Internet Engineering Task Force (IETF)                           R. Bush
Request for Comments: 8210                     Internet Initiative Japan
Updates: 6810                                                 R. Austein
Category: Standards Track                           Dragon Research Labs
ISSN: 2070-1721                                           September 2017

The Resource Public Key Infrastructure (RPKI) to Router Protocol, Version 1

Resource Public Key Infrastructure(RPKI)to Router Protocol、Version 1



In order to verifiably validate the origin Autonomous Systems and Autonomous System Paths of BGP announcements, routers need a simple but reliable mechanism to receive Resource Public Key Infrastructure (RFC 6480) prefix origin data and router keys from a trusted cache. This document describes a protocol to deliver them.

BGPアナウンスの元の自律システムと自律システムパスを検証可能に検証するには、信頼できるキャッシュからリソース公開鍵インフラストラクチャ(RFC 6480)プレフィックスの元データとルーターキーを受信するためのシンプルで信頼性の高いメカニズムがルーターに必要です。このドキュメントでは、それらを配信するためのプロトコルについて説明します。

This document describes version 1 of the RPKI-Router protocol. RFC 6810 describes version 0. This document updates RFC 6810.

このドキュメントでは、RPKI-Routerプロトコルのバージョン1について説明します。 RFC 6810はバージョン0について説明しています。このドキュメントはRFC 6810を更新します。

Status of This Memo


This is an Internet Standards Track document.

これはInternet Standards Trackドキュメントです。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。インターネット標準の詳細については、RFC 7841のセクション2をご覧ください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2017 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

この文書は、BCP 78およびIETF文書に関するIETFトラストの法的規定(の対象であり、この文書の発行日に有効です。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseのテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。

Table of Contents


   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   4
     1.2.  Changes from RFC 6810 . . . . . . . . . . . . . . . . . .   4
   2.  Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
   3.  Deployment Structure  . . . . . . . . . . . . . . . . . . . .   5
   4.  Operational Overview  . . . . . . . . . . . . . . . . . . . .   6
   5.  Protocol Data Units (PDUs)  . . . . . . . . . . . . . . . . .   7
     5.1.  Fields of a PDU . . . . . . . . . . . . . . . . . . . . .   7
     5.2.  Serial Notify . . . . . . . . . . . . . . . . . . . . . .  10
     5.3.  Serial Query  . . . . . . . . . . . . . . . . . . . . . .  10
     5.4.  Reset Query . . . . . . . . . . . . . . . . . . . . . . .  12
     5.5.  Cache Response  . . . . . . . . . . . . . . . . . . . . .  12
     5.6.  IPv4 Prefix . . . . . . . . . . . . . . . . . . . . . . .  13
     5.7.  IPv6 Prefix . . . . . . . . . . . . . . . . . . . . . . .  14
     5.8.  End of Data . . . . . . . . . . . . . . . . . . . . . . .  15
     5.9.  Cache Reset . . . . . . . . . . . . . . . . . . . . . . .  16
     5.10. Router Key  . . . . . . . . . . . . . . . . . . . . . . .  16
     5.11. Error Report  . . . . . . . . . . . . . . . . . . . . . .  17
   6.  Protocol Timing Parameters  . . . . . . . . . . . . . . . . .  18
   7.  Protocol Version Negotiation  . . . . . . . . . . . . . . . .  20
   8.  Protocol Sequences  . . . . . . . . . . . . . . . . . . . . .  21
     8.1.  Start or Restart  . . . . . . . . . . . . . . . . . . . .  21
     8.2.  Typical Exchange  . . . . . . . . . . . . . . . . . . . .  22
     8.3.  No Incremental Update Available . . . . . . . . . . . . .  23
     8.4.  Cache Has No Data Available . . . . . . . . . . . . . . .  23
   9.  Transport . . . . . . . . . . . . . . . . . . . . . . . . . .  24
     9.1.  SSH Transport . . . . . . . . . . . . . . . . . . . . . .  25
     9.2.  TLS Transport . . . . . . . . . . . . . . . . . . . . . .  26
     9.3.  TCP MD5 Transport . . . . . . . . . . . . . . . . . . . .  26
     9.4.  TCP-AO Transport  . . . . . . . . . . . . . . . . . . . .  27
   10. Router-Cache Setup  . . . . . . . . . . . . . . . . . . . . .  27
   11. Deployment Scenarios  . . . . . . . . . . . . . . . . . . . .  28
   12. Error Codes . . . . . . . . . . . . . . . . . . . . . . . . .  29
   13. Security Considerations . . . . . . . . . . . . . . . . . . .  30
   14. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  31
   15. References  . . . . . . . . . . . . . . . . . . . . . . . . .  32
     15.1.  Normative References . . . . . . . . . . . . . . . . . .  32
     15.2.  Informative References . . . . . . . . . . . . . . . . .  34
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  35
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  35
1. Introduction
1. はじめに

In order to verifiably validate the origin Autonomous Systems (ASes) and AS paths of BGP announcements, routers need a simple but reliable mechanism to receive cryptographically validated Resource Public Key Infrastructure (RPKI) [RFC6480] prefix origin data and router keys from a trusted cache. This document describes a protocol to deliver them. The design is intentionally constrained to be usable on much of the current generation of ISP router platforms.


This document updates [RFC6810].


Section 3 describes the deployment structure, and Section 4 then presents an operational overview. The binary payloads of the protocol are formally described in Section 5, and the expected Protocol Data Unit (PDU) sequences are described in Section 8. The transport protocol options are described in Section 9. Section 10 details how routers and caches are configured to connect and authenticate. Section 11 describes likely deployment scenarios. The traditional security and IANA considerations end the document.


The protocol is extensible in order to support new PDUs with new semantics, if deployment experience indicates that they are needed. PDUs are versioned should deployment experience call for change.

展開の経験から必要とされる場合、プロトコルは新しいセマンティクスで新しいPDUをサポートするために拡張可能です。 PDUは、展開の経験から変更が必要になった場合にバージョン管理されます。

1.1. Requirements Language
1.1. 要件言語

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.


1.2. Changes from RFC 6810
1.2. RFC 6810からの変更

This section summarizes the significant changes between [RFC6810] and the protocol described in this document.


o New Router Key PDU type (Section 5.10) added.

o 新しいルーターキーPDUタイプ(セクション5.10)が追加されました。

o Explicit timing parameters (Section 5.8, Section 6) added.

o 明示的なタイミングパラメータ(セクション5.8、セクション6)が追加されました。

o Protocol version number incremented from 0 (zero) to 1 (one).

o 0(ゼロ)から1(1)に増分されたプロトコルバージョン番号。

o Protocol version number negotiation (Section 7) added.

o プロトコルバージョン番号のネゴシエーション(セクション7)が追加されました。

2. Glossary
2. 用語集

The following terms are used with special meaning.


Global RPKI: The authoritative data of the RPKI are published in a distributed set of servers at the IANA, Regional Internet Registries (RIRs), National Internet Registries (NIRs), and ISPs; see [RFC6481].

グローバルRPKI:RPKIの信頼できるデータは、IANA、地域インターネットレジストリ(RIR)、国内インターネットレジストリ(NIR)、およびISPのサーバーの分散セットで公開されます。 [RFC6481]を参照してください。

Cache: A cache is a coalesced copy of the published Global RPKI data, periodically fetched or refreshed, directly or indirectly, using the rsync protocol [RFC5781] or some successor. Relying Party software is used to gather and validate the distributed data of the RPKI into a cache. Trusting this cache further is a matter between the provider of the cache and a Relying Party.


Serial Number: "Serial Number" is a 32-bit strictly increasing unsigned integer which wraps from 2^32-1 to 0. It denotes the logical version of a cache. A cache increments the value when it successfully updates its data from a parent cache or from primary RPKI data. While a cache is receiving updates, new incoming data and implicit deletes are associated with the new serial but MUST NOT be sent until the fetch is complete. A Serial Number is not commensurate between different caches or different protocol versions, nor need it be maintained across resets of the cache server. See [RFC1982] on DNS Serial Number Arithmetic for too much detail on the topic.

シリアル番号:「シリアル番号」は、32ビットの厳密に増加する符号なし整数で、2 ^ 32-1から0にラップされます。これは、キャッシュの論理バージョンを示します。キャッシュは、親キャッシュまたはプライマリRPKIデータからデータを正常に更新すると、値をインクリメントします。キャッシュが更新を受信して​​いる間、新しい着信データと暗黙的な削除は新しいシリアルに関連付けられますが、フェッチが完了するまで送信してはなりません。シリアル番号は、異なるキャッシュ間または異なるプロトコルバージョン間で釣り合いが取れておらず、キャッシュサーバーのリセット間で維持する必要もありません。このトピックの詳細については、DNSシリアル番号演算の[RFC1982]を参照してください。

Session ID: When a cache server is started, it generates a Session ID to uniquely identify the instance of the cache and to bind it to the sequence of Serial Numbers that cache instance will generate. This allows the router to restart a failed session knowing that the Serial Number it is using is commensurate with that of the cache.


Payload PDU: A payload PDU is a protocol message which contains data for use by the router, as opposed to a PDU which conveys the control mechanisms of this protocol. Prefixes and Router Keys are examples of payload PDUs.


3. Deployment Structure
3. 展開構造

Deployment of the RPKI to reach routers has a three-level structure as follows:


Global RPKI: The authoritative data of the RPKI are published in a distributed set of servers at the IANA, RIRs, NIRs, and ISPs (see [RFC6481]).


Local Caches: Local caches are a local set of one or more collected and verified caches of RPKI data. A Relying Party, e.g., router or other client, MUST have a trust relationship with, and a trusted transport channel to, any cache(s) it uses.


Routers: A router fetches data from a local cache using the protocol described in this document. It is said to be a client of the cache. There MAY be mechanisms for the router to assure itself of the authenticity of the cache and to authenticate itself to the cache (see Section 9).


4. Operational Overview
4. 運用の概要

A router establishes and keeps open a connection to one or more caches with which it has client/server relationships. It is configured with a semi-ordered list of caches and establishes a connection to the most preferred cache, or set of caches, which accept the connections.


The router MUST choose the most preferred, by configuration, cache or set of caches so that the operator may control load on their caches and the Global RPKI.


Periodically, the router sends to the cache the most recent Serial Number for which it has received data from that cache, i.e., the router's current Serial Number, in the form of a Serial Query. When a router establishes a new session with a cache or wishes to reset a current relationship, it sends a Reset Query.


The cache responds to the Serial Query with all data changes which took place since the given Serial Number. This may be the null set, in which case the End of Data PDU (Section 5.8) is still sent. Note that the Serial Number comparison used to determine "since the given Serial Number" MUST take wrap-around into account; see [RFC1982].

キャッシュは、指定されたシリアル番号以降に行われたすべてのデータ変更でシリアルクエリに応答します。これはnullセットである場合があります。その場合、End of Data PDU(セクション5.8)は引き続き送信されます。 「指定されたシリアル番号以降」を決定するために使用されるシリアル番号の比較では、ラップアラウンドを考慮する必要があることに注意してください。 [RFC1982]を参照してください。

When the router has received all data records from the cache, it sets its current Serial Number to that of the Serial Number in the received End of Data PDU.


When the cache updates its database, it sends a Notify PDU to every currently connected router. This is a hint that now would be a good time for the router to poll for an update, but it is only a hint. The protocol requires the router to poll for updates periodically in any case.


Strictly speaking, a router could track a cache simply by asking for a complete data set every time it updates, but this would be very inefficient. The Serial-Number-based incremental update mechanism allows an efficient transfer of just the data records which have changed since the last update. As with any update protocol based on incremental transfers, the router must be prepared to fall back to a full transfer if for any reason the cache is unable to provide the necessary incremental data. Unlike some incremental transfer protocols, this protocol requires the router to make an explicit request to start the fallback process; this is deliberate, as the cache has no way of knowing whether the router has also established sessions with other caches that may be able to provide better service.


As a cache server must evaluate certificates and ROAs (Route Origin Authorizations; see [RFC6480]), which are time dependent, servers' clocks MUST be correct to a tolerance of approximately an hour.

キャッシュサーバーは、時間に依存する証明書とROA(Route Origin Authorizations; [RFC6480]を参照)を評価する必要があるため、サーバーのクロックは約1時間の許容誤差で正確でなければなりません。

5. Protocol Data Units (PDUs)
5. プロトコルデータユニット(PDU)

The exchanges between the cache and the router are sequences of exchanges of the following PDUs according to the rules described in Section 8.


Reserved fields (marked "zero" in PDU diagrams) MUST be zero on transmission and MUST be ignored on receipt.


5.1. Fields of a PDU
5.1. PDUのフィールド

PDUs contain the following data elements:


Protocol Version: An 8-bit unsigned integer, currently 1, denoting the version of this protocol.


PDU Type: An 8-bit unsigned integer, denoting the type of the PDU, e.g., IPv4 Prefix.


Serial Number: The Serial Number of the RPKI cache when this set of PDUs was received from an upstream cache server or gathered from the Global RPKI. A cache increments its Serial Number when completing a rigorously validated update from a parent cache or the Global RPKI.


Session ID: A 16-bit unsigned integer. When a cache server is started, it generates a Session ID to identify the instance of the cache and to bind it to the sequence of Serial Numbers that cache instance will generate. This allows the router to restart a failed session knowing that the Serial Number it is using is commensurate with that of the cache. If, at any time after the protocol version has been negotiated (Section 7), either the router or the cache finds that the value of the Session ID is not the same as the other's, the party which detects the mismatch MUST immediately terminate the session with an Error Report PDU with code 0 ("Corrupt Data"), and the router MUST flush all data learned from that cache.


Note that sessions are specific to a particular protocol version. That is, if a cache server supports multiple versions of this protocol, happens to use the same Session ID value for multiple protocol versions, and further happens to use the same Serial Number values for two or more sessions using the same Session ID but different Protocol Version values, the Serial Numbers are not commensurate. The full test for whether Serial Numbers are commensurate requires comparing Protocol Version, Session ID, and Serial Number. To reduce the risk of confusion, cache servers SHOULD NOT use the same Session ID across multiple protocol versions, but even if they do, routers MUST treat sessions with different Protocol Version fields as separate sessions even if they do happen to have the same Session ID.

セッションは特定のプロトコルバージョンに固有であることに注意してください。つまり、キャッシュサーバーがこのプロトコルの複数のバージョンをサポートし、複数のプロトコルバージョンに同じセッションID値を使用し、さらに、同じセッションIDを使用するが異なるプロトコルを使用する2つ以上のセッションに同じシリアル番号値を使用する場合バージョン値、シリアル番号は相応ではありません。シリアル番号が釣り合っているかどうかを完全にテストするには、プロトコルバージョン、セッションID、シリアル番号を比較する必要があります。混乱のリスクを減らすために、キャッシュサーバーは複数のプロトコルバージョン間で同じセッションIDを使用しないでください(SHOULD NOT)。ただし、たとえそれらが使用されたとしても、ルーターは、たとえ同じセッションIDがたまたまあるとしても、異なるプロトコルバージョンフィールドを持つセッションを別個のセッションとして扱わなければなりません。

Should a cache erroneously reuse a Session ID so that a router does not realize that the session has changed (old Session ID and new Session ID have the same numeric value), the router may become confused as to the content of the cache. The time it takes the router to discover that it is confused will depend on whether the Serial Numbers are also reused. If the Serial Numbers in the old and new sessions are different enough, the cache will respond to the router's Serial Query with a Cache Reset, which will solve the problem. If, however, the Serial Numbers are close, the cache may respond with a Cache Response, which may not be enough to bring the router into sync. In such cases, it's likely but not certain that the router will detect some discrepancy between the state that the cache expects and its own state. For example, the Cache Response may tell the router to drop a record which the router does not hold or may tell the router to add a record which the router already has. In such cases, a router will detect the error and reset the session. The one case in which the router may stay out of sync is when nothing in the Cache Response contradicts any data currently held by the router.


Using persistent storage for the Session ID or a clock-based scheme for generating Session IDs should avoid the risk of Session ID collisions.


The Session ID might be a pseudorandom value, a strictly increasing value if the cache has reliable storage, et cetera. A seconds-since-epoch timestamp value such as the POSIX time() function makes a good Session ID value.

セッションIDは、疑似ランダム値である可能性があります。キャッシュに信頼できるストレージがある場合、厳密に増加する値などです。 POSIX time()関数などの秒からのエポックタイムスタンプ値は、適切なセッションID値になります。

Length: A 32-bit unsigned integer which has as its value the count of the bytes in the entire PDU, including the 8 bytes of header which includes the length field.


Flags: The lowest-order bit of the Flags field is 1 for an announcement and 0 for a withdrawal. For a Prefix PDU (IPv4 or IPv6), the flag indicates whether this PDU announces a new right to announce the prefix or withdraws a previously announced right; a withdraw effectively deletes one previously announced Prefix PDU with the exact same Prefix, Length, Max-Len, and Autonomous System Number (ASN). Similarly, for a Router Key PDU, the flag indicates whether this PDU announces a new Router Key or deletes one previously announced Router Key PDU with the exact same AS Number, subjectKeyIdentifier, and subjectPublicKeyInfo.

フラグ:フラグフィールドの最下位ビットは、アナウンスの場合は1、取り下げの場合は0です。プレフィックスPDU(IPv4またはIPv6)の場合、フラグは、このPDUがプレフィックスを発表する新しい権利を発表するか、以前に発表された権利を撤回するかを示します。 withdrawは、プレフィックス、長さ、最大長、および自律システム番号(ASN)がまったく同じ、以前に発表された1つのプレフィックスPDUを効果的に削除します。同様に、ルーターキーPDUの場合、フラグは、このPDUが新しいルーターキーをアナウンスするか、まったく同じAS番号、subjectKeyIdentifier、subjectPublicKeyInfoを持つ以前にアナウンスされたルーターキーPDUを削除するかどうかを示します。

The remaining bits in the Flags field are reserved for future use. In protocol version 1, they MUST be zero on transmission and MUST be ignored on receipt.


Prefix Length: An 8-bit unsigned integer denoting the shortest prefix allowed by the Prefix element.


Max Length: An 8-bit unsigned integer denoting the longest prefix allowed by the Prefix element. This MUST NOT be less than the Prefix Length element.


Prefix: The IPv4 or IPv6 prefix of the ROA.


Autonomous System Number: A 32-bit unsigned integer representing an ASN allowed to announce a prefix or associated with a router key.


Subject Key Identifier: 20-octet Subject Key Identifier (SKI) value of a router key, as described in [RFC6487].


Subject Public Key Info: A router key's subjectPublicKeyInfo value, as described in [RFC8208]. This is the full ASN.1 DER encoding of the subjectPublicKeyInfo, including the ASN.1 tag and length values of the subjectPublicKeyInfo SEQUENCE.

[RFC8208]で説明されているように、サブジェクト公開鍵情報:ルーターキーのsubjectPublicKeyInfo値。これは、subjectPublicKeyInfoの完全なASN.1 DERエンコードであり、subjectPublicKeyInfo SEQUENCEのASN.1タグと長さの値を含みます。

Refresh Interval: Interval between normal cache polls. See Section 6.


Retry Interval: Interval between cache poll retries after a failed cache poll. See Section 6.


Expire Interval: Interval during which data fetched from a cache remains valid in the absence of a successful subsequent cache poll. See Section 6.

Expire Interval:後続のキャッシュポーリングが成功しない場合に、キャッシュからフェッチされたデータが有効なままになる間隔。セクション6を参照してください。

5.2. Serial Notify
5.2. シリアル通知

The cache notifies the router that the cache has new data.


The Session ID reassures the router that the Serial Numbers are commensurate, i.e., the cache session has not been changed.


Upon receipt of a Serial Notify PDU, the router MAY issue an immediate Serial Query (Section 5.3) or Reset Query (Section 5.4) without waiting for the Refresh Interval timer (see Section 6) to expire.


Serial Notify is the only message that the cache can send that is not in response to a message from the router.


If the router receives a Serial Notify PDU during the initial startup period where the router and cache are still negotiating to agree on a protocol version, the router MUST simply ignore the Serial Notify PDU, even if the Serial Notify PDU is for an unexpected protocol version. See Section 7 for details.

ルーターとキャッシュがプロトコルバージョンについて合意するためにまだ交渉している最初の起動期間中にルーターがシリアル通知PDUを受信する場合、シリアル通知PDUが予期しないプロトコルバージョン用であっても、ルーターはシリアル通知PDUを単に無視しなければなりません(MUST)。 。詳細については、セクション7を参照してください。

   0          8          16         24        31
   | Protocol |   PDU    |                     |
   | Version  |   Type   |     Session ID      |
   |    1     |    0     |                     |
   |                                           |
   |                Length=12                  |
   |                                           |
   |                                           |
   |               Serial Number               |
   |                                           |
5.3. Serial Query
5.3. シリアルクエリ

The router sends a Serial Query to ask the cache for all announcements and withdrawals which have occurred since the Serial Number specified in the Serial Query.


The cache replies to this query with a Cache Response PDU (Section 5.5) if the cache has a (possibly null) record of the changes since the Serial Number specified by the router, followed by zero or more payload PDUs and an End Of Data PDU (Section 5.8).

キャッシュには、ルーターによって指定されたシリアル番号以降の変更の(おそらくnull)レコードがあり、その後に0個以上のペイロードPDUとデータの終わりPDUが続く場合、キャッシュ応答PDU(セクション5.5)でこのクエリに応答します。 (セクション5.8)。

When replying to a Serial Query, the cache MUST return the minimum set of changes needed to bring the router into sync with the cache. That is, if a particular prefix or router key underwent multiple changes between the Serial Number specified by the router and the cache's current Serial Number, the cache MUST merge those changes to present the simplest possible view of those changes to the router. In general, this means that, for any particular prefix or router key, the data stream will include at most one withdrawal followed by at most one announcement, and if all of the changes cancel out, the data stream will not mention the prefix or router key at all.


The rationale for this approach is that the entire purpose of the RPKI-Router protocol is to offload work from the router to the cache, and it should therefore be the cache's job to simplify the change set, thus reducing work for the router.


If the cache does not have the data needed to update the router, perhaps because its records do not go back to the Serial Number in the Serial Query, then it responds with a Cache Reset PDU (Section 5.9).


The Session ID tells the cache what instance the router expects to ensure that the Serial Numbers are commensurate, i.e., the cache session has not been changed.


   0          8          16         24        31
   | Protocol |   PDU    |                     |
   | Version  |   Type   |     Session ID      |
   |    1     |    1     |                     |
   |                                           |
   |                 Length=12                 |
   |                                           |
   |                                           |
   |               Serial Number               |
   |                                           |
5.4. Reset Query
5.4. クエリをリセット

The router tells the cache that it wants to receive the total active, current, non-withdrawn database. The cache responds with a Cache Response PDU (Section 5.5), followed by zero or more payload PDUs and an End of Data PDU (Section 5.8).


   0          8          16         24        31
   | Protocol |   PDU    |                     |
   | Version  |   Type   |         zero        |
   |    1     |    2     |                     |
   |                                           |
   |                 Length=8                  |
   |                                           |
5.5. Cache Response
5.5. キャッシュ応答

The cache responds to queries with zero or more payload PDUs. When replying to a Serial Query (Section 5.3), the cache sends the set of announcements and withdrawals that have occurred since the Serial Number sent by the client router. When replying to a Reset Query (Section 5.4), the cache sends the set of all data records it has; in this case, the withdraw/announce field in the payload PDUs MUST have the value 1 (announce).

キャッシュは、0個以上のペイロードPDUでクエリに応答します。シリアルクエリ(セクション5.3)に応答するとき、キャッシュは、クライアントルーターが送信したシリアル番号以降に発生した一連のアナウンスと取り消しを送信します。リセットクエリ(セクション5.4)に応答するとき、キャッシュはキャッシュにあるすべてのデータレコードのセットを送信します。この場合、ペイロードPDUのwithdraw / announceフィールドの値は1(announce)である必要があります。

In response to a Reset Query, the new value of the Session ID tells the router the instance of the cache session for future confirmation. In response to a Serial Query, the Session ID being the same reassures the router that the Serial Numbers are commensurate, i.e., the cache session has not been changed.


   0          8          16         24        31
   | Protocol |   PDU    |                     |
   | Version  |   Type   |     Session ID      |
   |    1     |    3     |                     |
   |                                           |
   |                 Length=8                  |
   |                                           |
5.6. IPv4 Prefix
5.6. IPv4プレフィックス
   0          8          16         24        31
   | Protocol |   PDU    |                     |
   | Version  |   Type   |         zero        |
   |    1     |    4     |                     |
   |                                           |
   |                 Length=20                 |
   |                                           |
   |          |  Prefix  |   Max    |          |
   |  Flags   |  Length  |  Length  |   zero   |
   |          |   0..32  |   0..32  |          |
   |                                           |
   |                IPv4 Prefix                |
   |                                           |
   |                                           |
   |         Autonomous System Number          |
   |                                           |

The lowest-order bit of the Flags field is 1 for an announcement and 0 for a withdrawal.


In the RPKI, nothing prevents a signing certificate from issuing two identical ROAs. In this case, there would be no semantic difference between the objects, merely a process redundancy.


In the RPKI, there is also an actual need for what might appear to a router as identical IPvX PDUs. This can occur when an upstream certificate is being reissued or there is an address ownership transfer up the validation chain. The ROA would be identical in the router sense, i.e., have the same {Prefix, Len, Max-Len, ASN}, but it would have a different validation path in the RPKI. This is important to the RPKI but not to the router.

RPKIでは、同一のIPvX PDUとしてルーターから見えるものに対する実際のニーズもあります。これは、上流の証明書が再発行されている場合、または検証チェーンの上位にアドレス所有権が転送されている場合に発生する可能性があります。 ROAはルーターの意味で同一、つまり{Prefix、Len、Max-Len、ASN}は同じですが、RPKIでの検証パスは異なります。これはRPKIにとって重要ですが、ルーターにとっては重要ではありません。

The cache server MUST ensure that it has told the router client to have one and only one IPvX PDU for a unique {Prefix, Len, Max-Len, ASN} at any one point in time. Should the router client receive an IPvX PDU with a {Prefix, Len, Max-Len, ASN} identical to one it already has active, it SHOULD raise a Duplicate Announcement Received error.

キャッシュサーバーは、ルータークライアントに一意の{Prefix、Len、Max-Len、ASN}のIPvX PDUを1つだけ持つように指示したことを確認する必要があります。ルータクライアントが、すでにアクティブになっているものと同じ{Prefix、Len、Max-Len、ASN}を持つIPvX PDUを受信した場合、Duplicate Announcement Receivedエラーを発生させる必要があります。

5.7. IPv6 Prefix
5.7. IPv6プレフィックス
   0          8          16         24        31
   | Protocol |   PDU    |                     |
   | Version  |   Type   |         zero        |
   |    1     |    6     |                     |
   |                                           |
   |                 Length=32                 |
   |                                           |
   |          |  Prefix  |   Max    |          |
   |  Flags   |  Length  |  Length  |   zero   |
   |          |  0..128  |  0..128  |          |
   |                                           |
   +---                                     ---+
   |                                           |
   +---            IPv6 Prefix              ---+
   |                                           |
   +---                                     ---+
   |                                           |
   |                                           |
   |         Autonomous System Number          |
   |                                           |

Analogous to the IPv4 Prefix PDU, it has 96 more bits and no magic.


5.8. End of Data
5.8. データの終わり

The cache tells the router it has no more data for the request.


The Session ID and Protocol Version MUST be the same as that of the corresponding Cache Response which began the (possibly null) sequence of payload PDUs.


   0          8          16         24        31
   | Protocol |   PDU    |                     |
   | Version  |   Type   |     Session ID      |
   |    1     |    7     |                     |
   |                                           |
   |                 Length=24                 |
   |                                           |
   |                                           |
   |               Serial Number               |
   |                                           |
   |                                           |
   |              Refresh Interval             |
   |                                           |
   |                                           |
   |               Retry Interval              |
   |                                           |
   |                                           |
   |              Expire Interval              |
   |                                           |

The Refresh Interval, Retry Interval, and Expire Interval are all 32-bit elapsed times measured in seconds. They express the timing parameters which the cache expects the router to use in deciding when to send subsequent Serial Query or Reset Query PDUs to the cache. See Section 6 for an explanation of the use and the range of allowed values for these parameters.


5.9. Cache Reset
5.9. キャッシュリセット

The cache may respond to a Serial Query informing the router that the cache cannot provide an incremental update starting from the Serial Number specified by the router. The router must decide whether to issue a Reset Query or switch to a different cache.


   0          8          16         24        31
   | Protocol |   PDU    |                     |
   | Version  |   Type   |         zero        |
   |    1     |    8     |                     |
   |                                           |
   |                 Length=8                  |
   |                                           |
5.10. Router Key
5.10. ルーターキー
   0          8          16         24        31
   | Protocol |   PDU    |          |          |
   | Version  |   Type   |   Flags  |   zero   |
   |    1     |    9     |          |          |
   |                                           |
   |                  Length                   |
   |                                           |
   |                                           |
   +---                                     ---+
   |          Subject Key Identifier           |
   +---                                     ---+
   |                                           |
   +---                                     ---+
   |                (20 octets)                |
   +---                                     ---+
   |                                           |
   |                                           |
   |                 AS Number                 |
   |                                           |
   |                                           |
   |          Subject Public Key Info          |
   |                                           |
   The lowest-order bit of the Flags field is 1 for an announcement and
   0 for a withdrawal.

The cache server MUST ensure that it has told the router client to have one and only one Router Key PDU for a unique {SKI, ASN, Subject Public Key} at any one point in time. Should the router client receive a Router Key PDU with a {SKI, ASN, Subject Public Key} identical to one it already has active, it SHOULD raise a Duplicate Announcement Received error.

キャッシュサーバーは、ルータークライアントに、一意の{SKI、ASN、サブジェクト公開キー}のルーターキーPDUを1つだけ持つように指示したことを確認する必要があります。ルータークライアントが、既にアクティブになっているものと同じ{SKI、ASN、サブジェクト公開キー}を含むルーターキーPDUを受信した場合、Duplicate Announcement Receivedエラーを発生させる必要があります。

Note that a particular ASN may appear in multiple Router Key PDUs with different Subject Public Key values, while a particular Subject Public Key value may appear in multiple Router Key PDUs with different ASNs. In the interest of keeping the announcement and withdrawal semantics as simple as possible for the router, this protocol makes no attempt to compress either of these cases.


Also note that it is possible, albeit very unlikely, for multiple distinct Subject Public Key values to hash to the same SKI. For this reason, implementations MUST compare Subject Public Key values as well as SKIs when detecting duplicate PDUs.


5.11. Error Report
5.11. エラーレポート

This PDU is used by either party to report an error to the other.


Error reports are only sent as responses to other PDUs, not to report errors in Error Report PDUs.


Error codes are described in Section 12.


If the error is generic (e.g., "Internal Error") and not associated with the PDU to which it is responding, the Erroneous PDU field MUST be empty and the Length of Encapsulated PDU field MUST be zero.


An Error Report PDU MUST NOT be sent for an Error Report PDU. If an erroneous Error Report PDU is received, the session SHOULD be dropped.

Error Report PDUに対してError Report PDUを送信してはならない(MUST NOT)。誤ったエラーレポートPDUを受信した場合、セッションをドロップする必要があります(SHOULD)。

If the error is associated with a PDU of excessive length, i.e., too long to be any legal PDU other than another Error Report, or a possibly corrupt length, the Erroneous PDU field MAY be truncated.


The diagnostic text is optional; if not present, the Length of Error Text field MUST be zero. If error text is present, it MUST be a string in UTF-8 encoding (see [RFC3629]).

診断テキストはオプションです。存在しない場合、Length of Error Textフィールドはゼロでなければなりません。エラーテキストが存在する場合は、UTF-8エンコーディングの文字列である必要があります([RFC3629]を参照)。

   0          8          16         24        31
   | Protocol |   PDU    |                     |
   | Version  |   Type   |     Error Code      |
   |    1     |    10    |                     |
   |                                           |
   |                  Length                   |
   |                                           |
   |                                           |
   |       Length of Encapsulated PDU          |
   |                                           |
   |                                           |
   ~               Erroneous PDU               ~
   |                                           |
   |                                           |
   |           Length of Error Text            |
   |                                           |
   |                                           |
   |              Arbitrary Text               |
   |                    of                     |
   ~          Error Diagnostic Message         ~
   |                                           |
6. Protocol Timing Parameters
6. プロトコルタイミングパラメータ

Since the data the cache distributes via the RPKI-Router protocol are retrieved from the Global RPKI system at intervals which are only known to the cache, only the cache can really know how frequently it makes sense for the router to poll the cache, or how long the data are likely to remain valid (or, at least, unchanged). For this reason, as well as to allow the cache some control over the load placed on it by its client routers, the End Of Data PDU includes three values that allow the cache to communicate timing parameters to the router:


Refresh Interval: This parameter tells the router how long to wait before next attempting to poll the cache and between subsequent attempts, using a Serial Query or Reset Query PDU. The router SHOULD NOT poll the cache sooner than indicated by this parameter. Note that receipt of a Serial Notify PDU overrides this interval and suggests that the router issue an immediate query without waiting for the Refresh Interval to expire. Countdown for this timer starts upon receipt of the containing End Of Data PDU.


Minimum allowed value: 1 second.


Maximum allowed value: 86400 seconds (1 day).


Recommended default: 3600 seconds (1 hour).


Retry Interval: This parameter tells the router how long to wait before retrying a failed Serial Query or Reset Query. The router SHOULD NOT retry sooner than indicated by this parameter. Note that a protocol version mismatch overrides this interval: if the router needs to downgrade to a lower protocol version number, it MAY send the first Serial Query or Reset Query immediately. Countdown for this timer starts upon failure of the query and restarts after each subsequent failure until a query succeeds.


Minimum allowed value: 1 second.


Maximum allowed value: 7200 seconds (2 hours).


Recommended default: 600 seconds (10 minutes).


Expire Interval: This parameter tells the router how long it can continue to use the current version of the data while unable to perform a successful subsequent query. The router MUST NOT retain the data past the time indicated by this parameter. Countdown for this timer starts upon receipt of the containing End Of Data PDU.

Expire Interval:このパラメータは、後続のクエリを正常に実行できずに、現在のバージョンのデータを継続して使用できる時間をルータに通知します。ルーターは、このパラメーターで示された時間を過ぎたデータを保持してはなりません(MUST NOT)。このタイマーのカウントダウンは、含まれているデータの終わりPDUを受信すると開始されます。

Minimum allowed value: 600 seconds (10 minutes).


Maximum allowed value: 172800 seconds (2 days).


Recommended default: 7200 seconds (2 hours).


If the router has never issued a successful query against a particular cache, it SHOULD retry periodically using the default Retry Interval, above.


Caches MUST set Expire Interval to a value larger than either Refresh Interval or Retry Interval.


7. Protocol Version Negotiation
7. プロトコルバージョンネゴシエーション

A router MUST start each transport connection by issuing either a Reset Query or a Serial Query. This query will tell the cache which version of this protocol the router implements.


If a cache which supports version 1 receives a query from a router which specifies version 0, the cache MUST downgrade to protocol version 0 [RFC6810] or send a version 1 Error Report PDU with Error Code 4 ("Unsupported Protocol Version") and terminate the connection.

バージョン1をサポートするキャッシュがバージョン0を指定するルーターからクエリを受信する場合、キャッシュはプロトコルバージョン0 [RFC6810]にダウングレードするか、エラーコード4(「サポートされていないプロトコルバージョン」)でバージョン1エラーレポートPDUを送信して終了する必要があります。接続。

If a router which supports version 1 sends a query to a cache which only supports version 0, one of two things will happen:


1. The cache may terminate the connection, perhaps with a version 0 Error Report PDU. In this case, the router MAY retry the connection using protocol version 0.

1. キャッシュは、おそらくバージョン0のエラーレポートPDUで接続を終了する可能性があります。この場合、ルーターはプロトコルバージョン0を使用して接続を再試行する場合があります。

2. The cache may reply with a version 0 response. In this case, the router MUST either downgrade to version 0 or terminate the connection.

2. キャッシュはバージョン0応答で応答する場合があります。この場合、ルーターはバージョン0にダウングレードするか、接続を終了する必要があります。

In any of the downgraded combinations above, the new features of version 1 will not be available, and all PDUs will have 0 in their version fields.


If either party receives a PDU containing an unrecognized Protocol Version (neither 0 nor 1) during this negotiation, it MUST either downgrade to a known version or terminate the connection, with an Error Report PDU unless the received PDU is itself an Error Report PDU.


The router MUST ignore any Serial Notify PDUs it might receive from the cache during this initial startup period, regardless of the Protocol Version field in the Serial Notify PDU. Since Session ID and Serial Number values are specific to a particular protocol version, the values in the notification are not useful to the router. Even if these values were meaningful, the only effect that processing the notification would have would be to trigger exactly the same Reset Query or Serial Query that the router has already sent as part of the not-yet-complete version negotiation process, so there is nothing to be gained by processing notifications until version negotiation completes.


Caches SHOULD NOT send Serial Notify PDUs before version negotiation completes. Routers, however, MUST handle such notifications (by ignoring them) for backwards compatibility with caches serving protocol version 0.

キャッシュは、バージョンネゴシエーションが完了する前にシリアル通知PDUを送信してはなりません(SHOULD NOT)。ただし、ルーターは、プロトコルバージョン0を提供するキャッシュとの下位互換性のために、そのような通知を(無視して)処理する必要があります。

Once the cache and router have agreed upon a Protocol Version via the negotiation process above, that version is stable for the life of the session. See Section 5.1 for a discussion of the interaction between Protocol Version and Session ID.


If either party receives a PDU for a different Protocol Version once the above negotiation completes, that party MUST drop the session; unless the PDU containing the unexpected Protocol Version was itself an Error Report PDU, the party dropping the session SHOULD send an Error Report with an error code of 8 ("Unexpected Protocol Version").


8. Protocol Sequences
8. プロトコルシーケンス

The sequences of PDU transmissions fall into four conversations as follows:


8.1. Start or Restart
8.1. 開始または再起動
   Cache                         Router
     ~                             ~
     | <----- Reset Query -------- | R requests data (or Serial Query)
     |                             |
     | ----- Cache Response -----> | C confirms request
     | ------- Payload PDU ------> | C sends zero or more
     | ------- Payload PDU ------> |   IPv4 Prefix, IPv6 Prefix,
     | ------- Payload PDU ------> |   or Router Key PDUs
     | ------- End of Data ------> | C sends End of Data
     |                             |   and sends new serial
     ~                             ~

When a transport connection is first established, the router MUST send either a Reset Query or a Serial Query. A Serial Query would be appropriate if the router has significant unexpired data from a broken session with the same cache and remembers the Session ID of that session, in which case a Serial Query containing the Session ID from the previous session will allow the router to bring itself up to date while ensuring that the Serial Numbers are commensurate and that the router and cache are speaking compatible versions of the protocol. In all other cases, the router lacks the necessary data for fast resynchronization and therefore MUST fall back to a Reset Query.


The Reset Query sequence is also used when the router receives a Cache Reset, chooses a new cache, or fears that it has otherwise lost its way.


See Section 7 for details on version negotiation.


To limit the length of time a cache must keep the data necessary to generate incremental updates, a router MUST send either a Serial Query or a Reset Query periodically. This also acts as a keep-alive at the application layer. See Section 6 for details on the required polling frequency.


8.2. Typical Exchange
8.2. 典型的な交換
   Cache                         Router
     ~                             ~
     | -------- Notify ----------> |  (optional)
     |                             |
     | <----- Serial Query ------- | R requests data
     |                             |
     | ----- Cache Response -----> | C confirms request
     | ------- Payload PDU ------> | C sends zero or more
     | ------- Payload PDU ------> |   IPv4 Prefix, IPv6 Prefix,
     | ------- Payload PDU ------> |   or Router Key PDUs
     | ------- End of Data ------> | C sends End of Data
     |                             |   and sends new serial
     ~                             ~

The cache server SHOULD send a Notify PDU with its current Serial Number when the cache's serial changes, with the expectation that the router MAY then issue a Serial Query earlier than it otherwise might. This is analogous to DNS NOTIFY in [RFC1996]. The cache MUST rate-limit Serial Notifies to no more frequently than one per minute.

キャッシュサーバーは、キャッシュのシリアルが変更されたときに、現在のシリアル番号を使用してNotify PDUを送信する必要があります(SHOULD)。そうしないと、ルーターがシリアルクエリを発行するよりも早くなる可能性があります。これは、[RFC1996]のDNS NOTIFYに類似しています。キャッシュは、シリアル通知を1分あたり1回以下にレート制限する必要があります。

When the transport layer is up and either a timer has gone off in the router or the cache has sent a Notify PDU, the router queries for new data by sending a Serial Query, and the cache sends all data newer than the serial in the Serial Query.

トランスポート層が起動し、ルーターのタイマーがオフになったか、キャッシュがNotify PDUを送信した場合、ルーターはシリアルクエリを送信して新しいデータを照会し、キャッシュはシリアル内のシリアルよりも新しいすべてのデータを送信しますクエリ。

To limit the length of time a cache must keep old withdraws, a router MUST send either a Serial Query or a Reset Query periodically. See Section 6 for details on the required polling frequency.


8.3. No Incremental Update Available
8.3. 増分更新はありません
   Cache                         Router
     ~                             ~
     | <------ Serial Query ------ | R requests data
     | ------- Cache Reset ------> | C cannot supply update
     |                             |   from specified serial
     | <------ Reset Query ------- | R requests new data
     | ----- Cache Response -----> | C confirms request
     | ------- Payload PDU ------> | C sends zero or more
     | ------- Payload PDU ------> |   IPv4 Prefix, IPv6 Prefix,
     | ------- Payload PDU ------> |   or Router Key PDUs
     | ------- End of Data ------> | C sends End of Data
     |                             |   and sends new serial
     ~                             ~

The cache may respond to a Serial Query with a Cache Reset, informing the router that the cache cannot supply an incremental update from the Serial Number specified by the router. This might be because the cache has lost state, or because the router has waited too long between polls and the cache has cleaned up old data that it no longer believes it needs, or because the cache has run out of storage space and had to expire some old data early. Regardless of how this state arose, the cache replies with a Cache Reset to tell the router that it cannot honor the request. When a router receives this, the router SHOULD attempt to connect to any more-preferred caches in its cache list. If there are no more-preferred caches, it MUST issue a Reset Query and get an entire new load from the cache.


8.4. Cache Has No Data Available
8.4. キャッシュに使用可能なデータがありません
   Cache                         Router
     ~                             ~
     | <------ Serial Query ------ | R requests data
     | ---- Error Report PDU ----> | C No Data Available
     ~                             ~
   Cache                         Router
     ~                             ~
     | <------ Reset Query ------- | R requests data
     | ---- Error Report PDU ----> | C No Data Available
     ~                             ~

The cache may respond to either a Serial Query or a Reset Query informing the router that the cache cannot supply any update at all. The most likely cause is that the cache has lost state, perhaps due to a restart, and has not yet recovered. While it is possible that a cache might go into such a state without dropping any of its active sessions, a router is more likely to see this behavior when it initially connects and issues a Reset Query while the cache is still rebuilding its database.


When a router receives this kind of error, the router SHOULD attempt to connect to any other caches in its cache list, in preference order. If no other caches are available, the router MUST issue periodic Reset Queries until it gets a new usable load from the cache.


9. Transport
9. 輸送

The transport-layer session between a router and a cache carries the binary PDUs in a persistent session.


To prevent cache spoofing and DoS attacks by illegitimate routers, it is highly desirable that the router and the cache be authenticated to each other. Integrity protection for payloads is also desirable to protect against monkey-in-the-middle (MITM) attacks. Unfortunately, there is no protocol to do so on all currently used platforms. Therefore, as of the writing of this document, there is no mandatory-to-implement transport which provides authentication and integrity protection.


To reduce exposure to dropped but non-terminated sessions, both caches and routers SHOULD enable keep-alives when available in the chosen transport protocol.


It is expected that, when the TCP Authentication Option (TCP-AO) [RFC5925] is available on all platforms deployed by operators, it will become the mandatory-to-implement transport.


Caches and routers MUST implement unprotected transport over TCP using a port, rpki-rtr (323); see Section 14. Operators SHOULD use procedural means, e.g., access control lists (ACLs), to reduce the exposure to authentication issues.


If unprotected TCP is the transport, the cache and routers MUST be on the same trusted and controlled network.


If available to the operator, caches and routers MUST use one of the following more protected protocols:


o Caches and routers SHOULD use TCP-AO transport [RFC5925] over the rpki-rtr port.

o キャッシュとルーターは、rpki-rtrポートでTCP-AOトランスポート[RFC5925]を使用する必要があります(SHOULD)。

o Caches and routers MAY use Secure Shell version 2 (SSHv2) transport [RFC4252] using the normal SSH port. For an example, see Section 9.1.

o キャッシュとルーターは、通常のSSHポートを使用して、Secure Shellバージョン2(SSHv2)トランスポート[RFC4252]を使用する場合があります。例については、セクション9.1を参照してください。

o Caches and routers MAY use TCP MD5 transport [RFC2385] using the rpki-rtr port. Note that TCP MD5 has been obsoleted by TCP-AO [RFC5925].

o キャッシュとルーターは、rpki-rtrポートを使用してTCP MD5トランスポート[RFC2385]を使用してもよい(MAY)。 TCP MD5はTCP-AO [RFC5925]によって廃止されていることに注意してください。

o Caches and routers MAY use TCP over IPsec transport [RFC4301] using the rpki-rtr port.

o キャッシュとルーターは、rpki-rtrポートを使用して、TCP over IPsecトランスポート[RFC4301]を使用してもよい(MAY)。

o Caches and routers MAY use Transport Layer Security (TLS) transport [RFC5246] using port rpki-rtr-tls (324); see Section 14.

o キャッシュとルーターはポートrpki-rtr-tls(324)を使用してトランスポート層セキュリティ(TLS)トランスポート[RFC5246]を使用してもよい(MAY)。セクション14を参照してください。

9.1. SSH Transport
9.1. SSHトランスポート

To run over SSH, the client router first establishes an SSH transport connection using the SSHv2 transport protocol, and the client and server exchange keys for message integrity and encryption. The client then invokes the "ssh-userauth" service to authenticate the application, as described in the SSH authentication protocol [RFC4252]. Once the application has been successfully authenticated, the client invokes the "ssh-connection" service, also known as the SSH connection protocol.

SSHを介して実行するには、クライアントルーターは最初にSSHv2トランスポートプロトコルを使用してSSHトランスポート接続を確立し、クライアントとサーバーはメッセージの整合性と暗号化のために鍵を交換します。次に、SSH認証プロトコル[RFC4252]で説明されているように、クライアントは "ssh-userauth"サービスを呼び出してアプリケーションを認証します。アプリケーションが正常に認証されると、クライアントは「ssh-connection」サービス(SSH接続プロトコルとも呼ばれます)を呼び出します。

After the ssh-connection service is established, the client opens a channel of type "session", which results in an SSH session.


Once the SSH session has been established, the application invokes the application transport as an SSH subsystem called "rpki-rtr". Subsystem support is a feature of SSHv2 and is not included in SSHv1. Running this protocol as an SSH subsystem avoids the need for the application to recognize shell prompts or skip over extraneous information, such as a system message that is sent at shell startup.


It is assumed that the router and cache have exchanged keys out of band by some reasonably secured means.


Cache servers supporting SSH transport MUST accept RSA authentication and SHOULD accept Elliptic Curve Digital Signature Algorithm (ECDSA) authentication. User authentication MUST be supported; host authentication MAY be supported. Implementations MAY support password authentication. Client routers SHOULD verify the public key of the cache to avoid MITM attacks.


9.2. TLS Transport
9.2. TLSトランスポート

Client routers using TLS transport MUST present client-side certificates to authenticate themselves to the cache in order to allow the cache to manage the load by rejecting connections from unauthorized routers. In principle, any type of certificate and Certification Authority (CA) may be used; however, in general, cache operators will wish to create their own small-scale CA and issue certificates to each authorized router. This simplifies credential rollover; any unrevoked, unexpired certificate from the proper CA may be used.


Certificates used to authenticate client routers in this protocol MUST include a subjectAltName extension [RFC5280] containing one or more iPAddress identities; when authenticating the router's certificate, the cache MUST check the IP address of the TLS connection against these iPAddress identities and SHOULD reject the connection if none of the iPAddress identities match the connection.

このプロトコルでクライアントルーターの認証に使用される証明書には、1つ以上のiPAddress IDを含むsubjectAltName拡張[RFC5280]が含まれている必要があります。ルーターの証明書を認証するとき、キャッシュはこれらのiPAddress IDに対してTLS接続のIPアドレスをチェックしなければならず、どのiPAddress IDも接続と一致しない場合は接続を拒否する必要があります。

Routers MUST also verify the cache's TLS server certificate, using subjectAltName dNSName identities as described in [RFC6125], to avoid MITM attacks. The rules and guidelines defined in [RFC6125] apply here, with the following considerations:

ルータは、MITM攻撃を回避するために、[RFC6125]で説明されているように、subjectAltName dNSName IDを使用して、キャッシュのTLSサーバー証明書も検証する必要があります。 [RFC6125]で定義されているルールとガイドラインは、次の点を考慮してここに適用されます。

o Support for the DNS-ID identifier type (that is, the dNSName identity in the subjectAltName extension) is REQUIRED in rpki-rtr server and client implementations which use TLS. Certification authorities which issue rpki-rtr server certificates MUST support the DNS-ID identifier type, and the DNS-ID identifier type MUST be present in rpki-rtr server certificates.

o DNS-ID識別子タイプ(つまり、subjectAltName拡張のdNSNameアイデンティティ)のサポートは、TLSを使用するrpki-rtrサーバーおよびクライアントの実装で必須です。 rpki-rtrサーバー証明書を発行する認証局は、DNS-ID識別子タイプをサポートする必要があり、DNS-ID識別子タイプは、rpki-rtrサーバー証明書に存在する必要があります。

o DNS names in rpki-rtr server certificates SHOULD NOT contain the wildcard character "*".

o rpki-rtrサーバー証明書のDNS名には、ワイルドカード文字「*」を含めないでください。

o rpki-rtr implementations which use TLS MUST NOT use Common Name (CN-ID) identifiers; a CN field may be present in the server certificate's subject name but MUST NOT be used for authentication within the rules described in [RFC6125].

o TLSを使用するrpki-rtr実装は、共通名(CN-ID)識別子を使用してはならない(MUST NOT)。 CNフィールドはサーバー証明書のサブジェクト名に存在する場合がありますが、[RFC6125]で説明されているルール内の認証に使用してはなりません(MUST NOT)。

o The client router MUST set its "reference identifier" to the DNS name of the rpki-rtr cache.

o クライアントルータは、その「参照識別子」をrpki-rtrキャッシュのDNS名に設定する必要があります。

9.3. TCP MD5 Transport
9.3. TCP MD5トランスポート

If TCP MD5 is used, implementations MUST support key lengths of at least 80 printable ASCII bytes, per Section 4.5 of [RFC2385]. Implementations MUST also support hexadecimal sequences of at least 32 characters, i.e., 128 bits.

TCP MD5を使用する場合、実装は[RFC2385]のセクション4.5に従って、少なくとも80の印刷可能なASCIIバイトのキー長をサポートする必要があります。実装は、少なくとも32文字、つまり128ビットの16進シーケンスもサポートする必要があります。

Key rollover with TCP MD5 is problematic. Cache servers SHOULD support [RFC4808].

TCP MD5でのキーロールオーバーには問題があります。キャッシュサーバーは[RFC4808]をサポートする必要があります(SHOULD)。

9.4. TCP-AO Transport
9.4. TCP-AOトランスポート

Implementations MUST support key lengths of at least 80 printable ASCII bytes. Implementations MUST also support hexadecimal sequences of at least 32 characters, i.e., 128 bits. Message Authentication Code (MAC) lengths of at least 96 bits MUST be supported, per Section 5.1 of [RFC5925].

実装では、少なくとも80の印刷可能なASCIIバイトのキー長をサポートする必要があります。実装は、少なくとも32文字、つまり128ビットの16進シーケンスもサポートする必要があります。 [RFC5925]のセクション5.1に従って、少なくとも96ビットのメッセージ認証コード(MAC)の長さがサポートされている必要があります。

The cryptographic algorithms and associated parameters described in [RFC5926] MUST be supported.


10. Router-Cache Setup
10. ルーターキャッシュの設定

A cache has the public authentication data for each router it is configured to support.


A router may be configured to peer with a selection of caches, and a cache may be configured to support a selection of routers. Each must have the name of, and authentication data for, each peer. In addition, in a router, this list has a non-unique preference value for each server. This preference merely denotes proximity, not trust, preferred belief, et cetera. The client router attempts to establish a session with each potential serving cache in preference order and then starts to load data from the most preferred cache to which it can connect and authenticate. The router's list of caches has the following elements:


Preference: An unsigned integer denoting the router's preference to connect to that cache; the lower the value, the more preferred.


Name: The IP address or fully qualified domain name of the cache.


Cache Credential(s): Any credential (such as a public key) needed to authenticate the cache's identity to the router.


Router Credential(s): Any credential (such as a private key or certificate) needed to authenticate the router's identity to the cache.


Due to the distributed nature of the RPKI, caches simply cannot be rigorously synchronous. A client may hold data from multiple caches but MUST keep the data marked as to source, as later updates MUST affect the correct data.


Just as there may be more than one covering ROA from a single cache, there may be multiple covering ROAs from multiple caches. The results are as described in [RFC6811].


If data from multiple caches are held, implementations MUST NOT distinguish between data sources when performing validation of BGP announcements.

複数のキャッシュからのデータが保持されている場合、実装はBGPアナウンスの検証を実行するときにデータソースを区別してはなりません(MUST NOT)。

When a more-preferred cache becomes available, if resources allow, it would be prudent for the client to start fetching from that cache.


The client SHOULD attempt to maintain at least one set of data, regardless of whether it has chosen a different cache or established a new connection to the previous cache.


A client MAY drop the data from a particular cache when it is fully in sync with one or more other caches.


See Section 6 for details on what to do when the client is not able to refresh from a particular cache.


If a client loses connectivity to a cache it is using or otherwise decides to switch to a new cache, it SHOULD retain the data from the previous cache until it has a full set of data from one or more other caches. Note that this may already be true at the point of connection loss if the client has connections to more than one cache.


11. Deployment Scenarios
11. 導入シナリオ

For illustration, we present three likely deployment scenarios:


Small End Site: The small multihomed end site may wish to outsource the RPKI cache to one or more of their upstream ISPs. They would exchange authentication material with the ISP using some out-of-band mechanism, and their router(s) would connect to the cache(s) of one or more upstream ISPs. The ISPs would likely deploy caches intended for customer use separately from the caches with which their own BGP speakers peer.

小規模なエンドサイト:小規模なマルチホームのエンドサイトは、RPKIキャッシュを1つまたは複数の上流ISPにアウトソーシングしたい場合があります。彼らは何らかのアウトオブバンドメカニズムを使用してISPと認証情報を交換し、ルーターは1つ以上の上流ISPのキャッシュに接続します。 ISPは、顧客の使用を意図したキャッシュを、自社のBGPスピーカーがピアリングするキャッシュとは別に展開する可能性があります。

Large End Site: A larger multihomed end site might run one or more caches, arranging them in a hierarchy of client caches, each fetching from a serving cache which is closer to the Global RPKI. They might configure fallback peerings to upstream ISP caches.


ISP Backbone: A large ISP would likely have one or more redundant caches in each major point of presence (PoP), and these caches would fetch from each other in an ISP-dependent topology so as not to place undue load on the Global RPKI.


Experience with large DNS cache deployments has shown that complex topologies are ill-advised, as it is easy to make errors in the graph, e.g., not maintain a loop-free condition.


Of course, these are illustrations, and there are other possible deployment strategies. It is expected that minimizing load on the Global RPKI servers will be a major consideration.


To keep load on Global RPKI services from unnecessary peaks, it is recommended that primary caches which load from the distributed Global RPKI not do so all at the same times, e.g., on the hour. Choose a random time, perhaps the ISP's AS number modulo 60, and jitter the inter-fetch timing.


12. Error Codes
12. エラーコード

This section contains a preliminary list of error codes. The authors expect additions to the list during development of the initial implementations. There is an IANA registry where valid error codes are listed; see Section 14. Errors which are considered fatal MUST cause the session to be dropped.


0: Corrupt Data (fatal): The receiver believes the received PDU to be corrupt in a manner not specified by another error code.


1: Internal Error (fatal): The party reporting the error experienced some kind of internal error unrelated to protocol operation (ran out of memory, a coding assertion failed, et cetera).


2: No Data Available: The cache believes itself to be in good working order but is unable to answer either a Serial Query or a Reset Query because it has no useful data available at this time. This is likely to be a temporary error and most likely indicates that the cache has not yet completed pulling down an initial current data set from the Global RPKI system after some kind of event that invalidated whatever data it might have previously held (reboot, network partition, et cetera).


3: Invalid Request (fatal): The cache server believes the client's request to be invalid.


4: Unsupported Protocol Version (fatal): The Protocol Version is not known by the receiver of the PDU.


5: Unsupported PDU Type (fatal): The PDU Type is not known by the receiver of the PDU.


6: Withdrawal of Unknown Record (fatal): The received PDU has Flag=0, but a matching record ({Prefix, Len, Max-Len, ASN} tuple for an IPvX PDU or {SKI, ASN, Subject Public Key} tuple for a Router Key PDU) does not exist in the receiver's database.

6:不明なレコードの撤回(致命的):受信したPDUにはFlag = 0がありますが、一致するレコード({Prefix、Len、Max-Len、ASN}タプル(IPvX PDUの場合)または{SKI、ASN、Subject Public Key}タプル)ルーターキーPDUの場合)は、受信者のデータベースに存在しません。

7: Duplicate Announcement Received (fatal): The received PDU has Flag=1, but a matching record ({Prefix, Len, Max-Len, ASN} tuple for an IPvX PDU or {SKI, ASN, Subject Public Key} tuple for a Router Key PDU) is already active in the router.

7:重複したアナウンスを受信しました(致命的):受信したPDUにはFlag = 1がありますが、一致するレコード(IPvX PDUの場合は{Prefix、Len、Max-Len、ASN}タプルまたは{SKI、ASN、Subject Public Key}タプルの場合ルーターキーPDU)はルーターで既にアクティブになっています。

8: Unexpected Protocol Version (fatal): The received PDU has a Protocol Version field that differs from the protocol version negotiated in Section 7.


13. Security Considerations
13. セキュリティに関する考慮事項

As this document describes a security protocol, many aspects of security interest are described in the relevant sections. This section points out issues which may not be obvious in other sections.


Cache Validation: In order for a collection of caches as described in Section 11 to guarantee a consistent view, they need to be given consistent trust anchors to use in their internal validation process. Distribution of a consistent trust anchor is assumed to be out of band.


Cache Peer Identification: The router initiates a transport connection to a cache, which it identifies by either IP address or fully qualified domain name. Be aware that a DNS or address spoofing attack could make the correct cache unreachable. No session would be established, as the authorization keys would not match.

キャッシュピアの識別:ルーターはキャッシュへのトランスポート接続を開始します。キャッシュは、IPアドレスまたは完全修飾ドメイン名で識別されます。 DNSまたはアドレスのなりすまし攻撃により、正しいキャッシュに到達できなくなる可能性があることに注意してください。認証キーが一致しないため、セッションは確立されません。

Transport Security: The RPKI relies on object, not server or transport, trust. That is, the IANA root trust anchor is distributed to all caches through some out-of-band means and can then be used by each cache to validate certificates and ROAs all the way down the tree. The inter-cache relationships are based on this object security model; hence, the inter-cache transport can be lightly protected.


However, this protocol document assumes that the routers cannot do the validation cryptography. Hence, the last link, from cache to router, is secured by server authentication and transport-level security. This is dangerous, as server authentication and transport have very different threat models than object security.


So the strength of the trust relationship and the transport between the router(s) and the cache(s) are critical. You're betting your routing on this.


While we cannot say the cache must be on the same LAN, if only due to the issue of an enterprise wanting to offload the cache task to their upstream ISP(s), locality, trust, and control are very critical issues here. The cache(s) really SHOULD be as close, in the sense of controlled and protected (against DDoS, MITM) transport, to the router(s) as possible. It also SHOULD be topologically close so that a minimum of validated routing data are needed to bootstrap a router's access to a cache.


The identity of the cache server SHOULD be verified and authenticated by the router client, and vice versa, before any data are exchanged.


Transports which cannot provide the necessary authentication and integrity (see Section 9) must rely on network design and operational controls to provide protection against spoofing/ corruption attacks. As pointed out in Section 9, TCP-AO is the long-term plan. Protocols which provide integrity and authenticity SHOULD be used, and if they cannot, i.e., TCP is used as the transport, the router and cache MUST be on the same trusted, controlled network.


14. IANA Considerations
14. IANAに関する考慮事項

This section only discusses updates required in the existing IANA protocol registries to accommodate version 1 of this protocol. See [RFC6810] for IANA considerations from the original (version 0) protocol.


All existing entries in the IANA "rpki-rtr-pdu" registry remain valid for protocol version 0. All of the PDU types allowed in protocol version 0 are also allowed in protocol version 1, with the addition of the new Router Key PDU. To reduce the likelihood of confusion, the PDU number used by the Router Key PDU in protocol version 1 is hereby registered as reserved (and unused) in protocol version 0.

IANA "rpki-rtr-pdu"レジストリの既存のエントリはすべて、プロトコルバージョン0でも有効です。プロトコルバージョン0で許可されているすべてのPDUタイプは、プロトコルバージョン1でも許可され、新しいルーターキーPDUが追加されています。混乱の可能性を減らすために、プロトコルバージョン1でルーターキーPDUによって使用されるPDU番号は、プロトコルバージョン0で予約済み(および未使用)として登録されます。

The policy for adding to the registry is RFC Required per [RFC8126]; the document must be either Standards Track or Experimental.

レジストリに追加するためのポリシーは、[RFC8126]によるRFC必須です。ドキュメントは、Standards TrackまたはExperimentalのいずれかである必要があります。

The "rpki-rtr-pdu" registry has been updated as follows:


              Protocol   PDU
              Version    Type  Description
              --------   ----  ---------------
                 0-1       0   Serial Notify
                 0-1       1   Serial Query
                 0-1       2   Reset Query
                 0-1       3   Cache Response
                 0-1       4   IPv4 Prefix
                 0-1       6   IPv6 Prefix
                 0-1       7   End of Data
                 0-1       8   Cache Reset
                  0        9   Reserved
                  1        9   Router Key
                 0-1      10   Error Report
                 0-1     255   Reserved

All existing entries in the IANA "rpki-rtr-error" registry remain valid for all protocol versions. Protocol version 1 adds one new error code:


              Code    Description
              -----   ---------------------------
                  8   Unexpected Protocol Version
15. References
15. 参考文献
15.1. Normative References
15.1. 引用文献

[RFC1982] Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982, DOI 10.17487/RFC1982, August 1996, <>.

[RFC1982] Elz、R. and R. Bush、 "Serial Number Arithmetic"、RFC 1982、DOI 10.17487 / RFC1982、August 1996、<>。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <>.

[RFC2119] Bradner、S。、「要件レベルを示すためにRFCで使用するキーワード」、BCP 14、RFC 2119、DOI 10.17487 / RFC2119、1997年3月、< rfc2119>。

[RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5 Signature Option", RFC 2385, DOI 10.17487/RFC2385, August 1998, <>.

[RFC2385] Heffernan、A。、「TCP MD5署名オプションによるBGPセッションの保護」、RFC 2385、DOI 10.17487 / RFC2385、1998年8月、<>。

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November 2003, <>.

[RFC3629] Yergeau、F。、「UTF-8、ISO 10646の変換フォーマット」、STD 63、RFC 3629、DOI 10.17487 / RFC3629、2003年11月、< rfc3629>。

[RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH) Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252, January 2006, <>.

[RFC4252] Ylonen、T。およびC. Lonvick、編、「The Secure Shell(SSH)Authentication Protocol」、RFC 4252、DOI 10.17487 / RFC4252、2006年1月、< info / rfc4252>。

[RFC4301] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, DOI 10.17487/RFC4301, December 2005, <>.

[RFC4301] Kent、S。およびK. Seo、「インターネットプロトコルのセキュリティアーキテクチャ」、RFC 4301、DOI 10.17487 / RFC4301、2005年12月、<>。

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <>.

[RFC5246] Dierks、T。およびE. Rescorla、「The Transport Layer Security(TLS)Protocol Version 1.2」、RFC 5246、DOI 10.17487 / RFC5246、2008年8月、< / rfc5246>。

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, <>.

[RFC5280] Cooper、D.、Santesson、S.、Farrell、S.、Boeyen、S.、Housley、R。、およびW. Polk、「インターネットX.509公開鍵インフラストラクチャ証明書および証明書失効リスト(CRL)プロファイル"、RFC 5280、DOI 10.17487 / RFC5280、2008年5月、<>。

[RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP Authentication Option", RFC 5925, DOI 10.17487/RFC5925, June 2010, <>.

[RFC5925] Touch、J.、Mankin、A。、およびR. Bonica、「The TCP Authentication Option」、RFC 5925、DOI 10.17487 / RFC5925、2010年6月、< / rfc5925>。

[RFC5926] Lebovitz, G. and E. Rescorla, "Cryptographic Algorithms for the TCP Authentication Option (TCP-AO)", RFC 5926, DOI 10.17487/RFC5926, June 2010, <>.

[RFC5926] Lebovitz、G。およびE. Rescorla、「TCP Authentication Option(TCP-AO)の暗号化アルゴリズム」、RFC 5926、DOI 10.17487 / RFC5926、2010年6月、< / info / rfc5926>。

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March 2011, <>.

[RFC6125] Saint-Andre、P。およびJ. Hodges、「トランスポート層セキュリティ(TLS)のコンテキストでX.​​509(PKIX)証明書を使用したインターネット公開鍵インフラストラクチャ内のドメインベースのアプリケーションサービスIDの表現と検証」、 RFC 6125、DOI 10.17487 / RFC6125、2011年3月、<>。

[RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for X.509 PKIX Resource Certificates", RFC 6487, DOI 10.17487/RFC6487, February 2012, <>.

[RFC6487] Huston、G.、Michaelson、G。、およびR. Loomans、「X.509 PKIXリソース証明書のプロファイル」、RFC 6487、DOI 10.17487 / RFC6487、2012年2月、<https://www.rfc->。

[RFC6810] Bush, R. and R. Austein, "The Resource Public Key Infrastructure (RPKI) to Router Protocol", RFC 6810, DOI 10.17487/RFC6810, January 2013, <>.

[RFC6810] Bush、R。およびR. Austein、「The Resource Public Key Infrastructure(RPKI)to Router Protocol」、RFC 6810、DOI 10.17487 / RFC6810、2013年1月、< info / rfc6810>。

[RFC6811] Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R. Austein, "BGP Prefix Origin Validation", RFC 6811, DOI 10.17487/RFC6811, January 2013, <>.

[RFC6811] Mohapatra、P.、Scudder、J.、Ward、D.、Bush、R。、およびR. Austein、「BGP Prefix Origin Validation」、RFC 6811、DOI 10.17487 / RFC6811、2013年1月、<https:/ />。

[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, <>.

[RFC8126]コットン、M。、レイバ、B。、およびT.ナルテン、「RFCでIANAの考慮事項セクションを作成するためのガイドライン」、BCP 26、RFC 8126、DOI 10.17487 / RFC8126、2017年6月、<https:// www / info / rfc8126>。

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <>.

[RFC8174] Leiba、B。、「RFC 2119キーワードの大文字と小文字のあいまいさ」、BCP 14、RFC 8174、DOI 10.17487 / RFC8174、2017年5月、< rfc8174>。

[RFC8208] Turner, S. and O. Borchert, "BGPsec Algorithms, Key Formats, and Signature Formats", RFC 8208, DOI 10.17487/RFC8208, September 2017, <>.

[RFC8208]ターナー、S。およびO.ボーチャート、「BGPsecアルゴリズム、キー形式、および署名形式」、RFC 8208、DOI 10.17487 / RFC8208、2017年9月、< rfc8208>。

15.2. Informative References
15.2. 参考引用

[RFC1996] Vixie, P., "A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)", RFC 1996, DOI 10.17487/RFC1996, August 1996, <>.

[RFC1996] Vixie、P。、「ゾーン変更の迅速な通知のためのメカニズム(DNS NOTIFY)」、RFC 1996、DOI 10.17487 / RFC1996、1996年8月、< >。

[RFC4808] Bellovin, S., "Key Change Strategies for TCP-MD5", RFC 4808, DOI 10.17487/RFC4808, March 2007, <>.

[RFC4808] Bellovin、S。、「TCP-MD5の主要な変更戦略」、RFC 4808、DOI 10.17487 / RFC4808、2007年3月、<>。

[RFC5781] Weiler, S., Ward, D., and R. Housley, "The rsync URI Scheme", RFC 5781, DOI 10.17487/RFC5781, February 2010, <>.

[RFC5781] Weiler、S.、Ward、D。、およびR. Housley、「The rsync URI Scheme」、RFC 5781、DOI 10.17487 / RFC5781、2010年2月、< / rfc5781>。

[RFC6480] Lepinski, M. and S. Kent, "An Infrastructure to Support Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480, February 2012, <>.

[RFC6480] Lepinski、M。およびS. Kent、「安全なインターネットルーティングをサポートするインフラストラクチャ」、RFC 6480、DOI 10.17487 / RFC6480、2012年2月、<> 。

[RFC6481] Huston, G., Loomans, R., and G. Michaelson, "A Profile for Resource Certificate Repository Structure", RFC 6481, DOI 10.17487/RFC6481, February 2012, <>.

[RFC6481] Huston、G.、Loomans、R。、およびG. Michaelson、「リソース証明書リポジトリ構造のプロファイル」、RFC 6481、DOI 10.17487 / RFC6481、2012年2月、<https://www.rfc-editor。 org / info / rfc6481>。



The authors wish to thank Nils Bars, Steve Bellovin, Tim Bruijnzeels, Rex Fernando, Richard Hansen, Paul Hoffman, Fabian Holler, Russ Housley, Pradosh Mohapatra, Keyur Patel, David Mandelberg, Sandy Murphy, Robert Raszuk, Andreas Reuter, Thomas C. Schmidt, John Scudder, Ruediger Volk, Matthias Waehlisch, and David Ward. Particular thanks go to Hannes Gredler for showing us the dangers of unnecessary fields.

著者は、Nils Bars、Steve Bellovin、Tim Bruijnzeels、Rex Fernando、Richard Hansen、Paul Hoffman、Fabian Holler、Russ Housley、Pradosh Mohapatra、Keyur Patel、David Mandelberg、Sandy Murphy、Robert Raszuk、Andreas Reuter、Thomas Cに感謝します。シュミット、ジョン・スカダー、ルーディガー・フォルク、マティアス・ウェーリッシュ、デビッド・ウォード。不要なフィールドの危険性を示してくれたHannes Gredlerに特に感謝します。

No doubt this list is incomplete. We apologize to any contributor whose name we missed.


Authors' Addresses


Randy Bush Internet Initiative Japan 5147 Crystal Springs Bainbridge Island, Washington 98110 United States of America

ランディブッシュインターネットイニシアチブ日本5147 Crystal Springsベインブリッジ島、ワシントン98110アメリカ合衆国


Rob Austein Dragon Research Labs