[要約] RFC 8347は、仮想ルータ冗長プロトコル(VRRP)のためのYANGデータモデルを提供しています。このRFCの目的は、VRRPの設定と管理を効率化し、ネットワークの可用性と冗長性を向上させることです。
Internet Engineering Task Force (IETF) X. Liu, Ed. Request for Comments: 8347 A. Kyparlis Category: Standards Track Jabil ISSN: 2070-1721 R. Parikh VMware A. Lindem Cisco Systems M. Zhang Huawei Technologies March 2018
A YANG Data Model for the Virtual Router Redundancy Protocol (VRRP)
仮想ルーター冗長プロトコル(VRRP)のYANGデータモデル
Abstract
概要
This document describes a data model for the Virtual Router Redundancy Protocol (VRRP). Both versions 2 and 3 of VRRP are covered.
このドキュメントでは、仮想ルーター冗長プロトコル(VRRP)のデータモデルについて説明します。 VRRPのバージョン2と3の両方がカバーされています。
Status of This Memo
本文書の状態
This is an Internet Standards Track document.
これはInternet Standards Trackドキュメントです。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。インターネット標準の詳細については、RFC 7841のセクション2をご覧ください。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8347.
このドキュメントの現在のステータス、エラッタ、およびフィードバックの提供方法に関する情報は、https://www.rfc-editor.org/info/rfc8347で入手できます。
Copyright Notice
著作権表示
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
Copyright(c)2018 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
この文書は、BCP 78およびIETF文書に関するIETFトラストの法的規定(https://trustee.ietf.org/license-info)の対象であり、この文書の発行日に有効です。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseのテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。
Table of Contents
目次
1. Introduction ....................................................2 1.1. Terminology ................................................2 1.2. Tree Diagrams ..............................................3 1.3. Prefixes in Data Node Names ................................3 2. Design of the Data Model ........................................3 2.1. Scope of the Model .........................................3 2.2. Relationships with the Interface Model and IP Model ........4 2.3. Protocol Configuration .....................................5 2.4. Protocol States ............................................6 2.5. Notifications ..............................................9 3. Tree Structure .................................................10 4. YANG Module ....................................................13 5. IANA Considerations ............................................35 6. Security Considerations ........................................36 7. References .....................................................37 7.1. Normative References ......................................37 7.2. Informative References ....................................38 Appendix A. Data Tree Example .....................................40 Authors' Addresses ................................................45
This document introduces a YANG data model [RFC6020] [RFC7950] for the Virtual Router Redundancy Protocol (VRRP) [RFC3768] [RFC5798]. VRRP provides higher resiliency by specifying an election protocol that dynamically assigns responsibility for a virtual router to one of the VRRP routers on a LAN.
このドキュメントでは、仮想ルーター冗長プロトコル(VRRP)[RFC3768] [RFC5798]のYANGデータモデル[RFC6020] [RFC7950]を紹介します。 VRRPは、LAN上のVRRPルーターの1つに仮想ルーターの責任を動的に割り当てる選択プロトコルを指定することで、より高い復元力を提供します。
The YANG module specified in this document supports both versions 2 and 3 of VRRP. VRRP version 2 (defined in [RFC3768]) supports IPv4. VRRP version 3 (defined in [RFC5798]) supports both IPv4 and IPv6.
このドキュメントで指定されているYANGモジュールは、VRRPのバージョン2と3の両方をサポートしています。 VRRPバージョン2([RFC3768]で定義)はIPv4をサポートしています。 VRRPバージョン3([RFC5798]で定義)は、IPv4とIPv6の両方をサポートしています。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
キーワード「MUST」、「MUST NOT」、「REQUIRED」、「SHALL」、「SHALL NOT」、「SHOULD」、「SHOULD NOT」、「RECOMMENDED」、「NOT RECOMMENDED」、「MAY」、「OPTIONALこのドキュメントの「」は、BCP 14 [RFC2119] [RFC8174]で説明されているように解釈されます。
The following terms are defined in [RFC7950] and are not redefined here:
以下の用語は[RFC7950]で定義されており、ここでは再定義されません。
o augment
o 増強
o data model
o データ・モデル
o data node
o だた ので
A simplified graphical representation of the data model is used in this document. The meaning of the symbols in these diagrams is defined in [RFC8340].
このドキュメントでは、データモデルの簡略化されたグラフィカル表現を使用しています。これらの図の記号の意味は、[RFC8340]で定義されています。
In this document, names of data nodes, actions, and other data model objects are often used without a prefix, as long as it is clear from the context in which YANG module each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1.
このドキュメントでは、データノード、アクション、およびその他のデータモデルオブジェクトの名前は、YANGモジュールの各名前が定義されているコンテキストから明らかである限り、プレフィックスなしで使用されることがよくあります。それ以外の場合、表1に示すように、対応するYANGモジュールに関連付けられた標準の接頭辞を使用して名前に接頭辞が付けられます。
+--------+-----------------+-----------+ | Prefix | YANG module | Reference | +--------+-----------------+-----------+ | yang | ietf-yang-types | [RFC6991] | | inet | ietf-inet-types | [RFC6991] | | if | ietf-interfaces | [RFC8343] | | ip | ietf-ip | [RFC8344] | +--------+-----------------+-----------+
Table 1: Prefixes and Corresponding YANG Modules
表1:接頭辞と対応するYANGモジュール
The model covers VRRP version 2 [RFC3768] and VRRP version 3 [RFC5798]. The model is designed to be implemented on a device where VRRP version 2 or 3 is implemented. With the help of a proper management protocol, the defined model can be used to:
モデルはVRRPバージョン2 [RFC3768]とVRRPバージョン3 [RFC5798]をカバーしています。モデルは、VRRPバージョン2または3が実装されているデバイスに実装されるように設計されています。適切な管理プロトコルの助けを借りて、定義されたモデルを使用して次のことができます。
o Configure VRRP version 2 or 3.
o VRRPバージョン2または3を構成します。
o Manage the protocol operational behavior.
o プロトコルの動作動作を管理します。
o Retrieve the protocol operational status.
o プロトコルの動作ステータスを取得します。
o Receive the protocol notifications.
o プロトコル通知を受信します。
This model augments the interface data model "ietf-interfaces" [RFC8343] and the IP management model "ietf-ip" [RFC8344]. The augmentation relationships are shown as follows:
このモデルは、インターフェースデータモデル「ietf-interfaces」[RFC8343]とIP管理モデル「ietf-ip」[RFC8344]を補強します。拡張関係は次のように表示されます。
module: ietf-interfaces +--rw interfaces +--rw interface* [name] ... +--rw ip:ipv4! | +--rw ip:address* [ip] ... | +--rw vrrp:vrrp | +--rw vrrp:vrrp-instance* [vrid] | +--rw vrrp:vrid uint8 | +--rw vrrp:virtual-ipv4-addresses ... +--rw ip:ipv6! +--rw ip:address* [ip] ... +--rw vrrp:vrrp +--rw vrrp:vrrp-instance* [vrid] +--rw vrrp:vrid uint8 +--rw vrrp:virtual-ipv6-addresses ...
In the above figure, a tree node without a prefix is from the model "ietf-interfaces". A tree node with prefix "ip:" is from the model "ietf-ip". A tree node with prefix "vrrp:" is from the VRRP model specified in this document.
上の図では、接頭辞のないツリーノードはモデル「ietf-interfaces」からのものです。接頭辞が「ip:」のツリーノードは、モデル「ietf-ip」からのものです。接頭辞が「vrrp:」のツリーノードは、このドキュメントで指定されているVRRPモデルのものです。
The "vrrp" container contains a list of vrrp-instance nodes, which are instantiated under an interface for a specified address family (IPv4 or IPv6).
「vrrp」コンテナには、指定されたアドレスファミリ(IPv4またはIPv6)のインターフェースの下でインスタンス化されるvrrp-instanceノードのリストが含まれています。
Each vrrp-instance node represents a VRRP router state machine, as described in Section 6.4 of [RFC5798], providing the configuration and state information for the election process of a virtual router. The IP addresses on the augmented interface are the real addresses through which the VRRP router operates. The IPv4 or IPv6 address or addresses associated with a virtual router (described in Section 1 of [RFC5798]) are modeled as a list of IPv4 or IPv6 addresses under the vrrp-instance.
[RFC5798]のセクション6.4で説明されているように、各vrrp-instanceノードはVRRPルーターステートマシンを表し、仮想ルーターの選出プロセスの構成と状態情報を提供します。拡張インターフェースのIPアドレスは、VRRPルーターが動作する実際のアドレスです。 IPv4またはIPv6アドレス、または仮想ルーターに関連付けられたアドレス([RFC5798]のセクション1で説明)は、vrrp-instanceの下のIPv4またはIPv6アドレスのリストとしてモデル化されます。
The model structure for the protocol configuration is as shown below:
プロトコル構成のモデル構造は次のとおりです。
augment /if:interfaces/if:interface/ip:ipv4: +--rw vrrp +--rw vrrp-instance* [vrid] +--rw vrid uint8 | ... +--rw track | +--rw interfaces | | +--rw interface* [interface] | | +--rw interface if:interface-ref | | ... | +--rw networks | +--rw network* [prefix] | +--rw prefix inet:ipv4-prefix | ... +--rw virtual-ipv4-addresses +--rw virtual-ipv4-address* [ipv4-address] +--rw ipv4-address inet:ipv4-address
augment /if:interfaces/if:interface/ip:ipv6: +--rw vrrp +--rw vrrp-instance* [vrid] +--rw vrid uint8 | ... +--rw track | +--rw interfaces | | +--rw interface* [interface] | | +--rw interface if:interface-ref | | ... | +--rw networks | +--rw network* [prefix] | +--rw prefix inet:ipv6-prefix | ... +--rw virtual-ipv6-addresses +--rw virtual-ipv6-address* [ipv6-address] +--rw ipv6-address inet:ipv6-address
The model allows the following protocol entities to be configured:
このモデルでは、次のプロトコルエンティティを構成できます。
o VRRP instance (version 2 or 3), representing a VRRP router.
o VRRPルーターを表すVRRPインスタンス(バージョン2または3)。
o Virtual IPv4 or IPv6 address associated with a virtual router.
o 仮想ルーターに関連付けられた仮想IPv4またはIPv6アドレス。
o Tracking interface, to detect interface connectivity failures.
o インターフェイスの接続障害を検出するためのインターフェイスの追跡。
o Tracking network, to detect network connectivity failures.
o ネットワーク接続障害を検出するためのネットワークの追跡。
The model structure for the protocol states is as shown below:
プロトコル状態のモデル構造は次のとおりです。
module: ietf-vrrp +--ro vrrp | // global operational states +--ro virtual-routers? uint32 +--ro interfaces? uint32 +--ro statistics // global statistics +--ro discontinuity-datetime? yang:date-and-time +--ro checksum-errors? yang:counter64 +--ro version-errors? yang:counter64 +--ro vrid-errors? yang:counter64 +--ro ip-ttl-errors? yang:counter64
augment /if:interfaces/if:interface/ip:ipv4: +--rw vrrp +--rw vrrp-instance* [vrid] +--rw vrid uint8 | ... +--rw track | +--rw interfaces | | +--rw interface* [interface] | | +--rw interface if:interface-ref | | ... | +--rw networks | +--rw network* [prefix] | +--rw prefix inet:ipv4-prefix | ...
+--rw virtual-ipv4-addresses | +--rw virtual-ipv4-address* [ipv4-address] | +--rw ipv4-address inet:ipv4-address | | // per-instance operational states +--ro state? identityref +--ro is-owner? boolean +--ro last-adv-source? inet:ip-address +--ro up-datetime? yang:date-and-time +--ro master-down-interval? uint32 +--ro skew-time? uint32 +--ro last-event? identityref +--ro new-master-reason? new-master-reason-type +--ro statistics // per-instance statistics +--ro discontinuity-datetime? yang:date-and-time +--ro master-transitions? yang:counter32 +--ro advertisement-rcvd? yang:counter64 +--ro advertisement-sent? yang:counter64 +--ro interval-errors? yang:counter64 | {validate-interval-errors}? +--ro priority-zero-pkts-rcvd? yang:counter64 +--ro priority-zero-pkts-sent? yang:counter64 +--ro invalid-type-pkts-rcvd? yang:counter64 +--ro address-list-errors? yang:counter64 | {validate-address-list-errors}? +--ro packet-length-errors? yang:counter64
augment /if:interfaces/if:interface/ip:ipv6: +--rw vrrp +--rw vrrp-instance* [vrid] +--rw vrid uint8 + ... +--rw track | +--rw interfaces | | +--rw interface* [interface] | | +--rw interface if:interface-ref | | ... | +--rw networks | +--rw network* [prefix] | +--rw prefix inet:ipv6-prefix | ... +--rw virtual-ipv6-addresses | +--rw virtual-ipv6-address* [ipv6-address] | +--rw ipv6-address inet:ipv6-address |
| // per-instance operational states +--ro state? identityref +--ro is-owner? boolean +--ro last-adv-source? inet:ip-address +--ro up-datetime? yang:date-and-time +--ro master-down-interval? uint32 +--ro skew-time? uint32 +--ro last-event? identityref +--ro new-master-reason? new-master-reason-type +--ro statistics // per-instance statistics +--ro discontinuity-datetime? yang:date-and-time +--ro master-transitions? yang:counter32 +--ro advertisement-rcvd? yang:counter64 +--ro advertisement-sent? yang:counter64 +--ro interval-errors? yang:counter64 | {validate-interval-errors}? +--ro priority-zero-pkts-rcvd? yang:counter64 +--ro priority-zero-pkts-sent? yang:counter64 +--ro invalid-type-pkts-rcvd? yang:counter64 +--ro address-list-errors? yang:counter64 | {validate-address-list-errors}? +--ro packet-length-errors? yang:counter64
This model conforms to the Network Management Datastore Architecture (NMDA) [RFC8342]. The operational state data is combined with the associated configuration data in the same hierarchy [YANG-Guidelines]. When protocol states are retrieved from the NMDA operational state datastore, the returned states cover all "config true" (rw) and "config false" (ro) nodes defined in the schema.
このモデルは、ネットワーク管理データストアアーキテクチャ(NMDA)[RFC8342]に準拠しています。運用状態データは、同じ階層内の関連する構成データと組み合わされます[YANG-Guidelines]。プロトコル状態がNMDA動作状態データストアから取得されると、返される状態は、スキーマで定義されているすべての「config true」(rw)および「config false」(ro)ノードをカバーします。
The model allows the retrieval of protocol states at the following levels:
このモデルでは、次のレベルでプロトコルの状態を取得できます。
o VRRP instance (version 2 or 3), representing a VRRP router.
o VRRPルーターを表すVRRPインスタンス(バージョン2または3)。
o Virtual IPv4 or IPv6 address associated with a virtual router.
o 仮想ルーターに関連付けられた仮想IPv4またはIPv6アドレス。
o Tracking interface, to detect interface connectivity failures.
o インターフェイスの接続障害を検出するためのインターフェイスの追跡。
o Tracking network, to detect network connectivity failures.
o ネットワーク接続障害を検出するためのネットワークの追跡。
o Global states and statistics summarizing all instances.
o すべてのインスタンスを要約したグローバルな状態と統計。
This model defines the following VRRP-specific notifications:
このモデルは、次のVRRP固有の通知を定義します。
notifications: +---n vrrp-new-master-event | +--ro master-ip-address inet:ip-address | +--ro new-master-reason new-master-reason-type +---n vrrp-protocol-error-event | +--ro protocol-error-reason identityref +---n vrrp-virtual-router-error-event +--ro interface if:interface-ref +--ro (ip-version) | +--:(ipv4) | | +--ro ipv4 | | +--ro vrid leafref | +--:(ipv6) | +--ro ipv6 | +--ro vrid leafref +--ro virtual-router-error-reason identityref
Each notification type is used to indicate a type of VRRP state change or error occurrence:
各通知タイプは、VRRP状態変更またはエラー発生のタイプを示すために使用されます。
vrrp-new-master-event VRRP new master event, indicating that a new master has been elected.
vrrp-new-master-event VRRP新しいマスターイベント。新しいマスターが選出されたことを示します。
vrrp-protocol-error-event VRRP protocol error event for a message that fails to reach a VRRP instance to be processed.
vrrp-protocol-error-event処理するVRRPインスタンスに到達できないメッセージのVRRPプロトコルエラーイベント。
vrrp-virtual-router-error-event VRRP virtual router error event for a message processed on a VRRP instance.
VRRPインスタンスで処理されたメッセージのvrrp-virtual-router-error-event VRRP仮想ルーターエラーイベント。
In addition to the notifications specified above, the mechanisms defined in [Subscribed-Notifications] and [YANG-Push] can be used for other general notifications. These mechanisms currently allow the user to:
上記の通知に加えて、[Subscribe-Notifications]と[YANG-Push]で定義されたメカニズムを他の一般的な通知に使用できます。現在、これらのメカニズムにより、ユーザーは次のことができます。
o Subscribe notifications on a per-client basis.
o クライアントごとに通知をサブスクライブします。
o Specify subtree filters or XML Path Language (XPath) filters so that only contents of interest will be sent.
o 関心のあるコンテンツのみが送信されるように、サブツリーフィルターまたはXMLパス言語(XPath)フィルターを指定します。
o Specify either periodic or on-demand notifications.
o 定期的またはオンデマンドの通知を指定します。
The VRRP YANG data model defined in this document has the following tree structure:
このドキュメントで定義されているVRRP YANGデータモデルのツリー構造は次のとおりです。
module: ietf-vrrp +--ro vrrp +--ro virtual-routers? uint32 +--ro interfaces? uint32 +--ro statistics +--ro discontinuity-datetime? yang:date-and-time +--ro checksum-errors? yang:counter64 +--ro version-errors? yang:counter64 +--ro vrid-errors? yang:counter64 +--ro ip-ttl-errors? yang:counter64 augment /if:interfaces/if:interface/ip:ipv4: +--rw vrrp +--rw vrrp-instance* [vrid] +--rw vrid uint8 +--rw version identityref +--rw log-state-change? boolean +--rw preempt | +--rw enabled? boolean | +--rw hold-time? uint16 +--rw priority? uint8 +--rw accept-mode? boolean +--rw (advertise-interval-choice)? | +--:(v2) | | +--rw advertise-interval-sec? uint8 | +--:(v3) | +--rw advertise-interval-centi-sec? uint16 +--rw track | +--rw interfaces | | +--rw interface* [interface] | | +--rw interface if:interface-ref | | +--rw priority-decrement? uint8 | +--rw networks | +--rw network* [prefix] | +--rw prefix inet:ipv4-prefix | +--rw priority-decrement? uint8 +--rw virtual-ipv4-addresses | +--rw virtual-ipv4-address* [ipv4-address] | +--rw ipv4-address inet:ipv4-address +--ro state? identityref +--ro is-owner? boolean +--ro last-adv-source? inet:ip-address +--ro up-datetime? yang:date-and-time +--ro master-down-interval? uint32
+--ro skew-time? uint32 +--ro last-event? identityref +--ro new-master-reason? new-master-reason-type +--ro statistics +--ro discontinuity-datetime? yang:date-and-time +--ro master-transitions? yang:counter32 +--ro advertisement-rcvd? yang:counter64 +--ro advertisement-sent? yang:counter64 +--ro interval-errors? yang:counter64 | {validate-interval-errors}? +--ro priority-zero-pkts-rcvd? yang:counter64 +--ro priority-zero-pkts-sent? yang:counter64 +--ro invalid-type-pkts-rcvd? yang:counter64 +--ro address-list-errors? yang:counter64 | {validate-address-list-errors}? +--ro packet-length-errors? yang:counter64 augment /if:interfaces/if:interface/ip:ipv6: +--rw vrrp +--rw vrrp-instance* [vrid] +--rw vrid uint8 +--rw version identityref +--rw log-state-change? boolean +--rw preempt | +--rw enabled? boolean | +--rw hold-time? uint16 +--rw priority? uint8 +--rw accept-mode? boolean +--rw advertise-interval-centi-sec? uint16 +--rw track | +--rw interfaces | | +--rw interface* [interface] | | +--rw interface if:interface-ref | | +--rw priority-decrement? uint8 | +--rw networks | +--rw network* [prefix] | +--rw prefix inet:ipv6-prefix | +--rw priority-decrement? uint8 +--rw virtual-ipv6-addresses | +--rw virtual-ipv6-address* [ipv6-address] | +--rw ipv6-address inet:ipv6-address +--ro state? identityref +--ro is-owner? boolean +--ro last-adv-source? inet:ip-address +--ro up-datetime? yang:date-and-time +--ro master-down-interval? uint32
+--ro skew-time? uint32 +--ro last-event? identityref +--ro new-master-reason? new-master-reason-type +--ro statistics +--ro discontinuity-datetime? yang:date-and-time +--ro master-transitions? yang:counter32 +--ro advertisement-rcvd? yang:counter64 +--ro advertisement-sent? yang:counter64 +--ro interval-errors? yang:counter64 | {validate-interval-errors}? +--ro priority-zero-pkts-rcvd? yang:counter64 +--ro priority-zero-pkts-sent? yang:counter64 +--ro invalid-type-pkts-rcvd? yang:counter64 +--ro address-list-errors? yang:counter64 | {validate-address-list-errors}? +--ro packet-length-errors? yang:counter64
notifications: +---n vrrp-new-master-event | +--ro master-ip-address inet:ip-address | +--ro new-master-reason new-master-reason-type +---n vrrp-protocol-error-event | +--ro protocol-error-reason identityref +---n vrrp-virtual-router-error-event +--ro interface if:interface-ref +--ro (ip-version) | +--:(ipv4) | | +--ro ipv4 | | +--ro vrid leafref | +--:(ipv6) | +--ro ipv6 | +--ro vrid leafref +--ro virtual-router-error-reason identityref
This module references [RFC2787], [RFC3768], [RFC5798], and [RFC6527].
このモジュールは、[RFC2787]、[RFC3768]、[RFC5798]、および[RFC6527]を参照します。
<CODE BEGINS> file "ietf-vrrp@2018-03-13.yang"
module ietf-vrrp { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-vrrp"; prefix "vrrp";
import ietf-inet-types { prefix "inet"; }
import ietf-yang-types { prefix "yang"; }
import ietf-interfaces { prefix "if"; }
import ietf-ip { prefix "ip"; }
organization "IETF Routing Area Working Group (RTGWG)"; contact "WG Web: <https://datatracker.ietf.org/wg/rtgwg/> WG List: <mailto:rtgwg@ietf.org>
Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com>
Editor: Athanasios Kyparlis <mailto:Athanasios_Kyparlis@jabil.com> Editor: Ravi Parikh <mailto:parikhr@vmware.com>
Editor: Acee Lindem <mailto:acee@cisco.com>
Editor: Mingui Zhang <mailto:zhangmingui@huawei.com>";
description "This YANG module defines a model for managing Virtual Router Redundancy Protocol (VRRP) versions 2 and 3.
説明「このYANGモジュールは、仮想ルーター冗長プロトコル(VRRP)バージョン2および3を管理するためのモデルを定義します。
Copyright (c) 2018 IETF Trust and the persons identified as authors of the code. All rights reserved.
Copyright(c)2018 IETF Trustおよびコードの作成者として識別された人物。全著作権所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).
ソースおよびバイナリ形式での再配布および使用は、変更の有無にかかわらず、IETF文書に関連するIETFトラストの法的規定のセクション4.cに記載されているSimplified BSD Licenseに従い、それに含まれるライセンス条項に従って許可されます( https://trustee.ietf.org/license-info)。
This version of this YANG module is part of RFC 8347; see the RFC itself for full legal notices.";
このYANGモジュールのこのバージョンはRFC 8347の一部です。完全な法的通知については、RFC自体を参照してください。 ";
revision 2018-03-13 { description "Initial revision."; reference "RFC 8347: A YANG Data Model for the Virtual Router Redundancy Protocol (VRRP) RFC 2787: Definitions of Managed Objects for the Virtual Router Redundancy Protocol RFC 3768: Virtual Router Redundancy Protocol (VRRP) RFC 5798: Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6 RFC 6527: Definitions of Managed Objects for the Virtual Router Redundancy Protocol Version 3 (VRRPv3)"; }
/* * Features */
feature validate-interval-errors { description "This feature indicates that the system validates that the advertisement interval from advertisement packets received is the same as the interval configured for the local VRRP router."; }
feature validate-address-list-errors { description "This feature indicates that the system validates that the address list from received packets matches the locally configured list for the VRRP router."; }
/* * Typedefs */
typedef new-master-reason-type { type enumeration { enum not-master { description "The virtual router has never transitioned to master state."; } enum priority { description "Priority was higher."; } enum preempted { description "The master was preempted."; } enum no-response { description "Previous master did not respond."; } } description "Indicates why the virtual router has transitioned to master state."; } // new-master-reason-type
/* * Identities */
/* vrrp-event-type identity and its derivatives. */ identity vrrp-event-type { description "Indicates the type of a VRRP protocol event."; } identity vrrp-event-none { base vrrp-event-type; description "Indicates a non-meaningful event."; } identity vrrp-event-startup { base vrrp-event-type;
description "Indicates that a VRRP router has initiated the protocol."; } identity vrrp-event-shutdown { base vrrp-event-type; description "Indicates that a VRRP router has closed down the protocol."; } identity vrrp-event-higher-priority-backup { base vrrp-event-type; description "Indicates that a backup router has a higher priority than the current master."; } identity vrrp-event-master-timeout { base vrrp-event-type; description "Indicates that the current master has not sent an advertisement within the limit of master-down-interval."; } identity vrrp-event-interface-up { base vrrp-event-type; description "Indicates that the VRRP-enabled interface has become 'operational up'."; } identity vrrp-event-interface-down { base vrrp-event-type; description "Indicates that the VRRP-enabled interface has become 'operational down'."; } identity vrrp-event-no-primary-ip-address { base vrrp-event-type; description "Indicates that the primary IP address on the VRRP-enabled interface has become unavailable."; } identity vrrp-event-primary-ip-address { base vrrp-event-type; description "Indicates that the primary IP address on the VRRP-enabled interface has become available."; } identity vrrp-event-no-virtual-ip-addresses { base vrrp-event-type; description "Indicates that there are no virtual IP addresses on the
virtual router."; } identity vrrp-event-virtual-ip-addresses { base vrrp-event-type; description "Indicates that there are virtual IP addresses on the virtual router."; } identity vrrp-event-preempt-hold-timeout { base vrrp-event-type; description "Indicates that the configured preemption hold time has passed."; } identity vrrp-event-lower-priority-master { base vrrp-event-type; description "Indicates that there is a lower-priority VRRP master."; } identity vrrp-event-owner-preempt { base vrrp-event-type; description "Indicates that the owner has preempted another router to become the master."; }
/* vrrp-error-global identity and its derivatives. */ identity vrrp-error-global { description "Indicates the type of a VRRP error that occurred for a packet before it reaches a VRRP router."; } identity checksum-error { base vrrp-error-global; description "A packet has been received with an invalid VRRP checksum value."; } identity ip-ttl-error { base vrrp-error-global; description "A packet has been received with IP TTL (Time-To-Live) not equal to 255."; } identity version-error { base vrrp-error-global; description "A packet has been received with an unknown or unsupported
version number."; } identity vrid-error { base vrrp-error-global; description "A packet has been received with a Virtual Router Identifier (VRID) that is not valid for any virtual router on this router."; }
/* vrrp-error-virtual-router identity and its derivatives. */ identity vrrp-error-virtual-router { description "Indicates the type of a VRRP error that occurred after a packet reaches a VRRP router."; } identity address-list-error { base vrrp-error-virtual-router; description "A packet has been received with an address list that does not match the locally configured address list for the virtual router."; } identity interval-error { base vrrp-error-virtual-router; description "A packet has been received with an advertisement interval different than the interval configured for the local virtual router."; } identity packet-length-error { base vrrp-error-virtual-router; description "A packet has been received with a packet length less than the length of the VRRP header."; }
/* vrrp-state-type identity and its derivatives. */ identity vrrp-state-type { description "Indicates the state of a virtual router."; } identity initialize { base vrrp-state-type; description "Indicates that the virtual router is waiting for a startup event."; } identity backup { base vrrp-state-type; description "Indicates that the virtual router is monitoring the availability of the master router."; } identity master { base vrrp-state-type; description "Indicates that the virtual router is forwarding packets for IP addresses that are associated with this virtual router."; }
/* vrrp-version identity and its derivatives. */ identity vrrp-version { description "The version of VRRP."; } identity vrrp-v2 { base vrrp-version; description "Indicates version 2 of VRRP."; } identity vrrp-v3 { base vrrp-version; description "Indicates version 3 of VRRP."; }
/* * Groupings */
grouping vrrp-common-attributes { description "Group of VRRP attributes common to versions 2 and 3.";
leaf vrid { type uint8 { range "1..255"; } description "Virtual Router ID (i.e., VRID)."; }
leaf version { type identityref {
base vrrp:vrrp-version; } mandatory true; description "Version 2 or 3 of VRRP."; }
leaf log-state-change { type boolean; default "false"; description "Generates VRRP state change messages each time the VRRP instance changes state (from 'up' to 'down' or 'down' to 'up')."; }
container preempt { description "Enables a higher-priority VRRP backup router to preempt a lower-priority VRRP master."; leaf enabled { type boolean; default "true"; description "'true' if preemption is enabled."; } leaf hold-time { type uint16; units seconds; default 0; description "Hold time, in seconds, for which a higher-priority VRRP backup router must wait before preempting a lower-priority VRRP master."; } }
leaf priority { type uint8 { range "1..254"; } default 100; description "Configures the VRRP election priority for the backup virtual router."; }
leaf accept-mode {
リーフ受け入れモード{
when "derived-from-or-self(current()/../version, 'vrrp-v3')" { description "Applicable only to version 3."; } type boolean; default "false"; description "Controls whether a virtual router in master state will accept packets addressed to the address owner's IPvX address as its own if it is not the IPvX address owner. The default is 'false'. Deployments that rely on, for example, pinging the address owner's IPvX address may wish to configure accept-mode to 'true'.
Note: IPv6 Neighbor Solicitations and Neighbor Advertisements MUST NOT be dropped when accept-mode is 'false'."; } } // vrrp-common-attributes
grouping vrrp-ipv4-attributes { description "Group of VRRP attributes for IPv4.";
uses vrrp-common-attributes;
vrrp-common-attributesを使用します。
choice advertise-interval-choice { description "The options for the advertisement interval at which VRRPv2 or VRRPv3 advertisements are sent from the specified interface.";
case v2 { when "derived-from-or-self(version, 'vrrp-v2')" { description "Applicable only to version 2."; } leaf advertise-interval-sec { type uint8 { range "1..254"; } units seconds; default 1; description "Configures the interval that VRRPv2 advertisements are sent from the specified interface."; } } case v3 { when "derived-from-or-self(version, 'vrrp-v3')" { description "Applicable only to version 3."; } leaf advertise-interval-centi-sec { type uint16 { range "1..4095"; } units centiseconds; default 100; description "Configures the interval that VRRPv3 advertisements are sent from the specified interface."; } } } // advertise-interval-choice
container track { description "Enables the specified VRRP instance to track interfaces or networks."; container interfaces { description "Enables the specified VRRPv2 or VRRPv3 instance to track interfaces. Interface tracking prevents traffic loss by detecting the availability of interfaces. The operational states of other interfaces are associated with the priority of a VRRP router. When a tracked interface becomes unavailable (or 'operational down'), the priority of the VRRP router decrements. When an unavailable interface becomes available again, the priority of the VRRP router is incremented by the same amount.";
list interface { key "interface"; description "Interface to track."; leaf interface { type if:interface-ref; must "/if:interfaces/if:interface[if:name=current()]/" + "ip:ipv4" { description "Interface is IPv4."; } description "Interface to track."; } leaf priority-decrement { type uint8 { range "1..254"; } default 10; description "Specifies how much to decrement the priority of the VRRP instance if the interface goes down."; } } // interface } // interfaces
container networks { description "Enables the VRRPv2 or VRRPv3 router instance to track the specified networks through their IPv4 network prefixes. Network tracking prevents traffic loss by detecting network connectivity failure. The states of connectivity to some networks are associated with the priority of a VRRP router. When connectivity to a tracked network represented by its prefix is lost, the priority of the VRRP router decrements. When an unavailable network is again reachable, the priority of the VRRP router is incremented by the same amount."; list network { key "prefix"; description "Enables the specified VRRPv2 or VRRPv3 instance to track an IPv4 network by specifying the prefix of the IPv4 network.";
leaf prefix { type inet:ipv4-prefix; description "The IPv4 prefix of the network to track."; }
leaf priority-decrement { type uint8 { range "1..254"; } default 10; description "Specifies how much to decrement the priority of the VRRP router if there is a failure in the IPv4 network."; } } // network
} // networks } // track
container virtual-ipv4-addresses { description "Configures the virtual IPv4 address for the VRRP interface.";
list virtual-ipv4-address { key "ipv4-address"; max-elements 16; description "Virtual IPv4 addresses for a single VRRP instance. For a VRRP owner router, the virtual address must match one of the IPv4 addresses configured on the interface corresponding to the virtual router.";
leaf ipv4-address { type inet:ipv4-address; description "An IPv4 address associated with a virtual router."; reference "RFC 5798: Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6. Section 1.2"; } } // virtual-ipv4-address } // virtual-ipv4-addresses } // vrrp-ipv4-attributes
grouping vrrp-ipv6-attributes { description "Group of VRRP attributes for IPv6.";
uses vrrp-common-attributes;
vrrp-common-attributesを使用します。
leaf advertise-interval-centi-sec { type uint16 { range "1..4095"; } units centiseconds; default 100; description "Configures the interval that VRRPv3 advertisements are sent from the specified interface."; }
container track { description
コンテナトラック{説明
"Enables the specified VRRP instance to track interfaces or networks."; container interfaces { description "Enables the specified VRRPv2 or VRRPv3 instance to track interfaces. Interface tracking prevents traffic loss by detecting the availability of interfaces. The operational states of other interfaces are associated with the priority of a VRRP router. When a tracked interface becomes unavailable (or 'operational down'), the priority of the VRRP router decrements. When an unavailable interface becomes available again, the priority of the VRRP router is incremented by the same amount."; list interface { key "interface"; description "Interface to track.";
leaf interface { type if:interface-ref; must "/if:interfaces/if:interface[if:name=current()]/" + "ip:ipv6" { description "Interface is IPv6."; } description "Interface to track."; }
leaf priority-decrement { type uint8 { range "1..254"; } default 10; description "Specifies how much to decrement the priority of the VRRP instance if the interface goes down."; } } // interface } // interfaces
container networks { description "Enables the VRRPv2 or VRRPv3 router instance to track the specified networks through their IPv6 network prefixes. Network tracking prevents traffic loss by detecting network connectivity failure. The states of connectivity to some networks are associated with the priority of a VRRP router. When connectivity to a tracked network represented by its prefix is lost, the priority of the VRRP router decrements. When an unavailable network is again reachable, the priority of the VRRP router is incremented by the same amount."; list network { key "prefix"; description "Enables the specified VRRPv2 or VRRPv3 instance to track an IPv6 network by specifying the prefix of the IPv6 network.";
leaf prefix { type inet:ipv6-prefix; description "The IPv6 prefix of the network to track."; }
leaf priority-decrement { type uint8 { range "1..254"; } default 10; description "Specifies how much to decrement the priority of the VRRP router if there is a failure in the IPv6 network."; } } // network } // networks } // track
container virtual-ipv6-addresses { description "Configures the virtual IPv6 address for the VRRP interface."; list virtual-ipv6-address { key "ipv6-address"; max-elements 2; description "Two IPv6 addresses are allowed. The first address must be a link-local address. The second address can be a link-local or global address.";
leaf ipv6-address { type inet:ipv6-address; description "An IPv6 address associated with a virtual router.";
reference "RFC 5798: Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6. Section 1.3"; } } // virtual-ipv6-address } // virtual-ipv6-addresses } // vrrp-ipv6-attributes
grouping vrrp-state-attributes { description "Group of VRRP state attributes.";
leaf state { type identityref { base vrrp:vrrp-state-type; } config false; description "Operational state."; }
leaf is-owner { type boolean; config false; description "Set to 'true' if this virtual router is the owner."; }
leaf last-adv-source { type inet:ip-address; config false; description "Last advertised IPv4/IPv6 source address."; }
leaf up-datetime { type yang:date-and-time; config false; description "The date and time when this virtual router transitioned out of 'init' state."; }
leaf master-down-interval { type uint32; units centiseconds; config false; description
"Time interval for the backup virtual router to declare 'master down'."; }
leaf skew-time { type uint32; units microseconds; config false; description "Calculated based on the priority and advertisement interval configuration command parameters. See RFC 3768."; }
leaf last-event { type identityref { base vrrp:vrrp-event-type; } config false; description "Last reported event."; }
leaf new-master-reason { type new-master-reason-type; config false; description "Indicates why the virtual router has transitioned to master state."; }
container statistics { config false; description "VRRP statistics.";
leaf discontinuity-datetime { type yang:date-and-time; description "The time on the most recent occasion at which any one or more of the VRRP statistics counters suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this node contains the time that the local management subsystem re-initialized itself."; }
leaf master-transitions { type yang:counter32;
description "The total number of times that this virtual router's state has transitioned to 'master'."; }
leaf advertisement-rcvd { type yang:counter64; description "The total number of VRRP advertisements received by this virtual router."; }
leaf advertisement-sent { type yang:counter64; description "The total number of VRRP advertisements sent by this virtual router."; }
leaf interval-errors { if-feature validate-interval-errors; type yang:counter64; description "The total number of VRRP advertisement packets received with an advertisement interval different than the interval configured for the local virtual router."; }
leaf priority-zero-pkts-rcvd { type yang:counter64; description "The total number of VRRP packets received by the virtual router with a priority of 0."; }
leaf priority-zero-pkts-sent { type yang:counter64; description "The total number of VRRP packets sent by the virtual router with a priority of 0."; }
leaf invalid-type-pkts-rcvd { type yang:counter64; description "The number of VRRP packets received by the virtual router with an invalid value in the 'type' field."; } leaf address-list-errors { if-feature validate-address-list-errors; type yang:counter64; description "The total number of packets received with an address list that does not match the locally configured address list for the virtual router."; }
leaf packet-length-errors { type yang:counter64; description "The total number of packets received with a packet length less than the length of the VRRP header."; } } // statistics } // vrrp-state-attributes
grouping vrrp-global-state-attributes { description "Group of VRRP global state attributes.";
leaf virtual-routers { type uint32; description "Number of configured virtual routers."; }
leaf interfaces { type uint32; description "Number of interfaces with VRRP configured."; }
container statistics { description "VRRP global statistics.";
leaf discontinuity-datetime { type yang:date-and-time; description "The time on the most recent occasion at which any one or more of checksum-errors, version-errors, vrid-errors, or ip-ttl-errors suffered a discontinuity.
If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this node contains the time that the local management subsystem re-initialized itself."; }
leaf checksum-errors { type yang:counter64; description "The total number of VRRP packets received with an invalid VRRP checksum value."; reference "RFC 5798: Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6. Section 5.2.8"; }
leaf version-errors { type yang:counter64; description "The total number of VRRP packets received with an unknown or unsupported version number."; reference "RFC 5798: Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6. Section 5.2.1"; }
leaf vrid-errors { type yang:counter64; description "The total number of VRRP packets received with a VRID that is not valid for any virtual router on this router."; reference "RFC 5798: Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6. Section 5.2.3"; }
leaf ip-ttl-errors { type yang:counter64; description "The total number of VRRP packets received by the virtual router with IP TTL (IPv4) or Hop Limit (IPv6) not equal to 255."; reference "RFC 5798: Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6. Sections 5.1.1.3 and 5.1.2.3"; } } // statistics } // vrrp-global-state-attributes
/* * Configuration data and operational state data nodes */
augment "/if:interfaces/if:interface/ip:ipv4" { description "Augments IPv4 interface.";
container vrrp { description "Configures VRRP version 2 or 3 for IPv4.";
list vrrp-instance { key "vrid"; description "Defines a virtual router, identified by a VRID, within the IPv4 address space.";
uses vrrp-ipv4-attributes; uses vrrp-state-attributes; } } } // augments ipv4
augment "/if:interfaces/if:interface/ip:ipv6" { description "Augments IPv6 interface.";
container vrrp { description "Configures VRRP version 3 for IPv6.";
list vrrp-instance { must "derived-from-or-self(version, 'vrrp-v3')" { description "IPv6 is only supported by version 3."; } key "vrid"; description "Defines a virtual router, identified by a VRID, within the IPv6 address space.";
uses vrrp-ipv6-attributes; uses vrrp-state-attributes; } } } // augments ipv6 container vrrp { config false; description "VRRP data at the global level.";
uses vrrp-global-state-attributes; }
/* * Notifications */
notification vrrp-new-master-event { description "Notification event for the election of a new VRRP master."; leaf master-ip-address { type inet:ip-address; mandatory true; description "IPv4 or IPv6 address of the new master."; } leaf new-master-reason { type new-master-reason-type; mandatory true; description "Indicates why the virtual router has transitioned to master state."; } }
notification vrrp-protocol-error-event { description "Notification event for a VRRP protocol error."; leaf protocol-error-reason { type identityref { base vrrp:vrrp-error-global; } mandatory true; description "Indicates the reason for the protocol error."; } }
notification vrrp-virtual-router-error-event { description "Notification event for an error that happened on a virtual router."; leaf interface {
type if:interface-ref; mandatory true; description "Indicates the interface on which the event has occurred."; }
choice ip-version { mandatory true; description "The error may have happened on either an IPv4 virtual router or an IPv6 virtual router. The information related to a specific IP version is provided by one of the following cases."; case ipv4 { description "IPv4."; container ipv4 { description "Error information for IPv4."; leaf vrid { type leafref { path "/if:interfaces/if:interface" + "[if:name = current()/../../vrrp:interface]/" + "ip:ipv4/vrrp:vrrp/vrrp:vrrp-instance/vrrp:vrid"; } mandatory true; description "Indicates the virtual router on which the event has occurred."; } } } case ipv6 { description "IPv6."; container ipv6 { description "Error information for IPv6."; leaf vrid { type leafref { path "/if:interfaces/if:interface" + "[if:name = current()/../../vrrp:interface]/" + "ip:ipv6/vrrp:vrrp/vrrp:vrrp-instance/vrrp:vrid"; } mandatory true; description "Indicates the virtual router on which the event has occurred.";
} } } }
leaf virtual-router-error-reason { type identityref { base vrrp:vrrp-error-virtual-router; } mandatory true; description "Indicates the reason for the virtual router error."; } } }
<CODE ENDS>
<コード終了>
This document registers the following namespace URI in the "IETF XML Registry" [RFC3688]:
このドキュメントは、「IETF XMLレジストリ」[RFC3688]に次の名前空間URIを登録します。
-------------------------------------------------------------------- URI: urn:ietf:params:xml:ns:yang:ietf-vrrp Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace. --------------------------------------------------------------------
This document registers the following YANG module in the "YANG Module Names" registry [RFC7950]:
このドキュメントでは、「YANGモジュール名」レジストリ[RFC7950]に次のYANGモジュールを登録しています。
-------------------------------------------------------------------- name: ietf-vrrp namespace: urn:ietf:params:xml:ns:yang:ietf-vrrp prefix: vrrp reference: RFC 8347 --------------------------------------------------------------------
The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC5246].
このドキュメントで指定されているYANGモジュールは、NETCONF [RFC6241]やRESTCONF [RFC8040]などのネットワーク管理プロトコルを介してアクセスするように設計されたデータのスキーマを定義します。最下位のNETCONFレイヤーはセキュアなトランスポートレイヤーであり、実装に必須のセキュアなトランスポートはセキュアシェル(SSH)です[RFC6242]。最も低いRESTCONF層はHTTPSであり、実装に必須のセキュアなトランスポートはTLS [RFC5246]です。
The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.
NETCONFアクセス制御モデル[RFC8341]は、特定のNETCONFまたはRESTCONFユーザーのアクセスを、利用可能なすべてのNETCONFまたはRESTCONFプロトコル操作およびコンテンツの事前構成されたサブセットに制限する手段を提供します。
There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:
このYANGモジュールには、書き込み可能/作成可能/削除可能なデータノードが多数定義されています(つまり、config true、デフォルトです)。これらのデータノードは、一部のネットワーク環境では機密または脆弱であると見なされる場合があります。適切な保護なしにこれらのデータノードに書き込み操作(edit-configなど)を行うと、ネットワーク操作に悪影響を与える可能性があります。これらは、サブツリーとデータノード、およびそれらの機密性/脆弱性です。
/if:interfaces/if:interface/ip:ipv4/vrrp:vrrp/vrrp:vrrp-instance
/if:interfaces/if:interface/ip:ipv6/vrrp:vrrp/vrrp:vrrp-instance
Unauthorized access to any data node of these subtrees can adversely affect the routing subsystem of both the local device and the network. This may lead to network malfunctions, delivery of packets to inappropriate destinations, and other problems.
これらのサブツリーのデータノードへの不正アクセスは、ローカルデバイスとネットワークの両方のルーティングサブシステムに悪影響を及ぼす可能性があります。これにより、ネットワークの誤動作、不適切な宛先へのパケットの配信、その他の問題が発生する可能性があります。
Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:
このYANGモジュールの一部の読み取り可能なデータノードは、一部のネットワーク環境では機密または脆弱であると見なされる場合があります。したがって、これらのデータノードへの読み取りアクセスを制御することが重要です(たとえば、get、get-config、または通知を介して)。これらは、サブツリーとデータノード、およびそれらの機密性/脆弱性です。
/ietf-vrrp:vrrp
/ ietf-vrrp:vrrp
/if:interfaces/if:interface/ip:ipv4/vrrp:vrrp/vrrp:vrrp-instance
/if:interfaces/if:interface/ip:ipv6/vrrp:vrrp/vrrp:vrrp-instance
Unauthorized access to any data node of these subtrees can disclose the operational state information of VRRP on this device.
これらのサブツリーのデータノードへの不正アクセスにより、このデバイス上のVRRPの動作状態情報が開示される可能性があります。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2119] Bradner、S。、「要件レベルを示すためにRFCで使用するキーワード」、BCP 14、RFC 2119、DOI 10.17487 / RFC2119、1997年3月、<https://www.rfc-editor.org/info/ rfc2119>。
[RFC2787] Jewell, B. and D. Chuang, "Definitions of Managed Objects for the Virtual Router Redundancy Protocol", RFC 2787, DOI 10.17487/RFC2787, March 2000, <https://www.rfc-editor.org/info/rfc2787>.
[RFC2787] Jewell、B。およびD. Chuang、「Definions of Managed Objects for the Virtual Router Redundancy Protocol」、RFC 2787、DOI 10.17487 / RFC2787、2000年3月、<https://www.rfc-editor.org/info / rfc2787>。
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>.
[RFC3688] Mealling、M。、「The IETF XML Registry」、BCP 81、RFC 3688、DOI 10.17487 / RFC3688、2004年1月、<https://www.rfc-editor.org/info/rfc3688>。
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.
[RFC5246] Dierks、T。およびE. Rescorla、「The Transport Layer Security(TLS)Protocol Version 1.2」、RFC 5246、DOI 10.17487 / RFC5246、2008年8月、<https://www.rfc-editor.org/info / rfc5246>。
[RFC5798] Nadas, S., Ed., "Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6", RFC 5798, DOI 10.17487/RFC5798, March 2010, <https://www.rfc-editor.org/info/rfc5798>.
[RFC5798] Nadas、S。、編、「IPv4およびIPv6の仮想ルーター冗長プロトコル(VRRP)バージョン3」、RFC 5798、DOI 10.17487 / RFC5798、2010年3月、<https://www.rfc-editor.org / info / rfc5798>。
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>.
[RFC6020] Bjorklund、M。、編、「YANG-ネットワーク構成プロトコル(NETCONF)のデータモデリング言語」、RFC 6020、DOI 10.17487 / RFC6020、2010年10月、<https://www.rfc-editor。 org / info / rfc6020>。
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.
[RFC6241] Enns、R。、編、Bjorklund、M。、編、Schoenwaelder、J。、編、およびA. Bierman、編、「Network Configuration Protocol(NETCONF)」、RFC 6241、DOI 10.17487 / RFC6241、2011年6月、<https://www.rfc-editor.org/info/rfc6241>。
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/info/rfc6242>.
[RFC6242] Wasserman、M。、「Using the NETCONF Protocol over Secure Shell(SSH)」、RFC 6242、DOI 10.17487 / RFC6242、2011年6月、<https://www.rfc-editor.org/info/rfc6242>。
[RFC6527] Tata, K., "Definitions of Managed Objects for Virtual Router Redundancy Protocol Version 3 (VRRPv3)", RFC 6527, DOI 10.17487/RFC6527, March 2012, <https://www.rfc-editor.org/info/rfc6527>.
[RFC6527] Tata、K。、「仮想ルーター冗長プロトコルバージョン3(VRRPv3)の管理対象オブジェクトの定義」、RFC 6527、DOI 10.17487 / RFC6527、2012年3月、<https://www.rfc-editor.org/info / rfc6527>。
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.
[RFC6991] Schoenwaelder、J。、編、「Common YANG Data Types」、RFC 6991、DOI 10.17487 / RFC6991、2013年7月、<https://www.rfc-editor.org/info/rfc6991>。
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.
[RFC7950] Bjorklund、M。、編、「The YANG 1.1 Data Modeling Language」、RFC 7950、DOI 10.17487 / RFC7950、2016年8月、<https://www.rfc-editor.org/info/rfc7950>。
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.
[RFC8040] Bierman、A.、Bjorklund、M。、およびK. Watsen、「RESTCONFプロトコル」、RFC 8040、DOI 10.17487 / RFC8040、2017年1月、<https://www.rfc-editor.org/info/rfc8040 >。
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8174] Leiba、B。、「RFC 2119キーワードの大文字と小文字のあいまいさ」、BCP 14、RFC 8174、DOI 10.17487 / RFC8174、2017年5月、<https://www.rfc-editor.org/info/ rfc8174>。
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>.
[RFC8341] Bierman、A。およびM. Bjorklund、「Network Configuration Access Control Model」、STD 91、RFC 8341、DOI 10.17487 / RFC8341、2018年3月、<https://www.rfc-editor.org/info/rfc8341 >。
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, <https://www.rfc-editor.org/info/rfc8342>.
[RFC8342] Bjorklund、M.、Schoenwaelder、J.、Shafer、P.、Watsen、K。、およびR. Wilton、「Network Management Datastore Architecture(NMDA)」、RFC 8342、DOI 10.17487 / RFC8342、2018年3月、< https://www.rfc-editor.org/info/rfc8342>。
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>.
[RFC8343] Bjorklund、M。、「A YANG Data Model for Interface Management」、RFC 8343、DOI 10.17487 / RFC8343、2018年3月、<https://www.rfc-editor.org/info/rfc8343>。
[RFC8344] Bjorklund, M., "A YANG Data Model for IP Management", RFC 8344, DOI 10.17487/RFC8344, March 2018, <https://www.rfc-editor.org/info/rfc8344>.
[RFC8344] Bjorklund、M。、「IP管理用のYANGデータモデル」、RFC 8344、DOI 10.17487 / RFC8344、2018年3月、<https://www.rfc-editor.org/info/rfc8344>。
[RFC3768] Hinden, R., Ed., "Virtual Router Redundancy Protocol (VRRP)", RFC 3768, DOI 10.17487/RFC3768, April 2004, <https://www.rfc-editor.org/info/rfc3768>.
[RFC3768] Hinden、R.、Ed。、「Virtual Router Redundancy Protocol(VRRP)」、RFC 3768、DOI 10.17487 / RFC3768、2004年4月、<https://www.rfc-editor.org/info/rfc3768>。
[RFC7224] Bjorklund, M., "IANA Interface Type YANG Module", RFC 7224, DOI 10.17487/RFC7224, May 2014, <https://www.rfc-editor.org/info/rfc7224>.
[RFC7224] Bjorklund、M。、「IANA Interface Type YANG Module」、RFC 7224、DOI 10.17487 / RFC7224、2014年5月、<https://www.rfc-editor.org/info/rfc7224>。
[RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG", RFC 7951, DOI 10.17487/RFC7951, August 2016, <https://www.rfc-editor.org/info/rfc7951>.
[RFC7951] Lhotka、L。、「YANGでモデル化されたデータのJSONエンコーディング」、RFC 7951、DOI 10.17487 / RFC7951、2016年8月、<https://www.rfc-editor.org/info/rfc7951>。
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>.
[RFC8340] Bjorklund、M。およびL. Berger、編、「YANG Tree Diagrams」、BCP 215、RFC 8340、DOI 10.17487 / RFC8340、2018年3月、<https://www.rfc-editor.org/info/ rfc8340>。
[Subscribed-Notifications] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard, E., and A. Tripathy, "Custom Subscription to Event Streams", Work in Progress, draft-ietf-netconf-subscribed-notifications-10, February 2018.
[購読済みの通知] Voit、E.、Clemm、A.、Gonzalez Prieto、A.、Nilsen-Nygaard、E.、A。Tripathy、「イベントストリームへのカスタムサブスクリプション」、作業中、draft-ietf-netconf -subscribed-notifications-10、2018年2月。
[YANG-Push] Clemm, A., Voit, E., Gonzalez Prieto, A., Tripathy, A., Nilsen-Nygaard, E., Bierman, A., and B. Lengyel, "YANG Datastore Subscription", Work in Progress, draft-ietf-netconf-yang-push-15, February 2018.
[YANG-Push] Clemm、A.、Voit、E.、Gonzalez Prieto、A.、Tripathy、A.、Nilsen-Nygaard、E.、Bierman、A。、およびB. Lengyel、「YANG Datastore Subscription」、Work進行中、draft-ietf-netconf-yang-push-15、2018年2月。
[YANG-Guidelines] Bierman, A., "Guidelines for Authors and Reviewers of YANG Data Model Documents", Work in Progress, draft-ietf-netmod-rfc6087bis-20, March 2018.
[YANG-Guidelines] Bierman、A。、「YANG Data Model Documentsの作成者とレビューアーのためのガイドライン」、Work in Progress、draft-ietf-netmod-rfc6087bis-20、2018年3月。
This section contains an example of an instance data tree in JSON encoding [RFC7951], containing both configuration and state data. (This example includes "iana-if-type", which is defined in [RFC7224].)
このセクションには、構成データと状態データの両方を含む、JSONエンコード[RFC7951]のインスタンスデータツリーの例が含まれています。 (この例には、[iana-if-type]が含まれています。これは、[RFC7224]で定義されています。)
Virtual router IP address: fe80::1 +-----------------+ +-----------------+ | | | | | Router 1 | | Router 2 | | | | | +--------+--------+ +--------+--------+ |eth1 |eth1 |fe80::11 |fe80::12 -------+--------------------------+------- | | |fe80::51 |fe80::52 +--------+--------+ +--------+--------+ | Host 1 | | Host 2 | | Default gateway:| | Default gateway:| | fe80::1 | | fe80::1 | +-----------------+ +-----------------+
The configuration instance data for Router 1 in the above figure could be as follows:
上の図のルーター1の構成インスタンスデータは次のようになります。
{ "ietf-interfaces:interfaces": { "interface": [ { "name": "eth1", "description": "An interface with VRRP enabled.", "type": "iana-if-type:ethernetCsmacd", "ietf-ip:ipv6": { "address": [ { "ip": "2001:db8:0:1::1", "prefix-length": 64 }, { "ip": "fe80::11", "prefix-length": 64 } ], "forwarding": true, "ietf-vrrp:vrrp": { "vrrp-instance": [ { "vrid": 1, "version": "vrrp-v3", "priority": 200, "advertise-interval-centi-sec": 50, "virtual-ipv6-addresses": { "virtual-ipv6-address": [ "ipv6-address": "fe80::1" ] } } ] } } } ] } } The corresponding operational state data for Router 1 could be as follows:
{ "ietf-interfaces:interfaces": { "interface": [ { "name": "eth1", "description": "An interface with VRRP enabled.", "type": "iana-if-type:ethernetCsmacd", "phys-address": "00:00:5e:00:53:01", "oper-status": "up", "statistics": { "discontinuity-time": "2016-10-24T17:11:27+02:00" }, "ietf-ip:ipv6": { "forwarding": true, "mtu": 1500, "address": [ { "ip": "2001:db8:0:1::1", "prefix-length": 64, "origin": "static", "status": "preferred" }, { "ip": "fe80::11", "prefix-length": 64, "origin": "static", "status": "preferred" } ]
"ietf-vrrp:vrrp": { "vrrp-instance": [ { "vrid": 1, "version": "vrrp-v3", "log-state-change": false, "preempt": { "enabled": true, "hold-time": 0 } "priority": 200, "accept-mode": false, "advertise-interval-centi-sec": 50, "virtual-ipv6-addresses": { "virtual-ipv6-address": [ "ipv6-address": "fe80::1" ] }, "state": "master", "is-owner": false, "last-adv-source": "fe80::11", "up-datetime": "2016-10-24T17:11:27+02:00", "master-down-interval": 161, "skew-time": 11, "last-event": "vrrp-event-interface-up", "new-master-reason": "priority", "statistics": { "discontinuity-datetime": "2016-10-24T17:11:27+02:00", "master-transitions": 2, "advertisement-rcvd": 20, "advertisement-sent": 12, "interval-errors": 0, "priority-zero-pkts-rcvd": 0, "priority-zero-pkts-sent": 0, "invalid-type-pkts-rcvd": 0, "address-list-errors": 0, "packet-length-errors": 1 } } ] } } } ] } }
{ "ietf-vrrp:vrrp": { "virtual-routers": 3, "interfaces": 2, "statistics": { "discontinuity-datetime": "2016-10-24T17:11:27+02:00", "checksum-errors": 2, "version-errors": 0, "vrid-errors": 0, "ip-ttl-errors": 1 } } }
Authors' Addresses
著者のアドレス
Xufeng Liu (editor) Jabil 8281 Greensboro Drive, Suite 200 McLean, VA 22102 United States of America
Xufeng Liu(編集者)Jabil 8281 Greensboro Drive、Suite 200 McLean、VA 22102アメリカ合衆国
Email: xufeng.liu.ietf@gmail.com
Athanasios Kyparlis Jabil 8281 Greensboro Drive, Suite 200 McLean, VA 22102 United States of America
Athanasios Kyparlis Jabil 8281 Greensboro Drive、Suite 200 McLean、VA 22102アメリカ合衆国
Email: Athanasios_Kyparlis@jabil.com
Ravi Parikh VMware 3425 Hillview Avenue Palo Alto, CA 94304 United States of America
Ravi Parikh VMware 3425 Hillview Avenue Palo Alto、CA 94304アメリカ合衆国
Email: parikhr@vmware.com
Acee Lindem Cisco Systems 301 Midenhall Way Cary, NC 27513 United States of America
Acee Lindem Cisco Systems 301 Midenhall Way Cary、NC 27513アメリカ合衆国
Email: acee@cisco.com
Mingui Zhang Huawei Technologies No. 156 Beiqing Rd. Haidian District Beijing 100095 China
min鬼Zhang hu Aはテクノロジーno。156 be i青RDですH Hドワーフポイント地区北京100095中国
Email: zhangmingui@huawei.com