Internet Engineering Task Force (IETF)                           H. Song
Request for Comments: 6646                                       N. Zong
Category: Informational                                           Huawei
ISSN: 2070-1721                                                  Y. Yang
                                                         Yale University
                                                                R. Alimi
                                                               July 2012

DECoupled Application Data Enroute (DECADE) Problem Statement

DECoupled Application Data Enroute(DECADE)問題ステートメント



Peer-to-peer (P2P) applications have become widely used on the Internet today and make up a large portion of the traffic in many networks. In P2P applications, one technique for reducing the transit and uplink P2P traffic is to introduce storage capabilities within the network. Traditional caches (e.g., P2P and Web caches) provide such storage, but they can be complex (e.g., P2P caches need to explicitly support individual P2P application protocols), and do not allow users to manage resource usage policies for content in the cache. This document discusses the introduction of in-network storage for P2P applications and shows the need for a standard protocol for accessing this storage.

ピアツーピア(P2P)アプリケーションは今日インターネットで広く使用されるようになり、多くのネットワークでトラフィックの大部分を占めています。 P2Pアプリケーションで、トランジットおよびアップリンクP2Pトラフィックを削減する1つの手法は、ネットワーク内にストレージ機能を導入することです。従来のキャッシュ(P2PやWebキャッシュなど)はこのようなストレージを提供しますが、複雑になる可能性があり(P2Pキャッシュは個々のP2Pアプリケーションプロトコルを明示的にサポートする必要があるなど)、ユーザーはキャッシュ内のコンテンツのリソース使用ポリシーを管理できません。このドキュメントでは、P2Pアプリケーション用のネットワーク内ストレージの紹介について説明し、このストレージにアクセスするための標準プロトコルの必要性を示します。

Status of This Memo


This document is not an Internet Standards Track specification; it is published for informational purposes.

このドキュメントはInternet Standards Trackの仕様ではありません。情報提供を目的として公開されています。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。 IESGによって承認されたすべてのドキュメントが、あらゆるレベルのインターネット標準の候補になるわけではありません。 RFC 5741のセクション2をご覧ください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2012 IETF Trustおよびドキュメントの作成者として特定された人物。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

この文書は、BCP 78およびこの文書の発行日に有効なIETF文書に関するIETFトラストの法的規定(の対象となります。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseのテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。

Table of Contents


   1. Introduction ....................................................2
   2. Terminology and Concepts ........................................3
   3. The Problems ....................................................4
      3.1. P2P Infrastructural Stress and Inefficiency ................4
      3.2. P2P Cache: A Complex Type of In-Network Storage ............5
      3.3. Ineffective Integration of P2P Applications ................6
   4. Usage Scenarios .................................................6
      4.1. BitTorrent .................................................6
      4.2. Content Publisher ..........................................7
   5. Security Considerations .........................................8
      5.1. Denial-of-Service Attacks ..................................8
      5.2. Copyright and Legal Issues .................................8
      5.3. Traffic Analysis ...........................................8
      5.4. Modification of Information ................................8
      5.5. Masquerade .................................................9
      5.6. Disclosure .................................................9
      5.7. Message Stream Modification ................................9
   6. Acknowledgments .................................................9
   7. Informative References .........................................10
1. Introduction
1. はじめに

Peer-to-peer (P2P) applications, including both P2P streaming and P2P file-sharing applications, make up a large fraction of the traffic in many Internet Service Provider (ISP) networks today. One way to reduce bandwidth usage by P2P applications is to introduce storage capabilities in networks. Allowing P2P applications to store and retrieve data from inside networks can reduce traffic on the last-mile uplink, as well as on backbone and transit links.

P2PストリーミングアプリケーションとP2Pファイル共有アプリケーションの両方を含むピアツーピア(P2P)アプリケーションは、今日の多くのインターネットサービスプロバイダー(ISP)ネットワークのトラフィックの大部分を占めています。 P2Pアプリケーションによる帯域幅の使用を減らす1つの方法は、ネットワークにストレージ機能を導入することです。 P2Pアプリケーションが内部ネットワークからデータを保存および取得できるようにすることで、ラストマイルアップリンクだけでなく、バ​​ックボーンおよびトランジットリンクのトラフィックを削減できます。

Existing P2P caches provide in-network storage and have been deployed in some networks. However, the current P2P caching architecture poses challenges to both P2P cache vendors and P2P application developers. For P2P cache vendors, it is challenging to support a number of continuously evolving P2P application protocols, due to lack of documentation, ongoing protocol changes, and rapid introduction of new features by P2P applications. For P2P application developers, closed P2P caching systems limit P2P applications from effectively utilizing in-network storage. In particular, P2P caches typically do not allow users to explicitly store content into in-network storage. They also do not allow applications to specific resource and access control policies over the usage of in-network storage. The challenges, if not addressed, may lead to reduced efficiency for P2P applications, and increased load on the network infrastructure.

既存のP2Pキャッシュはネットワーク内ストレージを提供し、一部のネットワークに展開されています。ただし、現在のP2Pキャッシュアーキテクチャは、P2PキャッシュベンダーとP2Pアプリケーション開発者の両方に課題をもたらします。 P2Pキャッシュベンダーにとって、ドキュメントの不足、進行中のプロトコル変更、およびP2Pアプリケーションによる新機能の迅速な導入により、継続的に進化する多数のP2Pアプリケーションプロトコルをサポートすることは困難です。 P2Pアプリケーション開発者にとって、クローズドP2Pキャッシングシステムは、P2Pアプリケーションがネットワーク内ストレージを効果的に利用することを制限します。特に、P2Pキャッシュでは通常、ユーザーがコンテンツをネットワーク内ストレージに明示的に保存することはできません。また、アプリケーションは、ネットワーク内ストレージの使用に関する特定のリソースおよびアクセス制御ポリシーを許可しません。この課題に対処しないと、P2Pアプリケーションの効率が低下し、ネットワークインフラストラクチャの負荷が増大する可能性があります。

The challenges can be effectively addressed by using a standard, open protocol to access in-network storage [Data_Lockers]. P2P applications can store and retrieve content in the in-network storage, as well as control resources (e.g., bandwidth, connections) consumed by peers in a P2P application. As a simple example, a peer of a P2P application may upload to other peers through its in-network storage, saving its usage of last-mile uplink bandwidth.

課題は、標準のオープンプロトコルを使用してネットワーク内ストレージ[Data_Lockers]にアクセスすることで効果的に対処できます。 P2Pアプリケーションは、ネットワーク内ストレージのコンテンツを格納および取得できるだけでなく、P2Pアプリケーションのピアが消費するリソース(帯域幅、接続など)を制御できます。簡単な例として、P2Pアプリケーションのピアは、ネットワーク内ストレージを介して他のピアにアップロードし、ラストマイルアップリンク帯域幅の使用を節約できます。

In this document, we distinguish between two functional components of the native P2P application protocol: signaling and data access. Signaling includes operations such as handshaking and discovering peer and content availability. The data access component transfers content from one peer to another.


In essence, coupling of the signaling and data access makes in-network storage complex to support various application services. However, these applications have common requirements for data access, making it possible to develop a standard protocol.


2. Terminology and Concepts
2. 用語と概念

The following terms have special meaning in the definition of the in-network storage system.


In-network storage: A service inside a network that provides storage and bandwidth to network applications. In-network storage may reduce upload/transit/backbone traffic and improve network application performance. The position of in-network storage is in the core of a network -- for example, co-located with the border router (network attached storage) or inside a data center.


P2P cache (peer-to-peer cache): A kind of in-network storage that understands the signaling and transport of specific P2P application protocols. It caches the content for those specific P2P applications in order to serve peers and reduce traffic on certain links.


3. The Problems
3. 問題点

The emergence of P2P as a major network application (especially P2P file sharing and streaming) has led to substantial opportunities. The P2P paradigm can be utilized to design highly scalable and robust applications at low cost, compared to the traditional client-server paradigm.

主要なネットワークアプリケーション(特にP2Pファイルの共有とストリーミング)としてのP2Pの出現は、大きな機会をもたらしました。 P2Pパラダイムは、従来のクライアントサーバーパラダイムと比較して、拡張性が高く堅牢なアプリケーションを低コストで設計するために利用できます。

However, P2P applications also face substantial design challenges. A particular challenge facing P2P applications is the additional stress that they place on the network infrastructure. At the same time, lack of infrastructure support can lead to unstable P2P application performance, in particular during peer churns and flash crowds, when a large group of users begin to retrieve the content during a short period of time, leading to stress on bandwidth-constrained access uplinks. A potential way to reduce network stress and improve P2P application performance would be to make it possible for peers that are on bandwidth-constrained access to put data in a place that is free of bandwidth constraints and also accessible by other peers. These problems are now discussed in further detail.

ただし、P2Pアプリケーションも設計上の大きな課題に直面しています。 P2Pアプリケーションが直面する特定の課題は、ネットワークインフラストラクチャにかかる追加のストレスです。同時に、インフラストラクチャサポートの欠如は、特にピアチャーンやフラッシュクラウドの間に、大規模なユーザーグループが短期間にコンテンツを取得し始め、帯域幅にストレスがかかる場合に、不安定なP2Pアプリケーションパフォーマンスを引き起こす可能性があります。制限付きアクセスアップリンク。ネットワークのストレスを減らし、P2Pアプリケーションのパフォーマンスを向上させる潜在的な方法は、帯域幅に制約のあるアクセスを利用しているピアが、帯域幅の制約を受けず、他のピアからもアクセス可能な場所にデータを配置できるようにすることです。これらの問題について、さらに詳しく説明します。

3.1. P2P Infrastructural Stress and Inefficiency
3.1. P2Pインフラストラクチャストレスと非効率性

A particular problem of the P2P paradigm is the stress that P2P application traffic places on the infrastructure of ISPs. Multiple measurements (e.g., [ipoque_Internet_Study]) have shown that P2P traffic has become a major type of traffic on some networks. Furthermore, the inefficiency of network-agnostic peering (at the P2P transmission level) leads to unnecessary traversal across network domains or spanning the backbone of a network [RFC5693].


Using network information alone to construct more efficient P2P swarms is not sufficient to reduce P2P traffic in access networks, as the total access upload traffic is equal to the total access download traffic in a traditional P2P system. On the other hand, it is reported that P2P traffic is becoming the dominant traffic on the access networks of some networks, reaching as high as 50-60% on the downlinks and 60-90% on the uplinks [DCIA] [ICNP] [ipoque_P2P_Survey] [P2P_File_Sharing]. Consequently, it becomes increasingly important to reduce upload access traffic, in addition to cross-domain and backbone traffic.

ネットワーク情報だけを使用してより効率的なP2Pスウォームを構築しても、アクセスネットワークのP2Pトラフィックを削減するには不十分です。これは、アクセスアップロードトラフィックの合計が、従来のP2Pシステムのアクセスダウンロードトラフィックの合計と等しいためです。一方、一部のネットワークのアクセスネットワークでは、P2Pトラフィックが支配的なトラフィックになり、ダウンリンクでは50〜60%、アップリンクでは60〜90%に達すると報告されています[DCIA] [ICNP] [ ipoque_P2P_Survey] [P2P_File_Sharing]。したがって、クロスドメイントラフィックとバックボーントラフィックに加えて、アップロードアクセストラフィックを減らすことがますます重要になります。

The inefficiency of P2P is also observed when traffic is sent upstream as many times as there are remote peers interested in getting the corresponding information. For example, the P2P application transfer completion times remain affected by potentially (relatively) slow upstream transmission. Similarly, the performance of real-time P2P applications may be affected by potentially (relatively) higher upstream latencies.


3.2. P2P Cache: A Complex Type of In-Network Storage
3.2. P2Pキャッシュ:複雑なタイプのネットワーク内ストレージ

An effective technique to reduce P2P infrastructural stress and inefficiency is to introduce in-network storage. A survey of existing in-network storage systems can be found in [RFC6392].


In the current Internet, in-network storage is introduced as P2P caches, either transparently or explicitly as a P2P peer. To provide service to a specific P2P application, the P2P cache server must support the specific signaling and transport protocols of the specific P2P application. This can lead to substantial complexity for the P2P cache vendor.


First, there are many P2P applications on the Internet (e.g., BitTorrent, eMule, Flashget, and Thunder for file sharing; Abacast, Kontiki, Octoshape, PPLive, PPStream, and UUSee for P2P streaming). Consequently, a P2P cache vendor faces the challenge of supporting a large number of P2P application protocols, leading to product complexity and increased development cost.


Second, a specific P2P application protocol may evolve continuously to add new features or fix bugs. This in turn forces a P2P cache vendor to continuously monitor application updates to track such changes, leading to product complexity and increased costs.


Third, many P2P applications use proprietary protocols or support end-to-end encryption. This can render P2P caches ineffective. Therefore, these three problems make it difficult to use the P2P cache as a network middlebox to support P2P application distribution.


Finally, an end host has better connectivity and connection quality to a P2P cache than to a remote peer. Without the ability to manage bandwidth usage, the P2P cache may increase the volume of download traffic, which runs counter to the reduction of upload access traffic.


3.3. Ineffective Integration of P2P Applications
3.3. P2Pアプリケーションの非効率的な統合

As P2P applications evolve, it has become increasingly clear that usage of in-network resources can improve the user's experience. For example, multiple P2P streaming systems seek additional in-network resources during a flash crowd, such as just before a major live streaming event. In asymmetric networks, when the aggregated upload bandwidth of a channel cannot meet the download demand, a P2P application may seek additional in-network resources to maintain a stable system.


However, some P2P applications using in-network infrastructural resources require flexibility in implementing resource allocation policies. A major competitive advantage of many successful P2P systems is their substantial expertise in how to most efficiently utilize peer and infrastructural resources. For example, many live P2P systems have specific algorithms to select those peers that behave as stable, higher-bandwidth sources. Similarly, the higher-bandwidth sources frequently use algorithms to choose to which peers the source should send content. Developers of these systems continue to fine-tune these algorithms over time.


To permit developers to evolve and fine-tune their algorithms and policies, the in-network storage should expose basic mechanisms and allow as much flexibility as possible to P2P applications. This conforms to the end-to-end systems principle and allows innovation and satisfaction of specific business goals. Existing techniques for in-network storage in P2P applications lack these capabilities.

開発者がアルゴリズムとポリシーを進化および微調整できるようにするには、ネットワーク内ストレージが基本的なメカニズムを公開し、P2Pアプリケーションに可能な限り多くの柔軟性を許可する必要があります。これはエンドツーエンドのシステム原理に準拠し、特定のビジネス目標の革新と満足を可能にします。 P2Pアプリケーションでのネットワーク内ストレージの既存の手法には、これらの機能がありません。

4. Usage Scenarios
4. 使用シナリオ

Usage scenarios are presented to illustrate the problems in both Content Distribution Network (CDN) and P2P scenarios.


4.1. BitTorrent
4.1. BitTorrent

When a BitTorrent client A uploads a block to multiple peers, the block traverses the last-mile uplink once for each peer. After that, the peer B that just received the block from A also needs to upload through its own last-mile uplink to others when sharing this block. This is not an efficient use of the last-mile uplink. With an in-network storage server, however, the BitTorrent client may upload the block to its in-network storage. Peers may retrieve the block from the in-network storage, reducing the amount of data on the last-mile uplink. If supported by the in-network storage, a peer can also save the block in its own in-network storage while it is being retrieved; the block can then be uploaded from the in-network storage to other peers.


As previously discussed, BitTorrent or other P2P applications currently cannot explicitly manage which content is placed in the existing P2P caches, nor can they manage access and resource control policies. Applications need to retain flexibility to control the content distribution policies and topology among peers.


4.2. Content Publisher
4.2. コンテンツパブリッシャー

Content publishers may also utilize in-network storage. For example, consider a P2P live streaming application. A Content Publisher typically maintains a small number of sources, each of which distributes blocks in the current play buffer to a set of P2P peers.

コンテンツ発行者は、ネットワーク内ストレージも利用できます。たとえば、P2Pライブストリーミングアプリケーションを考えてみます。 Content Publisherは通常、少数のソースを保持し、各ソースは現在の再生バッファー内のブロックを一連のP2Pピアに配布します。

Some content publishers use another hybrid content distribution approach incorporating both P2P and CDN modes. As an example, Internet TV may be implemented as a hybrid CDN/P2P application by distributing content from central servers via a CDN, and also incorporating a P2P mode amongst end hosts and set-top boxes. In-network storage may be beneficial to hybrid CDN/P2P applications as well to support P2P distribution and to enable content publisher standard interfaces and controls.

一部のコンテンツ発行者は、P2PモードとCDNモードの両方を組み込んだ別のハイブリッドコンテンツ配信アプローチを使用しています。例として、インターネットTVは、CDNを介して中央サーバーからコンテンツを配信し、エンドホストとセットトップボックスの間にP2Pモードを組み込むことにより、ハイブリッドCDN / P2Pアプリケーションとして実装できます。ネットワーク内ストレージは、ハイブリッドCDN / P2Pアプリケーションだけでなく、P2P配布をサポートし、コンテンツパブリッシャーの標準的なインターフェイスとコントロールを有効にするのに役立ちます。

However, there is no standard interface for different content publishers to access in-network storage. One streaming content publisher may need the existing in-network storage to support streaming signaling or another such capability, such as transcoding capability, bitmap information, intelligent retransmission, etc., while a different content publisher may only need the in-network storage to distribute files. However, it is reasonable that the application services are only supported by content publishers' original servers and clients, and intelligent data plane transport for those content publishers are supported by in-network storage.


A content publisher also benefits from a standard interface to access in-network storage servers provided by different providers. The standard interface must allow content publishers to retain control over content placed in their own in-network storage and to grant access and resources only to the desired end hosts and peers.


In the hybrid CDN/P2P scenario, if only the end hosts can store content in the in-network storage server, the content must be downloaded and then uploaded over the last-mile access link before another peer may retrieve it from an in-network storage server. Thus, in this deployment scenario, it may be advantageous for a content publisher or CDN provider to store content in in-network storage servers.

ハイブリッドCDN / P2Pシナリオでは、エンドホストのみがコンテンツをネットワーク内のストレージサーバーに保存できる場合、コンテンツをダウンロードし、ラストマイルアクセスリンクを介してアップロードしてから、別のピアがネットワーク内からコンテンツを取得する必要があります。ストレージサーバー。したがって、この展開シナリオでは、コンテンツ発行者またはCDNプロバイダーがコンテンツをネットワーク内のストレージサーバーに格納することが有利な場合があります。

5. Security Considerations
5. セキュリティに関する考慮事項

There are several security considerations related to in-network storage.


5.1. Denial-of-Service Attacks
5.1. サービス拒否攻撃

An attacker can try to consume a large portion of the in-network storage, or exhaust the connections of the in-network storage through a denial-of-service (DoS) attack. Authentication, authorization, and accounting mechanisms should be considered in the cross-domain environment. Limitation of access from an administrative domain sets up barriers for content distribution.


5.2. Copyright and Legal Issues
5.2. 著作権と法的問題

Copyright and other laws may prevent the distribution of certain content in various localities. In-network storage operators may adopt system-wide ingress or egress filters to implement necessary policies for storing or retrieving content, and applications may apply Digital Rights Management (DRM) to the data stored in the network storage. However, the specification and implementation of such policies (e.g., filtering and DRM) is not in scope for the problem this document proposes to solve.


5.3. Traffic Analysis
5.3. トラフィック分析

If the content is stored in the provider-based in-network storage, there may be a risk to privacy: a malicious service provider could use some link that a victim user is interested in, estimate that another user accessing the same data may have the same interest, and use this information as a basis to perform a phishing attack on the other user.


5.4. Modification of Information
5.4. 情報の変更

This type of threat means that some unauthorized entity may alter in-transit in-network storage access messages generated on behalf of an authorized principal in such a way as to effect unauthorized management operations, including falsifying the value of an object. This threat may result in false data being supplied either because the data on a legitimate store is modified or because a bogus store is introduced into the network.


5.5. Masquerade
5.5. 仮面舞踏会

This type of threat means that an unauthorized entity gains access to a system or performs a malicious act by illegitimately posing as an authorized entity. In the context of this specification, when accessing in-network storage, one malicious end host can masquerade as another authorized end host or application server to access a protected resource in the in-network storage.


5.6. Disclosure
5.6. 開示

This type of threat involves the danger of someone eavesdropping on exchanges between in-network storage and application clients. Protecting against this threat may be required as a matter of application policy.


5.7. Message Stream Modification
5.7. メッセージストリームの変更

This type of threat means that messages may be maliciously re-ordered, delayed, or replayed to an extent greater than what would occur in a natural network system, in order to effect unauthorized management operations on in-network storage. If the middlebox (such as a Network Address Translator (NAT)) or proxy between an end host and in-network storage is compromised, it is easy to do a stream modification attack.

この種の脅威は、ネットワーク内のストレージで不正な管理操作を実行するために、メッセージが悪意を持って並べ替えられたり、遅延したり、自然なネットワークシステムで発生するよりも多く再生されたりする可能性があることを意味します。エンドホストとネットワーク内ストレージ間のミドルボックス(Network Address Translator(NAT)など)またはプロキシが危険にさらされている場合、ストリーム変更攻撃を簡単に行うことができます。

6. Acknowledgments
6. 謝辞

We would like to thank the following people for contributing to this document:


Ronald Bonica


David Bryan


Kar Ann Chew


Lars Eggert


Roni Even


Adrian Farrel


Yingjie Gu


David Harrington


Leif Johansson Francois Le Faucheur


Hongqiang Liu

hongqiang l IU

Tao Ma


Borje Ohlman


Akbar Rahman


Peter Saint-Andre


Robert Sparks


Sean Turner


Yu-shun Wang

Y U-Shun Wang

Richard Woundy


Yunfei Zhang


7. Informative References
7. 参考引用

[DCIA] Parker, A., "P2P Media Summit presentation", Distributed Computing Industry Association, October 2006, < CacheLogic.ppt>.

[DCIA]パーカーA。、「P2Pメディアサミットプレゼンテーション」、分散コンピューティング産業協会、2006年10月、< CacheLogic.ppt>。

[Data_Lockers] Yang, Y., "Open Content Distribution using Data Lockers", CoXNet Workshop, Beijing, China, November 2010, <http:// open-data-lockers-nov-2010-coxnet.pdf>.

[Data_Lockers] Yang、Y。、「Data Lockersを使用したオープンコンテンツ配布」、CoXNet Workshop、北京、中国、2010年11月、<http:// open-data-lockers-nov-2010-coxnet.pdf>。

[ICNP] Wu, H., "Challenges and Opportunities of Internet Developments in China", ICNP 2007 Keynote Speech, October 2007, <>.

[ICNP] Wu、H。、「中国におけるインターネット開発の課題と機会」、ICNP 2007基調講演、2007年10月、<>。

[P2P_File_Sharing] Casadesus-Masanell, R. and A. Hervas-Drane, "Peer-to-Peer File Sharing and the Market for Digital Information Goods", Journal of Economics & Management Strategy, Vol. 19, No. 2, pp. 333-373, Summer 2010.

[P2P_File_Sharing] Casadesus-Masanell、R。およびA. Hervas-Drane、「ピアツーピアファイル共有とデジタル情報商品の市場」、Journal of Economics&Management Strategy、Vol。 19、No。2、333-373ページ、2010年夏。

[RFC5693] Seedorf, J. and E. Burger, "Application-Layer Traffic Optimization (ALTO) Problem Statement", RFC 5693, October 2009.

[RFC5693] Seedorf、J。およびE. Burger、「Application-Layer Traffic Optimization(ALTO)Problem Statement」、RFC 5693、2009年10月。

[RFC6392] Alimi, R., Ed., Rahman, A., Ed., and Y. Yang, Ed., "A Survey of In-Network Storage Systems", RFC 6392, October 2011.

[RFC6392] Alimi、R。、編、Rahman、A。、編、Y。Yang、編、「A Survey of In-Network Storage Systems」、RFC 6392、2011年10月。

[ipoque_Internet_Study] Schulze, H. and K. Mochalski, "Internet Study 2008/2009", 2009, <>.

[ipoque_Internet_Study] Schulze、H.およびK. Mochalski、「Internet Study 2008/2009」、2009、<>。

[ipoque_P2P_Survey] "ipoque's 2007 P2P Survey to be presented at Technology Review's Emerging Technologies Conference at MIT", August 2007, < press-center/press-releases/2007/ ipoque%C2%B4s-2007-p2p-survey-to-be-presented-at-technology>.

[ipoque_P2P_Survey]「MITで開催されたTechnology ReviewのEmerging Technologies Conferenceで発表されるipoqueの2007 P2P調査」、2007年8月、< / ipoque%C2%B4s-2007-p2p-survey-to-be-presented-at-technology>。

Authors' Addresses


Haibin Song Huawei 101 Software Avenue, Yuhua District Nanjing, Jiangsu Province 210012 China

H AI bin Songhuaは101ソフトウェアアベニュー、Y Uは210012中国江蘇省NaN京区を描画します


Ning Zong Huawei 101 Software Avenue, Yuhua District Nanjing, Jiangsu Province 210012 China

NIは、GH UAのZが101ソフトウェアの道であり、Y Uが210012中国江蘇省NaN京区を描く


Y. Richard Yang Yale University



Richard Alimi Google