Internet Engineering Task Force (IETF)                         B. Laurie
Request for Comments: 6962                                    A. Langley
Category: Experimental                                         E. Kasper
ISSN: 2070-1721                                                   Google
                                                               June 2013

Certificate Transparency




This document describes an experimental protocol for publicly logging the existence of Transport Layer Security (TLS) certificates as they are issued or observed, in a manner that allows anyone to audit certificate authority (CA) activity and notice the issuance of suspect certificates as well as to audit the certificate logs themselves. The intent is that eventually clients would refuse to honor certificates that do not appear in a log, effectively forcing CAs to add all issued certificates to the logs.


Logs are network services that implement the protocol operations for submissions and queries that are defined in this document.


Status of This Memo


This document is not an Internet Standards Track specification; it is published for examination, experimental implementation, and evaluation.

このドキュメントはInternet Standards Trackの仕様ではありません。試験、実験、評価のために公開されています。

This document defines an Experimental Protocol for the Internet community. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

このドキュメントでは、インターネットコミュニティの実験プロトコルを定義します。このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。 IESGによって承認されたすべてのドキュメントが、あらゆるレベルのインターネット標準の候補になるわけではありません。 RFC 5741のセクション2をご覧ください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2013 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

この文書は、BCP 78およびこの文書の発行日に有効なIETF文書に関するIETFトラストの法的規定(の対象となります。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseのテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。

Table of Contents


   1. Informal Introduction ...........................................3
      1.1. Requirements Language ......................................4
      1.2. Data Structures ............................................4
   2. Cryptographic Components ........................................4
      2.1. Merkle Hash Trees ..........................................4
           2.1.1. Merkle Audit Paths ..................................5
           2.1.2. Merkle Consistency Proofs ...........................6
           2.1.3. Example .............................................7
           2.1.4. Signatures ..........................................8
   3. Log Format and Operation ........................................9
      3.1. Log Entries ................................................9
      3.2. Structure of the Signed Certificate Timestamp .............12
      3.3. Including the Signed Certificate Timestamp in the
           TLS Handshake .............................................13
           3.3.1. TLS Extension ......................................15
      3.4. Merkle Tree ...............................................15
      3.5. Signed Tree Head ..........................................16
   4. Log Client Messages ............................................17
      4.1. Add Chain to Log ..........................................17
      4.2. Add PreCertChain to Log ...................................18
      4.3. Retrieve Latest Signed Tree Head ..........................18
      4.4. Retrieve Merkle Consistency Proof between Two
           Signed Tree Heads .........................................19
      4.5. Retrieve Merkle Audit Proof from Log by Leaf Hash .........19
      4.6. Retrieve Entries from Log .................................20
      4.7. Retrieve Accepted Root Certificates .......................21
      4.8. Retrieve Entry+Merkle Audit Proof from Log ................21
   5. Clients ........................................................21
      5.1. Submitters ................................................22
      5.2. TLS Client ................................................22
      5.3. Monitor ...................................................22
      5.4. Auditor ...................................................23
   6. IANA Considerations ............................................23
   7. Security Considerations ........................................23
      7.1. Misissued Certificates ....................................24
      7.2. Detection of Misissue .....................................24
      7.3. Misbehaving Logs ..........................................24
   8. Efficiency Considerations ......................................25
   9. Future Changes .................................................25
   10. Acknowledgements ..............................................25
   11. References ....................................................25
      11.1. Normative Reference ......................................25
      11.2. Informative References ...................................26
1. Informal Introduction
1. 非公式な紹介

Certificate transparency aims to mitigate the problem of misissued certificates by providing publicly auditable, append-only, untrusted logs of all issued certificates. The logs are publicly auditable so that it is possible for anyone to verify the correctness of each log and to monitor when new certificates are added to it. The logs do not themselves prevent misissue, but they ensure that interested parties (particularly those named in certificates) can detect such misissuance. Note that this is a general mechanism, but in this document, we only describe its use for public TLS server certificates issued by public certificate authorities (CAs).


Each log consists of certificate chains, which can be submitted by anyone. It is expected that public CAs will contribute all their newly issued certificates to one or more logs; it is also expected that certificate holders will contribute their own certificate chains. In order to avoid logs being spammed into uselessness, it is required that each chain is rooted in a known CA certificate. When a chain is submitted to a log, a signed timestamp is returned, which can later be used to provide evidence to clients that the chain has been submitted. TLS clients can thus require that all certificates they see have been logged.


Those who are concerned about misissue can monitor the logs, asking them regularly for all new entries, and can thus check whether domains they are responsible for have had certificates issued that they did not expect. What they do with this information, particularly when they find that a misissuance has happened, is beyond the scope of this document, but broadly speaking, they can invoke existing business mechanisms for dealing with misissued certificates. Of course, anyone who wants can monitor the logs and, if they believe a certificate is incorrectly issued, take action as they see fit.


Similarly, those who have seen signed timestamps from a particular log can later demand a proof of inclusion from that log. If the log is unable to provide this (or, indeed, if the corresponding certificate is absent from monitors' copies of that log), that is evidence of the incorrect operation of the log. The checking operation is asynchronous to allow TLS connections to proceed without delay, despite network connectivity issues and the vagaries of firewalls.


The append-only property of each log is technically achieved using Merkle Trees, which can be used to show that any particular version of the log is a superset of any particular previous version. Likewise, Merkle Trees avoid the need to blindly trust logs: if a log attempts to show different things to different people, this can be efficiently detected by comparing tree roots and consistency proofs. Similarly, other misbehaviors of any log (e.g., issuing signed timestamps for certificates they then don't log) can be efficiently detected and proved to the world at large.


1.1. Requirements Language
1.1. 要件言語

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

このドキュメントのキーワード「MUST」、「MUST NOT」、「REQUIRED」、「SHALL」、「SHALL NOT」、「SHOULD」、「SHOULD NOT」、「RECOMMENDED」、「MAY」、および「OPTIONAL」は、 RFC 2119 [RFC2119]で説明されているように解釈されます。

1.2. Data Structures
1.2. データ構造

Data structures are defined according to the conventions laid out in Section 4 of [RFC5246].


2. Cryptographic Components
2. 暗号化コンポーネント
2.1. Merkle Hash Trees
2.1. マークルハッシュツリー
   Logs use a binary Merkle Hash Tree for efficient auditing.  The
   hashing algorithm is SHA-256 [FIPS.180-4] (note that this is fixed
   for this experiment, but it is anticipated that each log would be
   able to specify a hash algorithm).  The input to the Merkle Tree Hash
   is a list of data entries; these entries will be hashed to form the
   leaves of the Merkle Hash Tree.  The output is a single 32-byte
   Merkle Tree Hash.  Given an ordered list of n inputs, D[n] = {d(0),
   d(1), ..., d(n-1)}, the Merkle Tree Hash (MTH) is thus defined as

The hash of an empty list is the hash of an empty string:


MTH({}) = SHA-256().

MTH({}) = しゃー256()。

The hash of a list with one entry (also known as a leaf hash) is:


MTH({d(0)}) = SHA-256(0x00 || d(0)).

MTH({d(0)})= SHA-256(0x00 || d(0))。

For n > 1, let k be the largest power of two smaller than n (i.e., k < n <= 2k). The Merkle Tree Hash of an n-element list D[n] is then defined recursively as

n> 1の場合、kをnより小さい2の最大のべき乗とします(つまり、k <n <= 2k)。 n要素リストD [n]のマークルツリーハッシュは、次のように再帰的に定義されます。

MTH(D[n]) = SHA-256(0x01 || MTH(D[0:k]) || MTH(D[k:n])),

MTH(D [n])= SHA-256(0x01 || MTH(D [0:k])|| MTH(D [k:n]))、

where || is concatenation and D[k1:k2] denotes the list {d(k1), d(k1+1),..., d(k2-1)} of length (k2 - k1). (Note that the hash calculations for leaves and nodes differ. This domain separation is required to give second preimage resistance.)

どこ||は連結であり、D [k1:k2]は長さ(k2-k1)のリスト{d(k1)、d(k1 + 1)、...、d(k2-1)}を示します。 (葉とノードのハッシュ計算は異なることに注意してください。このドメイン分離は、2番目のプリイメージ耐性を与えるために必要です。)

Note that we do not require the length of the input list to be a power of two. The resulting Merkle Tree may thus not be balanced; however, its shape is uniquely determined by the number of leaves. (Note: This Merkle Tree is essentially the same as the history tree [CrosbyWallach] proposal, except our definition handles non-full trees differently.)

入力リストの長さが2の累乗である必要はないことに注意してください。したがって、結果のマークルツリーはバランスが取れていない可能性があります。ただし、その形状は葉の数によって一意に決まります。 (注:このマークルツリーは、定義が完全でないツリーを異なる方法で処理することを除いて、基本的に履歴ツリー[CrosbyWallach]提案と同じです。)

2.1.1. Merkle Audit Paths
2.1.1. マークル監査パス

A Merkle audit path for a leaf in a Merkle Hash Tree is the shortest list of additional nodes in the Merkle Tree required to compute the Merkle Tree Hash for that tree. Each node in the tree is either a leaf node or is computed from the two nodes immediately below it (i.e., towards the leaves). At each step up the tree (towards the root), a node from the audit path is combined with the node computed so far. In other words, the audit path consists of the list of missing nodes required to compute the nodes leading from a leaf to the root of the tree. If the root computed from the audit path matches the true root, then the audit path is proof that the leaf exists in the tree.


   Given an ordered list of n inputs to the tree, D[n] = {d(0), ...,
   d(n-1)}, the Merkle audit path PATH(m, D[n]) for the (m+1)th input
   d(m), 0 <= m < n, is defined as follows:
   The path for the single leaf in a tree with a one-element input list
   D[1] = {d(0)} is empty:
   PATH(0, {d(0)}) = {}
   For n > 1, let k be the largest power of two smaller than n.  The
   path for the (m+1)th element d(m) in a list of n > m elements is then
   defined recursively as
   PATH(m, D[n]) = PATH(m, D[0:k]) : MTH(D[k:n]) for m < k; and

PATH(m, D[n]) = PATH(m - k, D[k:n]) : MTH(D[0:k]) for m >= k,

PATH(m、D [n])= PATH(m-k、D [k:n]):M> = kのMTH(D [0:k])

where : is concatenation of lists and D[k1:k2] denotes the length (k2 - k1) list {d(k1), d(k1+1),..., d(k2-1)} as before.

ここで、:はリストの連結であり、D [k1:k2]は長さ(k2-k1)リスト{d(k1)、d(k1 + 1)、...、d(k2-1)}を以前と同じように示します。

2.1.2. Merkle Consistency Proofs
2.1.2. マークル整合性証明

Merkle consistency proofs prove the append-only property of the tree. A Merkle consistency proof for a Merkle Tree Hash MTH(D[n]) and a previously advertised hash MTH(D[0:m]) of the first m leaves, m <= n, is the list of nodes in the Merkle Tree required to verify that the first m inputs D[0:m] are equal in both trees. Thus, a consistency proof must contain a set of intermediate nodes (i.e., commitments to inputs) sufficient to verify MTH(D[n]), such that (a subset of) the same nodes can be used to verify MTH(D[0:m]). We define an algorithm that outputs the (unique) minimal consistency proof.

マークル一貫性の証明は、ツリーの追加のみの特性を証明します。マークルツリーハッシュMTH(D [n])および最初にm個の葉(m <= n)の以前に通知されたハッシュMTH(D [0:m])のマークル整合性証明は、マークルツリーのノードのリストです。最初のm個の入力D [0:m]が両方のツリーで等しいことを確認する必要があります。したがって、一貫性の証明には、MTH(D [n])を検証するのに十分な一連の中間ノード(つまり、入力へのコミットメント)が含まれている必要があります。これにより、同じノード(のサブセット)を使用してMTH(D [0 :m])。 (一意の)最小一貫性証明を出力するアルゴリズムを定義します。

   Given an ordered list of n inputs to the tree, D[n] = {d(0), ...,
   d(n-1)}, the Merkle consistency proof PROOF(m, D[n]) for a previous
   Merkle Tree Hash MTH(D[0:m]), 0 < m < n, is defined as:
   PROOF(m, D[n]) = SUBPROOF(m, D[n], true)

The subproof for m = n is empty if m is the value for which PROOF was originally requested (meaning that the subtree Merkle Tree Hash MTH(D[0:m]) is known):

m = nの副証明は、mが最初にPROOFが要求された値である場合は空です(つまり、サブツリーマークルツリーハッシュMTH(D [0:m])が既知である)。

   SUBPROOF(m, D[m], true) = {}

The subproof for m = n is the Merkle Tree Hash committing inputs D[0:m]; otherwise:

m = nの副証明は、入力D [0:m]をコミットするマークルツリーハッシュです。さもないと:

   SUBPROOF(m, D[m], false) = {MTH(D[m])}

For m < n, let k be the largest power of two smaller than n. The subproof is then defined recursively.

m <nの場合、kをnより小さい2の最大べき乗とします。次に、副証明が再帰的に定義されます。

If m <= k, the right subtree entries D[k:n] only exist in the current tree. We prove that the left subtree entries D[0:k] are consistent and add a commitment to D[k:n]:

m <= kの場合、正しいサブツリーエントリD [k:n]は現在のツリーにのみ存在します。左側のサブツリーエントリD [0:k]が一貫していることを証明し、D [k:n]にコミットメントを追加します。

SUBPROOF(m, D[n], b) = SUBPROOF(m, D[0:k], b) : MTH(D[k:n]) If m > k, the left subtree entries D[0:k] are identical in both trees. We prove that the right subtree entries D[k:n] are consistent and add a commitment to D[0:k].

SUBPROOF(m、D [n]、b)= SUBPROOF(m、D [0:k]、b):MTH(D [k:n])m> kの場合、左側のサブツリーエントリD [0:k]両方のツリーで同一です。正しいサブツリーエントリD [k:n]が一貫していることを証明し、D [0:k]にコミットメントを追加します。

   SUBPROOF(m, D[n], b) = SUBPROOF(m - k, D[k:n], false) : MTH(D[0:k])

Here, : is a concatenation of lists, and D[k1:k2] denotes the length (k2 - k1) list {d(k1), d(k1+1),..., d(k2-1)} as before.

ここで、:はリストの連結であり、D [k1:k2]は長さ(k2-k1)リスト{d(k1)、d(k1 + 1)、...、d(k2-1)}を次のように表します前。

The number of nodes in the resulting proof is bounded above by ceil(log2(n)) + 1.

結果の証明のノード数は、ceil(log2(n))+ 1によって制限されます。

2.1.3. Example
2.1.3. 例

The binary Merkle Tree with 7 leaves:


              /    \
             /      \
            /        \
           /          \
          /            \
         k              l
        / \            / \
       /   \          /   \
      /     \        /     \
     g       h      i      j
    / \     / \    / \     |
    a b     c d    e f     d6
    | |     | |    | |
   d0 d1   d2 d3  d4 d5

The audit path for d0 is [b, h, l].


The audit path for d3 is [c, g, l].


The audit path for d4 is [f, j, k].


The audit path for d6 is [i, k].


The same tree, built incrementally in four steps:


       hash0          hash1=k
       / \              /  \
      /   \            /    \
     /     \          /      \
     g      c         g       h
    / \     |        / \     / \
    a b     d2       a b     c d
    | |              | |     | |
   d0 d1            d0 d1   d2 d3
             hash2                    hash
             /  \                    /    \
            /    \                  /      \
           /      \                /        \
          /        \              /          \
         /          \            /            \
        k            i          k              l
       / \          / \        / \            / \
      /   \         e f       /   \          /   \
     /     \        | |      /     \        /     \
    g       h      d4 d5    g       h      i      j
   / \     / \             / \     / \    / \     |
   a b     c d             a b     c d    e f     d6
   | |     | |             | |     | |    | |
   d0 d1   d2 d3           d0 d1   d2 d3  d4 d5
   The consistency proof between hash0 and hash is PROOF(3, D[7]) = [c,
   d, g, l].  c, g are used to verify hash0, and d, l are additionally
   used to show hash is consistent with hash0.
   The consistency proof between hash1 and hash is PROOF(4, D[7]) = [l].
   hash can be verified using hash1=k and l.
   The consistency proof between hash2 and hash is PROOF(6, D[7]) = [i,
   j, k].  k, i are used to verify hash2, and j is additionally used to
   show hash is consistent with hash2.
2.1.4. Signatures
2.1.4. 署名

Various data structures are signed. A log MUST use either elliptic curve signatures using the NIST P-256 curve (Section D.1.2.3 of the Digital Signature Standard [DSS]) or RSA signatures (RSASSA-PKCS1- V1_5 with SHA-256, Section 8.2 of [RFC3447]) using a key of at least 2048 bits.

さまざまなデータ構造が署名されています。ログは、NIST P-256曲線を使用した楕円曲線署名(デジタル署名標準[DSS]のセクションD.1.2.3)またはRSA署名(SAS-256を使用したRSASSA-PKCS1-V1_5、[RFC3447のセクション8.2]のいずれかを使用する必要があります])少なくとも2048ビットのキーを使用します。

3. Log Format and Operation
3. ログの形式と操作

Anyone can submit certificates to certificate logs for public auditing; however, since certificates will not be accepted by TLS clients unless logged, it is expected that certificate owners or their CAs will usually submit them. A log is a single, ever-growing, append-only Merkle Tree of such certificates.


When a valid certificate is submitted to a log, the log MUST immediately return a Signed Certificate Timestamp (SCT). The SCT is the log's promise to incorporate the certificate in the Merkle Tree within a fixed amount of time known as the Maximum Merge Delay (MMD). If the log has previously seen the certificate, it MAY return the same SCT as it returned before. TLS servers MUST present an SCT from one or more logs to the TLS client together with the certificate. TLS clients MUST reject certificates that do not have a valid SCT for the end-entity certificate.

有効な証明書がログに送信されると、ログはただちに署名済み証明書タイムスタンプ(SCT)を返す必要があります。 SCTは、最大マージ遅延(MMD)と呼ばれる一定の時間内に証明書をマークルツリーに組み込むというログの約束です。ログが以前に証明書を見た場合、以前に返されたものと同じSCTを返す場合があります。 TLSサーバーは、1つ以上のログからのSCTを証明書と共にTLSクライアントに提示する必要があります。 TLSクライアントは、エンドエンティティ証明書に有効なSCTがない証明書を拒否する必要があります。

Periodically, each log appends all its new entries to the Merkle Tree and signs the root of the tree. Auditors can thus verify that each certificate for which an SCT has been issued indeed appears in the log. The log MUST incorporate a certificate in its Merkle Tree within the Maximum Merge Delay period after the issuance of the SCT.


Log operators MUST NOT impose any conditions on retrieving or sharing data from the log.


3.1. Log Entries
3.1. ログエントリ

Anyone can submit a certificate to any log. In order to enable attribution of each logged certificate to its issuer, the log SHALL publish a list of acceptable root certificates (this list might usefully be the union of root certificates trusted by major browser vendors). Each submitted certificate MUST be accompanied by all additional certificates required to verify the certificate chain up to an accepted root certificate. The root certificate itself MAY be omitted from the chain submitted to the log server.


Alternatively, (root as well as intermediate) certificate authorities may submit a certificate to logs prior to issuance. To do so, the CA submits a Precertificate that the log can use to create an entry that will be valid against the issued certificate. The Precertificate is constructed from the certificate to be issued by adding a special critical poison extension (OID, whose extnValue OCTET STRING contains ASN.1 NULL data (0x05 0x00)) to the end-entity TBSCertificate (this extension is to ensure that the Precertificate cannot be validated by a standard X.509v3 client) and signing the resulting TBSCertificate [RFC5280] with either o a special-purpose (CA:true, Extended Key Usage: Certificate Transparency, OID Precertificate Signing Certificate. The Precertificate Signing Certificate MUST be directly certified by the (root or intermediate) CA certificate that will ultimately sign the end-entity TBSCertificate yielding the end-entity certificate (note that the log may relax standard validation rules to allow this, so long as the issued certificate will be valid),

または、(ルートと中間の)認証局が発行前に証明書をログに送信することもできます。そのために、CAは、発行された証明書に対して有効なエントリを作成するためにログが使用できる事前証明書を送信します。 Precertificateは、特別なクリティカルポイズンエクステンション(OID、extnValue OCTET STRINGにASN.1 NULLデータ(0x05 0x00)が含まれている)をエンドエンティティTBSCertificateに追加することによって発行される証明書から構築されます(この拡張は、Precertificateが標準のX.509v3クライアントによって検証されないことを保証するためのものです)、結果として得られるTBSCertificate [RFC5280]に、特別な目的(CA:true、Extended Key Usage:Certificate Transparency、OIDのいずれかで署名します。 .4.1.11129.2.4.4)事前証明書署名証明書。事前証明書署名証明書は、最終的にエンドエンティティTBSCertificateに署名する(ルートまたは中間)CA証明書によって直接認証される必要があります(ログが、これを許可する限り、ログが標準の検証ルールを緩和してこれを許可することに注意してください)発行された証明書が有効になります)、

o or, the CA certificate that will sign the final certificate.

o または、最終的な証明書に署名するCA証明書。

As above, the Precertificate submission MUST be accompanied by the Precertificate Signing Certificate, if used, and all additional certificates required to verify the chain up to an accepted root certificate. The signature on the TBSCertificate indicates the certificate authority's intent to issue a certificate. This intent is considered binding (i.e., misissuance of the Precertificate is considered equal to misissuance of the final certificate). Each log verifies the Precertificate signature chain and issues a Signed Certificate Timestamp on the corresponding TBSCertificate.

上記のように、事前証明書の提出には、使用する場合は事前証明書署名証明書と、受け入れられたルート証明書までのチェーンを検証するために必要なすべての追加の証明書を添付する必要があります。 TBSCertificateの署名は、認証局が証明書を発行する意図を示しています。この意図は拘束力があると見なされます(つまり、事前証明書の発行が最終的な証明書の発行と同じであると見なされます)。各ログは、事前証明書の署名チェーンを検証し、対応するTBSCertificateに署名済み証明書のタイムスタンプを発行します。

Logs MUST verify that the submitted end-entity certificate or Precertificate has a valid signature chain leading back to a trusted root CA certificate, using the chain of intermediate CA certificates provided by the submitter. Logs MAY accept certificates that have expired, are not yet valid, have been revoked, or are otherwise not fully valid according to X.509 verification rules in order to accommodate quirks of CA certificate-issuing software. However, logs MUST refuse to publish certificates without a valid chain to a known root CA. If a certificate is accepted and an SCT issued, the accepting log MUST store the entire chain used for verification, including the certificate or Precertificate itself and including the root certificate used to verify the chain (even if it was omitted from the submission), and MUST present this chain for auditing upon request. This chain is required to prevent a CA from avoiding blame by logging a partial or empty chain. (Note: This effectively excludes self-signed and DANE-based certificates until some mechanism to control spam for those certificates is found. The authors welcome suggestions.) Each certificate entry in a log MUST include the following components:

ログは、提出されたエンドエンティティ証明書または事前証明書が、提出者によって提供された中間CA証明書のチェーンを使用して、信頼されたルートCA証明書につながる有効な署名チェーンを持っていることを確認する必要があります。ログは、CA証明書発行ソフトウェアの癖に対応するために、有効期限が切れている、まだ有効ではない、取り消されている、またはX.509検証ルールに従って完全に有効ではない証明書を受け入れる場合があります。ただし、ログは既知のルートCAへの有効なチェーンがない証明書の公開を拒否する必要があります。証明書が受け入れられ、SCTが発行された場合、受け入れログには、証明書または事前証明書自体、およびチェーンの検証に使用されたルート証明書(提出から省略された場合でも)を含む、検証に使用されたチェーン全体を格納する必要があります。リクエストに応じて、監査のためにこのチェーンを提示する必要があります。このチェーンは、CAが部分的または空のチェーンをログに記録して責任を回避しないようにするために必要です。 (注:自己署名証明書とDANEベースの証明書は、それらの証明書のスパムを制御するメカニズムが見つかるまで事実上除外されます。作成者は提案を歓迎します。)ログの各証明書エントリには、次のコンポーネントを含める必要があります。

       enum { x509_entry(0), precert_entry(1), (65535) } LogEntryType;
       struct {
           LogEntryType entry_type;
           select (entry_type) {
               case x509_entry: X509ChainEntry;
               case precert_entry: PrecertChainEntry;
           } entry;
       } LogEntry;
       opaque ASN.1Cert<1..2^24-1>;
       struct {
           ASN.1Cert leaf_certificate;
           ASN.1Cert certificate_chain<0..2^24-1>;
       } X509ChainEntry;
       struct {
           ASN.1Cert pre_certificate;
           ASN.1Cert precertificate_chain<0..2^24-1>;
       } PrecertChainEntry;

Logs MAY limit the length of chain they will accept.


"entry_type" is the type of this entry. Future revisions of this protocol version may add new LogEntryType values. Section 4 explains how clients should handle unknown entry types.


"leaf_certificate" is the end-entity certificate submitted for auditing.


"certificate_chain" is a chain of additional certificates required to verify the end-entity certificate. The first certificate MUST certify the end-entity certificate. Each following certificate MUST directly certify the one preceding it. The final certificate MUST be a root certificate accepted by the log.


"pre_certificate" is the Precertificate submitted for auditing.


"precertificate_chain" is a chain of additional certificates required to verify the Precertificate submission. The first certificate MAY be a valid Precertificate Signing Certificate and MUST certify the first certificate. Each following certificate MUST directly certify the one preceding it. The final certificate MUST be a root certificate accepted by the log.


3.2. Structure of the Signed Certificate Timestamp
3.2. 署名付き証明書のタイムスタンプの構造
       enum { certificate_timestamp(0), tree_hash(1), (255) }
       enum { v1(0), (255) }
         struct {
             opaque key_id[32];
         } LogID;
         opaque TBSCertificate<1..2^24-1>;
         struct {
           opaque issuer_key_hash[32];
           TBSCertificate tbs_certificate;
         } PreCert;
         opaque CtExtensions<0..2^16-1>;

"key_id" is the SHA-256 hash of the log's public key, calculated over the DER encoding of the key represented as SubjectPublicKeyInfo.


"issuer_key_hash" is the SHA-256 hash of the certificate issuer's public key, calculated over the DER encoding of the key represented as SubjectPublicKeyInfo. This is needed to bind the issuer to the final certificate.


"tbs_certificate" is the DER-encoded TBSCertificate (see [RFC5280]) component of the Precertificate -- that is, without the signature and the poison extension. If the Precertificate is not signed with the CA certificate that will issue the final certificate, then the TBSCertificate also has its issuer changed to that of the CA that will issue the final certificate. Note that it is also possible to reconstruct this TBSCertificate from the final certificate by extracting the TBSCertificate from it and deleting the SCT extension. Also note that since the TBSCertificate contains an AlgorithmIdentifier that must match both the Precertificate signature algorithm and final certificate signature algorithm, they must be signed with the same algorithm and parameters. If the Precertificate is issued using a Precertificate Signing Certificate and an Authority Key Identifier extension is present in the TBSCertificate, the corresponding extension must also be present in the Precertificate Signing Certificate -- in this case, the TBSCertificate also has its Authority Key Identifier changed to match the final issuer.

「tbs_certificate」は、PrecertificateのDERエンコードTBSCertificate([RFC5280]を参照)コンポーネントです。つまり、署名とポイズン拡張なしです。最終証明書を発行するCA証明書で事前証明書が署名されていない場合、TBSCertificateの発行者も最終証明書を発行するCAの発行者に変更されます。 TBSCertificateを抽出してSCT拡張を削除することにより、最終的な証明書からこのTBSCertificateを再構築することもできます。 TBSCertificateには、Precertificate署名アルゴリズムと最終証明書署名アルゴリズムの両方と一致する必要があるAlgorithmIdentifierが含まれているため、同じアルゴリズムとパラメーターで署名する必要があることにも注意してください。 PrecertificateがPrecertificate Signing Certificateを使用して発行され、Authority Key IdentifierエクステンションがTBSCertificateに存在する場合、対応するエクステンションもPrecertificate Signing Certificateに存在する必要があります。この場合、TBSCertificateのオーソリティキー識別子も次のように変更されます。最終的な発行者と一致します。

       struct {
           Version sct_version;
           LogID id;
           uint64 timestamp;
           CtExtensions extensions;
           digitally-signed struct {
               Version sct_version;
               SignatureType signature_type = certificate_timestamp;
               uint64 timestamp;
               LogEntryType entry_type;
               select(entry_type) {
                   case x509_entry: ASN.1Cert;
                   case precert_entry: PreCert;
               } signed_entry;
              CtExtensions extensions;
       } SignedCertificateTimestamp;

The encoding of the digitally-signed element is defined in [RFC5246].


"sct_version" is the version of the protocol to which the SCT conforms. This version is v1.


"timestamp" is the current NTP Time [RFC5905], measured since the epoch (January 1, 1970, 00:00), ignoring leap seconds, in milliseconds.


"entry_type" may be implicit from the context in which the SCT is presented.


"signed_entry" is the "leaf_certificate" (in the case of an X509ChainEntry) or is the PreCert (in the case of a PrecertChainEntry), as described above.


"extensions" are future extensions to this protocol version (v1). Currently, no extensions are specified.


3.3. Including the Signed Certificate Timestamp in the TLS Handshake
3.3. TLSハンドシェイクに署名済み証明書のタイムスタンプを含める

The SCT data corresponding to the end-entity certificate from at least one log must be included in the TLS handshake, either by using an X509v3 certificate extension as described below, by using a TLS extension (Section of [RFC5246]) with type "signed_certificate_timestamp", or by using Online Certificate Status Protocol (OCSP) Stapling (also known as the "Certificate Status Request" TLS extension; see [RFC6066]), where the response includes an OCSP extension with OID (see [RFC2560]) and body:

少なくとも1つのログからのエンドエンティティ証明書に対応するSCTデータは、以下で説明するX509v3証明書拡張を使用するか、TLS拡張([RFC5246]のセクション7.4.1.4)を使用して、TLSハンドシェイクに含める必要があります。 「signed_certificate_timestamp」と入力するか、オンライン証明書ステータスプロトコル(OCSP)ステイプル(「証明書ステータス要求」TLS拡張とも呼ばれます。[RFC6066]を参照)を使用して、応答にOIDのOCSP拡張を含めます。 11129.2.4.5([RFC2560]を参照)および本文:

       SignedCertificateTimestampList ::= OCTET STRING

At least one SCT MUST be included. Server operators MAY include more than one SCT.


Similarly, a certificate authority MAY submit a Precertificate to more than one log, and all obtained SCTs can be directly embedded in the final certificate, by encoding the SignedCertificateTimestampList structure as an ASN.1 OCTET STRING and inserting the resulting data in the TBSCertificate as an X.509v3 certificate extension (OID Upon receiving the certificate, clients can reconstruct the original TBSCertificate to verify the SCT signature.

同様に、認証局はPrecertificateを複数のログに送信できます。SignedCertificateTimestampList構造をASN.1 OCTET STRINGとしてエンコードし、結果のデータをTBSCertificateに挿入することにより、取得したすべてのSCTを最終的な証明書に直接埋め込むことができますX.509v3証明書拡張(OID。証明書を受け取ると、クライアントは元のTBSCertificateを再構築してSCT署名を検証できます。

The contents of the ASN.1 OCTET STRING embedded in an OCSP extension or X509v3 certificate extension are as follows:

OCSP拡張またはX509v3証明書拡張に埋め込まれたASN.1 OCTET STRINGの内容は次のとおりです。

        opaque SerializedSCT<1..2^16-1>;
        struct {
            SerializedSCT sct_list <1..2^16-1>;
        } SignedCertificateTimestampList;

Here, "SerializedSCT" is an opaque byte string that contains the serialized TLS structure. This encoding ensures that TLS clients can decode each SCT individually (i.e., if there is a version upgrade, out-of-date clients can still parse old SCTs while skipping over new SCTs whose versions they don't understand).


Likewise, SCTs can be embedded in a TLS extension. See below for details.


TLS clients MUST implement all three mechanisms. Servers MUST implement at least one of the three mechanisms. Note that existing TLS servers can generally use the certificate extension mechanism without modification.


TLS servers should send SCTs from multiple logs in case one or more logs are not acceptable to the client (for example, if a log has been struck off for misbehavior or has had a key compromise).


3.3.1. TLS Extension
3.3.1. TLS拡張

The SCT can be sent during the TLS handshake using a TLS extension with type "signed_certificate_timestamp".


Clients that support the extension SHOULD send a ClientHello extension with the appropriate type and empty "extension_data".


Servers MUST only send SCTs to clients who have indicated support for the extension in the ClientHello, in which case the SCTs are sent by setting the "extension_data" to a "SignedCertificateTimestampList".


Session resumption uses the original session information: clients SHOULD include the extension type in the ClientHello, but if the session is resumed, the server is not expected to process it or include the extension in the ServerHello.


3.4. Merkle Tree
3.4. マークルツリー

The hashing algorithm for the Merkle Tree Hash is SHA-256.


Structure of the Merkle Tree input:


       enum { timestamped_entry(0), (255) }
       struct {
           uint64 timestamp;
           LogEntryType entry_type;
           select(entry_type) {
               case x509_entry: ASN.1Cert;
               case precert_entry: PreCert;
           } signed_entry;
           CtExtensions extensions;
       } TimestampedEntry;
       struct {
           Version version;
           MerkleLeafType leaf_type;
           select (leaf_type) {
               case timestamped_entry: TimestampedEntry;
       } MerkleTreeLeaf;

Here, "version" is the version of the protocol to which the MerkleTreeLeaf corresponds. This version is v1.


"leaf_type" is the type of the leaf input. Currently, only "timestamped_entry" (corresponding to an SCT) is defined. Future revisions of this protocol version may add new MerkleLeafType types. Section 4 explains how clients should handle unknown leaf types.

「leaf_type」はリーフ入力のタイプです。現在、 "timestamped_entry"(SCTに対応)のみが定義されています。このプロトコルバージョンの将来のリビジョンでは、新しいMerkleLeafTypeタイプが追加される可能性があります。セクション4では、クライアントが不明なリーフタイプを処理する方法について説明します。

"timestamp" is the timestamp of the corresponding SCT issued for this certificate.


"signed_entry" is the "signed_entry" of the corresponding SCT.


"extensions" are "extensions" of the corresponding SCT.


The leaves of the Merkle Tree are the leaf hashes of the corresponding "MerkleTreeLeaf" structures.


3.5. Signed Tree Head
3.5. 署名された木の頭

Every time a log appends new entries to the tree, the log SHOULD sign the corresponding tree hash and tree information (see the corresponding Signed Tree Head client message in Section 4.3). The signature for that data is structured as follows:


       digitally-signed struct {
           Version version;
           SignatureType signature_type = tree_hash;
           uint64 timestamp;
           uint64 tree_size;
           opaque sha256_root_hash[32];
       } TreeHeadSignature;

"version" is the version of the protocol to which the TreeHeadSignature conforms. This version is v1.


"timestamp" is the current time. The timestamp MUST be at least as recent as the most recent SCT timestamp in the tree. Each subsequent timestamp MUST be more recent than the timestamp of the previous update.


"tree_size" equals the number of entries in the new tree.


"sha256_root_hash" is the root of the Merkle Hash Tree.


Each log MUST produce on demand a Signed Tree Head that is no older than the Maximum Merge Delay. In the unlikely event that it receives no new submissions during an MMD period, the log SHALL sign the same Merkle Tree Hash with a fresh timestamp.

各ログは、最大マージ遅延よりも古い署名済みツリーヘッドをオンデマンドで生成する必要があります。 MMD期間中に新しいサブミッションを受信しないというまれなイベントでは、ログは同じマークルツリーハッシュに新しいタイムスタンプで署名する必要があります(SHALL)。

4. Log Client Messages
4. クライアントメッセージのログ

Messages are sent as HTTPS GET or POST requests. Parameters for POSTs and all responses are encoded as JavaScript Object Notation (JSON) objects [RFC4627]. Parameters for GETs are encoded as order-independent key/value URL parameters, using the "application/ x-www-form-urlencoded" format described in the "HTML 4.01 Specification" [HTML401]. Binary data is base64 encoded [RFC4648] as specified in the individual messages.

メッセージはHTTPS GETまたはPOST要求として送信されます。 POSTおよびすべての応答のパラメーターは、JavaScript Object Notation(JSON)オブジェクト[RFC4627]としてエンコードされます。 GETのパラメーターは、「HTML 4.01仕様」[HTML401]で説明されている「application / x-www-form-urlencoded」形式を使用して、順序に依存しないキー/値URLパラメーターとしてエンコードされます。バイナリデータは、個々のメッセージで指定されているようにbase64エンコード[RFC4648]されています。

Note that JSON objects and URL parameters may contain fields not specified here. These extra fields should be ignored.


The <log server> prefix can include a path as well as a server name and a port.

<log server>プレフィックスには、パス、サーバー名、ポートを含めることができます。

In general, where needed, the "version" is v1 and the "id" is the log id for the log server queried.


Any errors will be returned as HTTP 4xx or 5xx responses, with human-readable error messages.

エラーはHTTP 4xxまたは5xx応答として返され、人間が読めるエラーメッセージが含まれます。

4.1. Add Chain to Log
4.1. ログにチェーンを追加
   POST https://<log server>/ct/v1/add-chain



chain: An array of base64-encoded certificates. The first element is the end-entity certificate; the second chains to the first and so on to the last, which is either the root certificate or a certificate that chains to a known root certificate.

chain:base64でエンコードされた証明書の配列。最初の要素はエンドエンティティ証明書です。 2番目は最初のチェーンに続き、最後も同様です。これは、ルート証明書、または既知のルート証明書にチェーンする証明書です。



sct_version: The version of the SignedCertificateTimestamp structure, in decimal. A compliant v1 implementation MUST NOT expect this to be 0 (i.e., v1).


id: The log ID, base64 encoded. Since log clients who request an SCT for inclusion in TLS handshakes are not required to verify it, we do not assume they know the ID of the log.

id:base64でエンコードされたログID。 TLSハンドシェイクに含めるためにSCTを要求するログクライアントは検証する必要がないため、ログのIDを知っているとは限りません。

timestamp: The SCT timestamp, in decimal.


extensions: An opaque type for future expansion. It is likely that not all participants will need to understand data in this field. Logs should set this to the empty string. Clients should decode the base64-encoded data and include it in the SCT.


signature: The SCT signature, base64 encoded.


If the "sct_version" is not v1, then a v1 client may be unable to verify the signature. It MUST NOT construe this as an error. (Note: Log clients don't need to be able to verify this structure; only TLS clients do. If we were to serve the structure as a binary blob, then we could completely change it without requiring an upgrade to v1 clients.)

「sct_version」がv1でない場合、v1クライアントは署名を検証できない可能性があります。これをエラーとして解釈してはなりません。 (注:ログクライアントはこの構造を検証できる必要はありません。TLSクライアントのみが可能です。構造をバイナリBLOBとして提供する場合は、v1クライアントにアップグレードする必要なく完全に変更できます。)

4.2. Add PreCertChain to Log
4.2. PreCertChainをログに追加
   POST https://<log server>/ct/v1/add-pre-chain



chain: An array of base64-encoded Precertificates. The first element is the end-entity certificate; the second chains to the first and so on to the last, which is either the root certificate or a certificate that chains to a known root certificate.

chain:base64でエンコードされた事前証明書の配列。最初の要素はエンドエンティティ証明書です。 2番目は最初のチェーンに続き、最後も同様です。これは、ルート証明書、または既知のルート証明書にチェーンする証明書です。

Outputs are the same as in Section 4.1.


4.3. Retrieve Latest Signed Tree Head
4.3. 最新の署名付きツリーヘッドを取得する
   GET https://<log server>/ct/v1/get-sth

No inputs.




tree_size: The size of the tree, in entries, in decimal.


timestamp: The timestamp, in decimal.


sha256_root_hash: The Merkle Tree Hash of the tree, in base64.


tree_head_signature: A TreeHeadSignature for the above data.


4.4. Retrieve Merkle Consistency Proof between Two Signed Tree Heads
4.4. 2つの署名されたツリーヘッド間のマークル整合性証明を取得する
   GET https://<log server>/ct/v1/get-sth-consistency



first: The tree_size of the first tree, in decimal.


second: The tree_size of the second tree, in decimal.


Both tree sizes must be from existing v1 STHs (Signed Tree Heads).

どちらのツリーサイズも、既存のv1 STH(Signed Tree Heads)からのものでなければなりません。



consistency: An array of Merkle Tree nodes, base64 encoded.


Note that no signature is required on this data, as it is used to verify an STH, which is signed.


4.5. Retrieve Merkle Audit Proof from Log by Leaf Hash
4.5. リーフハッシュによるログからのマークル監査証明の取得
   GET https://<log server>/ct/v1/get-proof-by-hash



hash: A base64-encoded v1 leaf hash.


tree_size: The tree_size of the tree on which to base the proof, in decimal.


The "hash" must be calculated as defined in Section 3.4. The "tree_size" must designate an existing v1 STH.

「ハッシュ」は、セクション3.4の定義に従って計算する必要があります。 「tree_size」は、既存のv1 STHを指定する必要があります。



leaf_index: The 0-based index of the end entity corresponding to the "hash" parameter.


audit_path: An array of base64-encoded Merkle Tree nodes proving the inclusion of the chosen certificate.


4.6. Retrieve Entries from Log
4.6. ログからエントリを取得する
   GET https://<log server>/ct/v1/get-entries



start: 0-based index of first entry to retrieve, in decimal.


end: 0-based index of last entry to retrieve, in decimal.




entries: An array of objects, each consisting of


leaf_input: The base64-encoded MerkleTreeLeaf structure.


extra_data: The base64-encoded unsigned data pertaining to the log entry. In the case of an X509ChainEntry, this is the "certificate_chain". In the case of a PrecertChainEntry, this is the whole "PrecertChainEntry".

extra_data:ログエントリに関連するbase64でエンコードされた符号なしデータ。 X509ChainEntryの場合、これは「certificate_chain」です。 PrecertChainEntryの場合、これは「PrecertChainEntry」全体です。

Note that this message is not signed -- the retrieved data can be verified by constructing the Merkle Tree Hash corresponding to a retrieved STH. All leaves MUST be v1. However, a compliant v1 client MUST NOT construe an unrecognized MerkleLeafType or LogEntryType value as an error. This means it may be unable to parse some entries, but note that each client can inspect the entries it does recognize as well as verify the integrity of the data by treating unrecognized leaves as opaque input to the tree.

このメッセージは署名されていないことに注意してください。取得したデータは、取得したSTHに対応するマークルツリーハッシュを作成することで確認できます。すべての葉はv1でなければなりません。ただし、準拠するv1クライアントは、認識されないMerkleLeafTypeまたはLogEntryType値をエラーとして解釈してはなりません(MUST NOT)。これは、一部のエントリを解析できない可能性があることを意味しますが、各クライアントは、認識しないエントリを検査し、認識されていない葉をツリーへの不透明な入力として扱うことにより、データの整合性を検証できることに注意してください。

The "start" and "end" parameters SHOULD be within the range 0 <= x < "tree_size" as returned by "get-sth" in Section 4.3.

「start」および「end」パラメータは、セクション4.3の「get-sth」で返される0 <= x <「tree_size」の範囲内にある必要があります(SHOULD)。

Logs MAY honor requests where 0 <= "start" < "tree_size" and "end" >= "tree_size" by returning a partial response covering only the valid entries in the specified range. Note that the following restriction may also apply:

ログは、0 <= "start" <"tree_size"および "end"> = "tree_size"であるリクエストを尊重しても、指定された範囲内の有効なエントリのみをカバーする部分的な応答を返す場合があります。次の制限も適用される場合があることに注意してください。

Logs MAY restrict the number of entries that can be retrieved per "get-entries" request. If a client requests more than the permitted number of entries, the log SHALL return the maximum number of entries permissible. These entries SHALL be sequential beginning with the entry specified by "start".

ログは、「get-entries」リクエストごとに取得できるエントリの数を制限する場合があります。クライアントが許可された数よりも多くのエントリを要求した場合、ログは許容されるエントリの最大数を返す必要があります(SHALL)。これらのエントリは、 "start"で指定されたエントリから始まるシーケンシャルである必要があります。

4.7. Retrieve Accepted Root Certificates
4.7. 承認されたルート証明書を取得する
   GET https://<log server>/ct/v1/get-roots

No inputs.




certificates: An array of base64-encoded root certificates that are acceptable to the log.


4.8. Retrieve Entry+Merkle Audit Proof from Log
4.8. ログからエントリ+マークル監査証明を取得
   GET https://<log server>/ct/v1/get-entry-and-proof



leaf_index: The index of the desired entry.


tree_size: The tree_size of the tree for which the proof is desired.


The tree size must designate an existing STH.




leaf_input: The base64-encoded MerkleTreeLeaf structure.


extra_data: The base64-encoded unsigned data, same as in Section 4.6.


audit_path: An array of base64-encoded Merkle Tree nodes proving the inclusion of the chosen certificate.


This API is probably only useful for debugging.


5. Clients
5. クライアント

There are various different functions clients of logs might perform. We describe here some typical clients and how they could function. Any inconsistency may be used as evidence that a log has not behaved correctly, and the signatures on the data structures prevent the log from denying that misbehavior.


All clients should gossip with each other, exchanging STHs at least; this is all that is required to ensure that they all have a consistent view. The exact mechanism for gossip will be described in a separate document, but it is expected there will be a variety.


5.1. Submitters
5.1. 提出者

Submitters submit certificates or Precertificates to the log as described above. They may go on to use the returned SCT to construct a certificate or use it directly in a TLS handshake.


5.2. TLS Client
5.2. TLSクライアント

TLS clients are not directly clients of the log, but they receive SCTs alongside or in server certificates. In addition to normal validation of the certificate and its chain, they should validate the SCT by computing the signature input from the SCT data as well as the certificate and verifying the signature, using the corresponding log's public key. Note that this document does not describe how clients obtain the logs' public keys.


TLS clients MUST reject SCTs whose timestamp is in the future.


5.3. Monitor
5.3. モニター

Monitors watch logs and check that they behave correctly. They also watch for certificates of interest.


A monitor needs to, at least, inspect every new entry in each log it watches. It may also want to keep copies of entire logs. In order to do this, it should follow these steps for each log:


1. Fetch the current STH (Section 4.3).

1. 現在のSTHをフェッチします(セクション4.3)。

2. Verify the STH signature.

2. STH署名を確認します。

3. Fetch all the entries in the tree corresponding to the STH (Section 4.6).

3. STHに対応するツリー内のすべてのエントリをフェッチします(セクション4.6)。

4. Confirm that the tree made from the fetched entries produces the same hash as that in the STH.

4. 取得したエントリから作成されたツリーがSTHと同じハッシュを生成することを確認します。

5. Fetch the current STH (Section 4.3). Repeat until the STH changes.

5. 現在のSTHをフェッチします(セクション4.3)。 STHが変化するまで繰り返します。

6. Verify the STH signature.

6. STH署名を確認します。

7. Fetch all the new entries in the tree corresponding to the STH (Section 4.6). If they remain unavailable for an extended period, then this should be viewed as misbehavior on the part of the log.

7. STHに対応するツリー内のすべての新しいエントリをフェッチします(セクション4.6)。それらが長期間使用できないままの場合、これはログの一部での不正な動作と見なされます。

8. Either:

8. どちらか:

1. Verify that the updated list of all entries generates a tree with the same hash as the new STH.

1. すべてのエントリの更新されたリストが、新しいSTHと同じハッシュを持つツリーを生成することを確認します。

Or, if it is not keeping all log entries:


2. Fetch a consistency proof for the new STH with the previous STH (Section 4.4).

2. 以前のSTHとの新しいSTHの一貫性の証明をフェッチします(セクション4.4)。

3. Verify the consistency proof.

3. 整合性の証明を確認します。

4. Verify that the new entries generate the corresponding elements in the consistency proof.

4. 新しいエントリが整合性証明の対応する要素を生成することを確認します。

9. Go to Step 5.

9. 手順5に進みます。

5.4. Auditor
5.4. 監査人

Auditors take partial information about a log as input and verify that this information is consistent with other partial information they have. An auditor might be an integral component of a TLS client; it might be a standalone service; or it might be a secondary function of a monitor.


Any pair of STHs from the same log can be verified by requesting a consistency proof (Section 4.4).


A certificate accompanied by an SCT can be verified against any STH dated after the SCT timestamp + the Maximum Merge Delay by requesting a Merkle audit proof (Section 4.5).


Auditors can fetch STHs from time to time of their own accord, of course (Section 4.3).


6. IANA Considerations
6. IANAに関する考慮事項

IANA has allocated an RFC 5246 ExtensionType value (18) for the SCT TLS extension. The extension name is "signed_certificate_timestamp".

IANAはSCT TLS拡張にRFC 5246 ExtensionType値(18)を割り当てました。拡張名は「signed_certificate_timestamp」です。

7. Security Considerations
7. セキュリティに関する考慮事項

With CAs, logs, and servers performing the actions described here, TLS clients can use logs and signed timestamps to reduce the likelihood that they will accept misissued certificates. If a server presents a valid signed timestamp for a certificate, then the client knows that the certificate has been published in a log. From this, the client knows that the subject of the certificate has had some time to notice the misissue and take some action, such as asking a CA to revoke a misissued certificate. A signed timestamp is not a guarantee that the certificate is not misissued, since the subject of the certificate might not have checked the logs or the CA might have refused to revoke the certificate.


In addition, if TLS clients will not accept unlogged certificates, then site owners will have a greater incentive to submit certificates to logs, possibly with the assistance of their CA, increasing the overall transparency of the system.


7.1. Misissued Certificates
7.1. 誤って発行された証明書

Misissued certificates that have not been publicly logged, and thus do not have a valid SCT, will be rejected by TLS clients. Misissued certificates that do have an SCT from a log will appear in that public log within the Maximum Merge Delay, assuming the log is operating correctly. Thus, the maximum period of time during which a misissued certificate can be used without being available for audit is the MMD.


7.2. Detection of Misissue
7.2. 問題の検出

The logs do not themselves detect misissued certificates; they rely instead on interested parties, such as domain owners, to monitor them and take corrective action when a misissue is detected.


7.3. Misbehaving Logs
7.3. 不正なログ

A log can misbehave in two ways: (1) by failing to incorporate a certificate with an SCT in the Merkle Tree within the MMD and (2) by violating its append-only property by presenting two different, conflicting views of the Merkle Tree at different times and/or to different parties. Both forms of violation will be promptly and publicly detectable.


Violation of the MMD contract is detected by log clients requesting a Merkle audit proof for each observed SCT. These checks can be asynchronous and need only be done once per each certificate. In order to protect the clients' privacy, these checks need not reveal the exact certificate to the log. Clients can instead request the proof from a trusted auditor (since anyone can compute the audit proofs from the log) or request Merkle proofs for a batch of certificates around the SCT timestamp.


Violation of the append-only property is detected by global gossiping, i.e., everyone auditing logs comparing their versions of the latest Signed Tree Heads. As soon as two conflicting Signed Tree Heads for the same log are detected, this is cryptographic proof of that log's misbehavior.


8. Efficiency Considerations
8. 効率に関する考慮事項

The Merkle Tree design serves the purpose of keeping communication overhead low.


Auditing logs for integrity does not require third parties to maintain a copy of each entire log. The Signed Tree Heads can be updated as new entries become available, without recomputing entire trees. Third-party auditors need only fetch the Merkle consistency proofs against a log's existing STH to efficiently verify the append-only property of updates to their Merkle Trees, without auditing the entire tree.


9. Future Changes
9. 将来の変化

This section lists things we might address in a Standards Track version of this document.

このセクションでは、このドキュメントのStandards Trackバージョンで対処する可能性のある事項を示します。

o Rather than forcing a log operator to create a new log in order to change the log signing key, we may allow some key roll mechanism.

o ログ署名キーを変更するためにログオペレーターに新しいログの作成を強制するのではなく、いくつかのキーロールメカニズムを許可する場合があります。

o We may add hash and signing algorithm agility.

o ハッシュと署名アルゴリズムの俊敏性を追加できます。

o We may describe some gossip protocols.

o 一部のゴシッププロトコルについて説明する場合があります。

10. Acknowledgements
10. 謝辞

The authors would like to thank Erwann Abelea, Robin Alden, Al Cutter, Francis Dupont, Stephen Farrell, Brad Hill, Jeff Hodges, Paul Hoffman, Jeffrey Hutzelman, SM, Alexey Melnikov, Chris Palmer, Trevor Perrin, Ryan Sleevi, Rob Stradling, and Carl Wallace for their valuable contributions.

著者は、Erwann Abelea、Robin Alden、Al Cutter、Francis Dupont、Stephen Farrell、Brad Hill、Jeff Hodges、Paul Hoffman、Jeffrey Hutzelman、SM、Alexey Melnikov、Chris Palmer、Trevor Perrin、Ryan Sleevi、Rob Stradling、貴重な貢献をしてくれたカールウォレス。

11. References
11. 参考文献
11.1. Normative Reference
11.1. 規範的なリファレンス

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119] Bradner、S。、「要件レベルを示すためにRFCで使用するキーワード」、BCP 14、RFC 2119、1997年3月。

11.2. Informative References
11.2. 参考引用

[CrosbyWallach] Crosby, S. and D. Wallach, "Efficient Data Structures for Tamper-Evident Logging", Proceedings of the 18th USENIX Security Symposium, Montreal, August 2009, < tech/full_papers/crosby.pdf>.

[CrosbyWallach] Crosby、S。およびD. Wallach、「改ざん防止のログ記録のための効率的なデータ構造」、第18回USENIXセキュリティシンポジウムの議事録、モントリオール、2009年8月、< / tech / full_papers / crosby.pdf>。

[DSS] National Institute of Standards and Technology, "Digital Signature Standard (DSS)", FIPS 186-3, June 2009, < fips186-3/fips_186-3.pdf>.

[DSS]米国国立標準技術研究所、「デジタル署名標準(DSS)」、FIPS 186-3、2009年6月、< fips186-3 / fips_186-3。 pdf>。

[FIPS.180-4] National Institute of Standards and Technology, "Secure Hash Standard", FIPS PUB 180-4, March 2012, < fips-180-4.pdf>.

[FIPS.180-4]米国国立標準技術研究所、「Secure Hash Standard」、FIPS PUB 180-4、2012年3月、< fips- 180-4.pdf>。

[HTML401] Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01 Specification", World Wide Web Consortium Recommendation REC-html401-19991224, December 1999, <>.

[HTML401] Raggett、D.、Le Hors、A。、およびI. Jacobs、「HTML 4.01 Specification」、World Wide Web Consortium Recommendation REC-html401-19991224、1999年12月、< TR / 1999 / REC-html401-19991224>。

[RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams, "X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP", RFC 2560, June 1999.

[RFC2560]マイヤーズ、M。、アンクニー、R。、マルパニ、A。、ガルペリン、S。、およびC.アダムス、「X.509インターネット公開鍵インフラストラクチャオンライン証明書ステータスプロトコル-OCSP」、RFC 2560、1999年6月。

[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC 3447, February 2003.

[RFC3447] Jonsson、J。およびB. Kaliski、「Public-Key Cryptography Standards(PKCS)#1:RSA Cryptography Specifications Version 2.1」、RFC 3447、2003年2月。

[RFC4627] Crockford, D., "The application/json Media Type for JavaScript Object Notation (JSON)", RFC 4627, July 2006.

[RFC4627] Crockford、D。、「JavaScript Object Notation(JSON)のアプリケーション/ jsonメディアタイプ」、RFC 4627、2006年7月。

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October 2006.

[RFC4648] Josefsson、S。、「The Base16、Base32、およびBase64データエンコーディング」、RFC 4648、2006年10月。

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5246] Dierks、T。およびE. Rescorla、「The Transport Layer Security(TLS)Protocol Version 1.2」、RFC 5246、2008年8月。

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008.

[RFC5280] Cooper、D.、Santesson、S.、Farrell、S.、Boeyen、S.、Housley、R。、およびW. Polk、「Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List(CRL)Profile "、RFC 5280、2008年5月。

[RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network Time Protocol Version 4: Protocol and Algorithms Specification", RFC 5905, June 2010.

[RFC5905] Mills、D.、Martin、J.、Burbank、J。、およびW. Kasch、「Network Time Protocol Version 4:Protocol and Algorithms Specification」、RFC 5905、2010年6月。

[RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions: Extension Definitions", RFC 6066, January 2011.

[RFC6066] Eastlake、D。、「Transport Layer Security(TLS)Extensions:Extension Definitions」、RFC 6066、2011年1月。

Authors' Addresses


Ben Laurie Google UK Ltd.

Ben Laurie Google UK Ltd.


Adam Langley Google Inc.

Adam Langley Google Inc.


Emilia Kasper Google Switzerland GmbH

Emilia Kasper Google Switzerland GmbH