Internet Engineering Task Force (IETF)                         J. Merkle
Request for Comments: 6954                     secunet Security Networks
Category: Informational                                       M. Lochter
ISSN: 2070-1721                                                      BSI
                                                               July 2013

Using the Elliptic Curve Cryptography (ECC) Brainpool Curves for the Internet Key Exchange Protocol Version 2 (IKEv2)




This document specifies use of the Elliptic Curve Cryptography (ECC) Brainpool elliptic curve groups for key exchange in the Internet Key Exchange Protocol version 2 (IKEv2).


Status of This Memo


This document is not an Internet Standards Track specification; it is published for informational purposes.

このドキュメントはInternet Standards Trackの仕様ではありません。情報提供を目的として公開されています。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。 IESGによって承認されたすべてのドキュメントが、あらゆるレベルのインターネット標準の候補になるわけではありません。 RFC 5741のセクション2をご覧ください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2013 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

この文書は、BCP 78およびこの文書の発行日に有効なIETF文書に関するIETFトラストの法的規定(の対象となります。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseのテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。

Table of Contents


   1. Introduction ....................................................2
      1.1. Requirements Language ......................................2
   2. IKEv2 Key Exchange Using the ECC Brainpool Curves ...............3
      2.1. Diffie-Hellman Group Transform IDs .........................3
      2.2. Using the Twisted Brainpool Curves Internally ..............3
      2.3. Key Exchange Payload and Shared Secret .....................3
   3. Security Considerations .........................................4
   4. IANA Considerations .............................................5
   5. References ......................................................5
      5.1. Normative References .......................................5
      5.2. Informative References .....................................6
   Appendix A. Test Vectors ...........................................8
     A.1. 224-Bit Curve ...............................................8
     A.2. 256-Bit Curve ...............................................9
     A.3. 384-Bit Curve ...............................................9
     A.4. 512-Bit Curve ..............................................10
1. Introduction
1. はじめに

[RFC5639] specified a new set of elliptic curve groups over finite prime fields for use in cryptographic applications. These groups, denoted as ECC Brainpool curves, were generated in a verifiably pseudo-random way and comply with the security requirements of relevant standards from ISO [ISO1] [ISO2], ANSI [ANSI1], NIST [FIPS], and the Standards for Efficient Cryptography Group [SEC2].

[RFC5639]は、暗号化アプリケーションで使用するために、有限の素体上の楕円曲線グループの新しいセットを指定しました。これらのグループは、ECCブレインプールカーブとして示され、検証可能な疑似ランダムな方法で生成され、ISO [ISO1] [ISO2]、ANSI [ANSI1]、NIST [FIPS]、および次の規格の関連規格のセキュリティ要件に準拠しています。効率的な暗号化グループ[SEC2]。

While the ASN.1 object identifiers defined in RFC 5639 allow usage of the ECC Brainpool curves in certificates and certificate revocation lists, their utilization for key exchange in IKEv2 [RFC5996] requires the definition and assignment of additional Diffie-Hellman Group Transform IDs in the respective IANA registry. This document specifies transform IDs for four curves from RFC 5639, as well as the encoding of the key exchange payload and derivation of the shared secret when using one of these curves.

RFC 5639で定義されているASN.1オブジェクト識別子は、証明書および証明書失効リストでのECCブレインプール曲線の使用を許可しますが、IKEv2 [RFC5996]での鍵交換に使用するには、追加のDiffie-Hellmanグループ変換IDの定義と割り当てが必要です。それぞれのIANAレジストリ。このドキュメントでは、RFC 5639からの4つの曲線の変換ID、およびこれらの曲線の1つを使用する場合の鍵交換ペイロードのエンコードと共有秘密の導出を指定します。

1.1. Requirements Language
1.1. 要件言語

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

このドキュメントのキーワード「MUST」、「MUST NOT」、「REQUIRED」、「SHALL」、「SHALL NOT」、「SHOULD」、「SHOULD NOT」、「RECOMMENDED」、「MAY」、および「OPTIONAL」は、 [RFC2119]で説明されているように解釈されます。

2. IKEv2 Key Exchange Using the ECC Brainpool Curves
2. ECCブレインプールカーブを使用したIKEv2キー交換
2.1. Diffie-Hellman Group Transform IDs
2.1. Diffie-Hellmanグループ変換ID

In order to use the ECC Brainpool curves for key exchange within IKEv2, the Diffie-Hellman Group Transform IDs (Transform Type 4) listed in the following table have been registered with IANA [IANA-IKE2]. The parameters associated with these curves are defined in RFC 5639 [RFC5639].

IKEv2内のキー交換にECCブレインプール曲線を使用するために、次の表にリストされているDiffie-HellmanグループのトランスフォームID(トランスフォームタイプ4)がIANA [IANA-IKE2]に登録されています。これらの曲線に関連するパラメータは、RFC 5639 [RFC5639]で定義されています。

                      |      Curve      | Transform ID |
                      | brainpoolP224r1 |      27      |
                      | brainpoolP256r1 |      28      |
                      | brainpoolP384r1 |      29      |
                      | brainpoolP512r1 |      30      |

Table 1


Test vectors for the groups defined by the ECC Brainpool curves are provided in Appendix A.


2.2. Using the Twisted Brainpool Curves Internally
2.2. 内部でのツイストブレインプールカーブの使用

In [RFC5639], for each random curve, a "twisted curve" (defined by a quadratic twist; see [HMV]) is defined that offers the same level of security but potentially allows more efficient arithmetic due to the curve parameter A = -3. The transform IDs listed in Table 1 also allow using the twisted curve corresponding to the specified random curve: points (x,y) of any of the listed curves can be efficiently transformed to the corresponding point (x',y') on the twisted curve of the same bit length -- and vice versa -- by setting (x',y') = (x*Z^2, y*Z^3) with the coefficient Z specified for that curve [RFC5639].

[RFC5639]では、ランダムカーブごとに、「ツイストカーブ」(2次のツイストで定義。[HMV]を参照)が定義され、同じレベルのセキュリティを提供しますが、カーブパラメータA =- 3。表1にリストされている変換IDでは、指定されたランダム曲線に対応するねじれた曲線を使用することもできます。リストされた曲線のポイント(x、y)は、ねじれた曲線の対応するポイント(x '、y')に効率的に変換できます。同じビット長の曲線(およびその逆)-(x '、y')=(x * Z ^ 2、y * Z ^ 3)をその曲線に指定された係数Zで設定[RFC5639]。

2.3. Key Exchange Payload and Shared Secret
2.3. 鍵交換ペイロードと共有秘密

For the encoding of the key exchange payload and the derivation of the shared secret, the methods specified in [RFC5903] are adopted.


In an Elliptic Curve Group over GF[P] (ECP) key exchange in IKEv2, the Diffie-Hellman public value passed in a key establishment (KE) payload consists of two components, x and y, corresponding to the coordinates of an elliptic curve point. Each component MUST be computed from the corresponding coordinate using the FieldElement-to-OctetString conversion method specified in [SEC1] and MUST have a bit

IKEv2のGF [P](ECP)鍵交換上の楕円曲線グループでは、鍵確立(KE)ペイロードで渡されるDiffie-Hellman公開値は、楕円曲線の座標に対応する2つのコンポーネントxとyで構成されますポイント。各コンポーネントは、[SEC1]で指定されたFieldElementからOctetStringへの変換メソッドを使用して、対応する座標から計算する必要があり、ビットが必要です。

length as indicated in Table 2. This length is enforced by the FieldElement-to-OctetString conversion method, if necessary, by prepending the value with zeros.


Note: The FieldElement-to-OctetString conversion method specified in [SEC1] is equivalent to applying the conversion between integers and octet strings (as described in Section 6 of [RFC6090]) after representing the field element as an integer in the interval [0, p-1].

注:[SEC1]で指定されたFieldElementからOctetStringへの変換方法は、フィールド要素を間隔[0 、p-1]。

   |        Curves       |   Bit length of each  |  Bit length of key  |
   |                     |   component (x or y)  |   exchange payload  |
   |   brainpoolP224r1   |          224          |         448         |
   |   brainpoolP256r1   |          256          |         512         |
   |   brainpoolP384r1   |          384          |         768         |
   |   brainpoolP512r1   |          512          |         1024        |

Table 2


From these components, the key exchange payload MUST be computed as the concatenation of the x- and y-coordinates. Hence, the key exchange payload has the bit length indicated in Table 2.


The Diffie-Hellman shared secret value consists only of the x value. In particular, the shared secret value MUST be computed from the x-coordinate of the Diffie-Hellman common value using the FieldElement-to-OctetString conversion method specified in [SEC1] and MUST have bit length as indicated in Table 2.


3. Security Considerations
3. セキュリティに関する考慮事項

The security considerations of [RFC5996] apply accordingly.


In order to thwart certain active attacks, the validity of the other peer's public Diffie-Hellman value (x,y) recovered from the received key exchange payload needs to be verified. In particular, it MUST be verified that the x- and y-coordinates of the public value satisfy the curve equation. For additional information, we refer the reader to [RFC6989].


The confidentiality, authenticity, and integrity of a secure communication based on IKEv2 are limited by the weakest cryptographic primitive applied. In order to achieve a maximum security level when using one of the elliptic curves from Table 1 for key exchange, the following should be chosen according to the recommendations of [NIST800-57] and [RFC5639]:


o key derivation function

o キー導出関数

o algorithms and key lengths of symmetric encryption and message authentication

o 対称暗号化とメッセージ認証のアルゴリズムとキーの長さ

o algorithm, bit length, and hash function used for signature generation

o 署名生成に使用されるアルゴリズム、ビット長、およびハッシュ関数

Furthermore, the private Diffie-Hellman keys should be selected with the same bit length as the order of the group generated by the base point G and with approximately maximum entropy.


Implementations of elliptic curve cryptography for IKEv2 could be susceptible to side-channel attacks. Particular care should be taken for implementations that internally use the corresponding twisted curve to take advantage of an efficient arithmetic for the special parameters (A = -3): although the twisted curve itself offers the same level of security as the corresponding random curve (through mathematical equivalence), an arithmetic based on small curve parameters could be harder to protect against side-channel attacks. General guidance on resistance of elliptic curve cryptography implementations against side-channel attacks is given in [BSI1] and [HMV].

IKEv2の楕円曲線暗号化の実装は、サイドチャネル攻撃の影響を受ける可能性があります。特別なパラメーター(A = -3)の効率的な演算を利用するために対応するねじれた曲線を内部で使用する実装には特に注意が必要です:ねじれた曲線自体は、対応するランダムな曲線と同じレベルのセキュリティを提供します(数学的等価性)、小さな曲線パラメーターに基づく演算は、サイドチャネル攻撃から保護するのがより困難になる可能性があります。サイドチャネル攻撃に対する楕円曲線暗号実装の耐性に関する一般的なガイダンスは、[BSI1]および[HMV]に記載されています。

4. IANA Considerations
4. IANAに関する考慮事項

IANA has updated its "Transform Type 4 - Diffie-Hellman Group Transform IDs" registry in [IANA-IKE2] to include the groups listed in Table 1.

IANAは、[IANA-IKE2]の「Transform Type 4-Diffie-Hellman Group Transform IDs」レジストリを更新して、表1にリストされているグループを含めました。

5. References
5. 参考文献
5.1. Normative References
5.1. 引用文献

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119] Bradner、S。、「要件レベルを示すためにRFCで使用するキーワード」、BCP 14、RFC 2119、1997年3月。

[RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen, "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC 5996, September 2010.

[RFC5996] Kaufman、C.、Hoffman、P.、Nir、Y。、およびP. Eronen、「インターネットキーエクスチェンジプロトコルバージョン2(IKEv2)」、RFC 5996、2010年9月。

[RFC5639] Lochter, M. and J. Merkle, "Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation", RFC 5639, March 2010.

[RFC5639] Lochter、M。およびJ. Merkle、「楕円曲線暗号(ECC)ブレインプール標準曲線および曲線生成」、RFC 5639、2010年3月。

[RFC6989] Sheffer, Y. and S. Fluhrer, "Additional Diffie-Hellman Tests for the Internet Key Exchange Protocol Version 2 (IKEv2)", RFC 6989, July 2013.

[RFC6989] Sheffer、Y。およびS. Fluhrer、「インターネットキー交換プロトコルバージョン2(IKEv2)の追加Diffie-Hellmanテスト」、RFC 6989、2013年7月。

[IANA-IKE2] Internet Assigned Numbers Authority, "Internet Key Exchange Version 2 (IKEv2) Parameters", <>.

[IANA-IKE2] Internet Assigned Numbers Authority、「Internet Key Exchange Version 2(IKEv2)Parameters」、<>。

[SEC1] Certicom Research, "Elliptic Curve Cryptography", Standards for Efficient Cryptography (SEC) 1, September 2000.

[SEC1] Certicom Research、「Elliptic Curve Cryptography」、Standards for Efficient Cryptography(SEC)1、2000年9月。

5.2. Informative References
5.2. 参考引用

[RFC5903] Fu, D. and J. Solinas, "Elliptic Curve Groups modulo a Prime (ECP Groups) for IKE and IKEv2", RFC 5903, June 2010.

[RFC5903] Fu、D。およびJ. Solinas、「IKEおよびIKEv2のPrimeを法とする楕円曲線グループ(ECPグループ)」、RFC 5903、2010年6月。

[RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic Curve Cryptography Algorithms", RFC 6090, February 2011.

[RFC6090] McGrew、D.、Igoe、K。、およびM. Salter、「Fundamental Elliptic Curve Cryptography Algorithms」、RFC 6090、2011年2月。

[ANSI1] American National Standards Institute, "Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI X9.62, 2005.

[ANSI1] American National Standards Institute、「金融サービス業界の公開鍵暗号化:楕円曲線デジタル署名アルゴリズム(ECDSA)」、ANSI X9.62、2005年。

[BSI1] Bundesamt fuer Sicherheit in der Informationstechnik, "Minimum Requirements for Evaluating Side-Channel Attack Resistance of Elliptic Curve Implementations", July 2011.


[FIPS] National Institute of Standards and Technology, "Digital Signature Standard (DSS)", FIPS PUB 186-2, December 1998.

[FIPS]国立標準技術研究所、「デジタル署名標準(DSS)」、FIPS PUB 186-2、1998年12月。

[HMV] Hankerson, D., Menezes, A., and S. Vanstone, "Guide to Elliptic Curve Cryptography", Springer-Verlag, 2004.

[HMV] Hankerson、D.、Menezes、A。、およびS. Vanstone、「楕円曲線暗号のガイド」、Springer-Verlag、2004年。

[ISO1] International Organization for Standardization, "Information Technology -- Security Techniques -- Digital Signatures with Appendix - Part 3: Discrete Logarithm Based Mechanisms", ISO/IEC 14888-3, 2006.

[ISO1]国際標準化機構、「情報技術-セキュリティ技術-付録付きデジタル署名-パート3:離散対数ベースのメカニズム」、ISO / IEC 14888-3、2006年。

[ISO2] International Organization for Standardization, "Information Technology -- Security Techniques -- Cryptographic Techniques Based on Elliptic Curves - Part 2: Digital signatures", ISO/IEC 15946-2, 2002.

[ISO2]国際標準化機構、「情報技術-セキュリティ技術-楕円曲線に基づく暗号技術-パート2:デジタル署名」、ISO / IEC 15946-2、2002年。

[NIST800-57] National Institute of Standards and Technology, "Recommendation for Key Management -- Part 1: General (Revised)", NIST Special Publication 800-57, March 2007.

[NIST 800-57] National Institute of Standards and Technology、「Recommendation for Key Management-Part 1:General(revised)」、NIST Special Publication 800-57、2007年3月。

[SEC2] Certicom Research, "Recommended Elliptic Curve Domain Parameters", Standards for Efficient Cryptography (SEC) 2, September 2000.

[SEC2] Certicom Research、「Recommended Elliptic Curve Domain Parameters」、Standards for Efficient Cryptography(SEC)2、2000年9月。

Appendix A. Test Vectors

This section provides some test vectors, for example, Diffie-Hellman key exchanges using each of the curves defined in Section 2. The following notation is used in the subsequent subsections:


d_A: the secret key of party A


x_qA: the x-coordinate of the public key of party A


y_qA: the y-coordinate of the public key of party A


d_B: the secret key of party B


x_qB: the x-coordinate of the public key of party B


y_qB: the y-coordinate of the public key of party B


x_Z: the x-coordinate of the shared secret that results from completion of the Diffie-Hellman computation


y_Z: the y-coordinate of the shared secret that results from completion of the Diffie-Hellman computation


The field elements x_qA, y_qA, x_qB, y_qB, x_Z, and y_Z are represented as hexadecimal values using the FieldElement-to-OctetString conversion method specified in [SEC1].


A.1. 224-Bit Curve
A.1. 224ビット曲線

Curve brainpoolP224r1


      dA = 39F155483CEE191FBECFE9C81D8AB1A03CDA6790E7184ACE44BCA161
      x_qA = A9C21A569759DA95E0387041184261440327AFE33141CA04B82DC92E
      y_qA = 98A0F75FBBF61D8E58AE5511B2BCDBE8E549B31E37069A2825F590C1
      dB = 6060552303899E2140715816C45B57D9B42204FB6A5BF5BEAC10DB00
      x_qB = 034A56C550FF88056144E6DD56070F54B0135976B5BF77827313F36B
      y_qB = 75165AD99347DC86CAAB1CBB579E198EAF88DC35F927B358AA683681
      x_Z = 1A4BFE705445120C8E3E026699054104510D119757B74D5FE2462C66
      y_Z = BB6802AC01F8B7E91B1A1ACFB9830A95C079CEC48E52805DFD7D2AFE
A.2. 256-Bit Curve
A.2. 256ビット曲線

Curve brainpoolP256r1


      dA =
      x_qA =
      y_qA =
      dB =
      x_qB =
      y_qB =
      x_Z =
      y_Z =
A.3. 384-Bit Curve
A.3. 384ビット曲線

Curve brainpoolP384r1


      dA = 1E20F5E048A5886F1F157C74E91BDE2B98C8B52D58E5003D57053FC4B0BD6
      x_qA = 68B665DD91C195800650CDD363C625F4E742E8134667B767B1B47679358
      y_qA = 55BC91A39C9EC01DEE36017B7D673A931236D2F1F5C83942D049E3FA206
      dB = 032640BC6003C59260F7250C3DB58CE647F98E1260ACCE4ACDA3DD869F74E
      x_qB = 4D44326F269A597A5B58BBA565DA5556ED7FD9A8A9EB76C25F46DB69D19
      y_qB = 62D692136DE56CBE93BF5FA3188EF58BC8A3A0EC6C1E151A21038A42E91
      x_Z = 0BD9D3A7EA0B3D519D09D8E48D0785FB744A6B355E6304BC51C229FBBCE2
      y_Z = 0DF213417EBE4D8E40A5F76F66C56470C489A3478D146DECF6DF0D94BAE9
A.4. 512-Bit Curve
A.4. 512ビット曲線

Curve brainpoolP512r1


dA = 16302FF0DBBB5A8D733DAB7141C1B45ACBC8715939677F6A56850A38BD87B D59B09E80279609FF333EB9D4C061231FB26F92EEB04982A5F1D1764CAD5766542 2

dA = 16302FF0DBBB5A8D733DAB7141C1B45ACBC8715939677F6A56850A38BD87B D59B09E80279609FF333EB9D4C061231FB26F92EEB04982A5F1D1764CAD5766542 2

x_qA = 0A420517E406AAC0ACDCE90FCD71487718D3B953EFD7FBEC5F7F27E28C6 149999397E91E029E06457DB2D3E640668B392C2A7E737A7F0BF04436D11640FD0 9FD

CSA = 0A420517E406AAC0ACDCE90FCD71487718D3B953EFD7FBEC5F7F27E28C6 149999397E91E029E06457DB2D3E640668B392C2A7E737A7F0BF04436D11640FD

y_qA = 72E6882E8DB28AAD36237CD25D580DB23783961C8DC52DFA2EC138AD472 A0FCEF3887CF62B623B2A87DE5C588301EA3E5FC269B373B60724F5E82A6AD147F DE7

維持= 72E6882E8DB28AAD36237CD25D580DB23783961C8DC52DFA2EC138AD472 A0FCEF3887CF62B623B2A87DE5C588301EA3E5FC269B373B60724F5E82A6AD147F DE7

dB = 230E18E1BCC88A362FA54E4EA3902009292F7F8033624FD471B5D8ACE49D1 2CFABBC19963DAB8E2F1EBA00BFFB29E4D72D13F2224562F405CB80503666B2542 9

dB = 230E18E1BCC88A362FA54E4EA3902009292F7F8033624FD471B5D8ACE49D1 2CFABBC19963DAB8E2F1EBA00BFFB29E4D72D13F2224562F405CB80503666B2542 9

x_qB = 9D45F66DE5D67E2E6DB6E93A59CE0BB48106097FF78A081DE781CDB31FC E8CCBAAEA8DD4320C4119F1E9CD437A2EAB3731FA9668AB268D871DEDA55A54731 99F

x_qB = 9D45F66DE5D67E2E6DB6E93A59CE0BB48106097FF78A081DE781CDB31FC E8CCBAAEA8DD4320C4119F1E9CD437A2EAB3731FA9668AB268D871DEDA55A54731 99F

y_qB = 2FDC313095BCDD5FB3A91636F07A959C8E86B5636A1E930E8396049CB48 1961D365CC11453A06C719835475B12CB52FC3C383BCE35E27EF194512B7187628 5FA

マップ= 2FDC313095BCDD5FB3A91636F07A959C8E86B5636A1E930E8396049CB48 1961D365CC11453A06C719835475B12CB52FC3C383BCE35E27EF194512B7187628 5FA

x_Z = A7927098655F1F9976FA50A9D566865DC530331846381C87256BAF322624 4B76D36403C024D7BBF0AA0803EAFF405D3D24F11A9B5C0BEF679FE1454B21C4CD 1F

CSX = A7927098655F1F9976FA50A9D566865DC530331846381C87256BAF322624 4B76D36403C024D7BBF0AA0803EAFF405D3D24F11A9B5C0BEF679FE1454B21C4CD 1F

y_Z = 7DB71C3DEF63212841C463E881BDCF055523BD368240E6C3143BD8DEF8B3 B3223B95E0F53082FF5E412F4222537A43DF1C6D25729DDB51620A832BE6A26680 A2

YZ = 7DB71C3DEF63212841C463E881BDCF055523BD368240E6C3143BD8DEF8B3 B3223B95E0F53082FF5E412F4222537A43DF1C6D25729DDB51620A832BE6A26680 A2

Authors' Addresses


Johannes Merkle secunet Security Networks Mergenthaler Allee 77 65760 Eschborn Germany

Johannes Merkle secunet Security Networks Mergenthaler Allee 77 65760エシュボルンドイツ

   Phone: +49 201 5454 3091

Manfred Lochter Bundesamt fuer Sicherheit in der Informationstechnik (BSI) Postfach 200363 53133 Bonn Germany

Manfred Locher連邦情報セキュリティ局(BSI)Postfach 200363 53133ボンドイツ

   Phone: +49 228 9582 5643