Internet Engineering Task Force (IETF)                       Y. Lee, Ed.
Request for Comments: 7446                                        Huawei
Category: Informational                                G. Bernstein, Ed.
ISSN: 2070-1721                                        Grotto Networking
                                                                   D. Li
                                                              W. Imajuku
                                                           February 2015

Routing and Wavelength Assignment Information Model for Wavelength Switched Optical Networks




This document provides a model of information needed by the Routing and Wavelength Assignment (RWA) process in Wavelength Switched Optical Networks (WSONs). The purpose of the information described in this model is to facilitate constrained optical path computation in WSONs. This model takes into account compatibility constraints between WSON signal attributes and network elements but does not include constraints due to optical impairments. Aspects of this information that may be of use to other technologies utilizing a GMPLS control plane are discussed.

このドキュメントでは、波長スイッチ光ネットワーク(WSON)のルーティングと波長割り当て(RWA)プロセスに必要な情報のモデルを提供します。このモデルで説明する情報の目的は、WSONでの制約された光路計算を容易にすることです。このモデルでは、WSON信号属性とネットワーク要素間の互換性の制約が考慮されていますが、光学的障害による制約は含まれていません。 GMPLSコントロールプレーンを利用する他のテクノロジーに役立つ可能性があるこの情報の側面について説明します。

Status of This Memo


This document is not an Internet Standards Track specification; it is published for informational purposes.

このドキュメントはInternet Standards Trackの仕様ではありません。情報提供を目的として公開されています。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。 IESGによって承認されたすべてのドキュメントが、あらゆるレベルのインターネット標準の候補になるわけではありません。 RFC 5741のセクション2をご覧ください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2015 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

この文書は、BCP 78およびこの文書の発行日に有効なIETF文書に関するIETFトラストの法的規定(の対象となります。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseのテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。

Table of Contents


   1. Introduction ....................................................3
   2. Terminology .....................................................3
   3. Routing and Wavelength Assignment Information Model .............3
      3.1. Dynamic and Relatively Static Information ..................4
   4. Node Information (General) ......................................4
      4.1. Connectivity Matrix ........................................5
   5. Node Information (WSON Specific) ................................5
      5.1. Resource Accessibility/Availability ........................7
      5.2. Resource Signal Constraints and Processing Capabilities ...11
      5.3. Compatibility and Capability Details ......................12
           5.3.1. Shared Input or Output Indication ..................12
           5.3.2. Optical Interface Class List .......................12
           5.3.3. Acceptable Client Signal List ......................13
           5.3.4. Processing Capability List .........................13
   6. Link Information (General) .....................................13
      6.1. Administrative Group ......................................14
      6.2. Interface Switching Capability Descriptor .................14
      6.3. Link Protection Type (for This Link) ......................14
      6.4. Shared Risk Link Group Information ........................14
      6.5. Traffic Engineering Metric ................................15
      6.6. Port Label Restrictions ...................................15
           6.6.1. Port-Wavelength Exclusivity Example ................17
   7. Dynamic Components of the Information Model ....................18
      7.1. Dynamic Link Information (General) ........................19
      7.2. Dynamic Node Information (WSON Specific) ..................19
   8. Security Considerations ........................................19
   9. References .....................................................20
      9.1. Normative References ......................................20
      9.2. Informative References ....................................21
   Contributors ......................................................22
   Authors' Addresses ................................................23
1. Introduction
1. はじめに

The purpose of the WSON information model described in this document is to facilitate constrained optical path computation, and as such it is not a general-purpose network management information model. This constraint is frequently referred to as the "wavelength continuity" constraint, and the corresponding constrained optical path computation is known as the Routing and Wavelength Assignment (RWA) problem. Hence, the information model must provide sufficient topology and wavelength restriction and availability information to support this computation. More details on the RWA process and WSON subsystems and their properties can be found in [RFC6163]. The model defined here includes constraints between WSON signal attributes and network elements but does not include optical impairments.

このドキュメントで説明するWSON情報モデルの目的は、制約付きの光路計算を容易にすることであり、そのため、汎用のネットワーク管理情報モデルではありません。この制約は、「波長連続性」制約と呼ばれることが多く、対応する制約付き光路計算は、ルーティングと波長割り当て(RWA)問題として知られています。したがって、情報モデルは、この計算をサポートするために十分なトポロジーと波長制限および可用性情報を提供する必要があります。 RWAプロセスとWSONサブシステムとそれらのプロパティの詳細は、[RFC6163]にあります。ここで定義されているモデルには、WSON信号属性とネットワーク要素の間の制約が含まれていますが、光学的障害は含まれていません。

In addition to presenting an information model suitable for path computation in WSON, this document also highlights model aspects that may have general applicability to other technologies utilizing a GMPLS control plane. The portion of the information model applicable to technologies beyond WSON is referred to as "general" to distinguish it from the "WSON-specific" portion that is applicable only to WSON technology.

WSONでのパス計算に適した情報モデルの提示に加えて、このドキュメントでは、GMPLSコントロールプレーンを利用する他のテクノロジーに一般的に適用できるモデルの側面も取り上げています。 WSON以外のテクノロジーに適用可能な情報モデルの部分は、「一般」と呼ばれ、WSONテクノロジーにのみ適用可能な「WSON固有」の部分と区別されます。

2. Terminology
2. 用語

Refer to [RFC6163] for definitions of Reconfigurable Optical Add/Drop Multiplexer (ROADM), RWA, Wavelength Conversion, Wavelength Division Multiplexing (WDM), WSON, and other related terminology used in this document.


3. Routing and Wavelength Assignment Information Model
3. ルーティングと波長割り当て情報モデル

The WSON RWA information model in this document comprises four categories of information. The categories are independent of whether the information comes from a switching subsystem or from a line subsystem -- a switching subsystem refers to WSON nodes such as a ROADM or an Optical Add/Drop Multiplexer (OADM), and a line subsystem refers to devices such as WDM or Optical Amplifier. The categories are these:

このドキュメントのWSON RWA情報モデルは、4つのカテゴリの情報で構成されています。カテゴリは、情報がスイッチングサブシステムからのものか、ラインサブシステムからのものかには依存しません。スイッチングサブシステムはROADMやOptical Add / Drop Multiplexer(OADM)などのWSONノードを指し、ラインサブシステムはそのようなデバイスを指します。 WDMまたは光増幅器として。カテゴリは次のとおりです。

o Node Information

o ので いんふぉrまちおん

o Link Information

o リンク情報

o Dynamic Node Information

o 動的ノード情報

o Dynamic Link Information Note that this is roughly the categorization used in Section 7 of [G.7715].


In the following, where applicable, the Reduced Backus-Naur Form (RBNF) syntax of [RBNF] is used to aid in defining the RWA information model.


3.1. Dynamic and Relatively Static Information
3.1. 動的で比較的静的な情報

All the RWA information of concern in a WSON network is subject to change over time. Equipment can be upgraded; links may be placed in or out of service and the like. However, from the point of view of RWA computations, there is a difference between information that can change with each successive connection establishment in the network and information that is relatively static and independent of connection establishment. A key example of the former is link wavelength usage since this can change with connection setup/teardown and this information is a key input to the RWA process. Examples of relatively static information are the potential port connectivity of a WDM ROADM, and the channel spacing on a WDM link.

WSONネットワークで懸念されるすべてのRWA情報は、時間の経過とともに変化する可能性があります。機器をアップグレードできます。リンクはサービス中などに配置できます。ただし、RWAの計算の観点からは、ネットワーク内の連続する接続の確立ごとに変化する可能性のある情報と、比較的静的で接続の確立に依存しない情報には違いがあります。前者の主な例は、リンクの波長の使用です。これは、接続のセットアップ/ティアダウンによって変化する可能性があり、この情報はRWAプロセスへの重要な入力です。比較的静的な情報の例は、WDM ROADMの潜在的なポート接続、およびWDMリンクのチャネル間隔です。

This document separates, where possible, dynamic and static information so that these can be kept separate in possible encodings. This allows for separate updates of these two types of information, thereby reducing processing and traffic load caused by the timely distribution of the more dynamic RWA WSON information.

このドキュメントでは、可能な場合は動的な情報と静的な情報を分離して、これらを可能なエンコーディングで個別に保持できるようにします。これにより、これらの2種類の情報を個別に更新できるため、より動的なRWA WSON情報のタイムリーな配信によって発生する処理とトラフィックの負荷が軽減されます。

4. Node Information (General)
4. ので いんふぉrまちおん (げねらl)

The node information described here contains the relatively static information related to a WSON node. This includes connectivity constraints amongst ports and wavelengths since WSON switches can exhibit asymmetric switching properties. Additional information could include properties of wavelength converters in the node, if any are present. In [Switch] it was shown that the wavelength connectivity constraints for a large class of practical WSON devices can be modeled via switched and fixed connectivity matrices along with corresponding switched and fixed port constraints. These connectivity matrices are included with the node information, while the switched and fixed port wavelength constraints are included with the link information.

ここで説明するノード情報には、WSONノードに関連する比較的静的な情報が含まれています。 WSONスイッチは非対称スイッチングプロパティを示すことができるため、これにはポートと波長間の接続制約が含まれます。追加情報には、ノード内の波長変換器のプロパティが含まれる場合、そのプロパティが含まれる場合があります。 [Switch]では、実用的なWSONデバイスの大規模クラスの波長接続制約が、対応するスイッチおよび固定ポート制約とともに、スイッチおよび固定接続マトリックスを介してモデル化できることが示されました。これらの接続マトリックスはノード情報に含まれ、スイッチおよび固定ポートの波長制約はリンク情報に含まれています。



   <Node_Information> ::= <Node_ID> [<ConnectivityMatrix>...]

Where the Node_ID would be an appropriate identifier for the node within the WSON RWA context.

Node_IDは、WSON RWAコンテキスト内のノードの適切な識別子です。

Note that multiple connectivity matrices are allowed and hence can fully support the most-general cases enumerated in [Switch].


4.1. Connectivity Matrix
4.1. 接続マトリックス

The connectivity matrix (ConnectivityMatrix) represents either the potential connectivity matrix for asymmetric switches (e.g., ROADMs and such) or fixed connectivity for an asymmetric device such as a multiplexer. Note that this matrix does not represent any particular internal blocking behavior but indicates which input ports and wavelengths could possibly be connected to a particular output port. For a switch or ROADM, representing blocking that is dependent on the internal state is beyond the scope of this document. Due to its highly implementation-dependent nature, it would most likely not be subject to standardization in the future. The connectivity matrix is a conceptual M by N matrix representing the potential switched or fixed connectivity, where M represents the number of input ports and N the number of output ports. This is a "conceptual" matrix since the matrix tends to exhibit structure that allows for very compact representations that are useful for both transmission and path computation.

接続マトリックス(ConnectivityMatrix)は、非対称スイッチ(ROADMなど)の潜在的な接続マトリックス、またはマルチプレクサーなどの非対称デバイスの固定接続のいずれかを表します。このマトリックスは特定の内部ブロッキング動作を表すものではなく、特定の出力ポートに接続できる入力ポートと波長を示していることに注意してください。スイッチまたはROADMの場合、内部状態に依存するブロッキングを表すことは、このドキュメントの範囲外です。実装に大きく依存する性質のため、将来的には標準化の対象にはなりません。接続マトリックスは、潜在的なスイッチまたは固定接続を表す概念的なM x Nマトリックスで、Mは入力ポートの数を表し、Nは出力ポートの数を表します。これは「概念的な」マトリックスです。これは、マトリックスが、透過計算とパス計算の両方に役立つ非常にコンパクトな表現を可能にする構造を示す傾向があるためです。

Note that the connectivity matrix information element can be useful in any technology context where asymmetric switches are utilized.


   <ConnectivityMatrix> ::= <MatrixID>







<MatrixID> is a unique identifier for the matrix.


<ConnType> can be either 0 or 1 depending upon whether the connectivity is either fixed or switched.


<Matrix> represents the fixed or switched connectivity in that Matrix(i, j) = 0 or 1 depending on whether input port i can connect to output port j for one or more wavelengths.

<Matrix>は、1つ以上の波長で入力ポートiが出力ポートjに接続できるかどうかに応じて、Matrix(i、j)= 0または1の固定接続または切り替え接続を表します。

5. Node Information (WSON Specific)
5. ので いんふぉrまちおん (Wそん Sぺしふぃc)

As discussed in [RFC6163], a WSON node may contain electro-optical subsystems such as regenerators, wavelength converters or entire switching subsystems. The model present here can be used in characterizing the accessibility and availability of limited resources such as regenerators or wavelength converters as well as WSON signal attribute constraints of electro-optical subsystems. As such, this information element is fairly specific to WSON technologies.


In this document, the term "resource" is used to refer to a physical component of a WSON node such as a regenerator or a wavelength converter. Multiple instances of such components are often present within a single WSON node. This term is not to be confused with the concept of forwarding or switching resources such as bandwidth or lambdas.


A WSON node may include regenerators or wavelength converters arranged in a shared pool. As discussed in [RFC6163], a WSON node can also include WDM switches that use optical-electronic-optical (OEO) processing. There are a number of different approaches used in the design of WDM switches containing regenerator or converter pools. However, from the point of view of path computation, the following need to be known:

WSONノードには、共有プールに配置された再生器または波長変換器を含めることができます。 [RFC6163]で説明されているように、WSONノードには、光電子光学(OEO)処理を使用するWDMスイッチを含めることもできます。再生器または変換器プールを含むWDMスイッチの設計では、さまざまなアプローチが使用されます。ただし、パス計算の観点から、次のことを知っておく必要があります。

1. The nodes that support regeneration or wavelength conversion.

1. 再生または波長変換をサポートするノード。

2. The accessibility and availability of a wavelength converter to convert from a given input wavelength on a particular input port to a desired output wavelength on a particular output port.

2. 特定の入力ポートの特定の入力波長から特定の出力ポートの目的の出力波長に変換する波長コンバーターのアクセス可能性と可用性。

3. Limitations on the types of signals that can be converted and the conversions that can be performed.

3. 変換できる信号のタイプと実行できる変換の制限。

Since resources tend to be packaged together in blocks of similar devices, e.g., on line cards or other types of modules, the fundamental unit of identifiable resource in this document is the "resource block".


A resource block is a collection of resources from the same WSON node that are grouped together for administrative reasons and for ease of encoding in the protocols. All resources in the same resource block behave in the same way and have similar characteristics relevant to the optical system, e.g., processing properties, accessibility, etc.


A resource pool is a collection of resource blocks for the purpose of representing throughput or cross-connect capabilities in a WSON node. A resource pool associates input ports or links on the node with output ports or links and is used to indicate how signals may be passed from an input port or link to an output port or link by way of a resource block (in other words, by way of a resource). A resource pool may, therefore, be modeled as a matrix.


A resource block may be present in multiple resource pools.


This leads to the following formal high-level model:


   <Node_Information> ::= <Node_ID>


[<ConnectivityMatrix> ...]





   <ResourcePool> ::= <ResourceBlockInfo>...


[<リソースのアクセシビリティ> ...]


[<ResourceWaveConstraints> ...]



First, the accessibility of resource blocks is addressed; then, their properties are discussed.


5.1. Resource Accessibility/Availability
5.1. リソースのアクセシビリティ/可用性

A similar technique as used to model ROADMs, and optical switches can be used to model regenerator/converter accessibility. This technique was generally discussed in [RFC6163] and consisted of a matrix to indicate possible connectivity along with wavelength constraints for links/ports. Since regenerators or wavelength converters may be considered a scarce resource, it is desirable that the model include, if desired, the usage state (availability) of individual regenerators or converters in the pool. Models that incorporate more state to further reveal blocking conditions on input or output to particular converters are for further study and not included here.


The three-stage model is shown schematically in Figures 1 and 2. The difference between the two figures is that in Figure 1 it's assumed that each signal that can get to a resource block may do so, while in Figure 2 the access to sets of resource blocks is via a shared fiber that imposes its own wavelength collision constraint. Figure 1 shows that there can be more than one input to each resource block since each input represents a single wavelength signal, while Figure 2 shows a single WDM input or output, e.g., a fiber, to/from each set of blocks.


   This model assumes N input ports (fibers), P resource blocks
   containing one or more identical resources (e.g., wavelength
   converters), and M output ports (fibers).  Since not all input ports
   can necessarily reach each resource block, the model starts with a
   resource pool input matrix RI(i,p) = {0,1} depending on whether input
   port i can potentially reach resource block p.

Since not all wavelengths can necessarily reach all the resources or the resources may have limited input wavelength range, the model has a set of relatively static input port constraints for each resource. In addition, if the access to a set of resource blocks is via a shared fiber (Figure 2), this would impose a dynamic wavelength availability constraint on that shared fiber. The resource block input port constraint is modeled via a static wavelength set mechanism, and the case of shared access to a set of blocks is modeled via a dynamic wavelength set mechanism.


   Next, a state vector RA(j) = {0,...,k} is used to track the number of
   resources in resource block j in use.  This is the only state kept in
   the resource pool model.  This state is not necessary for modeling
   "fixed" transponder system or full OEO switches with WDM interfaces,
   i.e., systems where there is no sharing.

After that, a set of static resource output wavelength constraints and possibly dynamic shared output fiber constraints maybe used. The static constraints indicate what wavelengths a particular resource block can generate or is restricted to generating, e.g., a fixed regenerator would be limited to a single lambda. The dynamic constraints would be used in the case where a single shared fiber is used to output the resource block (Figure 2).


   Finally, to complete the model, a resource pool output matrix RE(p,k)
   = {0,1} depending on whether the output from resource block p can
   reach output port k, may be used.
      I1   +-------------+                       +-------------+ O1
     ----->|             |      +--------+       |             |----->
      I2   |             +------+ Rb #1  +-------+             | O2
     ----->|             |      +--------+       |             |----->
           |             |                       |             |
           | Resource    |      +--------+       |  Resource   |
           | Pool        +------+        +-------+  Pool       |
           |             |      + Rb #2  +       |             |
           | Input       +------+        +-------|  Output     |
           | Connection  |      +--------+       |  Connection |
           | Matrix      |           .           |  Matrix     |
           |             |           .           |             |
           |             |           .           |             |
      IN   |             |      +--------+       |             | OM
     ----->|             +------+ Rb #P  +-------+             |----->
           |             |      +--------+       |             |
           +-------------+   ^               ^   +-------------+
                             |               |
                             |               |
                             |               |
                             |               |

Input wavelength Output wavelength constraints for constraints for each resource each resource


Note: Rb is a resource block.


Figure 1: Schematic Diagram of the Resource Pool Model


    I1   +-------------+                       +-------------+ O1
   ----->|             |      +--------+       |             |----->
    I2   |             +======+ Rb #1  +-+     |             | O2
   ----->|             |      +--------+ |     |             |----->
         |             |                 |=====|             |
         | Resource    |      +--------+ |     |  Resource   |
         | Pool        |    +-+ Rb #2  +-+     |  Pool       |
         |             |    | +--------+       |             |
         | Input       |====|                  |  Output     |
         | Connection  |    | +--------+       |  Connection |
         | Matrix      |    +-| Rb #3  |=======|  Matrix     |
         |             |      +--------+       |             |
         |             |           .           |             |
         |             |           .           |             |
         |             |           .           |             |
    IN   |             |      +--------+       |             | OM
   ----->|             +======+ Rb #P  +=======+             |----->
         |             |      +--------+       |             |
         +-------------+   ^               ^   +-------------+
                           |               |
                           |               |
                           |               |
               Single (shared) fibers for block input and output

Input wavelength Output wavelength availability for availability for each block input fiber each block output fiber


Note: Rb is a resource block.


Figure 2: Schematic Diagram of the Resource Pool Model with Shared Block Accessibility


Formally, the model can be specified as:


   <ResourceAccessibility> ::= <PoolInputMatrix>



   <ResourceWaveConstraints> ::= <InputWaveConstraints>



   <RBSharedAccessWaveAvailability> ::= [<InAvailableWavelengths>]



   <RBPoolState> ::=    <ResourceBlockID>







Note that, except for <RBPoolState>, all the components of <ResourcePool> are relatively static. Also, the <InAvailableWavelengths> and <OutAvailableWavelengths> are only used in the cases of shared input or output access to the particular block. See the resource block information in the next section for how this is specified.


5.2. Resource Signal Constraints and Processing Capabilities
5.2. リソース信号の制約と処理機能

The wavelength conversion abilities of a resource (e.g., regenerator, wavelength converter) were modeled in the <OutputWaveConstraints> previously discussed. As discussed in [RFC6163], the constraints on an electro-optical resource can be modeled in terms of input constraints, processing capabilities, and output constraints:

リソース(例えば、再生器、波長変換器)の波長変換能力は、前述の<OutputWaveConstraints>でモデル化されました。 [RFC6163]で説明されているように、電気光学リソースの制約は、入力制約、処理機能、および出力制約に関してモデル化できます。

   <ResourceBlockInfo> ::= <ResourceBlockSet>







Where <ResourceBlockSet> is a list of resource block identifiers with the same characteristics. If this set is missing, the constraints are applied to the entire network element.


The <InputConstraints> are constraints are based on signal compatibility and/or shared access constraint indication. The details of these constraints are defined in Section 5.3.


   <InputConstraints> ::= <SharedInput>





The <ProcessingCapabilities> are important operations that the resource (or network element) can perform on the signal. The details of these capabilities are defined in Section 5.3.


   <ProcessingCapabilities> ::= [<NumResources>]







The <OutputConstraints> are either restrictions on the properties of the signal leaving the block, options concerning the signal properties when leaving the resource, or shared fiber output constraint indication.


   <OutputConstraints> := <SharedOutput>





5.3. Compatibility and Capability Details
5.3. 互換性と機能の詳細
5.3.1. Shared Input or Output Indication
5.3.1. 共有入力または出力表示

As discussed in Section 5.2 and shown in Figure 2, the input or output access to a resource block may be via a shared fiber. The <SharedInput> and <SharedOutput> elements are indicators for this condition with respect to the block being described.

セクション5.2で説明し、図2に示すように、リソースブロックへの入力または出力アクセスは、共有ファイバーを介する場合があります。 <SharedInput>要素と<SharedOutput>要素は、記述されているブロックに関するこの状態のインジケーターです。

5.3.2. Optical Interface Class List
5.3.2. 光インターフェイスクラスリスト
      <OpticalInterfaceClassList> ::= <OpticalInterfaceClass> ...

The Optical Interface Class is a unique number that identifies all information related to optical characteristics of a physical interface. The class may include other optical parameters related to other interface properties. A class always includes signal compatibility information.


The content of each class is out of the scope of this document and can be defined by other entities (e.g., the ITU, optical equipment vendors, etc.).


Since even current implementation of physical interfaces may support different optical characteristics, a single interface may support multiple interface classes. Which optical interface class is used among all the ones available for an interface is out of the scope of this document but is an output of the RWA process.


5.3.3. Acceptable Client Signal List
5.3.3. 許容可能なクライアント信号リスト

The list is simply:



Where the Generalized Protocol Identifiers (G-PID) object represents one of the IETF-standardized G-PID values as defined in [RFC3471] and [RFC4328].

Generalized Protocol Identifiers(G-PID)オブジェクトは、[RFC3471]および[RFC4328]で定義されているIETF標準化G-PID値の1つを表します。

5.3.4. Processing Capability List
5.3.4. 処理能力リスト

The ProcessingCapabilities are defined in Section 5.2.


The processing capability list sub-TLV is a list of processing functions that the WSON network element (NE) can perform on the signal including:


1. number of resources within the block

1. ブロック内のリソースの数

2. regeneration capability

2. 再生能力

3. fault and performance monitoring

3. 障害とパフォーマンスの監視

4. vendor-specific capability

4. ベンダー固有の機能

Note that the code points for fault and performance monitoring and vendor-specific capability are subject to further study.


6. Link Information (General)
6. リンク情報(全般)

MPLS-TE routing protocol extensions for OSPF [RFC3630] and IS-IS [RFC5305], along with GMPLS routing protocol extensions for OSPF [RFC4203] and IS-IS [RFC5307] provide the bulk of the relatively static link information needed by the RWA process. However, WSONs bring in additional link-related constraints. These stem from characterizing WDM line systems, restricting laser transmitter tuning, and switching subsystem port wavelength constraints, e.g., "colored" ROADM drop ports.

OSPF [RFC3630]およびIS-IS [RFC5305]のMPLS-TEルーティングプロトコル拡張は、OSPF [RFC4203]およびIS-IS [RFC5307]のGMPLSルーティングプロトコル拡張とともに、RWAに必要な比較的静的なリンク情報の大部分を提供します処理する。ただし、WSONはリンク関連の制約を追加します。これらは、WDMラインシステムの特性、レーザートランスミッターの調整の制限、サブシステムポートの波長制約の切り替え(「色付き」のROADMドロップポートなど)に由来します。

The following syntax summarizes both information from existing GMPLS routing protocols and new information that may be needed by the RWA process.


   <LinkInfo> ::=  <LinkID>








[<SRLG> ...]




[<PortLabelRestriction> ...]

Note that these additional link characteristics only apply to line-side ports of a WDM system or add/drop ports pertaining to the resource pool (e.g., regenerator or wavelength converter pool). The advertisement of input/output tributary ports is not intended here.


6.1. Administrative Group
6.1. 管理グループ

Administrative Group: Defined in [RFC3630] and extended for MPLS-TE [RFC7308]. Each set bit corresponds to one administrative group assigned to the interface. A link may belong to multiple groups. This is a configured quantity and can be used to influence routing decisions.

管理グループ:[RFC3630]で定義され、MPLS-TE [RFC7308]に拡張されました。セットされた各ビットは、インターフェイスに割り当てられた1つの管理グループに対応します。リンクは複数のグループに属する場合があります。これは構成済みの数量であり、ルーティングの決定に影響を与えるために使用できます。

6.2. Interface Switching Capability Descriptor
6.2. インターフェイススイッチング機能記述子

InterfaceSwCapDesc: Defined in [RFC4202]; lets us know the different switching capabilities on this GMPLS interface. In both [RFC4203] and [RFC5307], this information gets combined with the maximum Link State Protocol Data Unit (LSP) bandwidth that can be used on this link at eight different priority levels.

InterfaceSwCapDesc:[RFC4202]で定義されています。このGMPLSインターフェイスのさまざまなスイッチング機能を教えてください。 [RFC4203]と[RFC5307]の両方で、この情報は、8つの異なる優先度レベルでこのリンクで使用できる最大リンク状態プロトコルデータユニット(LSP)帯域幅と組み合わされます。

6.3. Link Protection Type (for This Link)
6.3. リンク保護タイプ(このリンク用)

Protection: Defined in [RFC4202] and implemented in [RFC4203] and [RFC5307]. Used to indicate what protection, if any, is guarding this link.


6.4. Shared Risk Link Group Information
6.4. 共有リスクリンクグループ情報

SRLG: Defined in [RFC4202] and implemented in [RFC4203] and [RFC5307]. This allows for the grouping of links into shared risk groups, i.e., those links that are likely, for some reason, to fail at the same time.


6.5. Traffic Engineering Metric
6.5. トラフィックエンジニアリングメトリック

TrafficEngineeringMetric: Defined in [RFC3630] and [RFC5305]. This allows for the identification of a data-channel link metric value for traffic engineering that is separate from the metric used for path cost computation of the control plane.


Note that multiple "link metric values" could find use in optical networks; however, it would be more useful to the RWA process to assign these specific meanings such as "link mile" metric, "probability of failure" metric, etc.


6.6. Port Label Restrictions
6.6. ポートラベルの制限

Port label restrictions could be applied generally to any label types in GMPLS by adding new kinds of restrictions. Wavelength is a type of label.


Port label (wavelength) restrictions (PortLabelRestriction) model the label (wavelength) restrictions that the link and various optical devices, such as Optical Cross-Connects (OXCs), ROADMs, and waveband multiplexers, may impose on a port. These restrictions tell us what wavelength may or may not be used on a link and are relatively static. This plays an important role in fully characterizing a WSON switching device [Switch]. Port wavelength restrictions are specified relative to the port in general or to a specific connectivity matrix (Section 4.1). [Switch] gives an example where both switch and fixed connectivity matrices are used and both types of constraints occur on the same port.

ポートラベル(波長)制限(PortLabelRestriction)は、リンクと、オプティカルクロスコネクト(OXC)、ROADM、波長帯域マルチプレクサーなどのさまざまな光デバイスがポートに課す可能性があるラベル(波長)制限をモデル化します。これらの制限は、リンクで使用される波長と使用されない波長を示し、比較的静的です。これは、WSONスイッチングデバイス[Switch]を完全に特徴付ける上で重要な役割を果たします。ポートの波長制限は、一般的なポートまたは特定の接続マトリックス(セクション4.1)に関連して指定されます。 [Switch]は、スイッチと固定接続マトリックスの両方が使用され、両方のタイプの制約が同じポートで発生する例を示しています。

   <PortLabelRestriction> ::= <MatrixID>



<Restriction parameters list>


   <Restriction parameters list> ::=

<Simple label restriction parameters> |

<シンプルなラベル制限パラメーター> |

<Channel count restriction parameters> |

<チャネル数制限パラメーター> |

<Label range restriction parameters> |

<ラベル範囲制限パラメーター> |

                        <Simple+channel restriction parameters> |

<Exclusive label restriction parameters>


   <Simple label restriction parameters> ::= <LabelSet> ...
   <Channel count restriction parameters> ::= <MaxNumChannels>
   <Label range restriction parameters> ::= <MaxLabelRange>

(<LabelSet> ...)

(<LabelSet> ...)

   <Simple+channel restriction parameters> ::= <MaxNumChannels>

(<LabelSet> ...)

(<LabelSet> ...)

   <Exclusive label restriction parameters> ::= <LabelSet> ...



MatrixID is the ID of the corresponding connectivity matrix (Section 4.1).


The RestrictionType parameter is used to specify general port restrictions and matrix-specific restrictions. It can take the following values and meanings:


SIMPLE_LABEL: Simple label (wavelength) set restriction; the LabelSet parameter is required.

SIMPLE_LABEL:単純なラベル(波長)セットの制限。 LabelSetパラメータは必須です。

CHANNEL_COUNT: The number of channels is restricted to be less than or equal to the MaxNumChannels parameter (which is required).


LABEL_RANGE: Used to indicate a restriction on a range of labels that can be switched. For example, a waveband device with a tunable center frequency and passband. This constraint is characterized by the MaxLabelRange parameter, which indicates the maximum range of the labels, e.g., which may represent a waveband in terms of channels. Note that an additional parameter can be used to indicate the overall tuning range. Specific center frequency tuning information can be obtained from information about the dynamic channel in use. It is assumed that both center frequency and bandwidth (Q) tuning can be done without causing faults in existing signals.


SIMPLE LABEL and CHANNEL COUNT: In this case, the accompanying label set and MaxNumChannels indicate labels permitted on the port and the maximum number of labels that can be simultaneously used on the port.

SIMPLE LABELとCHANNEL COUNT:この場合、付随するラベルセットとMaxNumChannelsは、ポートで許可されるラベルと、ポートで同時に使用できるラベルの最大数を示します。

LINK LABEL_EXCLUSIVITY: A label (wavelength) can be used at most once among a given set of ports. The set of ports is specified as a parameter to this constraint.

LINK LABEL_EXCLUSIVITY:ラベル(波長)は、特定のポートセット間で最大1回使用できます。ポートのセットは、この制約のパラメーターとして指定されます。

Restriction-specific parameters are used with one or more of the previously listed restriction types. The currently defined parameters are:


LabelSet is a conceptual set of labels (wavelengths).


MaxNumChannels is the maximum number of channels that can be simultaneously used (relative to either a port or a matrix).


LinkSet is a conceptual set of ports.


MaxLabelRange indicates the maximum range of the labels. For example, if the port is a "colored" drop port of a ROADM, then there are two restrictions: (a) CHANNEL_COUNT, with MaxNumChannels = 1, and (b) SIMPLE_WAVELENGTH, with the wavelength set consisting of a single member corresponding to the frequency of the permitted wavelength. See [Switch] for a complete waveband example.

MaxLabelRangeは、ラベルの最大範囲を示します。たとえば、ポートがROADMの「カラー」ドロップポートである場合、2つの制限があります。(a)MaxNumChannels = 1のCHANNEL_COUNT、および(b)SIMPLE_WAVELENGTH、に対応する単一のメンバーで構成される波長セット許可された波長の周波数。完全な波長帯の例については、[Switch]を参照してください。

This information model for port wavelength (label) restrictions is fairly general in that it can be applied to ports that have label restrictions only or to ports that are part of an asymmetric switch and have label restrictions. In addition, the types of label restrictions that can be supported are extensible.


6.6.1. Port-Wavelength Exclusivity Example
6.6.1. ポート波長の排他性の例

Although there can be many different ROADM or switch architectures that can lead to the constraint where a lambda (label) maybe used at most once on a set of ports, Figure 3 shows a ROADM architecture based on components known as Wavelength Selective Switches (WSSes) [OFC08]. This ROADM is composed of splitters, combiners, and WSSes. This ROADM has 11 output ports, which are numbered in the diagram. Output ports 1-8 are known as drop ports and are intended to support a single wavelength. Drop ports 1-4 output from WSS 2, which is fed from WSS 1 via a single fiber. Due to this internal structure, a constraint is placed on the output ports 1-4 that a lambda can be used only once over the group of ports (assuming unicast and not multicast operation). The output ports 5-8 have a similar constraint due to the internal structure.

ラムダ(ラベル)がポートのセットで最大1回使用されるという制約につながる可能性のあるさまざまなROADMまたはスイッチアーキテクチャが存在する可能性がありますが、図3は、波長選択スイッチ(WSS)と呼ばれるコンポーネントに基づくROADMアーキテクチャを示しています[OFC08]。このROADMは、スプリッター、コンバイナー、およびWSSで構成されています。このROADMには11個の出力ポートがあり、図では番号が付けられています。出力ポート1〜8はドロップポートと呼ばれ、単一の波長をサポートすることを目的としています。 WSS 1から単一のファイバーを介して供給されるWSS 2からのポート1〜4をドロップします。この内部構造により、出力ポート1〜4には、ポートのグループに対して1回だけラムダを使用できるという制約が課されます(ユニキャスト操作ではなく、マルチキャスト操作を想定)。出力ポート5〜8には、内部構造のために同様の制約があります。

                            |               A
                            v            10 |
                        +-------+        +-------+
                        | Split |        |WSS  6 |
                        +-------+        +-------+
     +----+              | | | |          | | | |
     | W  |              | | | |          | | | +-------+   +----+
     | S  |--------------+ | | |    +-----+ | +----+    |   | S  |
   9 | S  |----------------|---|----|-------|------|----|---| p  |
   --|    |----------------|---|----|-------|----+ |    +---| l  |<
     | 5  |--------------+ |   |    | +-----+    | |     +--| i  |
     +----+              | |   |    | |   +------|-|-----|--| t  |
                +--------|-+   +----|-|---|------|----+  |  +----+
     +----+     |        |          | |   |      | |  |  |
     | S  |-----|--------|----------+ |   |      | |  |  |  +----+
     | p  |-----|--------|------------|---|------|----|--|--| W  |
   ->| l  |-----|-----+  | +----------+   |      | |  +--|--| S  |11
     | i  |---+ |     |  | | +------------|------|-------|--| S  |->
     | t  |   | |     |  | | |            |      | | +---|--|    |
     +----+   | | +---|--|-|-|------------|------|-|-|---+  | 7  |
              | | |   +--|-|-|--------+ | |      | | |      +----+
              | | |      | | |        | | |      | | |
             +------+   +------+     +------+   +------+
             | WSS 1|   | Split|     | WSS 3|   | Split|
             +--+---+   +--+---+     +--+---+   +--+---+
                |          A            |          A
                v          |            v          |
             +-------+  +--+----+    +-------+  +--+----+
             | WSS 2 |  | Comb. |    | WSS 4 |  | Comb. |
             +-------+  +-------+    +-------+  +-------+
             1|2|3|4|    A A A A     5|6|7|8|    A A A A
              v v v v    | | | |      v v v v    | | | |

Figure 3: A ROADM Composed from Splitter, Combiners, and WSSes


7. Dynamic Components of the Information Model
7. 情報モデルの動的コンポーネント

In the previously presented information model, there are a limited number of information elements that are dynamic, i.e., subject to change with subsequent establishment and teardown of connections. Depending on the protocol used to convey this overall information model, it may be possible to send this dynamic information separately from the relatively larger amount of static information needed to characterize WSONs and their network elements.


7.1. Dynamic Link Information (General)
7.1. ダイナミックリンク情報(全般)

For WSON links, the wavelength availability and which wavelengths are in use for shared backup purposes can be considered dynamic information and hence are grouped with the dynamic information in the following set:


   <DynamicLinkInfo> ::=  <LinkID>





AvailableLabels is a set of labels (wavelengths) currently available on the link. Given this information and the port wavelength restrictions, one can also determine which wavelengths are currently in use. This parameter could potentially be used with other technologies that GMPLS currently covers or may cover in the future.


SharedBackupLabels is a set of labels (wavelengths) currently used for shared backup protection on the link. An example usage of this information in a WSON setting is given in [Shared]. This parameter could potentially be used with other technologies that GMPLS currently covers or may cover in the future.

SharedBackupLabelsは、リンクの共有バックアップ保護に現在使用されているラベル(波長)のセットです。 WSON設定でのこの情報の使用例は、[共有]に記載されています。このパラメーターは、GMPLSが現在カバーしている、または将来カバーする可能性のある他のテクノロジーで潜在的に使用できます。

Note that the above does not dictate a particular encoding or placement for available label information. In some routing protocols, it may be advantageous or required to place this information within another information element such as the Interface Switching Capability Descriptor (ISCD). Consult the extensions that are specific to each routing protocol for details of placement of information elements.

上記は、利用可能なラベル情報の特定のエンコーディングまたは配置を指示するものではないことに注意してください。一部のルーティングプロトコルでは、この情報をInterface Switching Capability Descriptor(ISCD)などの別の情報要素内に配置することが有利または必要な場合があります。情報要素の配置の詳細については、各ルーティングプロトコルに固有の拡張機能を参照してください。

7.2. Dynamic Node Information (WSON Specific)
7.2. 動的ノード情報(WSON固有)

Currently the only node information that can be considered dynamic is the resource pool state, and it can be isolated into a dynamic node information element as follows:


   <DynamicNodeInfo> ::=  <NodeID> [<ResourcePool>]
8. Security Considerations
8. セキュリティに関する考慮事項

This document discusses an information model for RWA computation in WSONs. From a security standpoint, such a model is very similar to the information that can be currently conveyed via GMPLS routing protocols. Such information includes network topology, link state and current utilization, as well as the capabilities of switches and routers within the network. As such, this information should be protected from disclosure to unintended recipients. In addition, the intentional modification of this information can significantly affect network operations, particularly due to the large capacity of the optical infrastructure to be controlled. A general discussion on security in GMPLS networks can be found in [RFC5920].

このドキュメントでは、WSONでのRWA計算の情報モデルについて説明します。セキュリティの観点からは、このようなモデルは、GMPLSルーティングプロトコルを介して現在伝達されている情報と非常に似ています。このような情報には、ネットワークトポロジ、リンク状態、現在の使用率、およびネットワーク内のスイッチとルーターの機能が含まれます。そのため、この情報は、意図しない受信者への開示から保護する必要があります。さらに、この情報を意図的に変更すると、特に制御対象の光インフラストラクチャの容量が大きいため、ネットワーク操作に大きな影響を与える可能性があります。 GMPLSネットワークのセキュリティに関する一般的な議論は、[RFC5920]にあります。

9. References
9. 参考文献
9.1. Normative References
9.1. 引用文献

[G.7715] ITU-T, "Architecture and requirements for routing in the automatically switched optical networks", ITU-T Recommendation G.7715, June 2002.

[G.7715] ITU-T、「自動切り替え光ネットワークにおけるルーティングのアーキテクチャと要件」、ITU-T勧告G.7715、2002年6月。

[RBNF] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax Used to Form Encoding Rules in Various Routing Protocol Specifications", RFC 5511, April 2009, <>.

[RBNF] Farrel、A。、「Routing Backus-Naur Form(RBNF):A Syntax Used to Form Encoding Rules in Various Routing Protocol Specifications」、RFC 5511、2009年4月、< / info / rfc5511>。

[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003, <>.

[RFC3471] Berger、L.、Ed。、「Generalized Multi-Protocol Label Switching(GMPLS)Signaling Functional Description」、RFC 3471、2003年1月、<>。

[RFC3630] van der Meer, J., Mackie, D., Swaminathan, V., Singer, D., and P. Gentric, "RTP Payload Format for Transport of MPEG-4 Elementary Streams", RFC 3640, November 2003, <>.

[RFC3630] van der Meer、J.、Mackie、D.、Swaminathan、V.、Singer、D。、およびP. Gentric、「MPEG-4エレメンタリーストリームのトランスポート用のRTPペイロードフォーマット」、RFC 3640、2003年11月、 <>。

[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, October 2005, <>.

[RFC4202] Kompella、K。、編、およびY. Rekhter、編、「汎用マルチプロトコルラベルスイッチング(GMPLS)をサポートするルーティング拡張機能」、RFC 4202、2005年10月、<http://www.rfc>。

[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, October 2005, <>.

[RFC4203] Kompella、K.、Ed。、and Y. Rekhter、Ed。、 "OSPF Extensions Support of Supported Generalized Multi-Protocol Label Switching(GMPLS)"、RFC 4203、October 2005、<http://www.rfc>。

[RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for G.709 Optical Transport Networks Control", RFC 4328, January 2006, <>.

[RFC4328] Papadimitriou、D。、編、「G.709光トランスポートネットワーク制御用の汎用マルチプロトコルラベルスイッチング(GMPLS)シグナリング拡張機能」、RFC 4328、2006年1月、<http://www.rfc-editor。 org / info / rfc4328>。

[RFC5305] Li, T. and H. Smit, "IS-IS Extensions for Traffic Engineering", RFC 5305, October 2008, <>.

[RFC5305] Li、T。およびH. Smit、「IS-IS Extensions for Traffic Engineering」、RFC 5305、2008年10月、<>。

[RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 5307, October 2008, <>.

[RFC5307] Kompella、K.、Ed。およびY. Rekhter、Ed。、 "IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching(GMPLS)"、RFC 5307、October 2008、<http:// www / info / rfc5307>。

[RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku, "Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)", RFC 6163, April 2011, <>.

[RFC6163] Lee、Y.、Ed。、Bernstein、G.、Ed。、およびW. Imajuku、「GMPLSおよびPath Computation Element(PCE)Control for Wavelength Switched Optical Networks(WSONs)」、RFC 6163、4月2011、<>。

[RFC7308] Osborne, E., "Extended Administrative Groups in MPLS Traffic Engineering (MPLS-TE)", RFC 7308, July 2014, <>.

[RFC7308]オズボーン、E。、「MPLSトラフィックエンジニアリング(MPLS-TE)の拡張管理グループ」、RFC 7308、2014年7月、<>。

9.2. Informative References
9.2. 参考引用

[OFC08] Roorda, P., and B. Collings, "Evolution to Colorless and Directionless ROADM Architectures", Optical Fiber Communication / National Fiber Optic Engineers Conference (OFC/NFOEC), 2008, pp. 1-3.

[OFC08] Roorda、P。、およびB. Collings、「無色および方向性のないROADMアーキテクチャへの進化」、光ファイバー通信/全米光ファイバー技術者会議(OFC / NFOEC)、2008年、1〜3ページ。

[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, July 2010, <>.

[RFC5920] Fang、L。、編、「MPLSおよびGMPLSネットワークのセキュリティフレームワーク」、RFC 5920、2010年7月、<>。

[Shared] Bernstein, G., and Y. Lee, "Shared Backup Mesh Protection in PCE-based WSON Networks", iPOP 2008.

[共有] Bernstein、G。、およびY. Lee、「PCEベースのWSONネットワークにおける共有バックアップメッシュ保護」、iPOP 2008。

[Switch] Bernstein, G., Lee, Y., Gavler, A., and J. Martensson, "Modeling WDM Wavelength Switching Systems for Use in GMPLS and Automated Path Computation", Journal of Optical Communications and Networking, vol. 1, June 2009, pp. 187-195.

[Switch] Bernstein、G.、Lee、Y.、Gavler、A。、およびJ. Martensson、「GMPLSおよび自動パス計算で使用するWDM波長スイッチングシステムのモデリング」、Journal of Optical Communications and Networking、vol。 2009年6月1日、187-195ページ。



Diego Caviglia Ericsson Via A. Negrone 1/A 16153 Genoa, Italy

ディエゴカビリアエリクソンVia A. Negrone 1 / A 16153ジェノヴァ、イタリア

   Phone: +39 010 600 3736
   EMail: diego.caviglia@(,

Anders Gavler Acreo AB Electrum 236 SE - 164 40 Kista Sweden

Anders Gavler Acreo AB Electrum 236 SE-164 40 Kistaスウェーデン


Jonas Martensson Acreo AB Electrum 236 SE - 164 40 Kista Sweden

Jonas Martensson Acreo AB Electrum 236 SE-164 40 Kistaスウェーデン


Itaru Nishioka NEC Corp. 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 Japan

いたる にしおか ねC こrp。 1753 しもぬまべ、 なかはらーく、 かわさき、 かながわ 211ー8666 じゃぱん

   Phone: +81 44 396 3287

Lyndon Ong Ciena EMail:


Cyril Margaria EMail:

Cyril Margaria Eメール

Authors' Addresses


Young Lee (editor) Huawei Technologies 5369 Legacy Drive, Building 3 Plano, TX 75023 United States

Young Lee(編集者)Huawei Technologies 5369 Legacy Drive、Building 3 Plano、TX 75023アメリカ合衆国

Phone: (469) 277-5838 EMail:


Greg M. Bernstein (editor) Grotto Networking Fremont, CA United States

Greg M. Bernstein(編集者)Grotto Networking Fremont、CAアメリカ合衆国

Phone: (510) 573-2237 EMail:


Dan Li Huawei Technologies Co., Ltd. F3-5-B R&D Center, Huawei Base, Bantian, Longgang District Shenzhen 518129 China

Dan l IH UAはテクノロジー株式会社です。F3-5-br&Dセンター、hu Aはベース、禁止日、長いギャング地区は非常にリアルです518129中国

   Phone: +86-755-28973237

Wataru Imajuku NTT Network Innovation Labs 1-1 Hikari-no-oka, Yokosuka, Kanagawa Japan

わたる いまじゅく んっt ねとぉrk いんおゔぁちおん ぁbs 1ー1 ひかりーのーおか、 よこすか、 かながわ じゃぱん

   Phone: +81-(46) 859-4315