの保存期間に達している場合でも、ファイルを保存する必要があります。逆に、非イベントベースの保存が設定されている場合、イベントベースの保存が設定されていて、イベントベースの保存期間に達している場合でも、ファイルを保存する必要があります。サーバーは、ACE4_WRITE_RETENTION ACL権限に基づいて、イベントベースの保持またはイベントベースの保持の期間の有効化を制限してもよい(MAY)。イベントベースの保持を有効にしても、非イベントベースの保持を有効にしたり、retention_hold属性を変更したりしてはなりません。

5.13.5. Attribute 73: retention_hold
5.13.5. 属性73:retention_hold

Gets or sets administrative retention holds, one hold per bit position.


This attribute allows one to 64 administrative holds, one hold per bit on the attribute. If retention_hold is not zero, then the file MUST NOT be deleted, renamed, or modified, even if the duration on enabled event or non-event-based retention has been reached. The server MAY restrict the modification of retention_hold on the basis of the ACE4_WRITE_RETENTION_HOLD ACL permission. The enabling of administration retention holds does not prevent the enabling of event-based or non-event-based retention.

この属性では、1〜64の管理保留が可能で、属性のビットごとに1つの保留があります。 Retention_holdがゼロでない場合、有効なイベントまたは非イベントベースの保存期間に達した場合でも、ファイルを削除、名前変更、または変更してはなりません(MUST NOT)。サーバーは、ACE4_WRITE_RETENTION_HOLD ACL権限に基づいて、retention_holdの変更を制限してもよい(MAY)。管理保持を有効にしても、イベントベースまたは非イベントベースの保持を有効にすることはできます。

If the principal attempting to change retention_hold does not have ACE4_WRITE_RETENTION_HOLD permissions, the attempt MUST fail with NFS4ERR_ACCESS.


6. Access Control Attributes
6. アクセス制御属性

Access Control Lists (ACLs) are file attributes that specify fine-grained access control. This section covers the "acl", "dacl", "sacl", "aclsupport", "mode", and "mode_set_masked" file attributes and their interactions. Note that file attributes may apply to any file system object.


6.1. Goals
6.1. ゴール

ACLs and modes represent two well-established models for specifying permissions. This section specifies requirements that attempt to meet the following goals: o If a server supports the mode attribute, it should provide reasonable semantics to clients that only set and retrieve the mode attribute.


o If a server supports ACL attributes, it should provide reasonable semantics to clients that only set and retrieve those attributes.

o サーバーがACL属性をサポートする場合、それらの属性の設定と取得のみを行うクライアントに適切なセマンティクスを提供する必要があります。

o On servers that support the mode attribute, if ACL attributes have never been set on an object, via inheritance or explicitly, the behavior should be traditional UNIX-like behavior.

o モード属性をサポートするサーバーでは、継承または明示的にオブジェクトにACL属性が設定されていない場合、動作は従来のUNIXに似た動作になります。

o On servers that support the mode attribute, if the ACL attributes have been previously set on an object, either explicitly or via inheritance:

o モード属性をサポートするサーバーで、ACL属性がオブジェクトに以前に明示的または継承によって設定されている場合:

* Setting only the mode attribute should effectively control the traditional UNIX-like permissions of read, write, and execute on owner, owner_group, and other.

* mode属性のみを設定することで、owner、owner_groupなどに対する、従来のUNIXに似た読み取り、書き込み、実行のアクセス許可を効果的に制御できます。

* Setting only the mode attribute should provide reasonable security. For example, setting a mode of 000 should be enough to ensure that future OPEN operations for OPEN4_SHARE_ACCESS_READ or OPEN4_SHARE_ACCESS_WRITE by any principal fail, regardless of a previously existing or inherited ACL.

* mode属性のみを設定すると、妥当なセキュリティが提供されます。たとえば、モードを000に設定することで、以前の既存または継承されたACLに関係なく、プリンシパルによるOPEN4_SHARE_ACCESS_READまたはOPEN4_SHARE_ACCESS_WRITEの将来のOPEN操作が失敗することを保証できます。

o NFSv4.1 may introduce different semantics relating to the mode and ACL attributes, but it does not render invalid any previously existing implementations. Additionally, this section provides clarifications based on previous implementations and discussions around them.

o NFSv4.1では、モードとACL属性に関連するさまざまなセマンティクスが導入される可能性がありますが、以前の既存の実装が無効になることはありません。さらに、このセクションでは、以前の実装とそれらに関する議論に基づいた説明を提供します。

o On servers that support both the mode and the acl or dacl attributes, the server must keep the two consistent with each other. The value of the mode attribute (with the exception of the three high-order bits described in Section 6.2.4) must be determined entirely by the value of the ACL, so that use of the mode is never required for anything other than setting the three high-order bits. See Section 6.4.1 for exact requirements.

o モードとaclまたはdacl属性の両方をサポートするサーバーでは、サーバーは2つを互いに一貫性のある状態に保つ必要があります。モード属性の値(セクション6.2.4で説明されている上位3ビットを除く)は、ACLの値によって完全に決定される必要があるため、モードの使用は、上位3ビット。正確な要件については、セクション6.4.1を参照してください。

o When a mode attribute is set on an object, the ACL attributes may need to be modified in order to not conflict with the new mode. In such cases, it is desirable that the ACL keep as much information as possible. This includes information about inheritance, AUDIT and ALARM ACEs, and permissions granted and denied that do not conflict with the new mode.

o オブジェクトにモード属性が設定されている場合、新しいモードと競合しないようにACL属性を変更する必要がある場合があります。そのような場合、ACLができるだけ多くの情報を保持することが望ましいです。これには、継承、AUDITとALARM ACE、および新しいモードと競合しない許可および拒否された権限に関する情報が含まれます。

6.2. File Attributes Discussion
6.2. ファイル属性のディスカッション
6.2.1. Attribute 12: acl
6.2.1. 属性12:acl

The NFSv4.1 ACL attribute contains an array of Access Control Entries (ACEs) that are associated with the file system object. Although the client can set and get the acl attribute, the server is responsible for using the ACL to perform access control. The client can use the OPEN or ACCESS operations to check access without modifying or reading data or metadata.

NFSv4.1 ACL属性には、ファイルシステムオブジェクトに関連付けられているアクセス制御エントリ(ACE)の配列が含まれています。クライアントはacl属性を設定および取得できますが、サーバーはACLを使用してアクセス制御を実行する必要があります。クライアントは、OPENまたはACCESS操作を使用して、データやメタデータを変更したり読み取ったりせずにアクセスを確認できます。

The NFS ACE structure is defined as follows:

NFS ACE構造は次のように定義されます。

typedef uint32_t acetype4;

typedef uint32_t acetype4;

typedef uint32_t aceflag4;

typedef uint32_t aceflag4;

typedef uint32_t acemask4;

typedef uint32_t acemask4;

   struct nfsace4 {
           acetype4        type;
           aceflag4        flag;
           acemask4        access_mask;
           utf8str_mixed   who;

To determine if a request succeeds, the server processes each nfsace4 entry in order. Only ACEs that have a "who" that matches the requester are considered. Each ACE is processed until all of the bits of the requester's access have been ALLOWED. Once a bit (see below) has been ALLOWED by an ACCESS_ALLOWED_ACE, it is no longer considered in the processing of later ACEs. If an ACCESS_DENIED_ACE is encountered where the requester's access still has unALLOWED bits in common with the "access_mask" of the ACE, the request is denied. When the ACL is fully processed, if there are bits in the requester's mask that have not been ALLOWED or DENIED, access is denied.

リクエストが成功したかどうかを判断するために、サーバーは各nfsace4エントリを順番に処理します。要求者に一致する「who」を持つACEのみが考慮されます。各ACEは、要求者のアクセスのすべてのビットが許可されるまで処理されます。 ACCESS_ALLOWED_ACEによってビット(以下を参照)が許可されると、以降のACEの処理では考慮されなくなります。リクエスターのアクセスにACEの「access_mask」と共通のunALLOWEDビットが含まれているACCESS_DENIED_ACEが検出された場合、要求は拒否されます。 ACLが完全に処理されたときに、リクエスタのマスクに許可または拒否されていないビットがある場合、アクセスは拒否されます。

Unlike the ALLOW and DENY ACE types, the ALARM and AUDIT ACE types do not affect a requester's access, and instead are for triggering events as a result of a requester's access attempt. Therefore, AUDIT and ALARM ACEs are processed only after processing ALLOW and DENY ACEs.

ALLOWおよびDENY ACEタイプとは異なり、ALARMおよびAUDIT ACEタイプはリクエスターのアクセスに影響せず、リクエスターのアクセス試行の結果としてイベントをトリガーするためのものです。したがって、AUDITおよびALARM ACEは、ALLOWおよびDENY ACEを処理した後でのみ処理されます。

The NFSv4.1 ACL model is quite rich. Some server platforms may provide access-control functionality that goes beyond the UNIX-style mode attribute, but that is not as rich as the NFS ACL model. So that users can take advantage of this more limited functionality, the server may support the acl attributes by mapping between its ACL model and the NFSv4.1 ACL model. Servers must ensure that the ACL they actually store or enforce is at least as strict as the NFSv4 ACL that was set. It is tempting to accomplish this by rejecting any ACL that falls outside the small set that can be represented accurately. However, such an approach can render ACLs unusable without special client-side knowledge of the server's mapping, which defeats the purpose of having a common NFSv4 ACL protocol. Therefore, servers should accept every ACL that they can without compromising security. To help accomplish this, servers may make a special exception, in the case of unsupported permission bits, to the rule that bits not ALLOWED or DENIED by an ACL must be denied. For example, a UNIX-style server might choose to silently allow read attribute permissions even though an ACL does not explicitly allow those permissions. (An ACL that explicitly denies permission to read attributes should still be rejected.)

NFSv4.1 ACLモデルは非常に豊富です。一部のサーバープラットフォームは、UNIXスタイルのモード属性を超えるアクセス制御機能を提供する場合がありますが、NFS ACLモデルほど豊富ではありません。ユーザーがこのより限定された機能を利用できるように、サーバーはACLモデルとNFSv4.1 ACLモデルの間のマッピングによってacl属性をサポートする場合があります。サーバーは、サーバーが実際に格納または実施するACLが、少なくとも設定されたNFSv4 ACLと同じくらい厳格であることを確認する必要があります。正確に表すことができる小さなセットの外にあるACLを拒否することでこれを実現したくなります。ただし、このようなアプローチでは、サーバー側のマッピングに関するクライアント側の特別な知識がなければ、ACLが使用できなくなる可能性があり、これは一般的なNFSv4 ACLプロトコルを持つ目的に反します。したがって、サーバーはセキュリティを犠牲にすることなく、可能なすべてのACLを受け入れる必要があります。これを実現するために、サーバーは、サポートされていない許可ビットの場合、ACLによって許可または拒否されていないビットを拒否する必要があるという規則に対して、特別な例外を作成する場合があります。たとえば、UNIXスタイルのサーバーは、ACLが明示的にアクセス許可を許可していなくても、読み取り属性アクセス許可をサイレントに許可することを選択する場合があります。 (属性を読み取るためのアクセス許可を明示的に拒否するACLは、引き続き拒否されます。)

The situation is complicated by the fact that a server may have multiple modules that enforce ACLs. For example, the enforcement for NFSv4.1 access may be different from, but not weaker than, the enforcement for local access, and both may be different from the enforcement for access through other protocols such as SMB (Server Message Block). So it may be useful for a server to accept an ACL even if not all of its modules are able to support it.


The guiding principle with regard to NFSv4 access is that the server must not accept ACLs that appear to make access to the file more restrictive than it really is.

NFSv4アクセスに関する基本原則は、サーバーがファイルへのアクセスを実際よりも制限するように見えるACLを受け入れてはならないということです。 ACE Type ACEタイプ

The constants used for the type field (acetype4) are as follows:


   const ACE4_ACCESS_ALLOWED_ACE_TYPE      = 0x00000000;
   const ACE4_ACCESS_DENIED_ACE_TYPE       = 0x00000001;
   const ACE4_SYSTEM_AUDIT_ACE_TYPE        = 0x00000002;
   const ACE4_SYSTEM_ALARM_ACE_TYPE        = 0x00000003;

Only the ALLOWED and DENIED bits may be used in the dacl attribute, and only the AUDIT and ALARM bits may be used in the sacl attribute. All four are permitted in the acl attribute.

ALLOWEDおよびDENIEDビットのみがdacl属性で使用でき、AUDITおよびALARMビットのみがsacl属性で使用できます。 4つすべてがacl属性で許可されます。

   | Value                        | Abbreviation | Description         |
   | ACE4_ACCESS_ALLOWED_ACE_TYPE | ALLOW        | Explicitly grants   |
   |                              |              | the access defined  |
   |                              |              | in acemask4 to the  |
   |                              |              | file or directory.  |
   | ACE4_ACCESS_DENIED_ACE_TYPE  | DENY         | Explicitly denies   |
   |                              |              | the access defined  |
   |                              |              | in acemask4 to the  |
   |                              |              | file or directory.  |
   | ACE4_SYSTEM_AUDIT_ACE_TYPE   | AUDIT        | Log (in a           |
   |                              |              | system-dependent    |
   |                              |              | way) any access     |
   |                              |              | attempt to a file   |
   |                              |              | or directory that   |
   |                              |              | uses any of the     |
   |                              |              | access methods      |
   |                              |              | specified in        |
   |                              |              | acemask4.           |
   | ACE4_SYSTEM_ALARM_ACE_TYPE   | ALARM        | Generate an alarm   |
   |                              |              | (in a               |
   |                              |              | system-dependent    |
   |                              |              | way) when any       |
   |                              |              | access attempt is   |
   |                              |              | made to a file or   |
   |                              |              | directory for the   |
   |                              |              | access methods      |
   |                              |              | specified in        |
   |                              |              | acemask4.           |

The "Abbreviation" column denotes how the types will be referred to throughout the rest of this section.

「略語」の列は、このセクションの残りの部分でタイプがどのように参照されるかを示しています。 Attribute 13: aclsupport 属性13:aclsupport

A server need not support all of the above ACE types. This attribute indicates which ACE types are supported for the current file system. The bitmask constants used to represent the above definitions within the aclsupport attribute are as follows:

サーバーは、上記のACEタイプのすべてをサポートする必要はありません。この属性は、現在のファイルシステムでサポートされているACEタイプを示します。 aclsupport属性内の上記の定義を表すために使用されるビットマスク定数は次のとおりです。

   const ACL4_SUPPORT_ALLOW_ACL    = 0x00000001;
   const ACL4_SUPPORT_DENY_ACL     = 0x00000002;
   const ACL4_SUPPORT_AUDIT_ACL    = 0x00000004;
   const ACL4_SUPPORT_ALARM_ACL    = 0x00000008;

Servers that support either the ALLOW or DENY ACE type SHOULD support both ALLOW and DENY ACE types.

ALLOWまたはDENY ACEタイプをサポートするサーバーは、ALLOWおよびDENY ACEタイプの両方をサポートする必要があります(SHOULD)。

Clients should not attempt to set an ACE unless the server claims support for that ACE type. If the server receives a request to set an ACE that it cannot store, it MUST reject the request with NFS4ERR_ATTRNOTSUPP. If the server receives a request to set an ACE that it can store but cannot enforce, the server SHOULD reject the request with NFS4ERR_ATTRNOTSUPP.


Support for any of the ACL attributes is optional (albeit RECOMMENDED). However, a server that supports either of the new ACL attributes (dacl or sacl) MUST allow use of the new ACL attributes to access all of the ACE types that it supports. In other words, if such a server supports ALLOW or DENY ACEs, then it MUST support the dacl attribute, and if it supports AUDIT or ALARM ACEs, then it MUST support the sacl attribute.

ACL属性のサポートはオプションです(推奨)。ただし、新しいACL属性(daclまたはsacl)のいずれかをサポートするサーバーでは、新しいACL属性を使用して、サポートするすべてのACEタイプにアクセスできるようにする必要があります。言い換えると、そのようなサーバーがALLOWまたはDENY ACEをサポートする場合は、dacl属性をサポートする必要があり、AUDITまたはALARM ACEをサポートする場合は、sacl属性をサポートする必要があります。 ACE Access Mask ACEアクセスマスク

The bitmask constants used for the access mask field are as follows:


   const ACE4_READ_DATA            = 0x00000001;
   const ACE4_LIST_DIRECTORY       = 0x00000001;
   const ACE4_WRITE_DATA           = 0x00000002;
   const ACE4_ADD_FILE             = 0x00000002;
   const ACE4_APPEND_DATA          = 0x00000004;
   const ACE4_ADD_SUBDIRECTORY     = 0x00000004;
   const ACE4_READ_NAMED_ATTRS     = 0x00000008;
   const ACE4_WRITE_NAMED_ATTRS    = 0x00000010;
   const ACE4_EXECUTE              = 0x00000020;
   const ACE4_DELETE_CHILD         = 0x00000040;
   const ACE4_READ_ATTRIBUTES      = 0x00000080;
   const ACE4_WRITE_ATTRIBUTES     = 0x00000100;
   const ACE4_WRITE_RETENTION      = 0x00000200;
   const ACE4_WRITE_RETENTION_HOLD = 0x00000400;
   const ACE4_DELETE               = 0x00010000;
   const ACE4_READ_ACL             = 0x00020000;
   const ACE4_WRITE_ACL            = 0x00040000;
   const ACE4_WRITE_OWNER          = 0x00080000;
   const ACE4_SYNCHRONIZE          = 0x00100000;

Note that some masks have coincident values, for example, ACE4_READ_DATA and ACE4_LIST_DIRECTORY. The mask entries ACE4_LIST_DIRECTORY, ACE4_ADD_FILE, and ACE4_ADD_SUBDIRECTORY are intended to be used with directory objects, while ACE4_READ_DATA, ACE4_WRITE_DATA, and ACE4_APPEND_DATA are intended to be used with non-directory objects.

ACE4_READ_DATAとACE4_LIST_DIRECTORYなど、一部のマスクには一致する値があることに注意してください。マスクエントリACE4_LIST_DIRECTORY、ACE4_ADD_FILE、およびACE4_ADD_SUBDIRECTORYは、ディレクトリオブジェクトでの使用を目的としていますが、ACE4_READ_DATA、ACE4_WRITE_DATA、およびACE4_APPEND_DATAは、非ディレクトリオブジェクトでの使用を目的としています。 Discussion of Mask Attributes マスク属性の説明



Operation(s) affected:








Permission to read the data of the file.


Servers SHOULD allow a user the ability to read the data of the file when only the ACE4_EXECUTE access mask bit is allowed.




Operation(s) affected:






Permission to list the contents of a directory.




Operation(s) affected:






SETATTR of size




Permission to modify a file's data.




Operation(s) affected:












Permission to add a new file in a directory. The CREATE operation is affected when nfs_ftype4 is NF4LNK, NF4BLK, NF4CHR, NF4SOCK, or NF4FIFO. (NF4DIR is not listed because it is covered by ACE4_ADD_SUBDIRECTORY.) OPEN is affected when used to create a regular file. LINK and RENAME are always affected.

ディレクトリに新しいファイルを追加する権限。 nfs_ftype4がNF4LNK、NF4BLK、NF4CHR、NF4SOCK、またはNF4FIFOの場合、CREATE操作が影響を受けます。 (NF4DIRはACE4_ADD_SUBDIRECTORYでカバーされているため、リストに含まれていません。)OPENは、通常のファイルの作成に使用された場合に影響を受けます。 LINKとRENAMEは常に影響を受けます。



Operation(s) affected:






SETATTR of size




The ability to modify a file's data, but only starting at EOF. This allows for the notion of append-only files, by allowing ACE4_APPEND_DATA and denying ACE4_WRITE_DATA to the same user or group. If a file has an ACL such as the one described above and a WRITE request is made for somewhere other than EOF, the server SHOULD return NFS4ERR_ACCESS.




Operation(s) affected:








Permission to create a subdirectory in a directory. The CREATE operation is affected when nfs_ftype4 is NF4DIR. The RENAME operation is always affected.

ディレクトリにサブディレクトリを作成する権限。 nfs_ftype4がNF4DIRの場合、CREATE操作が影響を受けます。 RENAME操作は常に影響を受けます。



Operation(s) affected:






Permission to read the named attributes of a file or to look up the named attribute directory. OPENATTR is affected when it is not used to create a named attribute directory. This is when 1) createdir is TRUE, but a named attribute directory already exists, or 2) createdir is FALSE.

ファイルの名前付き属性を読み取る権限、または名前付き属性ディレクトリを検索する権限。 OPENATTRは、名前付き属性ディレクトリの作成に使用されない場合に影響を受けます。これは、1)createdirはTRUEであるが、名前付き属性ディレクトリがすでに存在する場合、または2)createdirがFALSEの場合です。



Operation(s) affected:






Permission to write the named attributes of a file or to create a named attribute directory. OPENATTR is affected when it is used to create a named attribute directory. This is when createdir is TRUE and no named attribute directory exists. The ability to check whether or not a named attribute directory exists depends on the ability to look it up; therefore, users also need the ACE4_READ_NAMED_ATTRS permission in order to create a named attribute directory.

ファイルの名前付き属性を書き込む権限、または名前付き属性ディレクトリを作成する権限。 OPENATTRを使用して名前付き属性ディレクトリを作成すると、OPENATTRが影響を受けます。これは、createdirがTRUEで、名前付き属性ディレクトリが存在しない場合です。名前付き属性ディレクトリが存在するかどうかを確認する機能は、それを検索する機能に依存します。したがって、名前付き属性ディレクトリを作成するには、ユーザーにもACE4_READ_NAMED_ATTRS権限が必要です。



Operation(s) affected:














Permission to execute a file.


Servers SHOULD allow a user the ability to read the data of the file when only the ACE4_EXECUTE access mask bit is allowed. This is because there is no way to execute a file without reading the contents. Though a server may treat ACE4_EXECUTE and ACE4_READ_DATA bits identically when deciding to permit a READ operation, it SHOULD still allow the two bits to be set independently in ACLs, and MUST distinguish between them when replying to ACCESS operations. In particular, servers SHOULD NOT silently turn on one of the two bits when the other is set, as that would make it impossible for the client to correctly enforce the distinction between read and execute permissions.


As an example, following a SETATTR of the following ACL:




A subsequent GETATTR of ACL for that file SHOULD return:




Rather than:





Operation(s) affected:






Permission to traverse/search a directory.




Operation(s) affected:






Permission to delete a file or directory within a directory. See Section for information on ACE4_DELETE and ACE4_DELETE_CHILD interact.

ディレクトリ内のファイルまたはディレクトリを削除する権限。 ACE4_DELETEとACE4_DELETE_CHILDの相互作用については、セクション6.を参照してください。



Operation(s) affected:


GETATTR of file system object attributes










The ability to read basic attributes (non-ACLs) of a file. On a UNIX system, basic attributes can be thought of as the stat-level attributes. Allowing this access mask bit would mean that the entity can execute "ls -l" and stat. If a READDIR operation requests attributes, this mask must be allowed for the READDIR to succeed.

ファイルの基本属性(非ACL)を読み取る機能。 UNIXシステムでは、基本的な属性は統計レベルの属性と考えることができます。このアクセスマスクビットを許可すると、エンティティは "ls -l"とstatを実行できます。 READDIR操作が属性を要求する場合、READDIRが成功するには、このマスクが許可されている必要があります。



Operation(s) affected:


SETATTR of time_access_set, time_backup,


time_create, time_modify_set, mimetype, hidden, system




Permission to change the times associated with a file or directory to an arbitrary value. Also permission to change the mimetype, hidden, and system attributes. A user having ACE4_WRITE_DATA or ACE4_WRITE_ATTRIBUTES will be allowed to set the times associated with a file to the current server time.

ファイルまたはディレクトリに関連付けられた時間を任意の値に変更する権限。また、mimetype、hidden、およびsystem属性を変更する権限。 ACE4_WRITE_DATAまたはACE4_WRITE_ATTRIBUTESを持つユーザーは、ファイルに関連付けられた時刻を現在のサーバー時刻に設定できます。



Operation(s) affected:


SETATTR of retention_set, retentevt_set.




Permission to modify the durations of event and non-event-based retention. Also permission to enable event and non-event-based retention. A server MAY behave such that setting ACE4_WRITE_ATTRIBUTES allows ACE4_WRITE_RETENTION.




Operation(s) affected:


SETATTR of retention_hold.




Permission to modify the administration retention holds. A server MAY map ACE4_WRITE_ATTRIBUTES to ACE_WRITE_RETENTION_HOLD.




Operation(s) affected:






Permission to delete the file or directory. See Section for information on ACE4_DELETE and ACE4_DELETE_CHILD interact.

ファイルまたはディレクトリを削除する権限。 ACE4_DELETEとACE4_DELETE_CHILDの相互作用については、セクション6.を参照してください。



Operation(s) affected:


GETATTR of acl, dacl, or sacl








Permission to read the ACL.




Operation(s) affected:


SETATTR of acl and mode




Permission to write the acl and mode attributes.




Operation(s) affected:


SETATTR of owner and owner_group




Permission to write the owner and owner_group attributes. On UNIX systems, this is the ability to execute chown() and chgrp().

ownerおよびowner_group属性を書き込む権限。 UNIXシステムでは、これはchown()およびchgrp()を実行する機能です。



Operation(s) affected:






Permission to use the file object as a synchronization primitive for interprocess communication. This permission is not enforced or interpreted by the NFSv4.1 server on behalf of the client.


Typically, the ACE4_SYNCHRONIZE permission is only meaningful on local file systems, i.e., file systems not accessed via NFSv4.1. The reason that the permission bit exists is that some operating environments, such as Windows, use ACE4_SYNCHRONIZE.


For example, if a client copies a file that has ACE4_SYNCHRONIZE set from a local file system to an NFSv4.1 server, and then later copies the file from the NFSv4.1 server to a local file system, it is likely that if ACE4_SYNCHRONIZE was set in the original file, the client will want it set in the second copy. The first copy will not have the permission set unless the NFSv4.1 server has the means to set the ACE4_SYNCHRONIZE bit. The second copy will not have the permission set unless the NFSv4.1 server has the means to retrieve the ACE4_SYNCHRONIZE bit.

たとえば、クライアントがACE4_SYNCHRONIZEが設定されたファイルをローカルファイルシステムからNFSv4.1サーバーにコピーし、その後NFSv4.1サーバーからローカルファイルシステムにファイルをコピーした場合、ACE4_SYNCHRONIZEが元のファイルに設定した場合、クライアントは2番目のコピーに設定する必要があります。 NFSv4.1サーバーにACE4_SYNCHRONIZEビットを設定する手段がない限り、最初のコピーには権限が設定されません。 NFSv4.1サーバーにACE4_SYNCHRONIZEビットを取得する手段がない限り、2番目のコピーには権限が設定されません。

Server implementations need not provide the granularity of control that is implied by this list of masks. For example, POSIX-based systems might not distinguish ACE4_APPEND_DATA (the ability to append to a file) from ACE4_WRITE_DATA (the ability to modify existing contents); both masks would be tied to a single "write" permission [20]. When such a server returns attributes to the client, it would show both ACE4_APPEND_DATA and ACE4_WRITE_DATA if and only if the write permission is enabled.


If a server receives a SETATTR request that it cannot accurately implement, it should err in the direction of more restricted access, except in the previously discussed cases of execute and read. For example, suppose a server cannot distinguish overwriting data from appending new data, as described in the previous paragraph. If a client submits an ALLOW ACE where ACE4_APPEND_DATA is set but ACE4_WRITE_DATA is not (or vice versa), the server should either turn off ACE4_APPEND_DATA or reject the request with NFS4ERR_ATTRNOTSUPP.

サーバーが正確に実装できないSETATTR要求を受け取った場合、前述の実行と読み取りの場合を除いて、より制限されたアクセスの方向にエラーが発生します。たとえば、前の段落で説明したように、サーバーがデータの上書きと新しいデータの追加を区別できないとします。クライアントがACE4_APPEND_DATAが設定されているがACE4_WRITE_DATAが設定されていない(またはその逆の)ALLOW ACEを送信する場合、サーバーはACE4_APPEND_DATAをオフにするか、NFS4ERR_ATTRNOTSUPPで要求を拒否する必要があります。 ACE4_DELETE vs. ACE4_DELETE_CHILD ACE4_DELETEとACE4_DELETE_CHILD

Two access mask bits govern the ability to delete a directory entry: ACE4_DELETE on the object itself (the "target") and ACE4_DELETE_CHILD on the containing directory (the "parent").


Many systems also take the "sticky bit" (MODE4_SVTX) on a directory to allow unlink only to a user that owns either the target or the parent; on some such systems the decision also depends on whether the target is writable.


Servers SHOULD allow unlink if either ACE4_DELETE is permitted on the target, or ACE4_DELETE_CHILD is permitted on the parent. (Note that this is true even if the parent or target explicitly denies one of these permissions.)

ターゲットでACE4_DELETEが許可されている場合、または親でACE4_DELETE_CHILDが許可されている場合、サーバーはリンク解除を許可する必要があります(SHOULD)。 (これは、親またはターゲットがこれらの権限の1つを明示的に拒否した場合でも当てはまります。)

If the ACLs in question neither explicitly ALLOW nor DENY either of the above, and if MODE4_SVTX is not set on the parent, then the server SHOULD allow the removal if and only if ACE4_ADD_FILE is permitted. In the case where MODE4_SVTX is set, the server may also require the remover to own either the parent or the target, or may require the target to be writable.

問題のACLが上記のいずれも明示的に許可も拒否もせず、MODE4_SVTXが親で設定されていない場合、サーバーは、ACE4_ADD_FILEが許可されている場合に限り、削除を許可する必要があります(SHOULD)。 MODE4_SVTXが設定されている場合、サーバーはリムーバーが親またはターゲットのいずれかを所有することを要求するか、ターゲットが書き込み可能であることを要求する場合があります。

This allows servers to support something close to traditional UNIX-like semantics, with ACE4_ADD_FILE taking the place of the write bit.

これにより、サーバーは、書き込みビットの代わりにACE4_ADD_FILEを使用して、従来のUNIXに似たセマンティクスに近いものをサポートできます。 ACE flag ACEフラグ

The bitmask constants used for the flag field are as follows:


   const ACE4_FILE_INHERIT_ACE             = 0x00000001;
   const ACE4_DIRECTORY_INHERIT_ACE        = 0x00000002;
   const ACE4_NO_PROPAGATE_INHERIT_ACE     = 0x00000004;
   const ACE4_INHERIT_ONLY_ACE             = 0x00000008;
   const ACE4_SUCCESSFUL_ACCESS_ACE_FLAG   = 0x00000010;
   const ACE4_FAILED_ACCESS_ACE_FLAG       = 0x00000020;
   const ACE4_IDENTIFIER_GROUP             = 0x00000040;
   const ACE4_INHERITED_ACE                = 0x00000080;

A server need not support any of these flags. If the server supports flags that are similar to, but not exactly the same as, these flags, the implementation may define a mapping between the protocol-defined flags and the implementation-defined flags.


For example, suppose a client tries to set an ACE with ACE4_FILE_INHERIT_ACE set but not ACE4_DIRECTORY_INHERIT_ACE. If the server does not support any form of ACL inheritance, the server should reject the request with NFS4ERR_ATTRNOTSUPP. If the server supports a single "inherit ACE" flag that applies to both files and directories, the server may reject the request (i.e., requiring the client to set both the file and directory inheritance flags). The server may also accept the request and silently turn on the ACE4_DIRECTORY_INHERIT_ACE flag.

たとえば、クライアントがACE4_FILE_INHERIT_ACEを設定してACE4_DIRECTORY_INHERIT_ACEを設定せずにACEを設定しようとしているとします。サーバーがどの形式のACL継承もサポートしていない場合、サーバーはNFS4ERR_ATTRNOTSUPPを使用して要求を拒否する必要があります。サーバーがファイルとディレクトリの両方に適用される単一の「継承ACE」フラグをサポートしている場合、サーバーはリクエストを拒否する可能性があります(つまり、クライアントにファイルとディレクトリの両方の継承フラグを設定するよう要求する)。サーバーは要求を受け入れ、サイレントにACE4_DIRECTORY_INHERIT_ACEフラグをオンにすることもできます。 Discussion of Flag Bits フラグビットの説明

ACE4_FILE_INHERIT_ACE Any non-directory file in any sub-directory will get this ACE inherited.


ACE4_DIRECTORY_INHERIT_ACE Can be placed on a directory and indicates that this ACE should be added to each new directory created. If this flag is set in an ACE in an ACL attribute to be set on a non-directory file system object, the operation attempting to set the ACL SHOULD fail with NFS4ERR_ATTRNOTSUPP.


ACE4_NO_PROPAGATE_INHERIT_ACE Can be placed on a directory. This flag tells the server that inheritance of this ACE should stop at newly created child directories.


ACE4_INHERIT_ONLY_ACE Can be placed on a directory but does not apply to the directory; ALLOW and DENY ACEs with this bit set do not affect access to the directory, and AUDIT and ALARM ACEs with this bit set do not trigger log or alarm events. Such ACEs only take effect once they are applied (with this bit cleared) to newly created files and directories as specified by the ACE4_FILE_INHERIT_ACE and ACE4_DIRECTORY_INHERIT_ACE flags.

ACE4_INHERIT_ONLY_ACEディレクトリに配置できますが、ディレクトリには適用されません。このビットが設定されたALLOWおよびDENY ACEは、ディレクトリへのアクセスに影響を与えません。また、このビットが設定されたAUDITおよびALARM ACEは、ログまたはアラームイベントをトリガーしません。このようなACEは、ACE4_FILE_INHERIT_ACEおよびACE4_DIRECTORY_INHERIT_ACEフラグで指定されたように、新しく作成されたファイルおよびディレクトリに適用されると(このビットがクリアされて)初めて有効になります。

If this flag is present on an ACE, but neither ACE4_DIRECTORY_INHERIT_ACE nor ACE4_FILE_INHERIT_ACE is present, then an operation attempting to set such an attribute SHOULD fail with NFS4ERR_ATTRNOTSUPP.




ACE4_FAILED_ACCESS_ACE_FLAG The ACE4_SUCCESSFUL_ACCESS_ACE_FLAG (SUCCESS) and ACE4_FAILED_ACCESS_ACE_FLAG (FAILED) flag bits may be set only on ACE4_SYSTEM_AUDIT_ACE_TYPE (AUDIT) and ACE4_SYSTEM_ALARM_ACE_TYPE (ALARM) ACE types. If during the processing of the file's ACL, the server encounters an AUDIT or ALARM ACE that matches the principal attempting the OPEN, the server notes that fact, and the presence, if any, of the SUCCESS and FAILED flags encountered in the AUDIT or ALARM ACE. Once the server completes the ACL processing, it then notes if the operation succeeded or failed. If the operation succeeded, and if the SUCCESS flag was set for a matching AUDIT or ALARM ACE, then the appropriate AUDIT or ALARM event occurs. If the operation failed, and if the FAILED flag was set for the matching AUDIT or ALARM ACE, then the appropriate AUDIT or ALARM event occurs. Either or both of the SUCCESS or FAILED can be set, but if neither is set, the AUDIT or ALARM ACE is not useful.

ACE4_FAILED_ACCESS_ACE_FLAG ACE4_SUCCESSFUL_ACCESS_ACE_FLAG(SUCCESS)およびACE4_FAILED_ACCESS_ACE_FLAG(FAILED)フラグビットは、ACE4_SYSTEM_AUDIT_ACE_TYPE(AUDIT)およびACE4_SYSTEM_ALARM_ACE_TYPE(.ALARM)タイプでのみ設定できます。ファイルのACLの処理中に、サーバーがOPENを試行するプリンシパルと一致するAUDITまたはALARM ACEを検出すると、サーバーはその事実と、AUDITまたはALARMで発生したSUCCESSおよびFAILEDフラグの存在(ある場合)を記録します。エース。サーバーはACL処理を完了すると、操作が成功したか失敗したかを記録します。操作が成功し、一致するAUDITまたはALARM ACEにSUCCESSフラグが設定されている場合、適切なAUDITまたはALARMイベントが発生します。操作が失敗し、一致するAUDITまたはALARM ACEにFAILEDフラグが設定されている場合、適切なAUDITまたはALARMイベントが発生します。 SUCCESSまたはFAILEDのいずれかまたは両方を設定できますが、どちらも設定されていない場合、AUDITまたはALARM ACEは役に立ちません。

The previously described processing applies to ACCESS operations even when they return NFS4_OK. For the purposes of AUDIT and ALARM, we consider an ACCESS operation to be a "failure" if it fails to return a bit that was requested and supported.

前述の処理は、NFS4_OKを返す場合でも、ACCESS操作に適用されます。 AUDITとALARMの目的のために、要求されサポートされているビットを返すことができない場合、ACCESS操作は「失敗」と見なされます。

ACE4_IDENTIFIER_GROUP Indicates that the "who" refers to a GROUP as defined under UNIX or a GROUP ACCOUNT as defined under Windows. Clients and servers MUST ignore the ACE4_IDENTIFIER_GROUP flag on ACEs with a who value equal to one of the special identifiers outlined in Section

ACE4_IDENTIFIER_GROUP「who」がUNIXで定義されたGROUPまたはWindowsで定義されたGROUP ACCOUNTを指すことを示します。クライアントとサーバーは、セクション6.2.1.5で概説されている特別な識別子の1つに等しいwho値を持つACEのACE4_IDENTIFIER_GROUPフラグを無視する必要があります。

ACE4_INHERITED_ACE Indicates that this ACE is inherited from a parent directory. A server that supports automatic inheritance will place this flag on any ACEs inherited from the parent directory when creating a new object. Client applications will use this to perform automatic inheritance. Clients and servers MUST clear this bit in the acl attribute; it may only be used in the dacl and sacl attributes.

ACE4_INHERITED_ACEこのACEが親ディレクトリから継承されることを示します。自動継承をサポートするサーバーは、新しいオブジェクトを作成するときに、親ディレクトリから継承されたACEにこのフラグを配置します。クライアントアプリケーションは、これを使用して自動継承を実行します。クライアントとサーバーは、acl属性のこのビットをクリアする必要があります。 daclおよびsacl属性でのみ使用できます。 ACE Who エースフー

The "who" field of an ACE is an identifier that specifies the principal or principals to whom the ACE applies. It may refer to a user or a group, with the flag bit ACE4_IDENTIFIER_GROUP specifying which.


There are several special identifiers that need to be understood universally, rather than in the context of a particular DNS domain. Some of these identifiers cannot be understood when an NFS client accesses the server, but have meaning when a local process accesses the file. The ability to display and modify these permissions is permitted over NFS, even if none of the access methods on the server understands the identifiers.


   | Who           | Description                                      |
   | OWNER         | The owner of the file.                           |
   | GROUP         | The group associated with the file.              |
   | EVERYONE      | The world, including the owner and owning group. |
   | INTERACTIVE   | Accessed from an interactive terminal.           |
   | NETWORK       | Accessed via the network.                        |
   | DIALUP        | Accessed as a dialup user to the server.         |
   | BATCH         | Accessed from a batch job.                       |
   | ANONYMOUS     | Accessed without any authentication.             |
   | AUTHENTICATED | Any authenticated user (opposite of ANONYMOUS).  |
   | SERVICE       | Access from a system service.                    |

Table 4


To avoid conflict, these special identifiers are distinguished by an appended "@" and should appear in the form "xxxx@" (with no domain name after the "@"), for example, ANONYMOUS@.

競合を回避するために、これらの特別な識別子は「@」が付加されて区別され、「xxxx @」(「@」の後にドメイン名はありません)の形式で表示されます(例:ANONYMOUS @)。

The ACE4_IDENTIFIER_GROUP flag MUST be ignored on entries with these special identifiers. When encoding entries with these special identifiers, the ACE4_IDENTIFIER_GROUP flag SHOULD be set to zero.

これらの特別な識別子を持つエントリでは、ACE4_IDENTIFIER_GROUPフラグを無視する必要があります。これらの特別な識別子でエントリをエンコードするとき、ACE4_IDENTIFIER_GROUPフラグはゼロに設定されるべきです(SHOULD)。 Discussion of EVERYONE@ EVERYONE @の議論

It is important to note that "EVERYONE@" is not equivalent to the UNIX "other" entity. This is because, by definition, UNIX "other" does not include the owner or owning group of a file. "EVERYONE@" means literally everyone, including the owner or owning group.

「EVERYONE @」はUNIXの「その他」のエンティティと同等ではないことに注意することが重要です。これは、UNIXの「その他」にファイルの所有者または所有グループが含まれていないためです。 「EVERYONE @」は、所有者または所有グループを含む文字通り全員を意味します。

6.2.2. Attribute 58: dacl
6.2.2. 属性58:タックル

The dacl attribute is like the acl attribute, but dacl allows just ALLOW and DENY ACEs. The dacl attribute supports automatic inheritance (see Section

dacl属性はacl属性に似ていますが、daclはALLOWおよびDENY ACEのみを許可します。 dacl属性は自動継承をサポートします(項を参照)。

6.2.3. Attribute 59: sacl
6.2.3. 属性59:sacl

The sacl attribute is like the acl attribute, but sacl allows just AUDIT and ALARM ACEs. The sacl attribute supports automatic inheritance (see Section

sacl属性はacl属性に似ていますが、saclはAUDITおよびALARM ACEのみを許可します。 sacl属性は自動継承をサポートします(項を参照)。

6.2.4. Attribute 33: mode
6.2.4. 属性33:モード

The NFSv4.1 mode attribute is based on the UNIX mode bits. The following bits are defined:


   const MODE4_SUID = 0x800;  /* set user id on execution */
   const MODE4_SGID = 0x400;  /* set group id on execution */
   const MODE4_SVTX = 0x200;  /* save text even after use */
   const MODE4_RUSR = 0x100;  /* read permission: owner */
   const MODE4_WUSR = 0x080;  /* write permission: owner */
   const MODE4_XUSR = 0x040;  /* execute permission: owner */
   const MODE4_RGRP = 0x020;  /* read permission: group */
   const MODE4_WGRP = 0x010;  /* write permission: group */
   const MODE4_XGRP = 0x008;  /* execute permission: group */
   const MODE4_ROTH = 0x004;  /* read permission: other */
   const MODE4_WOTH = 0x002;  /* write permission: other */
   const MODE4_XOTH = 0x001;  /* execute permission: other */

Bits MODE4_RUSR, MODE4_WUSR, and MODE4_XUSR apply to the principal identified in the owner attribute. Bits MODE4_RGRP, MODE4_WGRP, and MODE4_XGRP apply to principals identified in the owner_group attribute but who are not identified in the owner attribute. Bits MODE4_ROTH, MODE4_WOTH, and MODE4_XOTH apply to any principal that does not match that in the owner attribute and does not have a group matching that of the owner_group attribute.


Bits within a mode other than those specified above are not defined by this protocol. A server MUST NOT return bits other than those defined above in a GETATTR or READDIR operation, and it MUST return NFS4ERR_INVAL if bits other than those defined above are set in a SETATTR, CREATE, OPEN, VERIFY, or NVERIFY operation.


6.2.5. Attribute 74: mode_set_masked
6.2.5. 属性74:mode_set_masked

The mode_set_masked attribute is a write-only attribute that allows individual bits in the mode attribute to be set or reset, without changing others. It allows, for example, the bits MODE4_SUID, MODE4_SGID, and MODE4_SVTX to be modified while leaving unmodified any of the nine low-order mode bits devoted to permissions.


In such instances that the nine low-order bits are left unmodified, then neither the acl nor the dacl attribute should be automatically modified as discussed in Section 6.4.1.


The mode_set_masked attribute consists of two words, each in the form of a mode4. The first consists of the value to be applied to the current mode value and the second is a mask. Only bits set to one in the mask word are changed (set or reset) in the file's mode. All other bits in the mode remain unchanged. Bits in the first word that correspond to bits that are zero in the mask are ignored, except that undefined bits are checked for validity and can result in NFS4ERR_INVAL as described below.

mode_set_masked属性は、それぞれがmode4の形式の2つのワードで構成されます。 1つ目は現在のモード値に適用される値で構成され、2つ目はマスクです。マスクワードで1に設定されたビットのみが、ファイルのモードで変更(セットまたはリセット)されます。モードの他のすべてのビットは変更されません。未定義ビットの有効性がチェックされ、以下で説明するようにNFS4ERR_INVALになる可能性があることを除いて、マスクのゼロであるビットに対応する最初のワードのビットは無視されます。

The mode_set_masked attribute is only valid in a SETATTR operation. If it is used in a CREATE or OPEN operation, the server MUST return NFS4ERR_INVAL.

mode_set_masked属性は、SETATTR操作でのみ有効です。 CREATEまたはOPEN操作で使用する場合、サーバーはNFS4ERR_INVALを返さなければなりません(MUST)。

Bits not defined as valid in the mode attribute are not valid in either word of the mode_set_masked attribute. The server MUST return NFS4ERR_INVAL if any such bits are set to one in a SETATTR. If the mode and mode_set_masked attributes are both specified in the same SETATTR, the server MUST also return NFS4ERR_INVAL.

mode属性で有効と定義されていないビットは、mode_set_masked属性のいずれのワードでも無効です。 SETATTRでそのようなビットが1に設定されている場合、サーバーはNFS4ERR_INVALを返さなければなりません。 mode属性とmode_set_masked属性の両方が同じSETATTRで指定されている場合、サーバーはNFS4ERR_INVALも返す必要があります。

6.3. Common Methods
6.3. 一般的な方法

The requirements in this section will be referred to in future sections, especially Section 6.4.


6.3.1. Interpreting an ACL
6.3.1. ACLの解釈 Server Considerations サーバーに関する考慮事項

The server uses the algorithm described in Section 6.2.1 to determine whether an ACL allows access to an object. However, the ACL might not be the sole determiner of access. For example:


o In the case of a file system exported as read-only, the server may deny write access even though an object's ACL grants it.

o 読み取り専用としてエクスポートされたファイルシステムの場合、オブジェクトのACLで許可されていても、サーバーは書き込みアクセスを拒否することがあります。

o Server implementations MAY grant ACE4_WRITE_ACL and ACE4_READ_ACL permissions to prevent a situation from arising in which there is no valid way to ever modify the ACL.

o サーバーの実装は、ACE4_WRITE_ACLおよびACE4_READ_ACLアクセス許可を付与して、ACLを変更する有効な方法がない状況が発生しないようにすることができます(MAY)。

o All servers will allow a user the ability to read the data of the file when only the execute permission is granted (i.e., if the ACL denies the user the ACE4_READ_DATA access and allows the user ACE4_EXECUTE, the server will allow the user to read the data of the file).

o すべてのサーバーは、実行権限のみが付与されている場合にユーザーがファイルのデータを読み取ることができるようにします(つまり、ACLがユーザーにACE4_READ_DATAアクセスを拒否し、ユーザーにACE4_EXECUTEを許可すると、サーバーはユーザーにデータの読み取りを許可しますファイルの)。

o Many servers have the notion of owner-override in which the owner of the object is allowed to override accesses that are denied by the ACL. This may be helpful, for example, to allow users continued access to open files on which the permissions have changed.

o 多くのサーバーには、オブジェクトの所有者がACLによって拒否されたアクセスを上書きすることが許可されている所有者オーバーライドの概念があります。これは、たとえば、アクセス許可が変更された開いているファイルにユーザーが引き続きアクセスできるようにする場合に役立ちます。

o Many servers have the notion of a "superuser" that has privileges beyond an ordinary user. The superuser may be able to read or write data or metadata in ways that would not be permitted by the ACL.

o 多くのサーバーには、通常のユーザー以上の特権を持つ「スーパーユーザー」という概念があります。スーパーユーザーは、ACLで許可されていない方法でデータまたはメタデータを読み書きできる場合があります。

o A retention attribute might also block access otherwise allowed by ACLs (see Section 5.13).

o 保持属性は、ACLによって許可されたアクセスをブロックする場合もあります(セクション5.13を参照)。 Client Considerations Client Considerations

Clients SHOULD NOT do their own access checks based on their interpretation of the ACL, but rather use the OPEN and ACCESS operations to do access checks. This allows the client to act on the results of having the server determine whether or not access should be granted based on its interpretation of the ACL.


Clients must be aware of situations in which an object's ACL will define a certain access even though the server will not enforce it. In general, but especially in these situations, the client needs to do its part in the enforcement of access as defined by the ACL. To do this, the client MAY send the appropriate ACCESS operation prior to servicing the request of the user or application in order to determine whether the user or application should be granted the access requested. For examples in which the ACL may define accesses that the server doesn't enforce, see Section

Clients must be aware of situations in which an object's ACL will define a certain access even though the server will not enforce it. In general, but especially in these situations, the client needs to do its part in the enforcement of access as defined by the ACL. To do this, the client MAY send the appropriate ACCESS operation prior to servicing the request of the user or application in order to determine whether the user or application should be granted the access requested. For examples in which the ACL may define accesses that the server doesn't enforce, see Section

6.3.2. Computing a Mode Attribute from an ACL
6.3.2. ACLからのモード属性の計算

The following method can be used to calculate the MODE4_R*, MODE4_W*, and MODE4_X* bits of a mode attribute, based upon an ACL.

The following method can be used to calculate the MODE4_R*, MODE4_W*, and MODE4_X* bits of a mode attribute, based upon an ACL.

First, for each of the special identifiers OWNER@, GROUP@, and EVERYONE@, evaluate the ACL in order, considering only ALLOW and DENY ACEs for the identifier EVERYONE@ and for the identifier under consideration. The result of the evaluation will be an NFSv4 ACL mask showing exactly which bits are permitted to that identifier.

最初に、特別な識別子OWNER @、GROUP @、およびEVERYONE @のそれぞれについて、順番にACLを評価します。識別子EVERYONE @および考慮中の識別子のALLOWおよびDENY ACEのみを考慮します。評価の結果は、その識別子に許可されているビットを正確に示すNFSv4 ACLマスクになります。

Then translate the calculated mask for OWNER@, GROUP@, and EVERYONE@ into mode bits for, respectively, the user, group, and other, as follows:

次に、OWNER @、GROUP @、およびEVERYONE @の計算されたマスクを、次のように、それぞれユーザー、グループ、およびその他のモードビットに変換します。

1. Set the read bit (MODE4_RUSR, MODE4_RGRP, or MODE4_ROTH) if and only if ACE4_READ_DATA is set in the corresponding mask.

1. ACE4_READ_DATAが対応するマスクで設定されている場合にのみ、読み取りビット(MODE4_RUSR、MODE4_RGRP、またはMODE4_ROTH)を設定します。

2. Set the write bit (MODE4_WUSR, MODE4_WGRP, or MODE4_WOTH) if and only if ACE4_WRITE_DATA and ACE4_APPEND_DATA are both set in the corresponding mask.

2. Set the write bit (MODE4_WUSR, MODE4_WGRP, or MODE4_WOTH) if and only if ACE4_WRITE_DATA and ACE4_APPEND_DATA are both set in the corresponding mask.

3. Set the execute bit (MODE4_XUSR, MODE4_XGRP, or MODE4_XOTH), if and only if ACE4_EXECUTE is set in the corresponding mask.

3. 対応するマスクにACE4_EXECUTEが設定されている場合にのみ、実行ビット(MODE4_XUSR、MODE4_XGRP、またはMODE4_XOTH)を設定します。 Discussion Discussion

Some server implementations also add bits permitted to named users and groups to the group bits (MODE4_RGRP, MODE4_WGRP, and MODE4_XGRP).


Implementations are discouraged from doing this, because it has been found to cause confusion for users who see members of a file's group denied access that the mode bits appear to allow. (The presence of DENY ACEs may also lead to such behavior, but DENY ACEs are expected to be more rarely used.)

モードビットが許可しているように見えるファイルのグループのメンバーがアクセスを拒否しているのを見たユーザーを混乱させることが判明しているため、実装はこれを行わないようにしてください。 (DENY ACEの存在もこのような動作につながる可能性がありますが、DENY ACEが使用されることはほとんどありません。)

The same user confusion seen when fetching the mode also results if setting the mode does not effectively control permissions for the owner, group, and other users; this motivates some of the requirements that follow.


6.4. Requirements
6.4. 必要条件

The server that supports both mode and ACL must take care to synchronize the MODE4_*USR, MODE4_*GRP, and MODE4_*OTH bits with the ACEs that have respective who fields of "OWNER@", "GROUP@", and "EVERYONE@". This way, the client can see if semantically equivalent access permissions exist whether the client asks for the owner, owner_group, and mode attributes or for just the ACL.

モードとACLの両方をサポートするサーバーは、MODE4_ * USR、MODE4_ * GRP、およびMODE4_ * OTHビットを、「OWNER @」、「GROUP @」、および「EVERYONE @」のそれぞれのwhoフィールドを持つACEと同期するように注意する必要があります」このようにして、クライアントは、クライアントが所有者、owner_group、およびモード属性を要求する場合でも、ACLのみを要求する場合でも、意味的に同等のアクセス許可が存在するかどうかを確認できます。

In this section, much is made of the methods in Section 6.3.2. Many requirements refer to this section. But note that the methods have behaviors specified with "SHOULD". This is intentional, to avoid invalidating existing implementations that compute the mode according to the withdrawn POSIX ACL draft (1003.1e draft 17), rather than by actual permissions on owner, group, and other.

このセクションでは、セクション6.3.2のメソッドから多くのことが行われます。多くの要件がこのセクションを参照しています。ただし、メソッドには「SHOULD」で指定された動作があることに注意してください。これは、所有者、グループなどに対する実際の権限ではなく、撤回されたPOSIX ACLドラフト(1003.1eドラフト17)に従ってモードを計算する既存の実装を無効にすることを避けるための意図的なものです。

6.4.1. Setting the Mode and/or ACL Attributes
6.4.1. モードおよび/またはACL属性の設定

In the case where a server supports the sacl or dacl attribute, in addition to the acl attribute, the server MUST fail a request to set the acl attribute simultaneously with a dacl or sacl attribute. The error to be given is NFS4ERR_ATTRNOTSUPP.

In the case where a server supports the sacl or dacl attribute, in addition to the acl attribute, the server MUST fail a request to set the acl attribute simultaneously with a dacl or sacl attribute. The error to be given is NFS4ERR_ATTRNOTSUPP. Setting Mode and not ACL ACLではなく設定モード

When any of the nine low-order mode bits are subject to change, either because the mode attribute was set or because the mode_set_masked attribute was set and the mask included one or more bits from the nine low-order mode bits, and no ACL attribute is explicitly set, the acl and dacl attributes must be modified in accordance with the updated value of those bits. This must happen even if the value of the low-order bits is the same after the mode is set as before.

When any of the nine low-order mode bits are subject to change, either because the mode attribute was set or because the mode_set_masked attribute was set and the mask included one or more bits from the nine low-order mode bits, and no ACL attribute is explicitly set, the acl and dacl attributes must be modified in accordance with the updated value of those bits. This must happen even if the value of the low-order bits is the same after the mode is set as before.

Note that any AUDIT or ALARM ACEs (hence any ACEs in the sacl attribute) are unaffected by changes to the mode.

AUDITまたはALARM ACE(つまり、sacl属性のACE)は、モードの変更による影響を受けないことに注意してください。

In cases in which the permissions bits are subject to change, the acl and dacl attributes MUST be modified such that the mode computed via the method in Section 6.3.2 yields the low-order nine bits (MODE4_R*, MODE4_W*, MODE4_X*) of the mode attribute as modified by the attribute change. The ACL attributes SHOULD also be modified such that:

許可ビットが変更される可能性がある場合、セクション6.3.2のメソッドを介して計算されたモードが下位9ビット(MODE4_R *、MODE4_W *、MODE4_X *)を生成するように、aclおよびdacl属性を変更する必要があります。属性変更によって変更されたモード属性の。 ACL属性は、次のように変更する必要もあります。

1. If MODE4_RGRP is not set, entities explicitly listed in the ACL other than OWNER@ and EVERYONE@ SHOULD NOT be granted ACE4_READ_DATA.

1. MODE4_RGRPが設定されていない場合、OWNER @およびEVERYONE @以外のACLに明示的にリストされているエンティティには、ACE4_READ_DATAを付与しないでください。

2. If MODE4_WGRP is not set, entities explicitly listed in the ACL other than OWNER@ and EVERYONE@ SHOULD NOT be granted ACE4_WRITE_DATA or ACE4_APPEND_DATA.

2. MODE4_WGRPが設定されていない場合、OWNER @およびEVERYONE @以外のACLに明示的にリストされているエンティティには、ACE4_WRITE_DATAまたはACE4_APPEND_DATAを付与しないでください。

3. If MODE4_XGRP is not set, entities explicitly listed in the ACL other than OWNER@ and EVERYONE@ SHOULD NOT be granted ACE4_EXECUTE.

3. If MODE4_XGRP is not set, entities explicitly listed in the ACL other than OWNER@ and EVERYONE@ SHOULD NOT be granted ACE4_EXECUTE.

Access mask bits other than those listed above, appearing in ALLOW ACEs, MAY also be disabled.

ALLOW ACEに表示される上記以外のアクセスマスクビットも無効にできます(MAY)。

Note that ACEs with the flag ACE4_INHERIT_ONLY_ACE set do not affect the permissions of the ACL itself, nor do ACEs of the type AUDIT and ALARM. As such, it is desirable to leave these ACEs unmodified when modifying the ACL attributes.


Also note that the requirement may be met by discarding the acl and dacl, in favor of an ACL that represents the mode and only the mode. This is permitted, but it is preferable for a server to preserve as much of the ACL as possible without violating the above requirements. Discarding the ACL makes it effectively impossible for a file created with a mode attribute to inherit an ACL (see Section 6.4.3).

また、モードとモードのみを表すACLを優先して、aclとdaclを破棄することで要件が満たされる場合があることにも注意してください。これは許可されていますが、サーバーが上記の要件に違反することなく、できるだけ多くのACLを保持することをお勧めします。 ACLを破棄すると、mode属性で作成されたファイルがACLを継承することが事実上不可能になります(6.4.3項を参照)。 Setting ACL and Not Mode ACLを設定し、モードを設定しない

When setting the acl or dacl and not setting the mode or mode_set_masked attributes, the permission bits of the mode need to be derived from the ACL. In this case, the ACL attribute SHOULD be set as given. The nine low-order bits of the mode attribute (MODE4_R*, MODE4_W*, MODE4_X*) MUST be modified to match the result of the method in Section 6.3.2. The three high-order bits of the mode (MODE4_SUID, MODE4_SGID, MODE4_SVTX) SHOULD remain unchanged.

aclまたはdaclを設定し、modeまたはmode_set_masked属性を設定しない場合は、モードの許可ビットをACLから取得する必要があります。この場合、ACL属性は指定されたとおりに設定する必要があります(SHOULD)。モード属性の下位9ビット(MODE4_R *、MODE4_W *、MODE4_X *)は、セクション6.3.2のメソッドの結果と一致するように変更する必要があります。モードの3つの上位ビット(MODE4_SUID、MODE4_SGID、MODE4_SVTX)は変更されないままにする必要があります。 Setting Both ACL and Mode ACLとモードの両方の設定

When setting both the mode (includes use of either the mode attribute or the mode_set_masked attribute) and the acl or dacl attributes in the same operation, the attributes MUST be applied in this order: mode (or mode_set_masked), then ACL. The mode-related attribute is set as given, then the ACL attribute is set as given, possibly changing the final mode, as described above in Section


6.4.2. Retrieving the Mode and/or ACL Attributes
6.4.2. モードおよび/またはACL属性の取得

This section applies only to servers that support both the mode and ACL attributes.

This section applies only to servers that support both the mode and ACL attributes.

Some server implementations may have a concept of "objects without ACLs", meaning that all permissions are granted and denied according to the mode attribute and that no ACL attribute is stored for that object. If an ACL attribute is requested of such a server, the server SHOULD return an ACL that does not conflict with the mode; that is to say, the ACL returned SHOULD represent the nine low-order bits of the mode attribute (MODE4_R*, MODE4_W*, MODE4_X*) as described in Section 6.3.2.

一部のサーバー実装には、「ACLのないオブジェクト」という概念がある場合があります。つまり、すべての権限はモード属性に従って付与および拒否され、そのオブジェクトのACL属性は保存されません。そのようなサーバーのACL属性が要求された場合、サーバーはモードと競合しないACLを返す必要があります(SHOULD)。つまり、セクション6.3.2で説明されているように、返されるACLはモード属性(MODE4_R *、MODE4_W *、MODE4_X *)の下位9ビットを表す必要があります(SHOULD)。

For other server implementations, the ACL attribute is always present for every object. Such servers SHOULD store at least the three high-order bits of the mode attribute (MODE4_SUID, MODE4_SGID, MODE4_SVTX). The server SHOULD return a mode attribute if one is requested, and the low-order nine bits of the mode (MODE4_R*, MODE4_W*, MODE4_X*) MUST match the result of applying the method in Section 6.3.2 to the ACL attribute.

他のサーバー実装の場合、ACL属性は常にすべてのオブジェクトに存在します。このようなサーバーは、モード属性(MODE4_SUID、MODE4_SGID、MODE4_SVTX)の少なくとも上位3ビットを格納する必要があります(SHOULD)。モード属性が要求された場合、サーバーはモード属性を返す必要があり(SHOULD)、モードの下位9ビット(MODE4_R *、MODE4_W *、MODE4_X *)は、セクション6.3.2のメソッドをACL属性に適用した結果と一致する必要があります。

6.4.3. Creating New Objects
6.4.3. 新しいオブジェクトの作成

If a server supports any ACL attributes, it may use the ACL attributes on the parent directory to compute an initial ACL attribute for a newly created object. This will be referred to as the inherited ACL within this section. The act of adding one or more ACEs to the inherited ACL that are based upon ACEs in the parent directory's ACL will be referred to as inheriting an ACE within this section.


Implementors should standardize what the behavior of CREATE and OPEN must be depending on the presence or absence of the mode and ACL attributes.


1. If just the mode is given in the call:

1. 呼び出しでモードのみが指定されている場合:

In this case, inheritance SHOULD take place, but the mode MUST be applied to the inherited ACL as described in Section, thereby modifying the ACL.


2. If just the ACL is given in the call:

2. 呼び出しでACLのみが指定されている場合:

In this case, inheritance SHOULD NOT take place, and the ACL as defined in the CREATE or OPEN will be set without modification, and the mode modified as in Section

In this case, inheritance SHOULD NOT take place, and the ACL as defined in the CREATE or OPEN will be set without modification, and the mode modified as in Section

3. If both mode and ACL are given in the call:

3. 呼び出しでモードとACLの両方が指定されている場合:

In this case, inheritance SHOULD NOT take place, and both attributes will be set as described in Section

この場合、継承は行われるべきではなく(SHOULD NOT)、両方の属性がセクション6.4.1.3で説明されているように設定されます。

4. If neither mode nor ACL is given in the call:

4. If neither mode nor ACL is given in the call:

In the case where an object is being created without any initial attributes at all, e.g., an OPEN operation with an opentype4 of OPEN4_CREATE and a createmode4 of EXCLUSIVE4, inheritance SHOULD NOT take place (note that EXCLUSIVE4_1 is a better choice of createmode4, since it does permit initial attributes). Instead, the server SHOULD set permissions to deny all access to the newly created object. It is expected that the appropriate client will set the desired attributes in a subsequent SETATTR operation, and the server SHOULD allow that operation to succeed, regardless of what permissions the object is created with. For example, an empty ACL denies all permissions, but the server should allow the owner's SETATTR to succeed even though WRITE_ACL is implicitly denied.


In other cases, inheritance SHOULD take place, and no modifications to the ACL will happen. The mode attribute, if supported, MUST be as computed in Section 6.3.2, with the MODE4_SUID, MODE4_SGID, and MODE4_SVTX bits clear. If no inheritable ACEs exist on the parent directory, the rules for creating acl, dacl, or sacl attributes are implementation defined. If either the dacl or sacl attribute is supported, then the ACL4_DEFAULTED flag SHOULD be set on the newly created attributes.

他の場合では、継承が行われる必要があり(SHOULD)、ACLへの変更は行われません。モード属性は、サポートされている場合、MODE4_SUID、MODE4_SGID、およびMODE4_SVTXビットがクリアされた状態で、セクション6.3.2で計算されたとおりでなければなりません。継承可能なACEが親ディレクトリに存在しない場合、acl、dacl、またはsacl属性を作成するためのルールは、実装によって定義されます。 daclまたはsacl属性のいずれかがサポートされている場合は、新しく作成された属性にACL4_DEFAULTEDフラグを設定する必要があります(SHOULD)。 The Inherited ACL 継承されたACL

If the object being created is not a directory, the inherited ACL SHOULD NOT inherit ACEs from the parent directory ACL unless the ACE4_FILE_INHERIT_FLAG is set.

作成されるオブジェクトがディレクトリでない場合、継承されたACLは、ACE4_FILE_INHERIT_FLAGが設定されていない限り、親ディレクトリACLからACEを継承してはなりません(SHOULD NOT)。

If the object being created is a directory, the inherited ACL should inherit all inheritable ACEs from the parent directory, that is, those that have the ACE4_FILE_INHERIT_ACE or ACE4_DIRECTORY_INHERIT_ACE flag set. If the inheritable ACE has ACE4_FILE_INHERIT_ACE set but ACE4_DIRECTORY_INHERIT_ACE is clear, the inherited ACE on the newly created directory MUST have the ACE4_INHERIT_ONLY_ACE flag set to prevent the directory from being affected by ACEs meant for non-directories.


When a new directory is created, the server MAY split any inherited ACE that is both inheritable and effective (in other words, that has neither ACE4_INHERIT_ONLY_ACE nor ACE4_NO_PROPAGATE_INHERIT_ACE set), into two ACEs, one with no inheritance flags and one with ACE4_INHERIT_ONLY_ACE set. (In the case of a dacl or sacl attribute, both of those ACEs SHOULD also have the ACE4_INHERITED_ACE flag set.) This makes it simpler to modify the effective permissions on the directory without modifying the ACE that is to be inherited to the new directory's children.

新しいディレクトリが作成されると、サーバーは、継承可能かつ有効である(つまり、ACE4_INHERIT_ONLY_ACEもACE4_NO_PROPAGATE_INHERIT_ACEも設定されていない)継承されたACEを、継承フラグのない1つとACE4_INHERIT_ONLY_ACEセットのある2つのACEに分割できます(MAY)。 (daclまたはsacl属性の場合、これらのACEの両方にACE4_INHERITED_ACEフラグも設定されている必要があります。)これにより、新しいディレクトリの子に継承されるACEを変更せずに、ディレクトリの有効なアクセス許可を簡単に変更できます。 。 Automatic Inheritance 自動継承

The acl attribute consists only of an array of ACEs, but the sacl (Section 6.2.3) and dacl (Section 6.2.2) attributes also include an additional flag field.


   struct nfsacl41 {
           aclflag4        na41_flag;
           nfsace4         na41_aces<>;

The flag field applies to the entire sacl or dacl; three flag values are defined:

フラグフィールドは、saclまたはdacl全体に適用されます。 3つのフラグ値が定義されています。

   const ACL4_AUTO_INHERIT         = 0x00000001;
   const ACL4_PROTECTED            = 0x00000002;
   const ACL4_DEFAULTED            = 0x00000004;

and all other bits must be cleared. The ACE4_INHERITED_ACE flag may be set in the ACEs of the sacl or dacl (whereas it must always be cleared in the acl).

他のすべてのビットはクリアする必要があります。 ACE4_INHERITED_ACEフラグは、saclまたはdaclのACEで設定できます(これは常にaclでクリアする必要があります)。

Together these features allow a server to support automatic inheritance, which we now explain in more detail.


Inheritable ACEs are normally inherited by child objects only at the time that the child objects are created; later modifications to inheritable ACEs do not result in modifications to inherited ACEs on descendants.


However, the dacl and sacl provide an OPTIONAL mechanism that allows a client application to propagate changes to inheritable ACEs to an entire directory hierarchy.


A server that supports this performs inheritance at object creation time in the normal way, and SHOULD set the ACE4_INHERITED_ACE flag on any inherited ACEs as they are added to the new object.


A client application such as an ACL editor may then propagate changes to inheritable ACEs on a directory by recursively traversing that directory's descendants and modifying each ACL encountered to remove any ACEs with the ACE4_INHERITED_ACE flag and to replace them by the new inheritable ACEs (also with the ACE4_INHERITED_ACE flag set). It uses the existing ACE inheritance flags in the obvious way to decide which ACEs to propagate. (Note that it may encounter further inheritable ACEs when descending the directory hierarchy and that those will also need to be taken into account when propagating inheritable ACEs to further descendants.)

ACLエディタなどのクライアントアプリケーションは、そのディレクトリの子孫を再帰的にたどり、ACE4_INHERITED_ACEフラグを持つACEを削除し、それらを新しい継承可能なACEで置き換える(また、 ACE4_INHERITED_ACEフラグセット)。伝搬するACEを決定する明白な方法で、既存のACE継承フラグを使用します。 (ディレクトリ階層を降順するときに、さらに継承可能なACEが発生する可能性があること、および継承可能なACEを他の子孫に伝播するときにそれらも考慮する必要があることに注意してください。)

The reach of this propagation may be limited in two ways: first, automatic inheritance is not performed from any directory ACL that has the ACL4_AUTO_INHERIT flag cleared; and second, automatic inheritance stops wherever an ACL with the ACL4_PROTECTED flag is set, preventing modification of that ACL and also (if the ACL is set on a directory) of the ACL on any of the object's descendants.

この伝播の範囲は2つの方法で制限される可能性があります。1つ目は、ACL4_AUTO_INHERITフラグがクリアされているディレクトリACLからの自動継承は実行されません。 2番目に、ACL4_PROTECTEDフラグが設定されたACLが設定されると自動継承が停止し、そのACLの変更と、ACLがディレクトリに設定されている場合はオブジェクトの子孫のACLが変更されなくなります。

This propagation is performed independently for the sacl and the dacl attributes; thus, the ACL4_AUTO_INHERIT and ACL4_PROTECTED flags may be independently set for the sacl and the dacl, and propagation of one type of acl may continue down a hierarchy even where propagation of the other acl has stopped.


New objects should be created with a dacl and a sacl that both have the ACL4_PROTECTED flag cleared and the ACL4_AUTO_INHERIT flag set to the same value as that on, respectively, the sacl or dacl of the parent object.

New objects should be created with a dacl and a sacl that both have the ACL4_PROTECTED flag cleared and the ACL4_AUTO_INHERIT flag set to the same value as that on, respectively, the sacl or dacl of the parent object.

Both the dacl and sacl attributes are RECOMMENDED, and a server may support one without supporting the other.


A server that supports both the old acl attribute and one or both of the new dacl or sacl attributes must do so in such a way as to keep all three attributes consistent with each other. Thus, the ACEs reported in the acl attribute should be the union of the ACEs reported in the dacl and sacl attributes, except that the ACE4_INHERITED_ACE flag must be cleared from the ACEs in the acl. And of course a client that queries only the acl will be unable to determine the values of the sacl or dacl flag fields.

A server that supports both the old acl attribute and one or both of the new dacl or sacl attributes must do so in such a way as to keep all three attributes consistent with each other. Thus, the ACEs reported in the acl attribute should be the union of the ACEs reported in the dacl and sacl attributes, except that the ACE4_INHERITED_ACE flag must be cleared from the ACEs in the acl. And of course a client that queries only the acl will be unable to determine the values of the sacl or dacl flag fields.

When a client performs a SETATTR for the acl attribute, the server SHOULD set the ACL4_PROTECTED flag to true on both the sacl and the dacl. By using the acl attribute, as opposed to the dacl or sacl attributes, the client signals that it may not understand automatic inheritance, and thus cannot be trusted to set an ACL for which automatic inheritance would make sense.

クライアントがacl属性のSETATTRを実行すると、サーバーはsaclとdaclの両方でACL4_PROTECTEDフラグをtrueに設定する必要があります(SHOULD)。 daclまたはsacl属性ではなく、acl属性を使用すると、クライアントは自動継承を理解できない可能性があり、自動継承が意味のあるACLの設定を信頼できないことを通知します。

When a client application queries an ACL, modifies it, and sets it again, it should leave any ACEs marked with ACE4_INHERITED_ACE unchanged, in their original order, at the end of the ACL. If the application is unable to do this, it should set the ACL4_PROTECTED flag. This behavior is not enforced by servers, but violations of this rule may lead to unexpected results when applications perform automatic inheritance.


If a server also supports the mode attribute, it SHOULD set the mode in such a way that leaves inherited ACEs unchanged, in their original order, at the end of the ACL. If it is unable to do so, it SHOULD set the ACL4_PROTECTED flag on the file's dacl.


Finally, in the case where the request that creates a new file or directory does not also set permissions for that file or directory, and there are also no ACEs to inherit from the parent's directory, then the server's choice of ACL for the new object is implementation-dependent. In this case, the server SHOULD set the ACL4_DEFAULTED flag on the ACL it chooses for the new object. An application performing automatic inheritance takes the ACL4_DEFAULTED flag as a sign that the ACL should be completely replaced by one generated using the automatic inheritance rules.


7. Single-Server Namespace
7. 単一サーバー名前空間

This section describes the NFSv4 single-server namespace. Single-server namespaces may be presented directly to clients, or they may be used as a basis to form larger multi-server namespaces (e.g., site-wide or organization-wide) to be presented to clients, as described in Section 11.


7.1. Server Exports
7.1. サーバーのエクスポート

On a UNIX server, the namespace describes all the files reachable by pathnames under the root directory or "/". On a Windows server, the namespace constitutes all the files on disks named by mapped disk letters. NFS server administrators rarely make the entire server's file system namespace available to NFS clients. More often, portions of the namespace are made available via an "export" feature. In previous versions of the NFS protocol, the root filehandle for each export is obtained through the MOUNT protocol; the client sent a string that identified the export name within the namespace and the server returned the root filehandle for that export. The MOUNT protocol also provided an EXPORTS procedure that enumerated the server's exports.

UNIXサーバーでは、ネームスペースは、ルートディレクトリまたは「/」の下のパス名によって到達可能なすべてのファイルを記述します。 Windowsサーバーでは、名前空間は、マップされたディスク文字で名前が付けられたディスク上のすべてのファイルを構成します。 NFSサーバー管理者がサーバーのファイルシステム全体の名前空間をNFSクライアントが利用できるようにすることはほとんどありません。多くの場合、名前空間の一部は、「エクスポート」機能を介して利用可能になります。以前のバージョンのNFSプロトコルでは、各エクスポートのルートファイルハンドルはMOUNTプロトコルを介して取得されました。クライアントは名前空間内のエクスポート名を識別する文字列を送信し、サーバーはそのエクスポートのルートファイルハンドルを返しました。 MOUNTプロトコルは、サーバーのエクスポートを列挙するEXPORTSプロシージャも提供しました。

7.2. Browsing Exports
7.2. エクスポートの閲覧

The NFSv4.1 protocol provides a root filehandle that clients can use to obtain filehandles for the exports of a particular server, via a series of LOOKUP operations within a COMPOUND, to traverse a path. A common user experience is to use a graphical user interface (perhaps a file "Open" dialog window) to find a file via progressive browsing through a directory tree. The client must be able to move from one export to another export via single-component, progressive LOOKUP operations.


This style of browsing is not well supported by the NFSv3 protocol. In NFSv3, the client expects all LOOKUP operations to remain within a single server file system. For example, the device attribute will not change. This prevents a client from taking namespace paths that span exports.

このスタイルのブラウジングは、NFSv3プロトコルでは十分にサポートされていません。 NFSv3では、クライアントはすべてのLOOKUP操作が単一のサーバーファイルシステム内に留まることを期待しています。たとえば、デバイス属性は変更されません。これにより、クライアントは、複数のエクスポートにまたがる名前空間パスを取得できなくなります。

In the case of NFSv3, an automounter on the client can obtain a snapshot of the server's namespace using the EXPORTS procedure of the MOUNT protocol. If it understands the server's pathname syntax, it can create an image of the server's namespace on the client. The parts of the namespace that are not exported by the server are filled in with directories that might be constructed similarly to an NFSv4.1 "pseudo file system" (see Section 7.3) that allows the user to browse from one mounted file system to another. There is a drawback to this representation of the server's namespace on the client: it is static. If the server administrator adds a new export, the client will be unaware of it.


7.3. Server Pseudo File System
7.3. サーバー疑似ファイルシステム

NFSv4.1 servers avoid this namespace inconsistency by presenting all the exports for a given server within the framework of a single namespace for that server. An NFSv4.1 client uses LOOKUP and READDIR operations to browse seamlessly from one export to another.

NFSv4.1サーバーは、特定のサーバーのすべてのエクスポートを、そのサーバーの単一の名前空間のフレームワーク内に提示することにより、この名前空間の不整合を回避します。 NFSv4.1クライアントは、LOOKUPおよびREADDIR操作を使用して、1つのエクスポートから別のエクスポートへシームレスにブラウズします。

Where there are portions of the server namespace that are not exported, clients require some way of traversing those portions to reach actual exported file systems. A technique that servers may use to provide for this is to bridge the unexported portion of the namespace via a "pseudo file system" that provides a view of exported directories only. A pseudo file system has a unique fsid and behaves like a normal, read-only file system.


Based on the construction of the server's namespace, it is possible that multiple pseudo file systems may exist. For example,


           /a              pseudo file system
           /a/b            real file system
           /a/b/c          pseudo file system
           /a/b/c/d        real file system

Each of the pseudo file systems is considered a separate entity and therefore MUST have its own fsid, unique among all the fsids for that server.


7.4. Multiple Roots
7.4. 複数の根

Certain operating environments are sometimes described as having "multiple roots". In such environments, individual file systems are commonly represented by disk or volume names. NFSv4 servers for these platforms can construct a pseudo file system above these root names so that disk letters or volume names are simply directory names in the pseudo root.


7.5. Filehandle Volatility
7.5. ファイルハンドルのボラティリティ

The nature of the server's pseudo file system is that it is a logical representation of file system(s) available from the server. Therefore, the pseudo file system is most likely constructed dynamically when the server is first instantiated. It is expected that the pseudo file system may not have an on-disk counterpart from which persistent filehandles could be constructed. Even though it is preferable that the server provide persistent filehandles for the pseudo file system, the NFS client should expect that pseudo file system filehandles are volatile. This can be confirmed by checking the associated "fh_expire_type" attribute for those filehandles in question. If the filehandles are volatile, the NFS client must be prepared to recover a filehandle value (e.g., with a series of LOOKUP operations) when receiving an error of NFS4ERR_FHEXPIRED.


Because it is quite likely that servers will implement pseudo file systems using volatile filehandles, clients need to be prepared for them, rather than assuming that all filehandles will be persistent.


7.6. Exported Root
7.6. エクスポートされたルート

If the server's root file system is exported, one might conclude that a pseudo file system is unneeded. This is not necessarily so. Assume the following file systems on a server:


           /       fs1  (exported)
           /a      fs2  (not exported)
           /a/b    fs3  (exported)

Because fs2 is not exported, fs3 cannot be reached with simple LOOKUPs. The server must bridge the gap with a pseudo file system.


7.7. Mount Point Crossing
7.7. マウントポイントクロッシング

The server file system environment may be constructed in such a way that one file system contains a directory that is 'covered' or mounted upon by a second file system. For example:

The server file system environment may be constructed in such a way that one file system contains a directory that is 'covered' or mounted upon by a second file system. For example:

           /a/b            (file system 1)
           /a/b/c/d        (file system 2)

The pseudo file system for this server may be constructed to look like:


           /               (place holder/not exported)
           /a/b            (file system 1)
           /a/b/c/d        (file system 2)

It is the server's responsibility to present the pseudo file system that is complete to the client. If the client sends a LOOKUP request for the path /a/b/c/d, the server's response is the filehandle of the root of the file system /a/b/c/d. In previous versions of the NFS protocol, the server would respond with the filehandle of directory /a/b/c/d within the file system /a/b.

完全な疑似ファイルシステムをクライアントに提示するのはサーバーの責任です。クライアントがパス/ a / b / c / dのLOOKUP要求を送信する場合、サーバーの応答はファイルシステム/ a / b / c / dのルートのファイルハンドルです。以前のバージョンのNFSプロトコルでは、サーバーはファイルシステム/ a / b内のディレクトリ/ a / b / c / dのファイルハンドルで応答しました。

The NFS client will be able to determine if it crosses a server mount point by a change in the value of the "fsid" attribute.


7.8. Security Policy and Namespace Presentation
7.8. セキュリティポリシーと名前空間の表示

Because NFSv4 clients possess the ability to change the security mechanisms used, after determining what is allowed, by using SECINFO and SECINFO_NONAME, the server SHOULD NOT present a different view of the namespace based on the security mechanism being used by a client. Instead, it should present a consistent view and return NFS4ERR_WRONGSEC if an attempt is made to access data with an inappropriate security mechanism.


If security considerations make it necessary to hide the existence of a particular file system, as opposed to all of the data within it, the server can apply the security policy of a shared resource in the server's namespace to components of the resource's ancestors. For example:


           /                           (place holder/not exported)
           /a/b                        (file system 1)
           /a/b/MySecretProject        (file system 2)

The /a/b/MySecretProject directory is a real file system and is the shared resource. Suppose the security policy for /a/b/ MySecretProject is Kerberos with integrity and it is desired to limit knowledge of the existence of this file system. In this case, the server should apply the same security policy to /a/b. This allows for knowledge of the existence of a file system to be secured when desirable.

/ a / b / MySecretProjectディレクトリは実際のファイルシステムであり、共有リソースです。 / a / b / MySecretProjectのセキュリティポリシーが整合性のあるKerberosであり、このファイルシステムの存在に関する知識を制限することが望ましいと仮定します。この場合、サーバーは同じセキュリティポリシーを/ a / bに適用する必要があります。これにより、必要に応じて、ファイルシステムの存在に関する情報を保護できます。

For the case of the use of multiple, disjoint security mechanisms in the server's resources, applying that sort of policy would result in the higher-level file system not being accessible using any security flavor. Therefore, that sort of configuration is not compatible with hiding the existence (as opposed to the contents) from clients using multiple disjoint sets of security flavors.


In other circumstances, a desirable policy is for the security of a particular object in the server's namespace to include the union of all security mechanisms of all direct descendants. A common and convenient practice, unless strong security requirements dictate otherwise, is to make the entire the pseudo file system accessible by all of the valid security mechanisms.