Internet Research Task Force (IRTF)                             A. Doria
Request for Comments: 5772                                           LTU
Category: Historic                                             E. Davies
ISSN: 2070-1721                                         Folly Consulting
                                                           F. Kastenholz
                                                        BBN Technologies
                                                           February 2010
    A Set of Possible Requirements for a Future Routing Architecture



The requirements for routing architectures described in this document were produced by two sub-groups under the IRTF Routing Research Group (RRG) in 2001, with some editorial updates up to 2006. The two sub-groups worked independently, and the resulting requirements represent two separate views of the problem and of what is required to fix the problem. This document may usefully serve as part of the recommended reading for anyone who works on routing architecture designs for the Internet in the future.


The document is published with the support of the IRTF RRG as a record of the work completed at that time, but with the understanding that it does not necessarily represent either the latest technical understanding or the technical consensus of the research group at the date of publication.

文書は、その時点で完了した作業の記録としてIRTF RRGの支援を受けて発表されたが、それは必ずしも発行日で、最新の技術の理解や研究グループの技術的なコンセンサスのいずれかを表すものではないことを理解しています。

Status of This Memo


This document is not an Internet Standards Track specification; it is published for the historical record.


This document defines a Historic Document for the Internet community. This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the results of Internet-related research and development activities. These results might not be suitable for deployment. This RFC represents the individual opinion(s) of one or more members of the Routing Research Group of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

この文書は、インターネットコミュニティのための歴史的な文書を定義します。この文書はインターネットResearch Task Force(IRTF)の製品です。 IRTFはインターネット関連の研究開発活動の成果を公表しています。これらの結果は、展開に適していない可能性があります。このRFCはインターネットResearch Task Force(IRTF)のルーティング研究グループの1つまたは複数のメンバーの個々の意見(複数可)を表しています。 IRSGによって公表のために承認されたドキュメントは、インターネット標準の任意のレベルの候補ではありません。 RFC 5741のセクション2を参照してください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

著作権(C)2010 IETF信託とドキュメントの作成者として特定の人物。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

この文書では、BCP 78と、この文書の発行日に有効なIETFドキュメント(に関連IETFトラストの法律の規定に従うものとします。彼らは、この文書に関してあなたの権利と制限を説明するように、慎重にこれらの文書を確認してください。

Table of Contents


   1. Background ......................................................4
   2. Results from Group A ............................................5
      2.1. Group A - Requirements for a Next Generation Routing and
           Addressing Architecture ....................................5
           2.1.1. Architecture ........................................6
           2.1.2. Separable Components ................................6
           2.1.3. Scalable ............................................7
           2.1.4. Lots of Interconnectivity ..........................10
           2.1.5. Random Structure ...................................10
           2.1.6. Multi-Homing .......................................11
           2.1.7. Multi-Path .........................................11
           2.1.8. Convergence ........................................12
           2.1.9. Routing System Security ............................14
           2.1.10. End Host Security .................................16
           2.1.11. Rich Policy .......................................16
           2.1.12. Incremental Deployment ............................19
           2.1.13. Mobility ..........................................19
           2.1.14. Address Portability ...............................20
           2.1.15. Multi-Protocol ....................................20
           2.1.16. Abstraction .......................................20
           2.1.17. Simplicity ........................................21
           2.1.18. Robustness ........................................21
           2.1.19. Media Independence ................................22
           2.1.20. Stand-Alone .......................................22
           2.1.21. Safety of Configuration ...........................23
           2.1.22. Renumbering .......................................23
           2.1.23. Multi-Prefix ......................................23
           2.1.24. Cooperative Anarchy ...............................23
           2.1.25. Network-Layer Protocols and Forwarding Model ......23
           2.1.26. Routing Algorithm .................................23
           2.1.27. Positive Benefit ..................................24
           2.1.28. Administrative Entities and the IGP/EGP Split .....24
      2.2. Non-Requirements ..........................................25
           2.2.1. Forwarding Table Optimization ......................25
           2.2.2. Traffic Engineering ................................25
           2.2.3. Multicast ..........................................25
           2.2.4. Quality of Service (QoS) ...........................26
           2.2.5. IP Prefix Aggregation ..............................26
           2.2.6. Perfect Safety .....................................26
           2.2.7. Dynamic Load Balancing .............................27
           2.2.8. Renumbering of Hosts and Routers ...................27
           2.2.9. Host Mobility ......................................27
           2.2.10. Backward Compatibility ............................27
   3. Requirements from Group B ......................................27
      3.1. Group B - Future Domain Routing Requirements ..............28
      3.2. Underlying Principles .....................................28
           3.2.1. Inter-Domain and Intra-Domain ......................29
           3.2.2. Influences on a Changing Network ...................29
           3.2.3. High-Level Goals ...................................31
      3.3. High-Level User Requirements ..............................35
           3.3.1. Organizational Users ...............................35
           3.3.2. Individual Users ...................................37
      3.4. Mandated Constraints ......................................38
           3.4.1. The Federated Environment ..........................39
           3.4.2. Working with Different Sorts of Networks ...........39
           3.4.3. Delivering Resilient Service .......................39
           3.4.4. When Will the New Solution Be Required? ............40
      3.5. Assumptions ...............................................40
      3.6. Functional Requirements ...................................42
           3.6.1. Topology ...........................................43
           3.6.2. Distribution .......................................44
           3.6.3. Addressing .........................................48
           3.6.4. Statistics Support .................................50
           3.6.5. Management Requirements ............................50
           3.6.6. Provability ........................................51
           3.6.7. Traffic Engineering ................................52
           3.6.8. Support for Middleboxes ............................54
      3.7. Performance Requirements ..................................54
      3.8. Backward Compatibility (Cutover) and Maintainability ......55
      3.9. Security Requirements .....................................56
      3.10. Debatable Issues .........................................57
           3.10.1. Network Modeling ..................................58
           3.10.2. System Modeling ...................................58
           3.10.3. One, Two, or Many Protocols .......................59
           3.10.4. Class of Protocol .................................59
           3.10.5. Map Abstraction ...................................59
           3.10.6. Clear Identification for All Entities .............60
           3.10.7. Robustness and Redundancy .........................60
           3.10.8. Hierarchy .........................................60
           3.10.9. Control Theory ....................................61
           3.10.10. Byzantium ........................................61
           3.10.11. VPN Support ......................................61
           3.10.12. End-to-End Reliability ...........................62
           3.10.13. End-to-End Transparency ..........................62
   4. Security Considerations ........................................62
   5. IANA Considerations ............................................63
   6. Acknowledgments ................................................63
   7. Informative References .........................................65
1. Background

In 2001, the IRTF Routing Research Group (IRTF RRG) chairs, Abha Ahuja and Sean Doran, decided to establish a sub-group to look at requirements for inter-domain routing (IDR). A group of well-known routing experts was assembled to develop requirements for a new routing architecture. Their mandate was to approach the problem starting from a blank slate. This group was free to take any approach, including a revolutionary approach, in developing requirements for solving the problems they saw in inter-domain routing.

2001年には、IRTFのルーティング研究グループ(IRTF RRG)椅子、アブハアフジャとショーン・ドーランは、ドメイン間ルーティング(IDR)の要件を見て、サブグループを設立することを決定しました。よく知られているルーティングの専門家のグループは、新たなルーティングアーキテクチャの要件を開発するために組み立てました。彼らの任務は、白紙の状態から始めて問題にアプローチすることでした。このグループは、彼らがドメイン間ルーティングで見た問題を解決するための要件を開発する際に、革新的なアプローチを含む任意のアプローチを取るために自由でした。

Simultaneously, an independent effort was started in Sweden with a similar goal. A team, calling itself Babylon, with participation from vendors, service providers, and academia assembled to understand the history of inter-domain routing, to research the problems seen by the service providers, and to develop a proposal of requirements for a follow-on to the current routing architecture. This group's remit required an evolutionary approach starting from current routing architecture and practice. In other words, the group limited itself to developing an evolutionary strategy. The Babylon group was later folded into the IRTF RRG as Sub-Group B to distinguish it from the original RRG Sub-Group A.

同時に、独立した努力は、同様の目的で、スウェーデンで開始されました。ベンダー、サービスプロバイダー、および学界からの参加を得て、自らバビロンを呼び出すチームは、ドメイン間ルーティングの歴史を理解するために、サービスプロバイダから見た問題を調査するために、そして後続のための要件の提案を開発するために組み立て現在のルーティングアーキテクチャへ。このグループの任務は、現在のルーティングアーキテクチャと実践から始まる進化のアプローチが必要。換言すれば、グループは、進化戦略の開発に自分自身を制限しました。バビロン基は、後に元のRRGサブグループAからそれを区別するためにサブグループBとしてIRTF RRGに折り畳まれました

One of the questions that arose while the groups were working in isolation was whether there would be many similarities between their sets of requirements. That is, would the requirements that grew from a blank sheet of paper resemble those that started with the evolutionary approach? As can be seen from reading the two sets of requirements, there were many areas of fundamental agreement but some areas of disagreement.


There were suggestions within the RRG that the two teams should work together to create a single set of requirements. Since these requirements are only guidelines to future work, however, some felt that doing so would risk losing content without gaining any particular advantage. It is not as if any group, for example, the IRTF RRG or the IETF Routing Area, was expected to use these requirements as written and to create an architecture that met these requirements. Rather, the requirements were in practice strong recommendations for a way to proceed in creating a new routing architecture. In the end, the decision was made to include the results of both efforts, side by side, in one document.

2つのチームが要件の一つのセットを作成するために協力すべきであるRRG内の提案がありました。これらの要件は、将来の仕事への唯一のガイドラインですので、しかし、いくつかはそうすることが任意の特定の利点を得ることなく、コンテンツを失う危険だろうと感じました。任意のグループかのように、例えば、IRTF RRGまたはIETFルーティングエリアは、書かれたように、これらの要件を使用すると、これらの要件を満たしアーキテクチャを作成することが期待されたされていません。むしろ、要件は、新たなルーティングアーキテクチャを作成して進行する方法を実際の強い勧告していました。最後に、決定は、一つの文書の両方の努力、横並びの結果を含むように作製しました。

This document contains the two requirement sets produced by the teams. The text has received only editorial modifications; the requirements themselves have been left unaltered. Whenever the editors felt that conditions had changed in the few years since the text was written, an editors' note has been added to the text.


In reading this document, it is important to keep in mind that all of these requirements are suggestions, which are laid out to assist those interested in developing new routing architectures. It is also important to remember that, while the people working on these suggestions have done their best to make intelligent suggestions, there are no guarantees. So a reader of this document should not treat what it says as absolute, nor treat every suggestion as necessary. No architecture is expected to fulfill every "requirement". Hopefully, though, future architectures will consider what is offered in this document.


The IRTF RRG supported publication of this document as a historical record of the work completed on the understanding that it does not necessarily represent either the latest technical understanding or the technical consensus of the research group at the time of publication. The document has had substantial review by members of the two teams, other members of the IRTF RRG, and additional experts over the years.

IRTF RRGは、それが必ずしも公開時点での最新の技術の理解や研究グループの技術的なコンセンサスのいずれかを表すものではないことを理解した上で完了した作業の歴史的な記録として、本書の出版をサポート。文書には、年間で、両チームのメンバーは、IRTFのRRGの他のメンバー、および追加の専門家による大幅な見直しがありました。

Finally, this document does not make any claims that it is possible to have a practical solution that meets all the listed requirements.


2. Results from Group A

This section presents the results of the work done by Sub-Group A of the IRTF RRG during 2001-2002. The work originally appeared under the title: "Requirements For a Next Generation Routing and Addressing Architecture" and was edited by Frank Kastenholz.

このセクションでは、2001年から2002年の間、IRTF RRGのサブグループAで行われた仕事の結果を示します。仕事はもともとタイトルで登場:「次世代ルーティングのための要件とアドレッシングアーキテクチャ」とフランクKastenholzとによって編集されました。

2.1. Group A - Requirements for a Next Generation Routing and Addressing Architecture

2.1. グループA - 次世代ルーティングとアドレッシングのアーキテクチャの要件

The requirements presented in this section are not presented in any particular order.


2.1.1. Architecture
2.1.1. 建築

The new routing and addressing protocols, data structures, and algorithms need to be developed from a clear, well thought-out, and documented architecture.


The new routing and addressing system must have an architectural specification that describes all of the routing and addressing elements, their interactions, what functions the system performs, and how it goes about performing them. The architectural specification does not go into issues such as protocol and data structure design.


The architecture should be agnostic with regard to specific algorithms and protocols.


Doing architecture before doing detailed protocol design is good engineering practice. This allows the architecture to be reviewed and commented upon, with changes made as necessary, when it is still easy to do so. Also, by producing an architecture, the eventual users of the protocols (the operations community) will have a better understanding of how the designers of the protocols meant them to be used.


2.1.2. Separable Components
2.1.2. 分離可能なコンポーネント

The architecture must place different functions into separate components.


Separating functions, capabilities, and so forth into individual components and making each component "stand alone" is generally considered by system architects to be "A Good Thing". It allows individual elements of the system to be designed and tuned to do their jobs "very well". It also allows for piecemeal replacement and upgrading of elements as new technologies and algorithms become available.


The architecture must have the ability to replace or upgrade existing components and to add new ones, without disrupting the remaining parts of the system. Operators must be able to roll out these changes and additions incrementally (i.e., no "flag days"). These abilities are needed to allow the architecture to evolve as the Internet changes.


The architecture specification shall define each of these components, their jobs, and their interactions.


Some thoughts to consider along these lines are:


o Making topology and addressing separate subsystems. This may allow highly optimized topology management and discovery without constraining the addressing structure or physical topology in unacceptable ways.


o Separate "fault detection and healing" from basic topology. From Mike O'Dell:


         Historically the same machinery is used for both.  While
         attractive for many reasons, the availability of exogenous
         topology information (i.e., the intended topology) should, it
         seems, make some tasks easier than the general case of starting
         with zero knowledge.  It certainly helps with recovery in the
         case of constraint satisfaction.  In fact, the intended
         topology is a powerful way to state certain kinds of policy.

o Making policy definition and application a separate subsystem, layered over the others.


The architecture should also separate topology, routing, and addressing from the application that uses those components. This implies that applications such as policy definition, forwarding, and circuit and tunnel management are separate subsystems layered on top of the basic topology, routing, and addressing systems.


2.1.3. Scalable
2.1.3. 可変的な、測定できる、登れる、はがせる

Scaling is the primary problem facing the routing and addressing architecture today. This problem must be solved and it must be solved for the long term.


The architecture must support a large and complex network. Ideally, it will serve our needs for the next 20 years. Unfortunately:


1. we do not know how big the Internet will grow over that time, and

2. the architecture developed from these requirements may change the fundamental structure of the Internet and therefore its growth patterns. This change makes it difficult to predict future growth patterns of the Internet.


As a result, we can't quantify the requirement in any meaningful way. Using today's architectural elements as a mechanism for describing things, we believe that the network could grow to:


1. tens of thousands of ASs
          Editors' Note: As of 2005, this level had already been

2. tens to hundreds of millions of prefixes, during the lifetime of this architecture.


These sizes are given as a "flavor" for how we expect the Internet to grow. We fully believe that any new architecture may eliminate some current architectural elements and introduce new ones.


A new routing and addressing architecture designed for a specific network size would be inappropriate. First, the cost of routing calculations is based only in part on the number of ASs or prefixes in the network. The number and locations of the links in the network are also significant factors. Second, past predictions of Internet growth and topology patterns have proven to be wildly inaccurate, so developing an architecture to a specific size goal would at best be shortsighted.


Editors' Note: At the time of these meetings, the BGP statistics kept at sites such as either did not exist or had been running for only a few months. After 5 years of recording public Internet data trends in AS growth, routing table growth can be observed (past) with some short-term prediction. As each year of data collection continues, the ability to observe and predict trends improves. This architecture work pointed out the need for such statistics to improve future routing designs.

編集者注:これらの会議の時には、BGPの統計情報は、www.routeviews.orgなどのサイトに保っも存在していなかったか、ほんの数ヶ月のために実行していました。 ASの成長に公共のインターネットデータの傾向を記録する5年後、ルーティングテーブルの成長は、いくつかの短期予測で(過去)を観察することができます。データ収集の各年が続くと、トレンドを観察し、予測する能力を向上させます。このアーキテクチャの仕事は、将来のルーティングの設計を改善するために、このような統計の必要性を指摘しました。

Therefore, we will not make the scaling requirement based on a specific network size. Instead, the new routing and addressing architecture should have the ability to constrain the increase in load (CPU, memory space and bandwidth, and network bandwidth) on ANY SINGLE ROUTER to be less than these specific functions:


1. The computational power and memory sizes required to execute the routing protocol software and to contain the tables must grow more slowly than hardware capabilities described by Moore's Law, doubling every 18 months. Other observations indicate that memory sizes double every 2 years or so.


2. Network bandwidth and latency are some key constraints on how fast routing protocol updates can be disseminated (and therefore how fast the routing system can adapt to changes). Raw network bandwidth seems to quadruple every 3 years or so. However, it seems that there are some serious physics problems in going faster than 40 Gbit/s (OC768); we should not expect raw network link speed to grow much beyond OC768. On the other hand, for economic reasons, large swathes of the core of the Internet will still operate at lower speeds, possibly as slow as DS3.


          Editors' Note: Technology is running ahead of imagination and
          higher speeds are already common.

Furthermore, in some sections of the Internet, even lower speed links are found. Corporate access links are often T1, or slower. Low-speed radio links exist. Intra-domain links may be T1 or fractional-T1 (or slower).


Therefore, the architecture must not make assumptions about the bandwidth available.


3. The speeds of high-speed RAMs (Static RAMs (SRAMs), used for caches and the like) are growing, though slowly. Because of their use in caches and other very specific applications, these RAMs tend to be small, a few megabits, and the size of these RAMs is not increasing very rapidly.


       On the other hand, the speed of "large" memories (Dynamic RAMs
       (DRAMs)) is increasing even slower than that for the high-speed
       RAMs.  This is because the development of these RAMs is driven by
       the PC market, where size is very important, and low speed can be
       made up for by better caches.

Memory access rates should not be expected to increase significantly.


Editors' Note: Various techniques have significantly increased memory bandwidth. 800 MHz is now possible, compared with less than 100 MHz in the year 2000. This does not, however, contradict the next paragraph, but rather just extends the timescales somewhat.

編集者注:種々の技術が大幅にメモリ帯域幅を増加しています。 800 MHzのは、2000年に100 MHz以下と比較して、可能になりましたこれは、しかし、次の段落と矛盾するのではなく、ただ、多少の時間スケールを拡張しません。

The growth in resources available to any one router will eventually slow down. It may even stop. Even so, the network will continue to grow. The routing and addressing architecture must continue to scale in even this extreme condition. We cannot continue to add more computing power to routers forever. Other strategies must be available. Some possible strategies are hierarchy, abstraction, and aggregation of topology information.


2.1.4. Lots of Interconnectivity
2.1.4. 相互接続性の多く

The new routing and addressing architecture must be able to cope with a high degree of interconnectivity in the Internet. That is, there are large numbers of alternate paths and routes among the various elements. Mechanisms are required to prevent this interconnectivity (and continued growth in interconnectivity) from causing tables, compute time, and routing protocol traffic to grow without bound. The "cost" to the routing system of an increase in complexity must be limited in scope; sections of the network that do not see, or do not care about, the complexity ought not pay the cost of that complexity.


Over the past several years, the Internet has seen an increase in interconnectivity. Individual end sites (companies, customers, etc.), ISPs, exchange points, and so on, all are connecting to more "other things". Companies multi-home to multiple ISPs, ISPs peer with more ISPs, and so on. These connections are made for many reasons, such as getting more bandwidth, increased reliability and availability, policy, and so on. However, this increased interconnectivity has a price. It leads to more scaling problems as it increases the number of AS paths in the networks.


Any new architecture must assume that the Internet will become a denser mesh. It must not assume, nor can it dictate, certain patterns or limits on how various elements of the network interconnect.


Another facet of this requirement is that there may be multiple valid, loop-free paths available to a destination. See Section 2.1.7 for a further discussion.


We wryly note that one of the original design goals of IP was to support a large, heavily interconnected network, which would be highly survivable (such as in the face of a nuclear war).


2.1.5. Random Structure
2.1.5. ランダム構造

The routing and addressing architecture must not place any constraints on or make assumptions about the topology or connectedness of the elements comprising the Internet. The routing and addressing architecture must not presume any particular network structure. The network does not have a "nice" structure. In the past, we used to believe that there was this nice "backbone/tier-1/ tier-2/end-site" sort of hierarchy. This is not so. Therefore, any new architecture must not presume any such structure.

ルーティングとアドレス体系は、上の任意の制約を課すか、インターネットを構成する要素のトポロジーやつながりについての仮定をしてはいけません。ルーティングおよびアドレス指定アーキテクチャは、任意の特定のネットワーク構造を推定してはなりません。ネットワークは「素敵な」構造を持っていません。過去には、我々は、階層のこの素敵な「バックボーン/ティア-1 /ティア-2 /エンドサイト」ソートがあったことを信じるために使用されます。これはそうではありません。したがって、任意の新しいアーキテクチャは、どのような構造を推定してはなりません。

Some have proposed that a geographic addressing scheme be used, requiring exchange points to be situated within each geographic "region". There are many reasons why we believe this to be a bad approach, but those arguments are irrelevant. The main issue is that the routing architecture should not presume a specific network structure.


2.1.6. Multi-Homing
2.1.6. マルチホーミング

The architecture must provide multi-homing for all elements of the Internet. That is, multi-homing of hosts, subnetworks, end-sites, "low-level" ISPs, and backbones (i.e., lots of redundant interconnections) must be supported. Among the reasons to multi-home are reliability, load sharing, and performance tuning.


The term "multi-homing" may be interpreted in its broadest sense -- one "place" has multiple connections or links to another "place".

「マルチホーミング」という用語は最も広義に解釈することができる - 一つの「場所」とは、別の「場所」への複数の接続またはリンクがあります。

The architecture must not limit the number of alternate paths to a multi-homed site.


When multi-homing is used, it must be possible to use one, some (more than one but less than all), or all of the available paths to the multi-homed site. The multi-homed site must have the ability to declare which path(s) are used and under what conditions (for example, one path may be declared "primary" and the other "backup" and to be used only when the primary fails).


A current problem in the Internet is that multi-homing leads to undue increases in the size of the BGP routing tables. The new architecture must support multi-homing without undue routing table growth.


2.1.7. Multi-Path
2.1.7. マルチパス

As a corollary to multi-homing, the architecture must allow for multiple paths from a source to a destination to be active at the same time. These paths need not have the same attributes. Policies are to be used to disseminate the attributes and to classify traffic for the different paths.


There must be a rich "language" for specifying the rules for classifying the traffic and assigning classes of traffic to different paths (or prohibiting it from certain paths). The rules should allow traffic to be classified based upon, at least, the following: o IPv6 FlowIDs,

トラフィックを分類し、異なるパスへのトラフィックのクラスを割り当てる(または特定のパスからそれを禁止する)ための規則を指定するための豊富な「言語」がなければなりません。 、IPv6のFlowIDs○:ルールは、トラフィックの分類、に基づいて、少なくとも、以下のことができるようにする必要があります

o Diffserv Code Point (DSCP) values,


o source and/or destination prefixes, or


o random selections at some probability.


A mechanism is needed that allows operators to plan and manage the traffic load on the various paths. To start, this mechanism can be semi-automatic or even manual. Eventually, it ought to become fully automatic.


When multi-path forwarding is used, options must be available to preserve packet ordering where appropriate (such as for individual TCP connections).


Please refer to Section 2.2.7 for a discussion of dynamic load-balancing and management over multiple paths.


2.1.8. Convergence
2.1.8. 収束

The speed of convergence (also called the "stabilization time") is the time it takes for a router's routing processes to reach a new, stable, "solution" (i.e., forwarding information base) after a change someplace in the network. In effect, what happens is that the output of the routing calculations stabilizes -- the Nth iteration of the software produces the same results as the N-1th iteration.

(また、「安定時間」と呼ばれる)の収束の速さは、ルータのルーティングプロセスは、ネットワークの変化どこかの後に新たな、安定した、「溶液」(すなわち、転送情報ベース)に到達するのにかかる時間です。ソフトウェアのN番目の反復は、N-1番目の反復と同じ結果を生成する - 実際には、何が起こるかは、ルーティング計算の出力が安定することです。

The speed of convergence is generally considered to be a function of the number of subnetworks in the network and the amount of connections between those networks. As either number grows, the time it takes to converge increases.


In addition, a change can "ripple" back and forth through the system. One change can go through the system, causing some other router to change its advertised connectivity, causing a new change to ripple through. These oscillations can take a while to work their way out of the network. It is also possible that these ripples never die out. In this situation, the routing and addressing system is unstable; it never converges.

また、変更ができる「リップル」前後にシステムを介し。 1つの変更が波及するための新たな変化を引き起こす、その広告を出して接続を変更するには、いくつかの他のルータを引き起こし、システムを通過することができます。これらの振動は、ネットワークの外にそのように動作するようにしばらく時間がかかることができます。これらの波紋が出て死ぬことはないということも可能です。この状況では、ルーティングおよびアドレス指定システムは不安定です。それが収束することはありません。

Finally, it is more than likely that the routers comprising the Internet never converge simply because the Internet is so large and complex. Assume it takes S seconds for the routers to stabilize on a solution for any one change to the network. Also, assume that changes occur, on average, every C seconds. Because of the size and complexity of the Internet, C is now less than S. Therefore, if a change, C1, occurs at time T, the routing system would stabilize at time T+S, but a new change, C2, will occur at time T+C, which is before T+S. The system will start processing the new change before it's done with the old.

最後に、インターネットは非常に大規模で複雑であるため、インターネットを構成するルータは決して単純に収束していない可能性が高い以上のものです。ルーターは、ネットワークへの任意の1つの変更のためのソリューションを安定させるために、それはS秒を要するものとします。また、変更が発生することを前提とし、平均して、すべてのC秒。なぜなら、インターネットのサイズと複雑さ、Cは現在変化、C1は、時間Tで発生した場合、Sはしたがって、ルーティングシステムは、時間T + Sで安定させるだろうが、新たな変化、C2は、発生する未満でありますT + S前の時刻T + C、で。システムは、それが古いで行われています前に、新しい変更の処理が開始されます。

This is not to say that all routers are constantly processing changes. The effects of changes are like ripples in a pond. They spread outward from where they occur. Some routers will be processing just C1, others C2, others both C1 and C2, and others neither.


We have two separate scopes over which we can set requirements with respect to convergence:


1. Single Change: In this requirement, a single change of any type (link addition or deletion, router failure or restart, etc.) is introduced into a stabilized system. No additional changes are introduced. The system must re-stabilize within some measure of bounded time. This requirement is a fairly abstract one as it would be impossible to test in a real network. Definition of the time constraints remains an open research issue.


2. System-Wide: Defining a single target for maximum convergence time for the real Internet is absurd. As we mentioned earlier, the Internet is large enough and diverse enough so that it is quite likely that new changes are introduced somewhere before the system fully digests old ones.


So, the first requirement here is that there must be mechanisms to limit the scope of any one change's visibility and effects. The number of routers that have to perform calculations in response to a change is kept small, as is the settling time.


The second requirement is based on the following assumptions:


- the scope of a change's visibility and impact can be limited. That is, routers within that scope know of the change and recalculate their tables based on the change. Routers outside of the scope don't see it at all.

- 変化の可視性と影響の範囲を制限することができます。それはその範囲内のルータが変更を知っていると変化に基づいて、そのテーブルを再計算し、あります。スコープの外のルータはすべてでそれを見ることはありません。

- Within any scope, S, network changes are constantly occurring and the average inter-change interval is Tc seconds.

- 任意の範囲内で、Sは、ネットワークの変更が絶えず発生していると平均間変化間隔はTcは秒です。

- There are Rs routers within scope S.

- スコープS.内ルピールータがあります。

- A subset of the destinations known to the routers in S, Ds, are impacted by a given change.

- S、DS内のルータに知られている宛先のサブセットは、所定の変化によって影響を受けます。

- We can state that for Z% of the changes, within Y% of Tc seconds after a change, C, X% of the Rs routers have their routes to Ds settled to a useful answer (useful meaning that packets can get to Ds, though perhaps not by the optimal path -- this allows some "hunting" for the optimal solution).

- 私たちは、変更後のTc秒のY%以内の変更、のZ%のため、Cは、ルピールータのX%が持っているDSにそのルートは(便利な答えにパケットがDSに得ることができるという便利な意味を定住することを述べることができますけれども、おそらくない最適なパスで - これは)最適解のためのいくつかの「狩り」ことができます。

X, Y, and Z are yet to be defined. Their definition remains a research issue.


This requirement implies that the scopes can be kept relatively small in order to minimize Rs and maximize Tc.


The growth rate of the convergence time must not be related to the growth rate of the Internet as a whole. This implies that the convergence time either:


1. not be a function of basic network elements (such as prefixes and links/paths), and/or


2. that the Internet be continuously divisible into chunks that limit the scope and effect of a change, thereby limiting the number of routers, prefixes, links, and so on, involved in the new calculations.


2.1.9. Routing System Security
2.1.9. ルーティングシステムのセキュリティ

The security of the Internet's routing system is paramount. If the routing system is compromised or attacked, the entire Internet can fail. This is unacceptable. Any new architecture must be secure.


Architectures by themselves are not secure. It is the implementation of an architecture, its protocols, algorithms, and data structures that are secure. These requirements apply primarily to the implementation. The architecture must provide the elements that the implementation needs to meet these security requirements. Also, the architecture must not prevent these security requirements from being met.


Security means different things to different people. In order for this requirement to be useful, we must define what we mean by security. We do this by identifying the attackers and threats we wish to protect against. They are:


Masquerading The system, including its protocols, must be secure against intruders adopting the identity of other known, trusted elements of the routing system and then using that position of trust for carrying out other attacks. Protocols must use cryptographically strong authentication.


Denial-of-Service (DoS) Attacks The architecture and protocols should be secure against DoS attacks directed at the routers.


         The new architecture and protocols should provide as much
         information as it can to allow administrators to track down
         sources of DoS and Distributed DOS (DDoS) attacks.

No Bad Data Any new architecture and protocols must provide protection against the introduction of bad, erroneous, or misleading data by attackers. Of particular importance, an attacker must not be able to redirect traffic flows, with the intent of:


         o  directing legitimate traffic away from a target, causing a
            denial-of-service attack by preventing legitimate data from
            reaching its destination,

o directing additional traffic (going to other destinations that are "innocent bystanders") to a target, causing the target to be overloaded, or


o directing traffic addressed to the target to a place where the attacker can copy, snoop, alter, or otherwise affect the traffic.


Topology Hiding Any new architecture and protocols must provide mechanisms to allow network owners to hide the details of their internal topologies, while maintaining the desired levels of service connectivity and reachability.


Privacy By "privacy" we mean privacy of the routing protocol exchanges between routers.


         When the routers are on point-to-point links, with routers at
         each end, there may not be any need to encrypt the routing
         protocol traffic as the possibility of a third party intercepting the traffic is limited, though not impossible.  We
         do believe, however, that it is important to have the ability
         to protect routing protocol traffic in two cases:

1. When the routers are on a shared network, it is possible that there are hosts on the network that have been compromised. These hosts could surreptitiously monitor the protocol traffic.


2. When two routers are exchanging information "at a distance" (over intervening routers and, possibly, across administrative domain boundaries). In this case, the security of the intervening routers, links, and so on, cannot be assured. Thus, the ability to encrypt this traffic is important.

2. 2つのルータに(管理ドメインの境界を越えて、おそらく、ルーターを介在し、上)、「距離で」情報を交換しています。この場合、介在ルータ、リンクのセキュリティは、というように、保証することはできません。したがって、このトラフィックを暗号化する機能が重要です。

Therefore, we believe that the option to encrypt routing protocol traffic is required.


Data Consistency A router should be able to detect and recover from any data that is received from other routers that is inconsistent. That is, it must not be possible for data from multiple routers, none of which is malicious, to "break" another router.


Where security mechanisms are provided, they must use methods that are considered to be cryptographically secure (e.g., using cryptographically strong encryption and signatures -- no cleartext passwords!).

セキュリティメカニズムが提供される場合には、彼らが(例えば、暗号的に強力な暗号化と署名を使用していない! - 何の平文パスワード)を暗号学的に安全と見なされている方法を使用する必要があります。

Use of security features should not be optional (except as required above). This may be "social engineering" on our part, but we believe it to be necessary. If a security feature is optional, the implementation of the feature must default to the "secure" setting.


2.1.10. End Host Security
2.1.10. エンドホストセキュリティ

The architecture must not prevent individual host-to-host communications sessions from being secured (i.e., it cannot interfere with things like IPsec).


2.1.11. Rich Policy
2.1.11. リッチポリシー

Before setting out policy requirements, we need to define the term. Like "security", "policy" means different things to different people. For our purposes, "policy" is the set of administrative influences that alter the path determination and next-hop selection procedures of the routing software.

ポリシー要件を設定する前に、我々は、用語を定義する必要があります。 「セキュリティ」のように、「ポリシー」は人によって異なることを意味します。我々の目的のために、「政策は、」ルーティングソフトウェアのパス決意とネクストホップの選択手順を変え行政影響のセットです。

The main motivators for influencing path and next-hop selection seem to be transit rules, business decisions, and load management.


The new architecture must support rich policy mechanisms. Furthermore, the policy definition and dissemination mechanisms should be separated from the network topology and connectivity dissemination mechanisms. Policy provides input to and controls the generation of the forwarding table and the abstraction, filtering, aggregation, and dissemination of topology information.


Note that if the architecture is properly divided into subsystems, then at a later time, new policy subsystems that include new features and capabilities could be developed and installed as needed.


We divide the general area of policy into two sub-categories: routing information and traffic control. Routing Information Policies control what routing information is disseminated or accepted, how it is disseminated, and how routers determine paths and next-hops from the received information. Traffic Control Policies determine how traffic is classified and assigned to routes.

ルーティング情報及びトラフィック制御:我々は、2つのサブカテゴリーにポリシーの一般的な領域を分割します。ルーティング情報ポリシーは、それが播種された方法、ルーティング情報は、播種又は受け入れられるかを制御する方法、およびルータは、受信した情報からパスと次のホップを決定します。トラフィック制御ポリシーは、トラフィックを分類したルートに割り当てられている方法を決定します。 Routing Information Policies。情報ポリシールーティング

There must be mechanisms to allow network administrators, operators, and designers to control receipt and dissemination of routing information. These controls include, but are not limited to:


- Selecting to which other routers routing information will be transmitted.

- ルーティング情報を他のルータれる選択すると送信されます。

- Specifying the "granularity" and type of transmitted information. The length of IPv4 prefixes is an example of granularity.

- 「粒度」と送信される情報の種類を指定します。 IPv4のプレフィックスの長さは、粒状の一例です。

- Selection and filtering of topology and service information that is transmitted. This gives different "views" of internal structure and topology to different peers.

- 選択して送信され、トポロジとサービス情報のフィルタリング。これは、異なるピアに内部構造とトポロジーの異なる「ビュー」を提供します。

- Selecting the level of security and authenticity for transmitted information.

- 送信された情報のセキュリティと信頼性のレベルを選択します。

- Being able to cause the level of detail that is visible for some portion of the network to reduce the farther you get from that part of the network.

- ネットワークの一部が遠くあなたがネットワークのその部分から得る削減するために表示されている詳細のレベルを引き起こすことができること。

- Selecting from whom routing information will be accepted. This control should be "provisional" in the sense of "accept routes from "foo" only if there are no others available".

- ルーティング情報が受け入れられます誰から選びます。このコントロールは、「利用可能な他の人が存在しない場合にのみ、 『foo』というのルートを受け入れる」という意味で「暫定的」でなければなりません。

- Accepting or rejecting routing information based on the path the information traveled (using the current system as an example, this would be filtering routes based on an AS appearing anywhere in the AS path). This control should be "use only if there are no other paths available".

- 受け入れまたは情報が移動する経路に基づいてルーティング情報を拒否(例として、現在のシステムを使用して、これはASパスのどこにでも現れるASに基づいてルートをフィルタリングするであろう)。このコントロールは、「利用可能な他のパスが存在しない場合にのみ使用」でなければなりません。

- Selecting the desired level of granularity for received routing information (this would include, but is not limited to, things similar in nature to the prefix-length filters widely used in the current routing and addressing system).

- 受信したルーティング情報のために粒度の所望のレベルを選択すること(これは含まれるが、広く現在のルーティングおよびアドレス指定システムで使用されるプレフィックス長のフィルタと本質的に類似したものに限定されるものではありません)。

- Selecting the level of security and authenticity of received information in order for that information to be accepted.

- 受け入れられるために、その情報ために受信された情報のセキュリティと信頼性のレベルを選択します。

- Determining the treatment of received routing information based on attributes supplied with the information.

- 情報が供給された属性に基づいて、受信したルーティング情報の処理を決定します。

- Applying attributes to routing information that is to be transmitted and then determining treatment of information (e.g., sending it "here" but not "there") based on those tags.

- (「そこ」「ここ」を送信ではなく、例えば)これらのタグに基づいて送信されるルーティング情報に属性を適用した後、情報の処理を決定します。

- Selection and filtering of topology and service information that is received.

- 選択して受信されたトポロジとサービス情報のフィルタリング。 Traffic Control Policies。トラフィック制御ポリシー

The architecture should provide mechanisms that allow network operators to manage and control the flow of traffic. The traffic controls should include, but are not limited to:


- The ability to detect and eliminate congestion points in the network (by redirecting traffic around those points).

- (これらの点の周りにトラフィックをリダイレクトすることによって)ネットワークに輻輳点を検出し、排除する能力。

- The ability to develop multiple paths through the network with different attributes and then assign traffic to those paths based on some discriminators within the packets (discriminators include, but are not limited to, IP addresses or prefixes, IPv6 flow ID, DSCP values, and MPLS labels).

- 属性の異なるネットワークを介して複数のパスを開発し、パケット内のいくつかの判別に基づいて、これらのパスにトラフィックを割り当てる機能(識別器は、これらに限定されないが、IPアドレスまたはプレフィックス、IPv6のフローID、DSCP値、およびMPLSラベル)。

- The ability to find and use multiple, equivalent paths through the network (i.e., they would have the "same" attributes) and allocate traffic across the paths.

- ネットワークを介して複数の等価経路を見つけて使用する能力(すなわち、それらは「同じ」の属性を有するであろう)とパス間でトラフィックを割り当てます。

- The ability to accept or refuse traffic based on some traffic classification (providing, in effect, transit policies).

- 一部のトラフィックの分類に基づいて、トラフィックを受け入れるか拒否する機能は、(トランジット政策、効果には、提供します)。

Traffic classification must at least include the source and destination IP addresses (prefixes) and the DSCP value. Other fields may be supported, such as:

トラフィック分類は、少なくとも、送信元および宛先IPアドレス(プレフィックス)およびDSCP値を含まなければなりません。 :他のフィールドは、次のような、サポートすることができます

* Protocol and port-based functions,


* DSCP/QoS (Quality of Service) tuple (such as ports),

* DSCP / QoSの(ようなポートなど)(サービス品質)のタプル、

* Per-host operations (i.e., /32 s for IPv4 and /128 s for IPv6), and

*ごとのホスト動作(IPv4およびIPv6の/ 128秒間、すなわち、/ 32秒)、及び

* Traffic matrices (e.g., traffic from prefix X and to prefix Y).


2.1.12. Incremental Deployment
2.1.12. インクリメンタル展開

The reality of the Internet is that there can be no Internet-wide cutover from one architecture and protocol to another. This means that any new architecture and protocol must be incrementally deployable; ISPs must be able to set up small sections of the new architecture, check it out, and then slowly grow the sections. Eventually, these sections will "touch" and "squeeze out" the old architecture.

インターネットの現実は別のアーキテクチャおよびプロトコルからのインターネット全体のカットオーバーはあり得ないということです。これは、任意の新しいアーキテクチャとプロトコルの増分展開可能でなければならないことを意味します。 ISPはセクションを、新しいアーキテクチャの小さなセクションを設定し、それをチェックアウトした後、ゆっくりと成長することができなければなりません。最終的に、これらのセクションは、「タッチ」になると、古い建築を「絞り出します」。

The protocols that implement the architecture must be able to interoperate at "production levels" with currently existing routing protocols. Furthermore, the protocol specifications must define how the interoperability is done.


We also believe that sections of the Internet will never convert over to the new architecture. Thus, it is important that the new architecture and its protocols be able to interoperate with "old architecture" regions of the network indefinitely.


The architecture's addressing system must not force existing address allocations to be redone: no renumbering!


2.1.13. Mobility
2.1.13. 可動性

There are two kinds of mobility: host mobility and network mobility. Host mobility is when an individual host moves from where it was to where it is. Network mobility is when an entire network (or subnetwork) moves.


The architecture must support network-level mobility. Please refer to Section 2.2.9 for a discussion of host mobility.


Editors' Note: Since the time of this work, the Network Mobility (NEMO) extensions to Mobile-IP [RFC3963] to accommodate mobile networks have been developed.

編集者注:この作業の時以来、ネットワークモビリティ(NEMO)モバイルネットワークに対応するためのモバイルIP [RFC3963]の拡張機能が開発されています。

2.1.14. Address Portability
2.1.14. 移植性に対処

One of the big "hot items" in the current Internet political climate is portability of IP addresses (both v4 and v6). The short explanation is that people do not like to renumber when changing connection point or provider and do not trust automated renumbering tools.


The architecture must provide complete address portability.


2.1.15. Multi-Protocol
2.1.15. マルチプロトコル

The Internet is expected to be "multi-protocol" for at least the next several years. IPv4 and IPv6 will co-exist in many different ways during a transition period. The architecture must be able to handle both IPv4 and IPv6 addresses. Furthermore, protocols that supplant IPv4 and IPv6 may be developed and deployed during the lifetime of the architecture. The architecture must be flexible and extensible enough to handle new protocols as they arise.

インターネットは、少なくとも今後数年間のための「マルチプロトコル」であることが予想されます。 IPv4とIPv6は、移行期間中、多くの異なる方法で共存します。アーキテクチャは、IPv4アドレスとIPv6アドレスの両方を扱うことができなければなりません。また、IPv4とIPv6に取って代わるプロトコルが開発され、建築の寿命の間に配備されてもよいです。アーキテクチャは、彼らが発生し、新しいプロトコルを処理するために十分な柔軟性と拡張性でなければなりません。

Furthermore, the architecture must not assume any given relationships between a topological element's IPv4 address and its IPv6 address. The architecture must not assume that all topological elements have IPv4 addresses/prefixes, nor can it assume that they have IPv6 addresses/prefixes.


The architecture should allow different paths to the same destination to be used for different protocols, even if all paths can carry all protocols.


In addition to the addressing technology, the architecture need not be restricted to only packet-based multiplexing/demultiplexing technology (such as IP); support for other multiplexing/ demultiplexing technologies may be added.


2.1.16. Abstraction
2.1.16. アブストラクション

The architecture must provide mechanisms for network designers and operators to:


o Group elements together for administrative control purposes,


o Hide the internal structure and topology of those groupings for administrative and security reasons,


o Limit the amount of topology information that is exported from the groupings in order to control the load placed on external routers,


o Define rules for traffic transiting or terminating in the grouping.


The architecture must allow the current Autonomous System structure to be mapped into any new abstraction schemes.


Mapping mechanisms, algorithms, and techniques must be specified.


2.1.17. Simplicity
2.1.17. 単純

The architecture must be simple enough so that someone who is extremely knowledgeable in routing and who is skilled at creating straightforward and simple explanations can explain all the important concepts in less than an hour.


This criterion has been chosen since developing an objective measure of complexity for an architecture can be very difficult and is out of scope for this document.


The requirement is that the routing architecture be kept as simple as possible. This requires careful evaluation of possible features and functions with a merciless weeding out of those that "might be nice" but are not necessary.


By keeping the architecture simple, the protocols and software used to implement the architecture are simpler. This simplicity in turn leads to:


1. Faster implementation of the protocols. If there are fewer bells and whistles, then there are fewer things that need to be implemented.


2. More reliable implementations. With fewer components, there is less code, reducing bug counts, and fewer interactions between components that could lead to unforeseen and incorrect behavior.


2.1.18. Robustness
2.1.18. 丈夫

The architecture, and the protocols implementing it, should be robust. Robustness comes in many different flavors. Some considerations with regard to robustness include (but are not limited to):


o Continued correct operation in the face of:


* Defective (even malicious) trusted routers.


* Network failures. Whenever possible, valid alternate paths are to be found and used.


o Failures must be localized. That is, the architecture must limit the "spread" of any adverse effects of a misconfiguration or failure. Badness must not spread.


Of course, the general robustness principle of being liberal in what's accepted and conservative in what's sent must also be applied.


Original Editor's Note: Some of the contributors to this section have argued that robustness is an aspect of security. I have exercised editor's discretion by making it a separate section. The reason for this is that to too many people "security" means "protection from break-ins" and "authenticating and encrypting data". This requirement goes beyond those views.


2.1.19. Media Independence
2.1.19. メディアの独立性

While it is an article of faith that IP operates over a wide variety of media (such as Ethernet, X.25, ATM, and so on), IP routing must take an agnostic view toward any "routing" or "topology" services that are offered by the medium over which IP is operating. That is, the new architecture must not be designed to integrate with any media-specific topology management or routing scheme.


The routing architecture must assume, and must work over, the simplest possible media.


The routing and addressing architecture can certainly make use of lower-layer information and services, when and where available, and to the extent that IP routing wishes.


2.1.20. Stand-Alone
2.1.20. スタンドアロン

The routing architecture and protocols must not rely on other components of the Internet (such as DNS) for their correct operation. Routing is the fundamental process by which data "finds its way around the Internet" and most, if not all, of those other components rely on routing to properly forward their data. Thus, routing cannot rely on any Internet systems, services, or capabilities that in turn rely on routing. If it did, a dependency loop would result.


2.1.21. Safety of Configuration
2.1.21. コンフィギュレーションの安全性

The architecture, protocols, and standard implementation defaults must be such that a router installed "out of the box" with no configuration, etc., by the operators will not cause "bad things" to happen to the rest of the routing system (e.g., no dial-up customers advertising routes to 18/8!).


2.1.22. Renumbering
2.1.22. リナンバリング

The routing system must allow topological entities to be renumbered.


2.1.23. Multi-Prefix
2.1.23. マルチプレフィックス

The architecture must allow topological entities to have multiple prefixes (or the equivalent under the new architecture).


2.1.24. Cooperative Anarchy
2.1.24. 共同アナーキー

As RFC 1726[RFC1726] states:

RFC 1726として[RFC1726]は述べています:

A major contributor to the Internet's success is the fact that there is no single, centralized, point of control or promulgator of policy for the entire network. This allows individual constituents of the network to tailor their own networks, environments, and policies to suit their own needs. The individual constituents must cooperate only to the degree necessary to ensure that they interoperate.


This decentralization, called "cooperative anarchy", is still a key feature of the Internet today. The new routing architecture must retain this feature. There can be no centralized point of control or promulgator of policy for the entire Internet.


2.1.25. Network-Layer Protocols and Forwarding Model
2.1.25. ネットワークレイヤプロトコルおよび転送モデル

For the purposes of backward compatibility, any new routing and addressing architecture and protocols must work with IPv4 and IPv6 using the traditional "hop-by-hop" forwarding and packet-based multiplex/demultiplex models. However, the architecture need not be restricted to these models. Additional forwarding and multiplex/ demultiplex models may be added.


2.1.26. Routing Algorithm
2.1.26. ルーティングアルゴリズム

The architecture should not require a particular routing algorithm family. That is to say, the architecture should be agnostic about link-state, distance-vector, or path-vector routing algorithms.


2.1.27. Positive Benefit
2.1.27. ポジティブなベネフィット

Finally, the architecture must show benefits in terms of increased stability, decreased operational costs, and increased functionality and lifetime, over the current schemes. This benefit must remain even after the inevitable costs of developing and debugging the new protocols, enduring the inevitable instabilities as things get shaken out, and so on.


2.1.28. Administrative Entities and the IGP/EGP Split
2.1.28. 管理エンティティとIGP / EGPスプリット

We explicitly recognize that the Internet consists of resources under control of multiple administrative entities. Each entity must be able to manage its own portion of the Internet as it sees fit. Moreover, the constraints that can be imposed on routing and addressing on the portion of the Internet under the control of one administration may not be feasibly extended to cover multiple administrations. Therefore, we recognize a natural and inevitable split between routing and addressing that is under a single administrative control and routing and addressing that involves multiple administrative entities. Moreover, while there may be multiple administrative authorities, the administrative authority boundaries may be complex and overlapping, rather than being a strict hierarchy.


Furthermore, there may be multiple levels of administration, each with its own level of policy and control. For example, a large network might have "continental-level" administrations covering its European and Asian operations, respectively. There would also be that network's "inter-continental" administration covering the Europe-to-Asia links. Finally, there would be the "Internet" level in the administrative structure (analogous to the "exterior" concept in the current routing architecture).


Thus, we believe that the administrative structure of the Internet must be extensible to many levels (more than the two provided by the current IGP/EGP split). The interior/exterior property is not absolute. The interior/exterior property of any point in the network is relative; a point on the network is interior with respect to some points on the network and exterior with respect to others.

したがって、我々は、インターネットの管理体制が多くのレベル(現在のIGP / EGP分割により提供される2以上)に拡張可能でなければならないと考えています。インテリア/エクステリアプロパティが絶対的ではありません。ネットワーク内の任意の点の内側/外側のプロパティは、相対的です。ネットワーク上の点は、他のものに対するネットワークと外部上のいくつかの点に対して内部です。

Administrative entities may not trust each other; some may be almost actively hostile toward each other. The architecture must accommodate these models. Furthermore, the architecture must not require any particular level of trust among administrative entities.


2.2. Non-Requirements
2.2. 非要件

The following are not required or are non-goals. This should not be taken to mean that these issues must not be addressed by a new architecture. Rather, addressing these issues or not is purely an optional matter for the architects.


2.2.1. Forwarding Table Optimization
2.2.1. テーブルの最適化を転送

We believe that it is not necessary for the architecture to minimize the size of the forwarding tables (FIBs). Current memory sizes, speeds, and prices, along with processor and Application-specific Integrated Circuit (ASIC) capabilities allow forwarding tables to be very large, O(E6), and allow fast (100 M lookups/second) tables to be built with little difficulty.

私たちは、アーキテクチャが転送テーブル(のFIB)のサイズを最小化することが必要ではないと信じています。プロセッサおよび特定用途向け集積回路(ASIC)の能力は、O(E6)非常に大きく、かつ高速(100 Mのルックアップ/秒)のテーブルがで構築できるようにテーブルを転送できるように伴い、現在のメモリサイズ、速度、および価格は、少し難しさ。

2.2.2. Traffic Engineering
2.2.2. トラフィックエンジニアリング

"Traffic engineering" is one of those terms that has become terribly overloaded. If one asks N people what traffic engineering is, one would get something like N! disjoint answers. Therefore, we elect not to require "traffic engineering", per se. Instead, we have endeavored to determine what the ultimate intent is when operators "traffic engineer" their networks and then make those capabilities an inherent part of the system.

「トラフィックエンジニアリングは、」ひどくオーバーロードになってきたこれらの用語の一つです。 1が何であるか、トラフィックエンジニアリングNの人々を要求する場合は、1がNのようなものになるだろう!ばらばらの答え。したがって、我々はそれ自体が、「トラフィック・エンジニアリング」を必要としないことを選択します。代わりに、我々は究極の目的は時にオペレータ「トラフィックエンジニア」自社のネットワークであるかを判断し、それらの機能をシステムの本来の一部にするために努力してきました。

2.2.3. Multicast
2.2.3. マルチキャスト

The new architecture is not designed explicitly to be an inter-domain multicast routing architecture. However, given the notable lack of a viable, robust, and widely deployed inter-domain multicast routing architecture, the architecture should not hinder the development and deployment of inter-domain multicast routing without an adverse effect on meeting the other requirements.


We do note however that one respected network sage [Clark91] has said (roughly):


When you see a bunch of engineers standing around congratulating themselves for solving some particularly ugly problem in networking, go up to them, whisper "multicast", jump back, and watch the fun begin...


2.2.4. Quality of Service (QoS)
2.2.4. サービスの品質(QoS)

The architecture concerns itself primarily with disseminating network topology information so that routers may select paths to destinations and build appropriate forwarding tables. Quality of Service (QoS) is not a part of this function and we make no requirements with respect to QoS.


However, QoS is an area of great and evolving interest. It is reasonable to expect that in the not too distant future, sophisticated QoS facilities will be deployed in the Internet. Any new architecture and protocols should be developed with an eye toward these future evolutions. Extensibility mechanisms, allowing future QoS routing and signaling protocols to "piggy-back" on top of the basic routing system are desired.


We do require the ability to assign attributes to entities and then do path generation and selection based on those attributes. Some may call this QoS.


2.2.5. IP Prefix Aggregation
2.2.5. IPプレフィクス集約

There is no specific requirement that CIDR-style (Classless Inter-Domain Routing) IP prefix aggregation be done by the new architecture. Address allocation policies, societal pressure, and the random growth and structure of the Internet have all conspired to make prefix aggregation extraordinarily difficult, if not impossible. This means that large numbers of prefixes will be sloshing about in the routing system and that forwarding tables will grow quite big. This is a cost that we believe must be borne.


Nothing in this non-requirement should be interpreted as saying that prefix aggregation is explicitly prohibited. CIDR-style IP prefix aggregation might be used as a mechanism to meet other requirements, such as scaling.

この非要件では何も接頭集約が明示的に禁止されていることを言うように解釈されるべきではありません。 CIDR形式のIPプレフィクス集約は、スケーリングなどの他の要件を満たすためのメカニズムとして使用される可能性があります。

2.2.6. Perfect Safety
2.2.6. パーフェクト安全

Making the system impossible to misconfigure is, we believe, not required. The checking, constraints, and controls necessary to achieve this could, we believe, prevent operators from performing necessary tasks in the face of unforeseen circumstances.


However, safety is always a "good thing", and any results from research in this area should certainly be taken into consideration and, where practical, incorporated into the new routing architecture.


2.2.7. Dynamic Load Balancing
2.2.7. 動的負荷分散

History has shown that using the routing system to perform highly dynamic load balancing among multiple more-or-less-equal paths usually ends up causing all kinds of instability, etc., in the network. Thus, we do not require such a capability.


However, this is an area that is ripe for additional research, and some believe that the capability will be necessary in the future. Thus, the architecture and protocols should be "malleable" enough to allow development and deployment of dynamic load-balancing capabilities, should we ever figure out how to do it.


2.2.8. Renumbering of Hosts and Routers
2.2.8. ホストとルータのリナンバリング

We believe that the routing system is not required to "do renumbering" of hosts and routers. That's an IP issue.


Of course, the routing and addressing architecture must be able to deal with renumbering when it happens.


2.2.9. Host Mobility
2.2.9. ホスト移動

In the Internet architecture, host mobility is handled on a per-host basis by a dedicated, Mobile-IP protocol [RFC3344]. Traffic destined for a mobile-host is explicitly forwarded by dedicated relay agents. Mobile-IP [RFC3344] adequately solves the host-mobility problem and we do not see a need for any additional requirements in this area. Of course, the new architecture must not impede or conflict with Mobile-IP.

インターネットアーキテクチャでは、ホストモビリティは、専用の、モバイルIPプロトコル[RFC3344]でホスト単位で処理されます。モバイルホスト宛てのトラフィックを明示的に専用のリレーエージェントによって転送されます。モバイルIP [RFC3344]は適切にホスト・モビリティの問題を解決し、我々はこの分野での追加要件の必要性が表示されません。もちろん、新しいアーキテクチャは、妨げたり、モバイルIPと競合してはなりません。

2.2.10. Backward Compatibility
2.2.10. 下位互換性

For the purposes of development of the architecture, we assume that there is a "clean slate". Unless specified in Section 2.1, there are no explicit requirements that elements, concepts, or mechanisms of the current routing architecture be carried forward into the new one.


3. Requirements from Group B

The following is the result of the work done by Sub-Group B of the IRTF RRG in 2001-2002. It was originally released under the title: "Future Domain Routing Requirements" and was edited by Avri Doria and Elwyn Davies.

以下は、2001年から2002年にIRTF RRGのサブグループBが行った作業の結果です。もともとはタイトルの下でリリースされました:「未来ドメインルーティング要件」とAvriドリアとエルウィン・デイヴィスが編集しました。

3.1. Group B - Future Domain Routing Requirements
3.1. グループB - 今後のドメインのルーティングの要件

It is generally accepted that there are major shortcomings in the inter-domain routing of the Internet today and that these may result in meltdown within an unspecified period of time. Remedying these shortcomings will require extensive research to tie down the exact failure modes that lead to these shortcomings and identify the best techniques to remedy the situation.


Reviewer's Note: Even in 2001, there was a wide difference of opinion across the community regarding the shortcomings of inter-domain routing. In the years between writing and publication, further analysis, changes in operational practice, alterations to the demands made on inter-domain routing, modifications made to BGP, and a recognition of the difficulty of finding a replacement may have altered the views of some members of the community.


Changes in the nature and quality of the services that users want from the Internet are difficult to provide within the current framework, as they impose requirements never foreseen by the original architects of the Internet routing system.


The kind of radical changes that have to be accommodated are epitomized by the advent of IPv6 and the application of IP mechanisms to private commercial networks that offer specific service guarantees beyond the best-effort services of the public Internet. Major changes to the inter-domain routing system are inevitable to provide an efficient underpinning for the radically changed and increasingly commercially-based networks that rely on the IP protocol suite.


3.2. Underlying Principles
3.2. 基本原理

Although inter-domain routing is seen as the major source of problems, the interactions with intra-domain routing, and the constraints that confining changes to the inter-domain arena would impose, mean that we should consider the whole area of routing as an integrated system. This is done for two reasons:


- Requirements should not presuppose the solution. A continued commitment to the current definitions and split between inter-domain and intra-domain routing would constitute such a presupposition. Therefore, this part of the document uses the name Future Domain Routing (FDR).

- 要件のソリューションを前提としてはなりません。ドメイン間およびドメイン内ルーティングの間の現在の定義と分割する継続的なコミットメントは、このような前提を構成するであろう。したがって、文書のこの部分は、名前フューチャードメインルーティング(FDR)を使用しています。

- It is necessary to understand the degree to which inter-domain and intra-domain routing are related within today's routing architecture.

- ドメイン間およびドメイン内ルーティングは、今日のルーティングアーキテクチャ内で関連している度合いを理解することが必要です。

We are aware that using the term "domain routing" is already fraught with danger because of possible misinterpretation due to prior usage. The meaning of "domain routing" will be developed implicitly throughout the document, but a little advance explicit definition of the word "domain" is required, as well as some explanation on the scope of "routing".

私たちは、用語を使用して「ドメインルーティングは」理由により、使用前に可能な誤解をすでに危険をはらんでいることを知っています。 「ドメインルーティング」の意味は、文書全体暗黙のうちに開発されますが、単語「ドメイン」の少し前進明示的な定義は、「ルーティング」の範囲に、だけでなく、いくつかの説明が必要です。

This document uses "domain" in a very broad sense, to mean any collection of systems or domains that come under a common authority that determines the attributes defining, and the policies controlling, that collection. The use of "domain" in this manner is very similar to the concept of region that was put forth by John Wroclawski in his Metanet model [Wroclawski95]. The idea includes the notion that certain attributes will characterize the behavior of the systems within a domain and that there will be borders between domains. The idea of domain presented here does not presuppose that two domains will have the same behavior. Nor does it presuppose anything about the hierarchical nature of domains. Finally, it does not place restrictions on the nature of the attributes that might be used to determine membership in a domain. Since today's routing domains are an example of the concept of domains in this document, there has been no attempt to create a new term.


Current practice in routing-system design stresses the need to separate the concerns of the control plane and the forwarding plane in a router. This document will follow this practice, but we still use the term "routing" as a global portmanteau to cover all aspects of the system. Specifically, however, "routing" will be used to mean the process of discovering, interpreting, and distributing information about the logical and topological structure of the network.


3.2.1. Inter-Domain and Intra-Domain
3.2.1. ドメイン間およびドメイン内

Throughout this section, the terms "intra-domain" and "inter-domain" will be used. These should be understood as relative terms. In all cases of domains, there will be a set of network systems that are within that domain; routing between these systems will be termed "intra-domain". In some cases there will be routing between domains, which will be termed "inter-domain". It is possible that the routing exchange between two network systems can be viewed as intra-domain from one perspective and as inter-domain from another perspective.

このセクションを通じて、用語「ドメイン内」と「ドメイン間」を使用します。これらは相対的な用語として理解されるべきです。ドメインの全ての場合において、そのドメイン内にあるネットワークシステムのセットが存在するであろう。これらのシステム間のルーティングは、「ドメイン内」と呼ぶことにします。いくつかのケースでは、「ドメイン間」と呼ばれるドメイン間のルーティングがあるでしょう。 2つのネットワークシステム間ルーティング交換一つ観点から、別の観点からインタードメインとしてイントラドメインとみなすことができることが可能です。

3.2.2. Influences on a Changing Network
3.2.2. 変化するネットワークへの影響

The development of the Internet is likely to be driven by a number of changes that will affect the organization and the usage of the network, including:


- Ongoing evolution of the commercial relationships between (connectivity) service providers, leading to changes in the way in which peering between providers is organized and the way in which transit traffic is routed.

- プロバイダ間のピアリングが編成される方法とトランジットトラフィックがルーティングされる方法の変化につながる(接続)サービスプロバイダ間の商業関係の継続的な進化。

- Requirements for traffic engineering within and between domains including coping with multiple paths between domains.

- 内およびドメイン間の複数のパスに対応含むドメイン間のトラフィックエンジニアリングのための要件。

- Addition of a second IP addressing technique, in the form of IPv6.

- たIPv6の形態の第2のIPアドレッシング技術の添加。

- The use of VPNs and private address space with IPv4 and IPv6.

- VPNおよびIPv4とIPv6とのプライベートアドレス空間を使用します。

- Evolution of the end-to-end principle to deal with the expanded role of the Internet, as discussed in [Blumenthal01]: this paper discusses the possibility that the range of new requirements, especially the social and techno-political ones that are being placed on the future, may compromise the Internet's original design principles. This might cause the Internet to lose some of its key features, in particular, its ability to support new and unanticipated applications. This discussion is linked to the rise of new stakeholders in the Internet, especially ISPs; new government interests; the changing motivations of the ever growing user base; and the tension between the demand for trustworthy overall operation and the inability to trust the behavior of individual users.

- [Blumenthal01]で説明したように、エンド・ツー・エンド原理の進化は、インターネットの拡大役割に対処するために:本論文では、新たな要件の範囲、特に社会的、政治的なテクノものがされていること可能性を議論します将来的に配置され、インターネットのオリジナルデザインの原則を損なう可能性があります。これは、インターネットは、その主要な機能のいくつか、新しい、予期しないアプリケーションをサポートするために、特に、その能力を失わせる可能性があります。この議論は、インターネットにおける新たな利害関係者の台頭、特にISPにリンクされています。新政府の利益;増え続けるユーザーベースの変更動機。そして信頼できる全体的な動作のための需要と個々のユーザーの行動を信頼することができない間の緊張。

- Incorporation of alternative forwarding techniques such as the explicit routing (pipes) supplied by the MPLS [RFC3031] and GMPLS [RFC3471] environments.

- MPLS [RFC3031]とGMPLS [RFC3471]環境によって供給され、このような明示的なルーティング(パイプ)のような代替的な転送技術の取り込み。

- Integration of additional constraints into route determination from interactions with other layers (e.g., Shared Risk Link Groups [InferenceSRLG]). This includes the concern that redundant routes should not fate-share, e.g., because they physically run in the same trench.

- 他の層(例えば、共有リスクリンクグループ[InferenceSRLG])との相互作用からルート決意に追加の制約の組込み。それらは物理的に同一のトレンチ内に実行されるため、これは、例えば、冗長経路が運命シェアないことを懸念を含みます。

- Support for alternative and multiple routing techniques that are better suited to delivering types of content organized in ways other than into IP-addressed packets.

- IPアドレス指定パケットに以外の方法で編成コンテンツの種類を提供するに適してい代替と複数のルーティング技術のサポート。

Philosophically, the Internet has the mission of transferring information from one place to another. Conceptually, this information is rarely organized into conveniently sized, IP-addressed packets, and the FDR needs to consider how the information (content) to be carried is identified, named, and addressed. Routing techniques can then be adapted to handle the expected types of content.


3.2.3. High-Level Goals
3.2.3. ハイレベルの目標

This section attempts to answer two questions:


- What are we trying to achieve in a new architecture?

- 私たちは、新しいアーキテクチャで実現しようとしていますか?

- Why should the Internet community care?

- なぜインターネットコミュニティケアする必要がありますか?

There is a third question that needs to be answered as well, but that has seldom been explicitly discussed:


- How will we know when we have succeeded?

- 私たちが成功したとき、どのように我々は知っているのだろうか? Providing a Routing System Matched to Domain Organization。ドメイン組織に合わせたルーティングシステムを提供

Many of today's routing problems are caused by a routing system that is not well matched to the organization and policies that it is trying to support. Our goal is to develop a routing architecture where even a domain organization that is not envisioned today can be served by a routing architecture that matches its requirements. We will know when this goal is achieved when the desired policies, rules, and organization can be mapped into the routing system in a natural, consistent, and easily understood way.

今日のルーティングの問題の多くは、うまくそれをサポートしようとしている組織や政策と一致していないルーティングシステムによって引き起こされます。私たちの目標は、今日想定されていなくても、ドメイン、組織がその要件に合致するルーティングアーキテクチャにより提供することができますルーティングアーキテクチャを開発することです。この目標が達成されたときに所望のポリシーは、ルール、および組織は、自然の一貫性、および容易に理解の方法でルーティングシステムにマッピングすることができたときに私たちは知っています。 Supporting a Range of Different Communication Services。異なる通信サービスの範囲をサポート

Today's routing protocols only support a single data forwarding service that is typically used to deliver a best-effort service in the public Internet. On the other hand, Diffserv for example, can construct a number of different bit transport services within the network. Using some of the per-domain behaviors (PDB)s that have been discussed in the IETF, it is possible to construct services such as Virtual Wire [DiffservVW] and Assured Rate [DiffservAR].

今日のルーティングプロトコルは一般的に、公共のインターネットでのベストエフォート型のサービスを提供するために使用される単一のデータ転送サービスをサポートしています。一方、例えばDiffServは、ネットワーク内の異なるビット・トランスポート・サービスの番号を構築することができます。 IETFで議論されているドメインごとの行動(PDB)秒のいくつかを使用して、そのような仮想ワイヤ[DiffservVW]アシュアードレート[DiffservAR]などのサービスを構築することが可能です。

Providers today offer rudimentary promises about traffic handling in the network, for example, delay and long-term packet loss guarantees. As time goes on, this becomes even more relevant. Communicating the service characteristics of paths in routing protocols will be necessary in the near future, and it will be necessary to be able to route packets according to their service requirements.


Thus, a goal of this architecture is to allow adequate information about path service characteristics to be passed between domains and consequently, to allow the delivery of bit transport services other than the best-effort datagram connectivity service that is the current common denominator.

したがって、このアーキテクチャの目的は、現在の共通分母であるベストエフォート型のデータグラム接続サービス以外のビット・トランスポート・サービスの配信を可能にするために、パスサービスの特性に関する十分な情報が結果的ドメインとの間を通過するようにすることです。 Scalable Well Beyond Current Predictable Needs。さて現在の予測可能なニーズを超えるスケーラブル

Any proposed FDR system should scale beyond the size and performance we can foresee for the next ten years. The previous IDR proposal as implemented by BGP, has, with some massaging, held up for over ten years. In that time the Internet has grown far beyond the predictions that were implied by the original requirements.

任意の提案FDRシステムは、我々は次の10年間の予見可能サイズと性能を超えて拡張する必要があります。 BGPによって実装される前のIDRの提案は、いくつかのマッサージで、10年以上にわたって持ちこたえました。その時点では、インターネットは、これまで、元の要件によって暗示された予測を超えて成長してきました。

Unfortunately, we will only know if we have succeeded in this goal if the FDR system survives beyond its design lifetime without serious massaging. Failure will be much easier to spot!

FDRシステムは深刻なマッサージせずにその設計寿命を超えて生き残った場合、我々はこの目標に成功した場合は残念ながら、私たちは知っているだろう。失敗は見つけることがはるかに簡単になります! Alternative Forwarding Mechanisms。代替転送メカニズム

With the advent of circuit-based technologies (e.g., MPLS [RFC3031] and GMPLS [RFC3471]) managed by IP routers there are forwarding mechanisms other than the datagram service that need to be supported by the routing architecture.

回路ベースの技術の出現により(例えば、MPLS [RFC3031]とGMPLS [RFC3471])は、ルーティングアーキテクチャによってサポートされる必要があるデータグラムサービス以外の転送メカニズムが存在するIPルータが管理します。

An explicit goal of this architecture is to add support for forwarding mechanisms other then the current hop-by-hop datagram forwarding service driven by globally unique IP addresses.

このアーキテクチャの明確な目標は、グローバルに一意なIPアドレスによって駆動される電流ホップバイホップのデータグラム転送サービスを他のメカニズムを転送するためのサポートを追加することです。 Separation of Topology Map from Connectivity Service。接続サービスからのトポロジマップの分離

It is envisioned that an organization can support multiple services within a single network. These services can, for example, be of different quality, of different connectivity type, or of different protocols (e.g., IPv4 and IPv6). For all these services, there may be common domain topology, even though the policies controlling the routing of information might differ from service to service. Thus, a goal with this architecture is to support separation between creation of a domain (or organization) topology map and service creation.

組織は、単一のネットワーク内で複数のサービスをサポートできることが想定されます。これらのサービスは、例えば、異なる品質の、異なる接続タイプのもの、または異なるプロトコル(例えば、IPv4およびIPv6)であってもよいです。すべてのこれらのサービスのために、情報のルーティングを制御するポリシーがサービスへのサービスと異なる可能性があっても、一般的なドメイントポロジがあるかもしれません。したがって、このアーキテクチャでの目標は、ドメイン(または組織)トポロジマップとサービス創出の作成間の分離をサポートすることです。 Separation between Routing and Forwarding。ルーティングおよびフォワーディング間の分離

The architecture of a router is composed of two main separable parts: control and forwarding. These components, while inter-dependent, perform functions that are largely independent of each other. Control (routing, signaling, and management) is typically done in software while forwarding typically is done with specialized ASICs or network processors.


The nature of an IP-based network today is that control and data protocols share the same network and forwarding regime. This may not always be the case in future networks, and we should be careful to avoid building in this sharing as an assumption in the FDR.


A goal of this architecture is to support full separation of control and forwarding, and to consider what additional concerns might be properly considered separately (e.g., adjacency management).

このアーキテクチャの目標は、コントロールとフォワーディングの完全な分離をサポートするために、追加の懸念が適切に(例えば、隣接管理)個別に考慮されるかもしれないものを考えることです。 Different Routing Paradigms in Different Areas of the Same Network。同じネットワークの異なる領域に異なるルーティングパラダイム

A number of routing paradigms have been used or researched, in addition to the conventional shortest-path-by-hop-count paradigm that is the current mainstay of the Internet. In particular, differences in underlying transport networks may mean that other kinds of routing are more relevant, and the perceived need for traffic engineering will certainly alter the routing chosen in various domains.


Explicitly, one of these routing paradigms should be the current routing paradigm, so that the new paradigms will inter-operate in a backward-compatible way with today's system. This will facilitate a migration strategy that avoids flag days.

新しいパラダイムは、今日のシステムとの後方互換性のある方法で相互運用するように明示的に、これらのルーティングパラダイムの一つは、現在のルーティングパラダイムでなければなりません。これは、フラグの日を避け移行戦略を促進します。 Protection against Denial-of-Service and Other Security Attacks。サービス拒否およびその他のセキュリティ攻撃に対する保護

Currently, existence of a route to a destination effectively implies that anybody who can get a packet onto the network is entitled to use that route. While there are limitations to this generalization, this is a clear invitation to denial-of-service attacks. A goal of the FDR system should be to allow traffic to be specifically linked to whole or partial routes so that a destination or link resources can be protected from unauthorized use.

現在、効果的に目的地までの経路の存在がネットワークにパケットを取得することができます誰がそのルートを使用する権利があることを意味します。この一般化には限界がありますが、これは、サービス拒否攻撃への明確な招待状です。 FDRシステムの目標は、先またはリンク資源が不正使用から保護することができるように、トラフィックは、特に全体または一部のルートにリンクできるようにする必要があります。

Editors' Note: When sections like this one and the previous ones on quality differentiation were written, the idea of separating traffic for security or quality was considered an unqualified advantage. Today, however, in the midst of active discussions on Network Neutrality, it is clear that such issues have a crucial policy component that also needs to be understood. These, and other similar issues, are open to further research.

編集者注:品質の分化に対するこのようなセクションと前のものが書かれた、セキュリティや品質のトラフィックを分離するという考えは、非修飾利点と考えられました。しかし今日では、ネットワークの中立性の活発な議論の真っ只中に、そのような問題も理解する必要がある重要なポリシーコンポーネントを持っていることは明らかです。これらの、および他の同様の問題は、さらなる研究に開放されています。 Provable Convergence with Verifiable Policy Interaction。検証可能な政策対話と証明可能なコンバージェンス

It has been shown both analytically, by Griffin, et al. (see [Griffin99]), and practically (see [RFC3345]) that BGP will not converge stably or is only meta-stable (i.e., will not re-converge in the face of a single failure) when certain types of policy constraint are applied to categories of network topology. The addition of policy to the basic distance-vector algorithm invalidates the proofs of convergence that could be applied to a policy-free implementation.


It has also been argued that global convergence may no longer be a necessary goal and that local convergence may be all that is required.


A goal of the FDR should be to achieve provable convergence of the protocols used that may involve constraining the topologies and domains subject to convergence. This will also require vetting the policies imposed to ensure that they are compatible across domain boundaries and result in a consistent policy set.


Editors' Note: This requirement is very optimistic in that it implies that it is possible to get operators to cooperate even it is seen by them to be against their business practices. Though perhaps Utopian, this is a good goal.

編集者注:この要件は、事業者は、彼らのビジネス慣行に対してであることを彼らから見ても、協力してもらうことが可能であることを意味していることで非常に楽観的です。おそらくユートピアけれども、これは良い目標です。 Robustness Despite Errors and Failures。エラーや障害にもかかわらず、堅牢性

From time to time in the history of the Internet, there have been occurrences where misconfigured routers have destroyed global connectivity.


A goal of the FDR is to be more robust to configuration errors and failures. This should probably involve ensuring that the effects of misconfiguration and failure can be confined to some suitable locality of the failure or misconfiguration.

FDRの目標は、構成エラーや障害に対してより堅牢になることです。これはおそらく設定ミスや失敗の影響は故障や設定ミスのいくつかの適した地域に限定することができることを確実に関与させるべきです。 Simplicity in Management。管理のシンプルさ

The policy work ([rap-charter02], [snmpconf-charter02], and [policy-charter02]) that has been done at IETF provides an architecture that standardizes and simplifies management of QoS. This kind of simplicity is needed in a Future Domain Routing architecture and its protocols.


A goal of this architecture is to make configuration and management of inter-domain routing as simple as possible.


Editors' Note: Snmpconf and rap are the hopes of the past. Today, configuration and policy hope is focused on netconf [netconf-charter].

編集者注:SNMPCONFとラップが過去の希望です。今日では、コンフィギュレーションおよびポリシーの希望は、NETCONF [NETCONF-チャーター]に焦点を当てています。 The Legacy of。の遺産

RFC 1126 outlined a set of requirements that were used to guide the development of BGP. While the network has changed in the years since 1989, many of the same requirements remain. A future domain routing solution has to support, as its base requirement, the level of function that is available today. A detailed discussion of RFC 1126

RFC 1126は、BGPの開発を導くために使用された要件のセットを概説しました。ネットワークは、1989年以来、年に変更されていますが、同じ要件の多くが残っています。将来のドメインのルーティングソリューションは、その基本要件、今日利用できる機能のレベルとして、サポートする必要があります。 RFC 1126の詳細な議論

and its requirements can be found in [RFC5773]. Those requirements, while specifically spelled out in that document, are subsumed by the requirements in this document.


3.3. High-Level User Requirements
3.3. 高レベルユーザーの要件

This section considers the requirements imposed by the target audience of the FDR both in terms of organizations that might own networks that would use FDR, and the human users who will have to interact with the FDR.


3.3.1. Organizational Users
3.3.1. 組織のユーザー

The organizations that own networks connected to the Internet have become much more diverse since RFC 1126 [RFC1126] was published. In particular, major parts of the network are now owned by commercial service provider organizations in the business of making profits from carrying data traffic.

RFC 1126 [RFC1126]が出版されて以来、インターネットに接続されたネットワークを所有している組織は、はるかに多様化してきました。具体的には、ネットワークの主要部分は、現在のデータトラフィックを運ぶから利益を作るビジネスでの商用サービスプロバイダーの組織によって所有されています。 Commercial Service Providers。商用サービスプロバイダ

The routing system must take into account the commercial service provider's need for secrecy and security, as well as allowing them to organize their business as flexibly as possible.


Service providers will often wish to conceal the details of the network from other connected networks. So far as is possible, the routing system should not require the service providers to expose more details of the topology and capability of their networks than is strictly necessary.


Many service providers will offer contracts to their customers in the form of Service Level Agreements (SLAs). The routing system must allow the providers to support these SLAs through traffic engineering and load balancing as well as multi-homing, providing the degree of resilience and robustness that is needed.


Service providers can be categorized as:


- Global Service Providers (GSPs) whose networks have a global reach. GSPs may, and usually will, wish to constrain traffic between their customers to run entirely on their networks. GSPs will interchange traffic at multiple peering points with other GSPs, and they will need extensive policy-based controls to control the interchange of traffic. Peering may be through the use of dedicated private lines between the partners or, increasingly, through Internet Exchange Points.

- そのネットワークの世界的規模を持つグローバルサービスプロバイダ(のGSP)。 GSPはあり、通常は、そのネットワーク上で完全に実行するために、顧客間のトラフィックを制限したいでしょう。 GSPは、他のGSPで複数のピアリングポイントでトラフィックを交換します、そして、彼らは、トラフィックの交換を制御するために大規模なポリシーベースのコントロールが必要になります。ピアリングは、ますます、インターネットエクスチェンジを通じてパートナーや、間に専用の専用線を使用することによるものであってもよいです。

- National, or regional, Service Providers (NSPs) that are similar to GSPs but typically cover one country. NSPs may operate as a federation that provides similar reach to a GSP and may wish to be able to steer traffic preferentially to other federation members to achieve global reach.

- 国家、またはのGSPに似ていますが、通常、1つの国をカバーする地域、サービスプロバイダ(NSPは)。 NSPのは、GSPと同様の範囲を提供し、グローバルな展開を実現するために、他のフェデレーションメンバーに優先的にトラフィックを操縦できるようにしたいと思うかもしれフェデレーションとして動作することができます。

- Local Internet Service Providers (ISPs) operate regionally. They will typically purchase transit capacity from NSPs or GSPs to provide global connectivity, but they may also peer with neighboring, and sometimes distant, ISPs.

- ローカルインターネットサービスプロバイダ(ISP)は地域で動作します。彼らは、一般的にグローバルな接続性を提供するためのNSPかのGSPからの輸送能力を購入しますが、彼らはまた、隣接してピアも、時には遠く、ISPに。

The routing system should be sufficiently flexible to accommodate the continually changing business relationships of the providers and the various levels of trustworthiness that they apply to customers and partners.


Service providers will need to be involved in accounting for Internet usage and monitoring the traffic. They may be involved in government action to tax the usage of the Internet, enforce social mores and intellectual property rules, or apply surveillance to the traffic to detect or prevent crime.

サービスプロバイダは、インターネットの使用状況を考慮し、トラフィックを監視するのに関与することが必要になります。彼らは犯罪を検出または防止するために、インターネットの利用に課税、社会規範や知的財産ルールを適用、またはトラフィックに監視を適用するために政府の行動に関与することができます。 Enterprises。企業

The leaves of the network domain graph are in many cases networks supporting a single enterprise. Such networks cover an enormous range of complexity. Some multi-national companies own networks that rival the complexity and reach of a GSP, whereas many fall into the Small Office-Home Office (SOHO) category. The routing system should allow simple and robust configuration and operation for the SOHO category, while effectively supporting the larger enterprise.


Enterprises are particularly likely to lack the capability to configure and manage a complex routing system, and every effort should be made to provide simple configuration and operation for such networks.


Enterprises will also need to be able to change their service provider with ease. While this is predominantly a naming and addressing issue, the routing system must be able to support seamless changeover; for example, if the changeover requires a change of address prefix, the routing system must be able to cope with a period when both sets of addresses are in use.


Enterprises will wish to be able to multi-home to one or more providers as one possible means of enhancing the resilience of their network.


Enterprises will also frequently need to control the trust that they place both in workers and external connections through firewalls and similar mid-boxes placed at their external connections.

企業はまた、しばしば、彼らは労働者とその外部との接続に置かれたファイアウォールや類似の半ばボックスを介して、外部接続の両方を置く信頼を制御する必要があります。 Domestic Networks。国内ネットワーク

Increasingly domestic, i.e., non-business home, networks are likely to be 'always on' and will resemble SOHO enterprises networks with no special requirements on the routing system.


The routing system must also continue to support dial-up users.

ルーティングシステムはまた、ダイヤルアップユーザーをサポートし続けなければなりません。 Internet Exchange Points。インターネットエクスチェンジ

Peering of service providers, academic networks, and larger enterprises is happening increasingly at specific Internet Exchange Points where many networks are linked together in a relatively small physical area. The resources of the exchange may be owned by a trusted third party or owned jointly by the connecting networks. The routing systems should support such exchange points without requiring the exchange point to either operate as a superior entity with every connected network logically inferior to it or by requiring the exchange point to be a member of one (or all) connected networks. The connecting networks have to delegate a certain amount of trust to the exchange point operator.

サービスプロバイダ、学術ネットワーク、および大企業のピアリングは、多くのネットワークが比較的小さい物理的領域で一緒にリンクされている特定のインターネットエクスチェンジでますます起こっています。為替のリソースは、信頼できる第三者が所有または接続するネットワークが共同で所有することができます。ルーティングシステムは、いずれかの論理的に劣る、または1つ(またはすべての)接続されたネットワークのメンバーである交換ポイントを要求することによって、すべての接続されたネットワークとの優れたエンティティとして動作するように交換ポイントを必要とすることなく、そのような交換ポイントをサポートすべきです。接続ネットワークは、交換点オペレータに信頼のある量を委任しなければなりません。 Content Providers。コンテンツプロバイダー

Content providers are at one level a special class of enterprise, but the desire to deliver content efficiently means that a content provider may provide multiple replicated origin servers or caches across a network. These may also be provided by a separate content delivery service. The routing system should facilitate delivering content from the most efficient location.


3.3.2. Individual Users
3.3.2. 個々のユーザ

This section covers the most important human users of the FDR and their expected interactions with the system.

このセクションでは、FDRとシステムとの期待の相互作用の中で最も重要な人間のユーザをカバーしています。 All End Users。すべてのエンドユーザー

The routing system must continue to deliver the current global connectivity service (i.e., any unique address to any other unique address, subject to policy constraints) that has always been the basic aim of the Internet.


End user applications should be able to request, or have requested on their behalf by agents and policy mechanisms, end-to-end communication services with QoS characteristics different from the best-effort service that is the foundation of today's Internet. It should be possible to request both a single service channel and a bundle of service channels delivered as a single entity.

エンド・ユーザ・アプリケーションは、要求することができるはずです、またはエージェントとポリシーメカニズムによってその代わって要求してきた、今日のインターネットの基盤であり、ベストエフォート型のサービスと異なるQoS特性を持つエンド・ツー・エンドの通信サービス。単一のサービス・チャネルおよび単一のエンティティとして提供サービスチャネルのバンドルの両方を要求することが可能であるべきです。 Network Planners。ネットワークプランナー

The routing system should allow network planners to plan and implement a network that can be proved to be stable and will meet their traffic engineering requirements.

ルーティングシステムは、ネットワークプランナーが安定であることが証明することができ、そのトラフィックエンジニアリング要件を満たすネットワークを計画し、実施できるようにする必要があります。 Network Operators。ネットワークオペレータ

The routing system should, so far as is possible, be simple to configure, operate and troubleshoot, behave in a predictable and stable fashion, and deliver appropriate statistics and events to allow the network to be managed and upgraded in an efficient and timely fashion.

ルーティングシステムは、これまで可能であるように、設定、運用、およびトラブルシューティング、予測可能かつ安定的に動作し、ネットワークを管理し、効率的かつタイムリーにアップグレードすることができるようにするために、適切な統計やイベントをお届けするのは簡単でなければなりません。 Mobile End Users。モバイルエンドユーザー

The routing system must support mobile end users. It is clear that mobility is becoming a predominant mode for network access.


3.4. Mandated Constraints
3.4. 義務付けられた制約

While many of the requirements to which the protocol must respond are technical, some aren't. These mandated constraints are those that are determined by conditions of the world around us. Understanding these requirements requires an analysis of the world in which these systems will be deployed. The constraints include those that are determined by:


- environmental factors,

- 環境要因、

- geography,

- 地理学、

- political boundaries and considerations, and

- 政治的境界線と考慮事項、および

- technological factors such as the prevalence of different levels of technology in the developed world compared to those in the developing or undeveloped world.

- このような現像や未開発の世界では、これらに比べて先進国の技術のさまざまなレベルの普及など技術的な要因。

3.4.1. The Federated Environment
3.4.1. フェデレーテッド環境

The graph of the Internet network, with routers and other control boxes as the nodes and communication links as the edges, is today partitioned administratively into a large number of disjoint domains.


A common administration may have responsibility for one or more domains that may or may not be adjacent in the graph.


Commercial and policy constraints affecting the routing system will typically be exercised at the boundaries of these domains where traffic is exchanged between the domains.


The perceived need for commercial confidentiality will seek to minimize the control information transferred across these boundaries, leading to requirements for aggregated information, abstracted maps of connectivity exported from domains, and mistrust of supplied information.


The perceived desire for anonymity may require the use of zero-knowledge security protocols to allow users to access resources without exposing their identity.


The requirements should provide the ability for groups of peering domains to be treated as a complex domain. These complex domains could have a common administrative policy.


3.4.2. Working with Different Sorts of Networks
3.4.2. ネットワークの異なる種類を使用した作業

The diverse Layer 2 networks, over which the Layer 3 routing system is implemented, have typically been operated totally independently from the Layer 3 network and often with their own routing mechanisms. Consideration needs to be given to the desirable degree and nature of interchange of information between the layers. In particular, the need for guaranteed robustness through diverse routing layers implies knowledge of the underlying networks.


Mobile access networks may also impose extra requirements on Layer 3 routing.


3.4.3. Delivering Resilient Service
3.4.3. 弾力性のあるサービスを提供

The routing system operates at Layer 3 in the network. To achieve robustness and resilience at this layer requires that, where multiple diverse routes are employed as part of delivering the resilience, the routing system at Layer 3 needs to be assured that the Layer 2 and lower routes are really diverse. The "diamond problem" is the simplest form of this problem -- a Layer 3 provider attempting to provide diversity buys Layer 2 services from two separate providers who in turn buy Layer 1 services from the same provider:

ルーティングシステムは、ネットワーク内のレイヤ3で動作します。この層に堅牢性と弾力性を達成するために複数の多様なルートが弾性を送達するの一部として使用される場合、レイヤ3ニーズにルーティングシステムは、レイヤ2および下部経路が実際に多様であることを保証することが必要です。 「ダイヤモンドの問題は、」この問題の最も単純な形式である - 多様性を提供しようとすると、レイヤ3のプロバイダは、順番に同じプロバイダからレイヤ1つのサービスを購入二つの別々のプロバイダからのレイヤ2サービスを購入します:

                             Layer 3 service
                              /           \
                             /             \
                         Layer 2         Layer 2
                       Provider A      Provider B
                             \             /
                              \           /
                             Layer 1 Provider

Now, when the backhoe cuts the trench, the Layer 3 provider has no resilience unless he had taken special steps to verify that the trench wasn't common. The routing system should facilitate avoidance of this kind of trap.


Some work is going on to understand the sort of problems that stem from this requirement, such as the work on Shared Risk Link Groups [InferenceSRLG]. Unfortunately, the full generality of the problem requires diversity be maintained over time between an arbitrarily large set of mutually distrustful providers. For some cases, it may be sufficient for diversity to be checked at provisioning or route instantiation time, but this remains a hard problem requiring research work.


3.4.4. When Will the New Solution Be Required?
3.4.4. ときに新しいソリューションが必要になりますか?

There is a full range of opinion on this subject. An informal survey indicates that the range varies from 2 to 6 years. And while there are those, possibly outliers, who think there is no need for a new routing architecture as well as those who think a new architecture was needed years ago, the median seems to lie at around 4 years. As in all projections of the future, this is not provable at this time.


Editors' Note: The paragraph above was written in 2002, yet could be written without change in 2006. As with many technical predictions and schedules, the horizon has remained fixed through this interval.


3.5. Assumptions
3.5. 仮定

In projecting the requirements for the Future Domain Routing, a number of assumptions have been made. The requirements set out should be consistent with these assumptions, but there are doubtless a number of other assumptions that are not explicitly articulated here:


1. The number of hosts today is somewhere in the area of 100 million. With dial-in, NATs, and the universal deployment of IPv6, this is likely to become up to 500 million users (see [CIDR]). In a number of years, with wireless accesses and different appliances attaching to the Internet, we are likely to see a couple of billion (10^9) "users" on the Internet. The number of globally addressable hosts is very much dependent on how common NATs will be in the future.

1.ホストの数今日は億のエリアのどこかにあります。ダイヤルイン、NATの、およびIPv6の普遍的展開では、この500万人のユーザー([CIDR]参照)までになりそうです。数年では、インターネットへの取り付け無線アクセスと異なる機器で、我々はインターネット上億円(10 ^ 9)「ユーザー」のカップルを参照してくださいする可能性があります。グローバルにアドレスホストの数は、将来になりますどのように一般的なNATのに非常に依存しています。

2. NATs, firewalls, and other middle-boxes exist, and we cannot assume that they will cease being a presence in the networks.

2. NATの、ファイアウォール、およびその他のミドルボックスが存在し、我々は、彼らがネットワークの存在であることをやめるだろうと仮定することはできません。

3. The number of operators in the Internet will probably not grow very much, as there is a likelihood that operators will tend to merge. However, as Internet-connectivity expands to new countries, new operators will emerge and then merge again.


4. At the beginning of 2002, there are around 12000 registered ASs. With current use of ASs (e.g., multi-homing) the number of ASs could be expected to grow to 25000 in about 10 years [Broido02]. This is down from a previously reported growth rate of 51% per year [RFC3221]. Future growth rates are difficult to predict.

2002年の初めに4、12000の登録ASの周りがあります。 ASの現在の使用(例えば、マルチホーミング)とのASの数は、約10年[Broido02]で25000まで成長すると期待できます。これがダウンし、年間51%の以前に報告された成長率[RFC3221]からです。将来の成長率を予測することは困難です。

           Editors' Note: In the routing report table of August 2006,
           the total number of ASs present in the Internet Routing Table
           was 23000.  In 4 years, this is substantial progress on the
           prediction of 25000 ASs.  Also, there are significantly more
           ASs registered than are visibly active, i.e., in excess of
           42000 in mid-2006.  It is possible, however, that many are
           being used internally.

5. In contrast to the number of operators, the number of domains is likely to grow significantly. Today, each operator has different domains within an AS, but this also shows in SLAs and policies internal to the operator. Making this globally visible would create a number of domains; 10-100 times the number of ASs, i.e., between 100,000 and 1,000,000.

5.オペレータの数とは対照的に、ドメインの数が大幅に増加する可能性があります。今日では、各事業者は、AS内の異なるドメインを持っているが、これはまた、SLAとオペレータに内部方針に示されています。これは世界的に見えるようにすることはドメインの数を作成します。 ASの10~100倍の数、すなわち、100,000〜1,000,000の間です。

6. With more and more capacity at the edge of the network, the IP network will expand. Today, there are operators with several thousands of routers, but this is likely to be increased. Some domains will probably contain tens of thousands of routers.


7. The speed of connections in the (fixed) access will technically be (almost) unconstrained. However, the cost for the links will not be negligible so that the apparent speed will be effectively bounded. Within a number of years, some will have multi-gigabit speed in the access.


8. At the same time, the bandwidth of wireless access still has a strict upper-bound. Within the foreseeable future each user will have only a tiny amount of resources available compared to fixed accesses (10 kbps to 2 Mbps for a Universal Mobile Telecommunications System (UMTS) with only a few achieving the higher figure as the bandwidth is shared between the active users in a cell and only small cells can actually reach this speed, but 11 Mbps or more for wireless LAN connections). There may also be requirements for effective use of bandwidth as low as 2.4 Kbps or lower, in some applications.

8.同時に、無線アクセスの帯域幅は、依然として厳しい上限を有します。近い将来内の各ユーザは、固定アクセスと比較し、利用可能なリソースの唯一の小さな量(帯域幅がアクティブの間で共有されるように、わずか数は、より高い数字を達成するのにユニバーサル・モバイル・テレコミュニケーション・システム(UMTS)のための2 Mbpsに10 kbpsのを持っていますセル内のユーザーとわずかな細胞が実際にこの速度に達しますが、無線LAN接続用の11 Mbpsまたはそれ以上)することができます。また、一部のアプリケーションでは、2.4 Kbpsの以下という低帯域幅の有効利用のための要件が​​あるかもしれません。

9. Assumptions 7 and 8 taken together suggest a minimum span of bandwidth between 2.4 kbps to 10 Gbps.

9.仮定7と一緒になって8は、10 Gbpsの2.4 kbpsの間の帯域幅の最小スパンを示唆しています。

10. The speed in the backbone has grown rapidly, and there is no evidence that the growth will stop in the coming years. Terabit-speed is likely to be the minimum backbone speed in a couple of years. The range of bandwidths that need to be represented will require consideration on how to represent the values in the protocols.


11. There have been discussions as to whether Moore's Law will continue to hold for processor speed. If Moore's Law does not hold, then communication circuits might play a more important role in the future. Also, optical routing is based on circuit technology, which is the main reason for taking "circuits" into account when designing an FDR.


12. However, the datagram model still remains the fundamental model for the Internet.


13. The number of peering points in the network is likely to grow, as multi-homing becomes important. Also, traffic will become more locally distributed, which will drive the demand for local peering.


           Editors' Note: On the other hand, peer-to-peer networking may
           shift the balance in demand for local peering.

14. The FDR will achieve the same degree of ubiquity as the current Internet and IP routing.

14. FDRは、現在のインターネットとIPルーティングとして普及の同じ程度を達成します。

3.6. Functional Requirements
3.6. 機能要件

This section includes a detailed discussion of new requirements for a Future Domain Routing architecture. The nth requirement carries the label "R(n)". As discussed in Section, a new architecture

このセクションでは、将来ドメインルーティングアーキテクチャのための新しい要件の詳細な議論を含んでいます。 n番目の要件は、ラベル「R(N)」を運びます。セクション3.2.3.12、新しいアーキテクチャで説明したように

must build upon the requirements of the past routing framework and must not reduce the functionality of the network. A discussion and analysis of the RFC 1126 requirements can be found in [RFC5773].

過去のルーティングフレームワークの要件に構築しなければならないし、ネットワークの機能を低下させなければなりません。 RFCの議論および分析1126枚の要件は[RFC5773]に見出すことができます。

3.6.1. Topology
3.6.1. トポロジー Routers Should Be Able to Learn and to Exploit the Domain Topology。ルータは、学習することができるはずとドメイントポロジを利用するために

R(1) Routers must be able to acquire and hold sufficient information on the underlying topology of the domain to allow the establishment of routes on that topology.


R(2) Routers must have the ability to control the establishment of routes on the underlying topology.


R(3) Routers must be able, where appropriate, to control Sub-IP mechanisms to support the establishment of routes.


The OSI Inter-Domain Routing Protocol (IDRP) [ISO10747] allowed a collection of topologically related domains to be replaced by an aggregate domain object, in a similar way to the Nimrod [Chiappa02] domain hierarchies. This allowed a route to be more compactly represented by a single collection instead of a sequence of individual domains.


R(4) Routers must, where appropriate, be able to construct abstractions of the topology that represent an aggregation of the topological features of some area of the topology.

Rは、(4)ルータは、適切な場合、トポロジの一部領域の地形的特徴の集合を表すトポロジーの抽象化を構築することができなければなりません。 The Same Topology Information Should Support Different Path Selection Ideas。同じトポロジ情報が異なるパス選択のアイデアをサポートする必要があります

The same topology information needs to provide the more flexible spectrum of path selection methods that we might expect to find in a future Internet, including distributed techniques such as hop-by-hop, shortest path, local optimization constraint-based, class of service, source address routing, and destination address routing, as well as the centralized, global optimization constraint-based "traffic engineering" type. Allowing different path selection techniques will produce a much more predictable and comprehensible result than the "clever tricks" that are currently needed to achieve the same results. Traffic engineering functions need to be combined.


R(5) Routers must be capable of supporting a small number of different path selection algorithms.

R(5)ルータは異なる経路選択アルゴリズムの小さな数をサポートすることができなければなりません。 Separation of the Routing Information Topology from the Data Transport Topology。データ転送トポロジからルーティング情報トポロジの分離

R(6) The controlling network may be logically separate from the controlled network.


The two functional "planes" may physically reside in the same nodes and share the same links, but this is not the only possibility, and other options may sometimes be necessary. An example is a pure circuit switch (that cannot see individual IP packets) combined with an external controller. Another example may be multiple links between two routers, where all the links are used for data forwarding but only one is used for carrying the routing session.


3.6.2. Distribution
3.6.2. 分布 Distribution Mechanisms。配布メカニズム

R(7) Relevant changes in the state of the network, including modifications to the topology and changes in the values of dynamic capabilities, must be distributed to every entity in the network that needs them, in a reliable and trusted way, at the earliest appropriate time after the changes have occurred.


R(8) Information must not be distributed outside areas where it is needed, or believed to be needed, for the operation of the routing system.


R(9) Information must be distributed in such a way that it minimizes the load on the network, consistent with the required response time of the network to changes.

Rは、(9)情報が変化するネットワークの必要な応答時間と一致し、それはネットワーク上の負荷を最小限に抑えるような方法で分配されなければなりません。 Path Advertisement。経路広告

R(10) The router must be able to acquire and store additional static and dynamic information that relates to the capabilities of the topology and its component nodes and links and that can subsequently be used by path selection methods.


The inter-domain routing system must be able to advertise more kinds of information than just connectivity and domain paths.


R(11) The routing system must support service specifications, e.g., the Service Level Specifications (SLSs) developed by the Differentiated Services working group [RFC3260].


Careful attention should be paid to ensuring that the distribution of additional information with path advertisements remains scalable as domains and the Internet get larger, more numerous, and more diversified.


R(12) The distribution mechanism used for distributing network state information must be scalable with respect to the expected size of domains and the volume and rate of change of dynamic state that can be expected.


The combination of R(9) and R(12) may result in a compromise between the responsiveness of the network to change and the overhead of distributing change notifications. Attempts to respond to very rapid changes may damage the stability of the routing system.


Possible examples of additional capability information that might be carried include:


- QoS information

- QoS情報

To allow an ISP to sell predictable end-to-end QoS service to any destination, the routing system should have information about the end-to-end QoS. This means that:


R(13) The routing system must be able to support different paths for different services.


R(14) The routing system must be able to forward traffic on the path appropriate for the service selected for the traffic, either according to an explicit marking in each packet (e.g., MPLS labels, Diffserv Per-Hop Behaviors (PHBs) or DSCP values) or implicitly (e.g., the physical or logical port on which the traffic arrives).


R(15) The routing system should also be able to carry information about the expected (or actually, promised) characteristics of the entire path and the price for the service.


(If such information is exchanged at all between network operators today, it is through bilateral management interfaces, and not through the routing protocols.)


This would allow for the operator to optimize the choice of path based on a price/performance trade-off.


In addition to providing dynamic QoS information, the system should be able to use static class-of-service information.


- Security information

- セキュリティ情報

Security characteristics of other domains referred to by advertisements can allow the routing entity to make routing decisions based on political concerns. The information itself is assumed to be secure so that it can be trusted.


- Usage and cost information

- 使用方法やコスト情報

Usage and cost information can be used for billing and traffic engineering. In order to support cost-based routing policies for customers (i.e., peer ISPs), information such as "traffic on this link or path costs XXX per Gigabyte" needs to be advertised, so that the customer can choose a more or a less expensive route.


- Monitored performance

- 監視対象のパフォーマンス

Performance information such as delay and drop frequency can be carried. (This may only be suitable inside a domain because of trust considerations.) This should support at least the kind of delay-bound contractual terms that are currently being offered by service providers. Note that these values refer to the outcome of carrying bits on the path, whereas the QoS information refers to the proposed behavior that results in this outcome.

このような遅延やドロップ周波数などの性能情報を行うことができます。 (これが唯一の理由は、信頼の配慮のドメイン内部に適切であり得る。)これは、現在、サービスプロバイダによって提供されている遅延結合契約条項の少なくとも一種をサポートする必要があります。 QoS情報は、この結果をもたらす提案挙動を指すのに対し、これらの値は、経路上の各ビットを運ぶの結果を参照することに留意されたいです。

- Multicast information

- マルチキャスト情報

R(16) The routing system must provide information needed to create multicast distribution trees. This information must be provided for one-to-many distribution trees and should be provided for many-to-many distribution trees.


The actual construction of distribution trees is not necessarily done by the routing system.

配信ツリーの実際の構成は、必ずしもルーティングシステムによって行われていません。 Stability of Routing Information。ルーティング情報の安定性

R(17) The new network architecture must be stable without needing global convergence, i.e., convergence is a local property.


The degree to which this is possible and the definition of "local" remain research topics. Restricting the requirement for convergence to localities will have an effect on all of the other requirements in this section.


R(18) The distribution and the rate of distribution of changes must not affect the stability of the routing information. For example, commencing redistribution of a change before the previous one has settled must not cause instability.

R(18)の分布と変化の分布の割合は、ルーティング情報の安定性に影響を与えてはなりません。例えば、前の前の変更の再配布を開始すると、不安定性を引き起こしてはならない落ち着きました。 Avoiding Routing Oscillations。ルーティング振動を回避

R(19) The routing system must minimize oscillations in route advertisements.

R(19)ルーティングシステムは、経路広告の振動を最小限にしなければなりません。 Providing Loop-Free Routing and Forwarding。ループフリールーティングおよび転送を提供

In line with the separation of routing and forwarding concerns:


R(20) The distribution of routing information must be, so far as is possible, loop-free.


R(21) The forwarding information created from this routing information must seek to minimize persistent loops in the data-forwarding paths.


It is accepted that transient loops may occur during convergence of the protocol and that there are trade-offs between loop avoidance and global scalability.

過渡ループはプロトコルの収束時とループ回避とグローバルスケーラビリティの間にトレードオフが存在することが起こり得ることが認められています。 Detection, Notification, and Repair of Failures。検出、通知、および障害の修理

R(22) The routing system must provide means for detecting failures of node equipment or communication links.


R(23) The routing system should be able to coordinate failure indications from Layer 3 mechanisms, from nodal mechanisms built into the routing system, and from lower-layer mechanisms that propagate up to Layer 3 in order to determine the root cause of the failure. This will allow the routing system to react correctly to the failure by activating appropriate mitigation and repair mechanisms if required, while ensuring that it does not react if lower-layer repair mechanisms are able to repair or mitigate the fault.


Most Layer 3 routing protocols have utilized keepalives or "hello" protocols as a means of detecting failures at Layer 3. The keepalive mechanisms are often complemented by analog mechanisms (e.g., laser-light detection) and hardware mechanisms (e.g., hardware/software watchdogs) that are built into routing nodes and communication links. Great care must be taken to make the best possible use of the various failure repair methods available while ensuring that only one repair mechanism at a time is allowed to repair any given fault.


Interactions between, for example, fast reroute mechanisms at Layer 3 and Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/ SDH) repair at Layer 1 are highly undesirable and are likely to cause problems in the network.

例えば、高速なレイヤ3でのメカニズムを再ルーティングし、レイヤ1の同期光ネットワーク/同期デジタル階層(SONET / SDH)の修理、の間の相互作用が非常に望ましくないと、ネットワークの問題を引き起こす可能性があります。

R(24) Where a network topology and routing system contains multiple fault repair mechanisms, the responses of these systems to a detected failure should be coordinated so that the fault is repaired by the most appropriate means, and no extra repairs are initiated.


R(25) Where specialized packet exchange mechanisms (e.g., Layer 3 keepalive or "hello" protocol mechanisms) are used to detect failures, the routing system must allow the configuration of the rate of transmission of these keepalives. This must include the capability to turn them off altogether for links that are deliberately broken when no real user or control traffic is present (e.g., ISDN links).


This will allow the operator to compromise between the speed of failure detection and the proportion of link bandwidth dedicated to failure detection.


3.6.3. Addressing
3.6.3. アドレッシング Support Mix of IPv4, IPv6, and Other Types of Addresses。 IPv4の、IPv6、および他のタイプのアドレスのサポートミックス

R(26) The routing system must support a mix of different kinds of addresses.


This mix will include at least IPv4 and IPv6 addresses, and preferably various types of non-IP addresses, too. For instance, networks like SDH/SONET and Wavelength Division Multiplexing (WDM) may prefer to use non-IP addresses. It may also be necessary to support multiple sets of "private" (e.g., RFC 1918) addresses when dealing with multiple customer VPNs.

このミックスは、あまりにも、少なくともIPv4アドレスとIPv6アドレスが含まれ、非IPアドレスの好ましくは、様々なタイプでしょう。例えば、SDH / SONETと波長分割多重(WDM)のようなネットワークは、非IPアドレスを使用することを好むかもしれません。また、複数の顧客のVPNを扱う際に「プライベート」(例えば、RFC 1918)のアドレスの複数のセットをサポートする必要があるかもしれません。

R(27) The routing system should support the use of a single topology representation to generate routing and forwarding tables for multiple address families on the same network.


This capability would minimize the protocol overhead when exchanging routes.

ルートを交換するとき、この機能は、プロトコルオーバーヘッドを最小限に抑えることになります。 Support for Domain Renumbering/Readdressing。ドメインリナンバリング/再アドレッシングのサポート

R(28) If a domain is subject to address reassignment that would cause forwarding interruption, then the routing system should support readdressing (e.g., when a new prefix is given to an old network, and the change is known in advance) by maintaining routing during the changeover period [RFC2071] [RFC2072].

R(28)ドメインが転送中断の原因となる再割り当てに対処することがあります場合は、ルーティングシステムは、再アドレスサポートする必要があります(例えば、新しいプレフィックスが古いネットワークに与えられ、そして変更が事前にわかっている場合)、ルーティングを維持することによって、切り替え期間[RFC2071] [RFC2072]中。 Multicast and Anycast。マルチキャストとエニーキャスト

R(29) The routing system must support multicast addressing, both within a domain and across multiple domains.


R(30) The routing system should support anycast addressing within a domain. The routing system may support anycast addressing across domains.


An open question is whether it is possible or useful to support anycast addressing between cooperating domains.

未解決の問題は、協力ドメイン間でのアドレス指定エニーキャストをサポートすることは可能か、便利であるかどうかです。 Address Scoping。アドレススコーピング

R(31) The routing system must support scoping of unicast addresses, and it should support scoping of multicast and anycast address types.


The unicast address scoping that is being designed for IPv6 does not seem to cause any special problems for routing. IPv6 inter-domain routing handles only IPv6 global addresses, while intra-domain routing also needs to be aware of the scope of private addresses.


Editors' Note: the original reference was to site-local addresses, but these have been deprecated by the IETF. Link-local addresses are never routed at all.


More study may be needed to identify the requirements and solutions for scoping in a more general sense and for scoping of multicast and anycast addresses.

より多くの研究では、より一般的な意味でスコープ用およびマルチキャストおよびエニーキャストアドレスのスコープのための要件とソリューションを識別するために必要な場合があります。 Mobility Support。モビリティサポート

R(32) The routing system must support system mobility. The term "system" includes anything from an end system to an entire domain.

R(32)ルーティングシステムは、システムの移動性をサポートしなければなりません。 「システム」という用語は、ドメイン全体にエンドシステムから何かを含んでいます。

We observe that the existing solutions based on renumbering and/or tunneling are designed to work with the current routing, so they do not add any new requirements to future routing. But the requirement is general, and future solutions may not be restricted to the ones we have today.


3.6.4. Statistics Support
3.6.4. 統計のサポート

R(33) Both the routing and forwarding parts of the routing system must maintain statistical information about the performance of their functions.


3.6.5. Management Requirements
3.6.5. 管理要件

While the tools of management are outside the scope of routing, the mechanisms to support the routing architecture and protocols are within scope.


R(34) Mechanisms to support Operational, Administrative, and Management control of the routing architecture and protocols must be designed into the original fabric of the architecture.

R(34)メカニズム、運用管理、およびルーティングアーキテクチャとプロトコルの管理制御をサポートするためには、アーキテクチャの原反に設計されなければなりません。 Simple Policy Management。シンプルなポリシー管理

The basic aims of this specification are:


- to require less manual configuration than today, and

- 今日より少ない手動設定を必要とするように、と

- to satisfy the requirements for both easy handling and maximum control. That is:

- 簡単な取り扱いと最大制御の両方の要件を満たすために。あれは:

- All the information should be available,

- すべての情報が利用可能であるべき、

- but should not be visible except for when necessary.

- しかし、必要なとき以外は表示されません。

- Policies themselves should be advertised and not only the result of policy, and

- ポリシー自体が宣伝と政策の結果だけではなく、すべきであり、

- policy-conflict resolution must be provided.

- 政策 - 紛争解決を提供する必要があります。

R(35) The routing system must provide management of the system by means of policies. For example, policies that can be expressed in terms of the business and services implemented on the network and reflect the operation of the network in terms of the services affected.


                Editors' Note: This requirement is optimistic in that it
                implies that it is possible to get operators to
                cooperate even if it is seen by them to be against their
                business practices.

R(36) The distribution of policies must be amenable to scoping to protect proprietary policies that are not relevant beyond the local set of domains.

R(36)政策の分布は、ドメインのローカルセットを超え関連していない独自のポリシーを保護するためのスコープに従順でなければなりません。 Startup and Maintenance of Routers。ルータの起動とメンテナンス

A major problem in today's networks is the need to perform initial configuration on routers from a local interface before a remote management system can take over. It is not clear that this imposes any requirements on the routing architecture beyond what is needed for a ZeroConf host.


Similarly, maintenance and upgrade of routers can cause major disruptions to the network routing because the routing system and management of routers is not organized to minimize such disruption. Some improvements have been made, such as graceful restart mechanisms in protocols, but more needs to be done.


R(37) The routing system and routers should provide mechanisms that minimize the disruption to the network caused by maintenance and upgrades of software and hardware. This requirement recognizes that some of the capabilities needed are outside the scope of the routing architecture (e.g., minimum impact software upgrade).


3.6.6. Provability
3.6.6. 証明可能性

R(38) The routing system and its component protocols must be demonstrated to be locally convergent under the permitted range of parameter settings and policy options that the operator(s) can select.


There are various methods for demonstration and proof that include, but are not limited to: mathematical proof, heuristic, and pattern recognition. No requirement is made on the method used for demonstrating local convergence properties.


R(39) Routing protocols employed by the routing system and the overall routing system should be resistant to bad routing policy decisions made by operators.


Tools are needed to check compatibility of routing policies. While these tools are not part of the routing architecture, the mechanisms to support such tools are.


Routing policies are compatible if their interaction does not cause instability. A domain or group of domains in a system is defined as being convergent, either locally or globally, if and only if, after an exchange of routing information, routing tables reach a stable state that does not change until the routing policies or the topology changes again.


To achieve the above-mentioned goals:


R(40) The routing system must provide a mechanism to publish and communicate policies so that operational coordination and fault isolation are possible.


Tools are required that verify the stability characteristics of the routing system in specified parts of the Internet. The tools should be efficient (fast) and have a broad scope of operation (check large portions of Internet). While these tools are not part of the architecture, developing them is in the interest of the architecture and should be defined as a Routing Research Group activity while research on the architecture is in progress.


Tools analyzing routing policies can be applied statically or (preferably) dynamically. A dynamic solution requires tools that can be used for run time checking for oscillations that arise from policy conflicts. Research is needed to find an efficient solution to the dynamic checking of oscillations.


3.6.7. Traffic Engineering
3.6.7. トラフィックエンジニアリング

The ability to do traffic engineering and to get the feedback from the network to enable traffic engineering should be included in the future domain architecture. Though traffic engineering has many definitions, it is, at base, another alternative or extension for the path selection mechanisms of the routing system. No fundamental changes to the requirements are needed, but the iterative processes involved in traffic engineering may require some additional capabilities and state in the network.


Traffic engineering typically involves a combination of off-line network planning and administrative control functions in which the expected and measured traffic flows are examined, resulting in changes to static configurations and policies in the routing system.


During operations, these configurations control the actual flow of traffic and affect the dynamic path selection mechanisms; the results are measured and fed back into further rounds of network planning.

操作中に、これらの構成は、トラフィックの実際の流量を制御し、動的経路選択メカニズムに影響を与えます。結果は測定され、ネットワーク計画のさらなるラウンドにフィードバックされています。 Support for, and Provision of, Traffic Engineering Tools。サポート、および、トラフィックエンジニアリングツールの提供

At present, there is an almost total lack of effective traffic engineering tools, whether in real time for network control or off-line for network planning. The routing system should encourage the provision of such tools.


R(41) The routing system must generate statistical and accounting information in such a way that traffic engineering and network planning tools can be used in both real-time and off-line planning and management.

R(41)ルーティングシステムは、トラフィックエンジニアリングとネットワーク・プランニング・ツールは、両方のリアルタイムでとオフラインの計画と管理に使用することができるような方法で、統計および会計情報を生成する必要があります。 Support of Multiple Parallel Paths。複数の並列パスのサポート

R(42) The routing system must support the controlled distribution over multiple links or paths of traffic toward the same destination. This applies to domains with two or more connections to the same neighbor domain, and to domains with connections to more than one neighbor domain. The paths need not have the same metric.


R(43) The routing system must support forwarding over multiple parallel paths when available. This support should extend to cases where the offered traffic is known to exceed the available capacity of a single link, and to the cases where load is to be shared over paths for cost or resiliency reasons.


R(44) Where traffic is forwarded over multiple parallel paths, the routing system must, so far as is possible, avoid the reordering of packets in individual micro-flows.


R(45) The routing system must have mechanisms to allow the traffic to be reallocated back onto a single path when multiple paths are not needed.

R(45)ルーティングシステムは、複数のパスが必要とされない場合、トラフィックが単一の経路に戻し再割り当てできるようにするための機構を有していなければなりません。 Peering Support。ピアリングサポート

R(46) The routing system must support peer-level connectivity as well as hierarchical connections between domains.


The network is becoming increasingly complex, with private peering arrangements set up between providers at every level of the hierarchy of service providers and even by certain large enterprises, in the form of dedicated extranets.


R(47) The routing system must facilitate traffic engineering of peer routes so that traffic can be readily constrained to travel as the network operators desire, allowing optimal use of the available connectivity.


3.6.8. Support for Middleboxes
3.6.8. Middleboxesのサポート

One of our assumptions is that NATs and other middle-boxes such as firewalls, web proxies, and address family translators (e.g., IPv4 to IPv6) are here to stay.


R(48) The routing system should work in conjunction with middle-boxes, e.g., NAT, to aid in bi-directional connectivity without compromising the additional opacity and privacy that the middle-boxes offer.


This problem is closely analogous to the abstraction problem, which is already under discussion for the interchange of routing information between domains.


3.7. Performance Requirements
3.7. 性能要件

Over the past several years, the performance of the routing system has frequently been discussed. The requirements that derive from those discussions are listed below. The specific values for these performance requirements are left for further discussion.


R(49) The routing system must support domains of at least N systems. A system is taken to mean either an individual router or a domain.


R(50) Local convergence should occur within T units of time.


R(51) The routing system must be measurably reliable. The measure of reliability remains a research question.


R(52) The routing system must be locally stable to a measured degree. The degree of measurability remains a research issue.


R(53) The routing system must be globally stable to a measured degree. The degree of measurability remains a research issue.


R(54) The routing system should scale to an indefinitely large number of domains.


There has been very little data or statistical evidence for many of the performance claims made in the past. In recent years, several efforts have been initiated to gather data and do the analyses required to make scientific assessments of performance issues and requirements. In order to complete this section of the requirements analysis, the data and analyses from these studies needs to be gathered and collated into this document. This work has been started but has yet to be completed.


Editors' Note: This work was never completed due to corporate reorganizations.


3.8. Backward Compatibility (Cutover) and Maintainability
3.8. 旧バージョンとの互換性(カットオーバー)と保守性

This area poses a dilemma. On one hand, it is an absolute requirement that:


R(55) The introduction of the routing system must not require any flag days.


R(56) The network currently in place must continue to run at least as well as it does now while the new network is being installed around it.


However, at the same time, it is also an requirement that:


R(57) The new architecture must not be limited by the restrictions that plague today's network.


It has to be admitted that R(57) is not a well-defined requirement, because we have not fully articulated what the restrictions might be. Some of these restrictions can be derived by reading the discussions for the positive requirements above. It would be a useful exercise to explicitly list all the restrictions and irritations with which we wish to do away. Further, it would be useful to determine if these restrictions can currently be removed at a reasonable cost or whether we are actually condemned to live with them.


Those restrictions cannot be allowed to become permanent baggage on the new architecture. If they do, the effort to create a new system will come to naught. It may, however, be necessary to live with some of them temporarily for practical reasons while providing an architecture that will eventually allow them to be removed. The last three requirements have significance not only for the transition strategy but also for the architecture itself. They imply that it must be possible for an internet such as today's BGP-controlled network, or one of its ASs, to exist as a domain within the new FDR.


3.9. Security Requirements
3.9. セキュリティ要件

As previously discussed, one of the major changes that has overtaken the Internet since its inception is the erosion of trust between end users making use of the net, between those users and the suppliers of services, and between the multiplicity of providers. Hence, security, in all its aspects, will be much more important in the FDR.


It must be possible to secure the routing communication.


R(58) The communicating entities must be able to identify who sent and who received the information (authentication).


R(59) The communicating entities must be able to verify that the information has not been changed on the way (integrity).


Security is more important in inter-domain routing where the operator has no control over the other domains, than in intra-domain routing where all the links and the nodes are under the administration of the operator and can be expected to share a trust relationship. This property of intra-domain trust, however, should not be taken for granted:


R(60) Routing communications must be secured by default, but an operator must have the option to relax this requirement within a domain where analysis indicates that other means (such as physical security) provide an acceptable alternative.


R(61) The routing communication mechanism must be robust against denial-of-service attacks.


R(62) It should be possible to verify that the originator of the information was authorized to generate the information.


Further considerations that may impose further requirements include:


- whether no one else but the intended recipient is able to access (privacy) or understand (confidentiality) the information,

- 他の誰もが、意図された受信者がアクセスすることができないか(プライバシー)または理解(機密)情報、

- whether it is possible to verify that all the information has been received and that the two parties agree on what was sent (validation and non-repudiation),

- すべての情報を受信し、両当事者は、(検証および否認防止)送信されたものに同意することをされていることを確認することが可能であるかどうか、

- whether there is a need to separate security of routing from security of forwarding, and

- 転送のセキュリティからルーティングのセキュリティを分離する必要があるかどうか、および

- whether traffic flow security is needed (i.e., whether there is value in concealing who can connect to whom, and what volumes of data are exchanged).

- トラフィックフローのセキュリティが(誰に接続することができ、どのようなデータの容量の交換をしている者隠しに値が存在する、すなわち、かどうか)が必要であるかどうか。

Securing the BGP session, as done today, only secures the exchange of messages from the peering domain, not the content of the information. In other words, we can confirm that the information we got is what our neighbor really sent us, but we do not know whether or not this information (that originated in some remote domain) is true.


A decision has to be made on whether to rely on chains of trust (we trust our peers who trust their peers who..), or whether we also need authentication and integrity of the information end-to-end. This information includes both routes and addresses. There has been interest in having digital signatures on originated routes as well as countersignatures by address authorities to confirm that the originator has authority to advertise the prefix. Even understanding who can confirm the authority is non-trivial, as it might be the provider who delegated the prefix (with a whole chain of authority back to ICANN) or it may be an address registry. Where a prefix delegated by a provider is being advertised through another provider as in multi-homing, both may have to be involved to confirm that the prefix may be advertised through the provider who doesn't have any interest in the prefix!


R(63) The routing system must cooperate with the security policies of middle-boxes whenever possible.


This is likely to involve further requirements for abstraction of information. For example, a firewall that is seeking to minimize interchange of information that could lead to a security breach. The effect of such changes on the end-to-end principle should be carefully considered as discussed in [Blumenthal01].

これは情報の抽象化のための更なる要件を伴う可能性があります。例えば、セキュリティ侵害につながる可能性がある情報の交換を最小化しようとしているファイアウォール。 【Blumenthal01]で議論するようにエンド・ツー・エンド原理にそのような変化の影響を慎重に考慮しなければなりません。

R(64) The routing system must be capable of complying with local legal requirements for interception of communication.


3.10. Debatable Issues
3.10. 議論の余地の問題

This section covers issues that need to be considered and resolved in deciding on a Future Domain Routing architecture. While they can't be described as requirements, they do affect the types of solution that are acceptable. The discussions included below are very open-ended.


3.10.1. Network Modeling
3.10.1. ネットワークのモデリング

The mathematical model that underlies today's routing system uses a graph representation of the network. Hosts, routers, and other processing boxes are represented by nodes and communications links by arcs. This is a topological model in that routing does not need to directly model the physical length of the links or the position of the nodes; the model can be transformed to provide a convenient picture of the network by adjusting the lengths of the arcs and the layout of the nodes. The connectivity is preserved and routing is unaffected by this transformation.


The routing algorithms in traditional routing protocols utilize a small number of results from graph theory. It is only recently that additional results have been employed to support constraint-based routing for traffic engineering.


The naturalness of this network model and the "fit" of the graph theoretical methods may have tended to blind us to alternative representations and inhibited us from seeking alternative strands of theoretical thinking that might provide improved results.


We should not allow this habitual behavior to stop us from looking for alternative representations and algorithms; topological revolutions are possible and allowed, at least in theory.


3.10.2. System Modeling
3.10.2. システムのモデリング

The assumption that object modeling of a system is an essential first step to creating a new system is still novel in this context. Frequently, the object modeling effort becomes an end in itself and does not lead to system creation. But there is a balance, and a lot that can be discovered in an ongoing effort to model a system such as the Future Domain Routing system. It is recommended that this process be included in the requirements. It should not, however, be a gating event to all other work.


Some of the most important realizations will occur during the process of determining the following:


- Object classification

- オブジェクトの分類

- Relationships and containment

- 関係と封じ込め

- Roles and Rules

- ロールおよびルール

3.10.3. One, Two, or Many Protocols
3.10.3. 一つ、二つ、または多数のプロトコル

There has been a lot of discussion of whether the FDR protocol solution should consist of one (probably new) protocol, two (intra-and inter-domain) protocols, or many protocols. While it might be best to have one protocol that handles all situations, this seems improbable. On the other hand, maintaining the "strict" division evident in the network today between the IGP and EGP may be too restrictive an approach. Given this, and the fact that there are already many routing protocols in use, the only possible answer seems to be that the architecture should support many protocols. It remains an open issue, one for the solution, to determine if a new protocol needs to be designed in order to support the highest goals of this architecture. The expectation is that a new protocol will be needed.


3.10.4. Class of Protocol
3.10.4. プロトコルのクラス

If a new protocol is required to support the FDR architecture, the question remains open as to what kind of protocol this ought to be. It is our expectation that a map distribution protocol will be required to augment the current path-vector protocol and shortest path first protocols.


3.10.5. Map Abstraction
3.10.5. 地図の抽象化

Assuming that a map distribution protocol, as defined in [RFC1992] is required, what are the requirements on this protocol? If every detail is advertised throughout the Internet, there will be a lot of information. Scalable solutions require abstraction.


- If we summarize too much, some information will be lost on the way.

- 私たちはあまりにも多くを要約すると、一部の情報が途中で失われます。

- If we summarize too little, then more information than required is available, contributing to scaling limitations.

- 私たちが必要とされるよりも少なすぎる、そしてより多くの情報を要約した場合は、スケーリング制限のために貢献し、利用可能です。

- One can allow more summarization, if there also is a mechanism to query for more details within policy limits.

- また、ポリシーの制限内で詳細を照会するメカニズムがある場合は、1つは、より多くの集約を許可することができます。

- The basic requirement is not that the information shall be advertised, but rather that the information shall be available to those who need it. We should not presuppose a solution where advertising is the only possible mechanism.

- 基本的な要件は、情報が公示されなければならないということではなく、情報がそれを必要とする人に利用できるものでなければならないということ。私たちは、広告が唯一の可能な機構である解決策を前提としてはなりません。

3.10.6. Clear Identification for All Entities
3.10.6. すべてのエンティティのための明確な識別

As in all other fields, the words used to refer to concepts and to describe operations about routing are important. Rather than describe concepts using terms that are inaccurate or rarely used in the real world of networking, it is necessary to make an effort to use the correct words. Many networking terms are used casually, and the result is a partial or incorrect understanding of the underlying concept. Entities such as nodes, interfaces, subnetworks, tunnels, and the grouping concepts such as ASs, domains, areas, and regions, need to be clearly identified and defined to avoid confusion.


There is also a need to separate identifiers (what or who) from locators (where) from routes (how to reach).


Editors' Note: Work was undertaken in the shim6 working group of the IETF on this sort of separation. This work needs to be taken into account in any new routing architecture.


3.10.7. Robustness and Redundancy
3.10.7. 堅牢性と冗長性

The routing association between two domains should survive even if some individual connection between two routers goes down.


The "session" should operate between logical "routing entities" on each domain side, and not necessarily be bound to individual routers or addresses. Such a logical entity can be physically distributed over multiple network elements. Or, it can reside in a single router, which would default to the current situation.


3.10.8. Hierarchy
3.10.8. 階層

A more flexible hierarchy with more levels and recursive groupings in both upward and downward directions allows more structured routing. The consequence is that no single level will get too big for routers to handle.


On the other hand, it appears that the real-world Internet is becoming less hierarchical, so that it will be increasingly difficult to use hierarchy to control scaling.


Note that groupings can look different depending on which aspect we use to define them. A Diffserv area, an MPLS domain, a trusted domain, a QoS area, a multicast domain, etc., do not always coincide; nor are they strict hierarchical subsets of each other. The basic distinction at each level is "this grouping versus everything outside".

グループは、我々はそれらを定義するために使用した様相に応じて異なって見えることに注意してください。 Diffservのエリア、MPLSドメイン、信頼されるドメイン、QoSのエリア、マルチキャストドメインなどは、必ずしも一致しません。また彼らはお互いの厳密な階層的なサブセットです。各レベルでの基本的な違いは、「外部のすべてに対して、このグループ化」です。

3.10.9. Control Theory
3.10.9. 制御理論

Is it possible to apply a control theory framework to analyze the stability of the control system of the whole network domain, with regard to, e.g., convergence speed and the frequency response, and then use the results from that analysis to set the timers and other protocol parameters?


Control theory could also play a part in QoS routing, by modifying current link-state protocols with link costs dependent on load and feedback. Control theory is often used to increase the stability of dynamic systems.


It might be possible to construct a new, totally dynamic routing protocol solely on a control theoretic basis, as opposed to the current protocols that are based in graph theory and static in nature.


3.10.10. Byzantium
3.10.10. ビザンチウム

Is solving the Byzantine Generals problem a requirement? This is the problem of reaching a consensus among distributed units if some of them give misleading answers. The current intra-domain routing system is, at one level, totally intolerant of misleading information. However, the effect of different sorts of misleading or incorrect information has vastly varying results, from total collapse to purely local disconnection of a single domain. This sort of behavior is not very desirable.


There are, possibly, other network robustness issues that must be researched and resolved.


3.10.11. VPN Support
3.10.11. VPNのサポート

Today, BGP is also used for VPNs, for example, as described in RFC 4364 [RFC4364].

RFC 4364 [RFC4364]に記載されているように今日では、BGPはまた、例えば、VPNのために使用されます。

Internet routing and VPN routing have different purposes and most often exchange different information between different devices. Most Internet routers do not need to know VPN-specific information. The concepts should be clearly separated.


But when it comes to the mechanisms, VPN routing can share the same protocol as ordinary Internet routing; it can use a separate instance of the same protocol or it can use a different protocol. All variants are possible and have their own merits. These requirements are silent on this issue.


3.10.12. End-to-End Reliability
3.10.12. エンドツーエンドの信頼性

The existing Internet architecture neither requires nor provides end-to-end reliability of control information dissemination. There is, however, already a requirement for end-to-end reliability of control information distribution, i.e., the ends of the VPN established need to have an acknowledgment of the success in setting up the VPN. While it is not necessarily the function of a routing architecture to provide end-to-end reliability for this kind of purpose, we must be clear that end-to-end reliability becomes a requirement if the network has to support such reliable control signaling. There may be other requirements that derive from requiring the FDR to support reliable control signaling.


3.10.13. End-to-End Transparency
3.10.13. エンドツーエンドの透明性

The introduction of private addressing schemes, Network Address Translators, and firewalls has significantly reduced the end-to-end transparency of the network. In many cases, the network is also no longer symmetric, so that communication between two addresses is possible if the communication session originates from one end but not from the other. This impedes the deployment of new peer-to-peer services and some "push" services where the server in a client-server arrangement originates the communication session. Whether a new routing system either can or should seek to restore this transparency is an open issue.

プライベートアドレス指定方式、ネットワークアドレス変換、およびファイアウォールの導入が大幅にネットワークのエンドツーエンドの透明性が低下しています。通信セッションは、一方の端部からではなく、他に由来する場合、2つのアドレス間の通信が可能であるように多くの場合、ネットワークは、また、もはや対称ではありません。これは、新しいピア・ツー・ピア・サービスおよびクライアント - サーバ構成でサーバは、通信セッションを発信するいくつかの「プッシュ」サービスの展開を妨げます。新しいルーティングシステムは、いずれか、またはこの透明性を回復するために求めるべきでできるかどうかは、未解決の問題です。

A related issue is the extent to which end-user applications should seek to control the routing of communications to the rest of the network.


4. Security Considerations

We address security issues in the individual requirements. We do require that the architecture and protocols developed against this set of requirements be "secure". Discussion of specific security issues can be found in the following sections:


o Group A: Routing System Security - Section 2.1.9

OグループA:ルーティングシステムセキュリティ - セクション2.1.9

o Group A: End Host Security - Section 2.1.10

OグループA:エンドホストセキュリティ - セクション2.1.10

o Group A: Routing Information Policies - Section

OグループA:ルーティング情報ポリシー - セクション2.1.11.1

o Group A: Abstraction - Section 2.1.16

OグループA:抽象 - セクション2.1.16

o Group A: Robustness - Section 2.1.18

OグループA:頑健性 - セクション2.1.18

o Group B: Protection against Denial-of-Service and Other Security Attacks - Section

OグループB:サービス拒否およびその他のセキュリティ攻撃に対する保護 - セクション3.2.3.8

o Group B: Commercial Service Providers - Section

OグループB:商業サービスプロバイダー - セクション3.3.1.1

o Group B: The Federated Environment - Section 3.4.1

OグループB:フェデレーテッド環境 - 3.4.1

o Group B: Path Advertisement - Section

OグループB:経路広告 - セクション3.6.2.2

o Group B: Security Requirements - Section 3.9

OグループB:セキュリティ要件 - セクション3.9

5. IANA Considerations
5. IANAの考慮事項

This document is a set of requirements from which a new routing and addressing architecture may be developed. From that architecture, a new protocol, or set of protocols, may be developed.


While this note poses no new tasks for IANA, the architecture and protocols developed from this document probably will have issues to be dealt with by IANA.


6. Acknowledgments

This document is the combined effort of two groups in the IRTF. Group A, which was formed by the IRTF Routing Research chairs, and Group B, which was self-formed and later was folded into the IRTF Routing Research Group. Each group has it own set of acknowledgments.

この文書では、IRTFでの二つのグループの組み合わせの努力です。 IRTFのルーティング研究の椅子によって形成されたグループA、および自己形成された以降IRTFのルーティング研究グループに折り畳まれたグループB、。各グループは、その確認応答の独自のセットを持っています。

Group A Acknowledgments


This originated in the IRTF Routing Research Group's sub-group on Inter-domain routing requirements. The members of the group were:


           Abha Ahuja                      Danny McPherson
           J. Noel Chiappa                 David Meyer
           Sean Doran                      Mike O'Dell
           JJ Garcia-Luna-Aceves           Andrew Partan
           Susan Hares                     Radia Perlman
           Geoff Huston                    Yakov Rehkter
           Frank Kastenholz                John Scudder
           Dave Katz                       Curtis Villamizar
           Tony Li                         Dave Ward

We also appreciate the comments and review received from Ran Atkinson, Howard Berkowitz, Randy Bush, Avri Doria, Jeffery Haas, Dmitri Krioukov, Russ White, and Alex Zinin. Special thanks to Yakov Rehkter for contributing text and to Noel Chiappa.


Group B Acknowledgments


The document is derived from work originally produced by Babylon. Babylon was a loose association of individuals from academia, service providers, and vendors whose goal was to discuss issues in Internet routing with the intention of finding solutions for those problems.


The individual members who contributed materially to this document are: Anders Bergsten, Howard Berkowitz, Malin Carlzon, Lenka Carr Motyckova, Elwyn Davies, Avri Doria, Pierre Fransson, Yong Jiang, Dmitri Krioukov, Tove Madsen, Olle Pers, and Olov Schelen.

このドキュメントに著しく貢献した個々のメンバーは以下のとおりです。アンダースバーグステン、ハワード・バーコウィッツ、マリンCarlzon、レンカ・カーMotyckova、エルウィン・デイヴィス、Avriドリア、ピエールFransson、龍江、ドミトリKrioukov、トーベ・マドセン、オルレペールス、およびOlov Schelen。

Thanks also go to the members of Babylon and others who did substantial reviews of this material. Specifically, we would like to acknowledge the helpful comments and suggestions of the following individuals: Loa Andersson, Tomas Ahlstrom, Erik Aman, Thomas Eriksson, Niklas Borg, Nigel Bragg, Thomas Chmara, Krister Edlund, Owe Grafford, Torbjorn Lundberg, Jeremy Mineweaser, Jasminko Mulahusic, Florian-Daniel Otel, Bernhard Stockman, Tom Worster, and Roberto Zamparo.

おかげでも、この物質の実質的なレビューをしたバビロンのメンバーや他の人に行きます。具体的には、以下の個人の有益なコメントや提案承認したいと思います:ロア・アンダーソン、トーマスアールストロム、エリック・アマン、トーマス・エリクソン、ニクラス・ボルグ、ナイジェル・ブラッグ、トーマスChmara、クリスターEdlund、Graffordを借りて、Torbjornランドバーグ、ジェレミーMineweaserを、 Jasminko Mulahusic、フロリアン・ダニエルオテル、ベルンハルト・ストックマン、トムWorster、そしてロベルトZamparo。

In addition, the authors are indebted to the folks who wrote all the references we have consulted in putting this paper together. This includes not only the references explicitly listed below, but also those who contributed to the mailing lists we have been participating in for years.


The editors thank Lixia Zhang, as IRSG document shepherd, for her help and her perseverance, without which this document would never have been published.


Finally, it is the editors who are responsible for any lack of clarity, any errors, glaring omissions or misunderstandings.


7. Informative References

[Blumenthal01] Blumenthal, M. and D. Clark, "Rethinking the design of the Internet: The end to end arguments vs. the brave new world", May 2001, <>.

[Blumenthal01]ブルーメンソール、M.とD.クラーク、「インターネットのデザイン再考:勇敢な新しい世界対引数を端から端まで」、2001年5月、< / 1519>。

[Broido02] Broido, A., Nemeth, E., Claffy, K., and C. Elves, "Internet Expansion, Refinement and Churn", February 2002.

[Broido02] Broido、A.、ネメス、E.、Claffy、K.、およびC.エルフ、 "インターネットの拡大、洗練と解約"、2002年2月。

[CIDR] Telcordia Technologies, "CIDR Report", <>.

[シドル] telakaradiya技術、 "レポートシドル"、<HTTP:ooosidarariportaarga>。

[Chiappa02] Chiappa, N., "A New IP Routing and Addressing Architecture", July 1991, <>.

[Chiappa02] Chiappa、N.、 "新しいIPルーティングおよびアドレス指定アーキテクチャ"、1991年7月、<>。

[Clark91] Clark, D., "Quote reportedly from IETF Plenary discussion", 1991.

[Clark91]クラーク、D.、1991年 "IETF総会の議論から伝え引用"。

[DiffservAR] Seddigh, N., Nandy, B., and J. Heinanen, "An Assured Rate Per-Domain Behaviour for Differentiated Services", Work in Progress, July 2001.

[DiffservAR] Seddigh、N.、Nandy、B.、およびJ. Heinanen、 "差別化サービス用ドメイン単位の動作確実なレート"、進歩、2001年7月での作業。

[DiffservVW] Jacobson, V., Nichols, K., and K. Poduri, "The 'Virtual Wire' Per-Domain Behavior", Work in Progress, July 2000.

[DiffservVW]ジェーコブソン、V.、ニコルズ、K.、およびK. Poduri、 "ドメイン単位の行動 '仮想ワイヤ'"、進歩、2000年7月の作業。

[Griffin99] Griffin, T. and G. Wilfong, "An Analysis of BGP Convergence Properties", SIGCOMM 1999.

【Griffin99]グリフィン、T.とG. Wilfong、 "BGP収束特性の解析"、SIGCOMM 1999。

[ISO10747] ISO/IEC, "Protocol for Exchange of Inter-Domain Routeing Information among Intermediate Systems to Support Forwarding of ISO 8473 PDUs", International Standard 10747 ISO/IEC JTC 1, Switzerland, 1993.

[ISO10747] ISO / IEC、国際標準10747 ISO / IEC JTC 1、スイス、1993年 "中間システムの中でドメイン間のRouteing情報の交換は、ISO 8473のPDUの転送をサポートするための議定書"。

[InferenceSRLG] Papadimitriou, D., Poppe, F., J. Jones, J., S. Venkatachalam, S., S. Dharanikota, S., Jain, R., Hartani, R., and D. Griffith, "Inference of Shared Risk Link Groups", Work in Progress, November 2001.

【InferenceSRLG] Papadimitriou、D.、Poppe、F.、J.ジョーンズ、J.、S. Venkatachalam、S.、S. Dharanikota、S.、ジェイン、R.、Hartani、R.、およびD.グリフィス、 "共有リスクリンクグループ」、進歩、2001年11月の作業の推論。

[ODell01] O'Dell, M., "Private Communication", 2001.

[ODell01]オデル、M.、 "プライベート・コミュニケーション"、2001年。

[RFC1126] Little, M., "Goals and functional requirements for inter-autonomous system routing", RFC 1126, October 1989.

[RFC1126]リトル、M.、「目標と相互自律システムルーティングのための機能要件」、RFC 1126、1989年10月。

[RFC1726] Partridge, C. and F. Kastenholz, "Technical Criteria for Choosing IP The Next Generation (IPng)", RFC 1726, Dec 1994.

[RFC1726]ヤマウズラ、C.およびF. Kastenholzと、 "IPザ次世代(IPngの)を選択するための技術基準"、RFC 1726、1994 12月

[RFC1992] Castineyra, I., Chiappa, N., and M. Steenstrup, "The Nimrod Routing Architecture", RFC 1992, August 1996.

[RFC1992] Castineyra、I.、Chiappa、N.、およびM. Steenstrup、 "ニムロッドルーティングアーキテクチャ"、RFC 1992、1996年8月。

[RFC2071] Ferguson, P. and H. Berkowitz, "Network Renumbering Overview: Why would I want it and what is it anyway?", RFC 2071, January 1997.

[RFC2071]ファーガソン、P.とH.バーコウィッツ、「ネットワークのリナンバリングの概要:なぜ私はそれをしたいだろうし、それはとにかく何ですか?」、RFC 2071、1997年1月。

[RFC2072] Berkowitz, H., "Router Renumbering Guide", RFC 2072, January 1997.

[RFC2072]バーコウィッツ、H.、 "ルータリナンバリングガイド"、RFC 2072、1997年1月。

[RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol Label Switching Architecture", RFC 3031, January 2001.

[RFC3031]ローゼン、E.、Viswanathanの、A.、およびR. Callon、 "マルチプロトコルラベルスイッチングアーキテクチャ"、RFC 3031、2001年1月。

[RFC3221] Huston, G., "Commentary on Inter-Domain Routing in the Internet", RFC 3221, December 2001.

[RFC3221]ヒューストン、G.、 "インターネットにおけるドメイン間ルーティングの解説"、RFC 3221、2001年12月。

[RFC3260] Grossman, D., "New Terminology and Clarifications for Diffserv", RFC 3260, April 2002.

[RFC3260]グロスマン、D.、 "Diffservのための新しい用語と明確化"、RFC 3260、2002年4月。

[RFC3344] Perkins, C., "IP Mobility Support.", RFC 3344, August 2002.

[RFC3344]パーキンス、C.、 "IPモビリティのサポート。"、RFC 3344、2002年8月。

[RFC3345] McPherson, D., Gill, V., Walton, D., and A. Retana, "Border Gateway Protocol (BGP) Persistent Route Oscillation Condition", RFC 3345, August 2002.

[RFC3345]マクファーソン、D.、ギル、V.、ウォルトン、D.、およびA. Retana、 "ボーダーゲートウェイプロトコル(BGP)永続的なルート発振条件"、RFC 3345、2002年8月。

[RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.

[RFC3471]バーガー、L.、 "一般化されたマルチプロトコルラベルスイッチング(GMPLS)機能説明シグナリング"、RFC 3471、2003年1月。

[RFC3963] Devarapalli, V., Wakikawa, R., Petrescu, A., and P. Thubert, "Network Mobility (NEMO) Basic Support Protocol", RFC 3963, January 2005.

[RFC3963] Devarapalli、V.、Wakikawa、R.、ペトレスク、A.、およびP. Thubert、 "ネットワークモビリティ(NEMO)基本サポートプロトコル"、RFC 3963、2005年1月。

[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, February 2006.

[RFC4364]ローゼン、E.およびY. Rekhter、 "BGP / MPLS IP仮想プライベートネットワーク(VPN)"、RFC 4364、2006年2月。

[RFC5773] Davies, E. and A. Doria, "Analysis of Inter-Domain Routing Requirements and History", RFC 5773, February 2010.

[RFC5773]デイヴィス、E.およびA.ドリア、「ドメイン間ルーティングの要件の分析と歴史」、RFC 5773、2010年2月。

[Wroclawski95] Wroclowski, J., "The Metanet White Paper - Workshop on Research Directions for the Next Generation Internet", 1995.

[Wroclawski95] Wroclowski、J.、「Metanetホワイトペーパー - 次世代インターネットのための研究の方向性に関するワークショップ」、1995年。

[netconf-charter] Internet Engineering Task Force, "IETF Network Configuration working group", 2005, <>.

[NETCONF-チャーター]インターネットエンジニアリングタスクフォース、 "IETFネットワーク構成ワーキンググループ"、2005年、<>。

[policy-charter02] Internet Engineering Task Force, "IETF Policy working group", 2002, < policy-charter.html>.

[ポリシーcharter02]インターネットエンジニアリングタスクフォース、 "IETF方針ワーキンググループ"、2002年、<ポリシーcharter.html>。

[rap-charter02] Internet Engineering Task Force, "IETF Resource Allocation Protocol working group", 2002, <>.

[RAP-charter02]インターネットエンジニアリングタスクフォース、 "IETFリソース割り当てプロトコルワーキンググループ"、2002年、<>。

[snmpconf-charter02] Internet Engineering Task Force, "IETF Configuration management with SNMP working group", 2002, <http://>.

[SNMPCONF-charter02]インターネットエンジニアリングタスクフォース、 "SNMPワーキンググループとIETF構成管理"、2002年、<のhttp://>。

Authors' Addresses


Avri Doria LTU Lulea 971 87 Sweden

AvriドリアLTUルーレオ971 87スウェーデン

Phone: +46 73 277 1788 EMail:

電話:+46 73 277 1788 Eメール

Elwyn B. Davies Folly Consulting Soham, Cambs UK


Phone: +44 7889 488 335 EMail:

電話:+44 7889 488 335 Eメール

Frank Kastenholz BBN Technologies 10 Moulton St. Cambridge, MA 02183 USA

フランクKastenholzとBBNテクノロジーズ10モールトンセントケンブリッジ、MA 02183 USA

Phone: +1 617 873 8047 EMail:

電話:+1 617 873 8047 Eメール