[要約] RFC 8512は、ネットワークアドレス変換(NAT)とネットワークプレフィックス変換(NPT)のためのYANGモジュールに関する規格です。このRFCの目的は、NATおよびNPTの設定と管理を効率化し、ネットワークの運用を簡素化することです。

Internet Engineering Task Force (IETF)                 M. Boucadair, Ed.
Request for Comments: 8512                                        Orange
Category: Standards Track                                   S. Sivakumar
ISSN: 2070-1721                                            Cisco Systems
                                                            C. Jacquenet
                                                                  Orange
                                                           S. Vinapamula
                                                        Juniper Networks
                                                                   Q. Wu
                                                                  Huawei
                                                            January 2019
        

A YANG Module for Network Address Translation (NAT) and Network Prefix Translation (NPT)

ネットワークアドレス変換(NAT)およびネットワークプレフィックス変換(NPT)用のYANGモジュール

Abstract

概要

This document defines a YANG module for the Network Address Translation (NAT) function.

このドキュメントでは、ネットワークアドレス変換(NAT)機能のYANGモジュールを定義します。

Network Address Translation from IPv4 to IPv4 (NAT44), Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers (NAT64), customer-side translator (CLAT), Stateless IP/ICMP Translation (SIIT), Explicit Address Mappings (EAM) for SIIT, IPv6-to-IPv6 Network Prefix Translation (NPTv6), and Destination NAT are covered in this document.

IPv4からIPv4へのネットワークアドレス変換(NAT44)、IPv6クライアントからIPv4サーバーへのネットワークアドレスおよびプロトコル変換(NAT64)、顧客側トランスレータ(CLAT)、ステートレスIP / ICMP変換(SIIT)、明示的アドレスマッピング(EAM)このドキュメントでは、SIIT、IPv6-to-IPv6ネットワークプレフィックス変換(NPTv6)、および宛先NATについて説明します。

Status of This Memo

本文書の状態

This is an Internet Standards Track document.

これはInternet Standards Trackドキュメントです。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。インターネット標準の詳細については、RFC 7841のセクション2をご覧ください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8512.

このドキュメントの現在のステータス、正誤表、およびフィードバックの提供方法に関する情報は、https://www.rfc-editor.org/info/rfc8512で入手できます。

Copyright Notice

著作権表示

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2019 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

この文書は、BCP 78およびIETF文書に関するIETFトラストの法的規定(https://trustee.ietf.org/license-info)の対象であり、この文書の発行日に有効です。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseのテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。

Table of Contents

目次

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Overview of the NAT YANG Data Model . . . . . . . . . . . . .   6
     2.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .   6
     2.2.  Various Translation Flavors . . . . . . . . . . . . . . .   7
     2.3.  TCP/UDP/ICMP NAT Behavioral Requirements  . . . . . . . .   8
     2.4.  Other Transport Protocols . . . . . . . . . . . . . . . .   8
     2.5.  IP Addresses Used for Translation . . . . . . . . . . . .   9
     2.6.  Port-Set Assignment . . . . . . . . . . . . . . . . . . .   9
     2.7.  Port-Restricted IP Addresses  . . . . . . . . . . . . . .   9
     2.8.  NAT Mapping Entries . . . . . . . . . . . . . . . . . . .  10
     2.9.  Resource Limits . . . . . . . . . . . . . . . . . . . . .  13
     2.10. Binding the NAT Function to an External Interface . . . .  16
     2.11. Relationship to NATV2-MIB . . . . . . . . . . . . . . . .  16
     2.12. Tree Structure  . . . . . . . . . . . . . . . . . . . . .  17
   3.  NAT YANG Module . . . . . . . . . . . . . . . . . . . . . . .  24
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .  68
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  70
   6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  70
     6.1.  Normative References  . . . . . . . . . . . . . . . . . .  70
     6.2.  Informative References  . . . . . . . . . . . . . . . . .  73
   Appendix A.  Some Examples  . . . . . . . . . . . . . . . . . . .  75
     A.1.  Traditional NAT44 . . . . . . . . . . . . . . . . . . . .  75
     A.2.  Carrier Grade NAT (CGN) . . . . . . . . . . . . . . . . .  76
     A.3.  CGN Pass-Through  . . . . . . . . . . . . . . . . . . . .  80
     A.4.  NAT64 . . . . . . . . . . . . . . . . . . . . . . . . . .  80
     A.5.  Stateless IP/ICMP Translation (SIIT)  . . . . . . . . . .  81
     A.6.  Explicit Address Mappings (EAM) for Stateless IP/ICMP
           Translation (SIIT)  . . . . . . . . . . . . . . . . . . .  82
     A.7.  Static Mappings with Port Ranges  . . . . . . . . . . . .  85
     A.8.  Static Mappings with IP Prefixes  . . . . . . . . . . . .  86
     A.9.  Destination NAT . . . . . . . . . . . . . . . . . . . . .  86
     A.10. Customer-Side Translator (CLAT) . . . . . . . . . . . . .  89
     A.11. IPv6 Network Prefix Translation (NPTv6) . . . . . . . . .  90
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  93
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  94
        
1. Introduction
1. はじめに

This document defines a data model for Network Address Translation (NAT) and Network Prefix Translation (NPT) capabilities using the YANG data modeling language [RFC7950].

このドキュメントでは、YANGデータモデリング言語[RFC7950]を使用して、ネットワークアドレス変換(NAT)およびネットワークプレフィックス変換(NPT)機能のデータモデルを定義します。

Traditional NAT is defined in [RFC2663], while Carrier Grade NAT (CGN) is defined in [RFC6888]. Unlike traditional NAT, the CGN is used to optimize the usage of global IP address space at the scale of a domain: a CGN is not managed by end users but by service providers instead. This document covers both traditional NATs and CGNs.

従来のNATは[RFC2663]で定義され、キャリアグレードNAT(CGN)は[RFC6888]で定義されています。従来のNATとは異なり、CGNはドメインの規模でグローバルIPアドレス空間の使用を最適化するために使用されます。CGNはエンドユーザーではなくサービスプロバイダーによって管理されます。このドキュメントでは、従来のNATとCGNの両方について説明します。

This document also covers NAT64 [RFC6146], customer-side translator (CLAT) [RFC6877], Stateless IP/ICMP Translation (SIIT) [RFC7915], Explicit Address Mappings (EAM) for SIIT [RFC7757], IPv6 Network Prefix Translation (NPTv6) [RFC6296], and Destination NAT. The full set of translation schemes that are in scope is included in Section 2.2.

このドキュメントでは、NAT64 [RFC6146]、カスタマーサイドトランスレータ(CLAT)[RFC6877]、ステートレスIP / ICMP変換(SIIT)[RFC7915]、SIITの明示的アドレスマッピング(EAM)[RFC7757]、IPv6ネットワークプレフィックス変換(NPTv6)についても説明します)[RFC6296]、および宛先NAT。対象となる変換スキームの完全なセットは、セクション2.2に含まれています。

Some examples are provided in Appendix A. These examples are not intended to be exhaustive.

いくつかの例を付録Aに示します。これらの例は、すべてを網羅することを意図したものではありません。

1.1. Terminology
1.1. 用語

This document makes use of the following terms:

このドキュメントでは、次の用語を使用しています。

o Basic Network Address Translation from IPv4 to IPv4 (NAT44): translation is limited to IP addresses alone (Section 2.1 of [RFC3022]).

o IPv4からIPv4(NAT44)への基本的なネットワークアドレス変換:変換はIPアドレスのみに制限されます([RFC3022]のセクション2.1)。

o Network Address Port Translator (NAPT): translation in NAPT is extended to include IP addresses and transport identifiers (such as a TCP/UDP port or ICMP query ID); refer to Section 2.2 of [RFC3022]. A NAPT may use an extra identifier, in addition to the five transport tuples, to disambiguate bindings [RFC6619].

o ネットワークアドレスポートトランスレーター(NAPT):NAPTでの変換が拡張され、IPアドレスとトランスポート識別子(TCP / UDPポートやICMPクエリIDなど)が含まれるようになりました。 [RFC3022]のセクション2.2を参照してください。 NAPTは、バインディングを明確にするために、5つのトランスポートタプルに加えて追加の識別子を使用する場合があります[RFC6619]。

o Destination NAT: is a translation that acts on the destination IP address and/or destination port number. This flavor is usually deployed in load balancers or at devices in front of public servers.

o 宛先NAT:宛先IPアドレスまたは宛先ポート番号、あるいはその両方に作用する変換です。このフレーバーは通常、ロードバランサーまたはパブリックサーバーの前のデバイスにデプロイされます。

o Port-restricted IPv4 address: an IPv4 address with a restricted port set. Multiple hosts may share the same IPv4 address; however, their port sets must not overlap [RFC7596].

o ポート制限IPv4アドレス:制限されたポートが設定されたIPv4アドレス。複数のホストが同じIPv4アドレスを共有する場合があります。ただし、それらのポートセットは重複してはなりません[RFC7596]。

o Restricted port set: a non-overlapping range of allowed external ports to use for NAT operation. Source ports of IPv4 packets translated by a NAT must belong to the assigned port set. The port set is used for all port-aware IP protocols [RFC7596].

o 制限されたポートセット:NAT操作に使用する許可された外部ポートの重複しない範囲。 NATによって変換されたIPv4パケットの送信元ポートは、割り当てられたポートセットに属している必要があります。ポートセットは、すべてのポート対応IPプロトコル[RFC7596]に使用されます。

o Internal host: a host that may need to use a translation capability to send to and receive traffic from the Internet.

o 内部ホスト:インターネットとの間でトラフィックを送受信するために変換機能を使用する必要があるホスト。

o Internal address/prefix: the IP address/prefix of an internal host.

o 内部アドレス/プレフィックス:内部ホストのIPアドレス/プレフィックス。

o External address: the IP address/prefix assigned by a translator to an internal host; this is the address that will be seen by a remote host on the Internet.

o 外部アドレス:トランスレータによって内部ホストに割り当てられたIPアドレス/プレフィックス。これは、インターネット上のリモートホストに表示されるアドレスです。

o Mapping: denotes a state at the translator that is necessary for network address and/or port translation.

o マッピング:ネットワークアドレスやポートの変換に必要なトランスレータの状態を示します。

o Dynamic implicit mapping: is created implicitly as a side effect of processing a packet (e.g., an initial TCP SYN packet) that requires a new mapping. A validity lifetime is associated with this mapping.

o 動的暗黙的マッピング:新しいマッピングを必要とするパケット(たとえば、初期TCP SYNパケット)の処理の副作用として暗黙的に作成されます。有効期間はこのマッピングに関連付けられています。

o Dynamic explicit mapping: is created as a result of an explicit request, e.g., a Port Control Protocol (PCP) message [RFC6887]. A validity lifetime is associated with this mapping.

o 動的明示的マッピング:明示的な要求の結果として作成されます。たとえば、ポート制御プロトコル(PCP)メッセージ[RFC6887]。有効期間はこのマッピングに関連付けられています。

o Static explicit mapping: is created using, e.g., a command-line interface (CLI). This mapping is likely to be maintained by the NAT function till an explicit action is executed to remove it.

o 静的明示的マッピング:コマンドラインインターフェース(CLI)などを使用して作成されます。このマッピングは、それを削除する明示的なアクションが実行されるまで、NAT機能によって維持される可能性があります。

The usage of the term NAT in this document refers to any translation flavor (NAT44, NAT64, etc.) indifferently.

このドキュメントでのNATの用語の使用法は、区別なくすべての変換フレーバー(NAT44、NAT64など)を指します。

This document uses the term "session" as defined in [RFC2663] and [RFC6146] for NAT64.

このドキュメントでは、NAT64の[RFC2663]および[RFC6146]で定義されている「セッション」という用語を使用しています。

This document follows the guidelines of [RFC8407], uses the common YANG types defined in [RFC6991], and adopts the Network Management Datastore Architecture (NMDA). The meaning of the symbols in tree diagrams is defined in [RFC8340].

このドキュメントは[RFC8407]のガイドラインに従い、[RFC6991]で定義されている一般的なYANGタイプを使用し、ネットワーク管理データストアアーキテクチャ(NMDA)を採用しています。ツリー図の記号の意味は、[RFC8340]で定義されています。

2. Overview of the NAT YANG Data Model
2. NAT YANGデータモデルの概要
2.1. Overview
2.1. 概観

The NAT YANG module is designed to cover dynamic implicit mappings and static explicit mappings. The required functionality to instruct dynamic explicit mappings is defined in separate documents such as [YANG-PCP]. Considerations about instructing by explicit dynamic means (e.g., [RFC6887], [RFC6736], or [RFC8045]) are out of scope. As a reminder, REQ-9 of [RFC6888] requires that a CGN must implement a protocol giving subscribers explicit control over NAT mappings; that protocol should be the Port Control Protocol [RFC6887].

NAT YANGモジュールは、動的暗黙的マッピングと静的明示的マッピングをカバーするように設計されています。動的明示的マッピングを指示するために必要な機能は、[YANG-PCP]などの個別のドキュメントで定義されています。明示的な動的手段による指示に関する考慮事項([RFC6887]、[RFC6736]、または[RFC8045]など)は範囲外です。注意として、[RFC6888]のREQ-9では、CGNがプロトコルを実装して、加入者にNATマッピングを明示的に制御できるようにする必要があります。そのプロトコルは、Port Control Protocol [RFC6887]である必要があります。

A single NAT device can have multiple NAT instances; each of these instances can be provided with its own policies (e.g., be responsible for serving a group of hosts). This document does not make any assumption about how internal hosts or flows are associated with a given NAT instance.

1つのNATデバイスに複数のNATインスタンスを含めることができます。これらの各インスタンスには、独自のポリシーを提供できます(たとえば、ホストのグループにサービスを提供する責任があります)。このドキュメントでは、内部ホストまたはフローが特定のNATインスタンスにどのように関連付けられるかについては想定していません。

The NAT YANG module assumes that each NAT instance can be enabled/ disabled, be provisioned with a specific set of configuration data, and maintain its own mapping tables.

NAT YANGモジュールは、各NATインスタンスを有効化/無効化し、特定の構成データのセットでプロビジョニングし、独自のマッピングテーブルを維持できることを前提としています。

The NAT YANG module allows for a NAT instance to be provided with multiple NAT policies (/nat/instances/instance/policy). The document does not make any assumption about how flows are associated with a given NAT policy of a given NAT instance. Classification filters are out of scope.

NAT YANGモジュールでは、NATインスタンスに複数のNATポリシー(/ nat / instances / instance / policy)を提供できます。このドキュメントでは、フローが特定のNATインスタンスの特定のNATポリシーにどのように関連付けられているかについては想定していません。分類フィルターは範囲外です。

Defining multiple NAT instances or configuring multiple NAT policies within one single NAT instance is implementation and deployment specific.

複数のNATインスタンスを定義するか、1つの単一NATインスタンス内で複数のNATポリシーを構成することは、実装とデプロイメントに固有です。

This YANG module does not provide any method to instruct a NAT function to enable the logging feature or to specify the information to be logged for administrative or regulatory reasons (Section 2.3 of [RFC6908] and REQ-12 of [RFC6888]). Those considerations are out of the scope of this document.

このYANGモジュールは、NAT機能にロギング機能を有効にするように指示したり、管理上または規制上の理由でログに記録する情報を指定したりする方法を提供しません([RFC6908]のセクション2.3および[RFC6888]のREQ-12)。これらの考慮事項は、このドキュメントの範囲外です。

2.2. Various Translation Flavors
2.2. さまざまな翻訳フレーバー

The following translation modes are supported:

次の変換モードがサポートされています。

o Basic NAT44 o NAPT o Destination NAT o Port-restricted NAT o Stateful NAT64 (including with destination-based Pref64::/n [RFC7050]) o SIIT o CLAT o EAM o NPTv6 o Combination of Basic NAT/NAPT and Destination NAT o Combination of port-restricted and Destination NAT o Combination of NAT64 and EAM o Stateful and Stateless NAT64

o 基本NAT44 o NAPT o宛先NAT oポート制限NAT oステートフルNAT64(宛先ベースのPref64 :: / n [RFC7050]を含む)o SIIT o CLAT o EAM o NPTv6 o基本NAT / NAPTと宛先NATの組み合わせo組み合わせポート制限と宛先NATの比較o NAT64とEAMの組み合わせoステートフルおよびステートレスNAT64

[RFC8513] specifies an extension to the NAT YANG module to support Dual-Stack Lite (DS-Lite).

[RFC8513]は、NAT YANGモジュールの拡張を指定して、Dual-Stack Lite(DS-Lite)をサポートします。

The YANG "feature" statement is used to indicate which of the different translation modes is relevant for a specific data node. Table 1 lists defined features:

YANGの「機能」ステートメントは、特定のデータノードに関連するさまざまな変換モードを示すために使用されます。表1に、定義されている機能を示します。

            +---------------------------------+--------------+
            |                Translation Mode | YANG Feature |
            +---------------------------------+--------------+
            |                     Basic NAT44 | basic-nat44  |
            |                            NAPT | napt44       |
            |                 Destination NAT | dst-nat      |
            |                  Stateful NAT64 | nat64        |
            | Stateless IPv4/IPv6 Translation | siit         |
            |                            CLAT | clat         |
            |                             EAM | eam          |
            |                           NPTv6 | nptv6        |
            +---------------------------------+--------------+
        

Table 1: NAT YANG Features

表1:NAT YANGの機能

The following translation modes do not require that dedicated features be defined:

次の変換モードでは、専用の機能を定義する必要はありません。

o Port-restricted NAT: This mode corresponds to supplying port-restriction policies to a NAPT or NAT64 (port-set-restrict). o Combination of Basic NAT/NAPT and Destination NAT: This mode corresponds to setting 'dst-nat-enable' for Basic NAT44 or NAPT.

o ポート制限NAT:このモードは、NAPTまたはNAT64(ポートセット制限)にポート制限ポリシーを提供することに対応します。 o基本NAT / NAPTと宛先NATの組み合わせ:このモードは、基本NAT44またはNAPTの「dst-nat-enable」の設定に対応します。

o Combination of port-restricted and Destination NAT: This mode can be achieved by configuring a NAPT with port restriction policies (port-set-restrict) together with a destination IP address pool (dst-ip-address-pool). o Combination of NAT64 and EAM: This mode corresponds to configuring static mappings for NAT64. o Stateful and stateless NAT64: A NAT64 implementation can be instructed to behave in the stateless mode for a given prefix by setting the parameter (nat64-prefixes/stateless-enable). A NAT64 implementation may behave in both stateful and stateless modes if, in addition to appropriately setting the parameter (nat64-prefixes/stateless-enable), an external IPv4 address pool is configured.

o ポート制限と宛先NATの組み合わせ:このモードは、宛先IPアドレスプール(dst-ip-address-pool)と共にポート制限ポリシー(port-set-restrict)でNAPTを構成することで実現できます。 o NAT64とEAMの組み合わせ:このモードは、NAT64の静的マッピングの構成に対応しています。 oステートフルおよびステートレスNAT64:NAT64実装は、パラメーター(nat64-prefixes / stateless-enable)を設定することにより、特定のプレフィックスに対してステートレスモードで動作するように指示できます。 NAT64実装は、パラメーター(nat64-prefixes / stateless-enable)を適切に設定することに加えて、外部IPv4アドレスプールが構成されている場合、ステートフルモードとステートレスモードの両方で動作します。

The NAT YANG module provides a method to retrieve the capabilities of a NAT instance (including a list of supported translation modes, a list of supported protocols, the supported NAT mapping types, the supported NAT filtering types, the behavior for handling fragments (all, out-of-order, in-order), and the support statuses for the following: port restriction, port range allocation, port parity preservation, and port preservation).

NAT YANGモジュールは、NATインスタンスの機能(サポートされる変換モードのリスト、サポートされるプロトコルのリスト、サポートされるNATマッピングタイプ、サポートされるNATフィルタリングタイプ、フラグメントを処理するための動作(すべて、順序外、順序内)、および次のサポート状況:ポート制限、ポート範囲の割り当て、ポートパリティの保持、およびポートの保持)。

2.3. TCP/UDP/ICMP NAT Behavioral Requirements
2.3. TCP / UDP / ICMP NATの動作要件

This document assumes NAT behavioral recommendations for UDP [RFC4787], TCP [RFC5382], and ICMP [RFC5508] are enabled by default.

このドキュメントでは、UDP [RFC4787]、TCP [RFC5382]、およびICMP [RFC5508]のNAT動作に関する推奨事項がデフォルトで有効になっていることを前提としています。

Furthermore, the NAT YANG module relies upon the recommendations detailed in [RFC6888] and [RFC7857].

さらに、NAT YANGモジュールは、[RFC6888]および[RFC7857]で詳述されている推奨事項に依存しています。

2.4. Other Transport Protocols
2.4. その他のトランスポートプロトコル

The module is structured to support protocols other than UDP, TCP, and ICMP. Concretely, the module allows the operator to enable translation for other transport protocols when required (/nat/instances/instance/policy/transport-protocols). Moreover, the mapping table is designed so that it can indicate any transport protocol. For example, this module may be used to manage a NAT capable of the Datagram Congestion Control Protocol (DCCP) that adheres to [RFC5597].

このモジュールは、UDP、TCP、およびICMP以外のプロトコルをサポートするように構成されています。具体的には、このモジュールを使用すると、オペレーターは必要に応じて他のトランスポートプロトコル(/ nat / instances / instance / policy / transport-protocols)の変換を有効にできます。さらに、マッピングテーブルは、任意のトランスポートプロトコルを示すことができるように設計されています。たとえば、このモジュールは、[RFC5597]に準拠したデータグラム輻輳制御プロトコル(DCCP)に対応したNATを管理するために使用できます。

Future extensions may be needed to cover NAT-related considerations that are specific to other transport protocols such as the Stream Control Transmission Protocol (SCTP) [NAT-SUPP]. Typically, the mapping entry can be extended to record two optional SCTP-specific parameters: the Internal Verification Tag (Int-VTag) and External Verification Tag (Ext-VTag).

ストリーム制御伝送プロトコル(SCTP)[NAT-SUPP]などの他のトランスポートプロトコルに固有のNAT関連の考慮事項をカバーするために、将来の拡張が必要になる場合があります。通常、マッピングエントリを拡張して、2つのオプションのSCTP固有のパラメータを記録できます。内部検証タグ(Int-VTag)と外部検証タグ(Ext-VTag)です。

This document only specifies transport-protocol-specific timers for UDP, TCP, and ICMP. While some timers could potentially be generalized for other connection-oriented protocols, this document does not follow such an approach because there is no standard document specifying such generic behavior. Future documents may be edited to clarify how to reuse TCP-specific timers when needed.

このドキュメントでは、UDP、TCP、およびICMPのトランスポートプロトコル固有のタイマーのみを指定しています。一部のタイマーは他の接続指向プロトコル用に一般化できる可能性がありますが、このような一般的な動作を指定する標準のドキュメントがないため、このドキュメントはこのようなアプローチに従いません。今後のドキュメントは、必要に応じてTCP固有のタイマーを再利用する方法を明確にするために編集される可能性があります。

2.5. IP Addresses Used for Translation
2.5. 変換に使用されるIPアドレス

The NAT YANG module assumes that blocks of IP external addresses (external-ip-address-pool) can be provisioned to the NAT function. These blocks may be contiguous or not.

NAT YANGモジュールは、IP外部アドレスのブロック(external-ip-address-pool)をNAT機能にプロビジョニングできると想定しています。これらのブロックは連続しているかどうかに関係なく、

This behavior is aligned with [RFC6888], which specifies that a NAT function should not have any limitations on the size or the contiguity of the external address pool. In particular, the NAT function must be configurable with contiguous or non-contiguous external IPv4 address ranges. To accommodate traditional NAT, the module allows for a single IP address to be configured for external-ip-address-pool.

この動作は[RFC6888]と整合しています。[RFC6888]は、NAT機能が外部アドレスプールのサイズまたは連続性に制限がないことを指定しています。特に、NAT機能は、連続または非連続の外部IPv4アドレス範囲で構成可能でなければなりません。従来のNATに対応するために、このモジュールでは、単一のIPアドレスを外部IPアドレスプール用に構成できます。

Likewise, one or multiple IP address pools may be configured for Destination NAT (dst-ip-address-pool).

同様に、1つまたは複数のIPアドレスプールを宛先NAT(dst-ip-address-pool)用に構成できます。

2.6. Port-Set Assignment
2.6. ポートセットの割り当て
   Port numbers can be assigned by a NAT individually (that is, a single
   port is assigned on a per-session basis), but this port allocation
   scheme may not be optimal for logging purposes (Section 12 of
   [RFC6269]).  A NAT function should be able to assign port sets (e.g.,
   [RFC7753]) to optimize the volume of the logging data (REQ-14 of
   [RFC6888]).  Both allocation schemes are supported in the NAT YANG
   module.
        

When port-set assignment is activated (i.e., port-allocation-type==port-range-allocation), the NAT can be provided with the size of the port set to be assigned (port-set-size).

ポートセット割り当てがアクティブになっている場合(つまり、port-allocation-type == port-range-allocation)、NATには割り当てられるポートセットのサイズ(port-set-size)を指定できます。

2.7. Port-Restricted IP Addresses
2.7. ポート制限IPアドレス

Some NATs restrict the source port numbers (e.g., Lightweight 4over6 [RFC7596] and Mapping of Address and Port with Encapsulation (MAP-E) [RFC7597]). Two schemes of port-set assignments (port-set-restrict) are supported in this document:

一部のNATは、送信元ポート番号を制限します(例:Lightweight 4over6 [RFC7596]およびアドレスとポートのカプセル化によるマッピング(MAP-E)[RFC7597])。このドキュメントでは、ポートセット割り当ての2つのスキーム(ポートセット制限)がサポートされています。

o Simple port range: is defined by two port values, the start and the end of the port range [RFC8045].

o 単純なポート範囲:2つのポート値、ポート範囲の開始と終了[RFC8045]によって定義されます。

o Algorithmic: an algorithm is defined in [RFC7597] to characterize the set of ports that can be used.

o Algorithmic:アルゴリズムは[RFC7597]で定義されており、使用できるポートのセットを特徴づけています。

2.8. NAT Mapping Entries
2.8. NATマッピングエントリ

A TCP/UDP mapping entry maintains an association between the following information:

TCP / UDPマッピングエントリは、次の情報間の関連付けを維持します。

(internal-src-address, internal-src-port) (internal-dst-address, internal-dst-port) <=> (external-src-address, external-src-port) (external-dst-address, external-dst-port)

(internal-src-address、internal-src-port)(internal-dst-address、internal-dst-port)<=>(external-src-address、external-src-port)(external-dst-address、external -dst-port)

An ICMP mapping entry maintains an association between the following information:

ICMPマッピングエントリは、次の情報間の関連付けを維持します。

      (internal-src-address, internal-dst-address, internal ICMP/ICMPv6
      identifier) <=> (external-src-address, external-dst-address,
      external ICMP/ICMPv6 identifier)
        

As a reminder, all the ICMP Query messages contain an 'Identifier' field, which is referred to in this document as the 'ICMP Identifier'.

注意として、すべてのICMPクエリメッセージには「識別子」フィールドが含まれます。このフィールドでは、このフィールドを「ICMP識別子」と呼びます。

To cover TCP, UDP, and ICMP, the NAT YANG module assumes the following structure of a mapping entry:

TCP、UDP、およびICMPをカバーするために、NAT YANGモジュールは、マッピングエントリの次の構造を想定しています。

type: Indicates how the mapping was instantiated. For example, it may indicate whether a mapping is dynamically instantiated by a packet or statically configured.

type:マッピングがどのようにインスタンス化されたかを示します。たとえば、マッピングがパケットによって動的にインスタンス化されるか、静的に構成されるかを示します。

transport-protocol: Indicates the transport protocol (e.g., UDP, TCP, and ICMP) of a given mapping.

transport-protocol:特定のマッピングのトランスポートプロトコル(UDP、TCP、ICMPなど)を示します。

internal-src-address: Indicates the source IP address/prefix as used by an internal host.

internal-src-address:内部ホストによって使用される送信元IPアドレス/プレフィックスを示します。

internal-src-port: Indicates the source port number (or ICMP identifier) as used by an internal host.

internal-src-port:内部ホストが使用する送信元ポート番号(またはICMP識別子)を示します。

external-src-address: Indicates the source IP address/prefix as assigned by the NAT.

external-src-address:NATによって割り当てられた送信元IPアドレス/プレフィックスを示します。

external-src-port: Indicates the source port number (or ICMP identifier) as assigned by the NAT.

external-src-port:NATによって割り当てられた送信元ポート番号(またはICMP識別子)を示します。

internal-dst-address: Indicates the destination IP address/prefix as used by an internal host when sending a packet to a remote host.

internal-dst-address:パケットをリモートホストに送信するときに内部ホストが使用する宛先IPアドレス/プレフィックスを示します。

internal-dst-port: Indicates the destination port number as used by an internal host when sending a packet to a remote host.

internal-dst-port:パケットをリモートホストに送信するときに内部ホストが使用する宛先ポート番号を示します。

external-dst-address: Indicates the destination IP address/prefix used by a NAT when processing a packet issued by an internal host towards a remote host.

external-dst-address:内部ホストからリモートホストに向けて発行されたパケットを処理するときに、NATが使用する宛先IPアドレス/プレフィックスを示します。

external-dst-port: Indicates the destination port number used by a NAT when processing a packet issued by an internal host towards a remote host.

external-dst-port:内部ホストからリモートホストに向けて発行されたパケットを処理するときにNATが使用する宛先ポート番号を示します。

In order to cover both NAT64 and NAT44 flavors, the NAT mapping structure allows for the inclusion of an IPv4 or an IPv6 address as an internal IP address. Remaining fields are common to both NAT schemes.

NAT64とNAT44の両方のフレーバーをカバーするために、NATマッピング構造では、IPv4アドレスまたはIPv6アドレスを内部IPアドレスとして含めることができます。残りのフィールドは両方のNATスキームに共通です。

For example, the mapping that will be created by a NAT64 upon receipt of a TCP SYN from source address 2001:db8:aaaa::1 and source port number 25636 to destination IP address 2001:db8:1234::198.51.100.1 and destination port number 8080 is shown in Table 2. This example assumes Endpoint-Dependent Mapping (EDM).

たとえば、ソースアドレス2001:db8:aaaa :: 1およびソースポート番号25636から宛先IPアドレス2001:db8:1234 :: 198.51.100.1および宛先へのTCP SYNの受信時にNAT64によって作成されるマッピングポート番号8080を表2に示します。この例では、エンドポイント依存マッピング(EDM)を想定しています。

   +-----------------------+-------------------------------------------+
   |         Mapping Entry | Value                                     |
   |             Attribute |                                           |
   +-----------------------+-------------------------------------------+
   |                  type | dynamic implicit mapping                  |
   |    transport-protocol | 6 (TCP)                                   |
   |  internal-src-address | 2001:db8:aaaa::1                          |
   |     internal-src-port | 25636                                     |
   |  external-src-address | T (an IPv4 address configured on the      |
   |                       | NAT64)                                    |
   |     external-src-port | t (a port number that is chosen by the    |
   |                       | NAT64)                                    |
   |  internal-dst-address | 2001:db8:1234::198.51.100.1               |
   |     internal-dst-port | 8080                                      |
   |  external-dst-address | 198.51.100.1                              |
   |     external-dst-port | 8080                                      |
   +-----------------------+-------------------------------------------+
        

Table 2: Example of an EDM NAT64 Mapping

表2:EDM NAT64マッピングの例

The mappings that will be created by a NAT44 upon receipt of an ICMP request from source address 198.51.100.1 and ICMP identifier (ID1) to destination IP address 198.51.100.11 is depicted in Table 3. This example assumes Endpoint-Independent Mapping (EIM).

送信元アドレス198.51.100.1およびICMP識別子(ID1)から宛先IPアドレス198.51.100.11へのICMP要求の受信時にNAT44によって作成されるマッピングを表3に示します。この例では、エンドポイントに依存しないマッピング(EIM)を想定しています。

   +----------------------+--------------------------------------------+
   |        Mapping-Entry | Value                                      |
   |            Attribute |                                            |
   +----------------------+--------------------------------------------+
   |                 type | dynamic implicit mapping                   |
   |   transport-protocol | 1 (ICMP)                                   |
   | internal-src-address | 198.51.100.1                               |
   |    internal-src-port | ID1                                        |
   | external-src-address | T (an IPv4 address configured on the       |
   |                      | NAT44)                                     |
   |    external-src-port | ID2 (an ICMP identifier that is chosen by  |
   |                      | the NAT44)                                 |
   +----------------------+--------------------------------------------+
        

Table 3: Example of an EIM NAT44 Mapping Entry

表3:EIM NAT44マッピングエントリの例

The mapping that will be created by a NAT64 (EIM mode) upon receipt of an ICMP request from source address 2001:db8:aaaa::1 and ICMP identifier (ID1) to destination IP address 2001:db8:1234::198.51.100.1 is shown in Table 4.

送信元アドレス2001:db8:aaaa :: 1からICMP識別子(ID1)から宛先IPアドレス2001:db8:1234 :: 198.51.100.1へのICMP要求を受信したときにNAT64(EIMモード)によって作成されるマッピング表4に示します。

   +----------------------+--------------------------------------------+
   |        Mapping-Entry | Value                                      |
   |            Attribute |                                            |
   +----------------------+--------------------------------------------+
   |                 type | dynamic implicit mapping                   |
   |   transport-protocol | 58 (ICMPv6)                                |
   | internal-src-address | 2001:db8:aaaa::1                           |
   |    internal-src-port | ID1                                        |
   | external-src-address | T (an IPv4 address configured on the       |
   |                      | NAT64)                                     |
   |    external-src-port | ID2 (an ICMP identifier that is chosen by  |
   |                      | the NAT64)                                 |
   +----------------------+--------------------------------------------+
        

Table 4: Example of an EIM NAT64 Mapping Entry

表4:EIM NAT64マッピングエントリの例

Note that a mapping table is maintained only for stateful NAT functions. Particularly:

マッピングテーブルは、ステートフルNAT機能に対してのみ維持されることに注意してください。特に:

o No mapping table is maintained for NPTv6 given that it is stateless and transport-agnostic.

o NPTv6は、ステートレスでトランスポートに依存しないため、マッピングテーブルは維持されません。

o The double translations are stateless in CLAT if a dedicated IPv6 prefix is provided for CLAT. If not, a stateful NAT44 will be required.

o CLATに専用のIPv6プレフィックスが指定されている場合、CLATでは二重変換はステートレスです。そうでない場合は、ステートフルNAT44が必要になります。

o No per-flow mapping is maintained for EAM [RFC7757].

o EAM [RFC7757]のフローごとのマッピングは維持されません。

o No mapping table is maintained for Stateless IPv4/IPv6 translation. As a reminder, in such deployments, internal IPv6 nodes are addressed using IPv4-translatable IPv6 addresses, which enable them to be accessed by IPv4 nodes [RFC6052].

o ステートレスIPv4 / IPv6変換のマッピングテーブルは維持されません。注意として、そのような展開では、内部IPv6ノードはIPv4変換可能なIPv6アドレスを使用してアドレス指定され、IPv4ノードからのアクセスを可能にします[RFC6052]。

2.9. Resource Limits
2.9. リソースの制限

In order to comply with CGN deployments in particular, the NAT YANG module allows limiting the number of external ports per subscriber (port-quota) and the amount of state memory allocated per mapping and per subscriber (mapping-limits and connection-limits). According to [RFC6888], the module is designed to allow for the following:

特にCGN展開に準拠するために、NAT YANGモジュールでは、サブスクライバーあたりの外部ポートの数(ポートクォータ)と、マッピングごとおよびサブスクライバーごとに割り当てられる状態メモリの量(マッピング制限と接続制限)を制限できます。 [RFC6888]によると、このモジュールは以下を可能にするように設計されています:

o Per-subscriber limits are configurable by the NAT administrator.

o 加入者ごとの制限は、NAT管理者が設定できます。

o Per-subscriber limits are configurable independently per the transport protocol.

o サブスクライバーごとの制限は、トランスポートプロトコルごとに個別に構成できます。

o Administrator-adjustable thresholds to prevent a single subscriber from consuming excessive CPU resources from the NAT (e.g., rate-limit the subscriber's creation of new mappings) can be configured.

o 単一のサブスクライバーが過剰なCPUリソースをNATから消費することを防ぐための管理者が調整可能なしきい値(たとえば、サブスクライバーによる新しいマッピングの作成をレート制限する)を構成できます。

Table 5 lists the various limits that can be set using the NAT YANG module. Once a limit is reached, packets that would normally trigger new port mappings or be translated because they match existing mappings, are dropped by the translator.

表5に、NAT YANGモジュールを使用して設定できるさまざまな制限を示します。制限に達すると、通常は新しいポートマッピングをトリガーするか、既存のマッピングと一致するために変換されるパケットは、トランスレータによってドロップされます。

   +-------------------+-----------------------------------------------+
   | Limit             | Description                                   |
   +-------------------+-----------------------------------------------+
   | port-quota        | Specifies a port quota to be assigned per     |
   |                   | subscriber.  It corresponds to the maximum    |
   |                   | number of ports to be used by a subscriber.   |
   |                   | The port quota can be configured to apply to  |
   |                   | all protocols or to a specific protocol.      |
   |                   | Distinct port quota may be configured per     |
   |                   | protocol.                                     |
   +-------------------+-----------------------------------------------+
   | fragments-limit   | In order to prevent denial-of-service (DoS)   |
   |                   | attacks that can be caused by fragments, this |
   |                   | parameter is used to limit the number of out- |
   |                   | of-order fragments that can be handled by a   |
   |                   | translator.                                   |
   +-------------------+-----------------------------------------------+
   | mapping-limits    | This parameter can be used to control the     |
   |                   | maximum number of subscribers that can be     |
   |                   | serviced by a NAT instance (limit-subscriber) |
   |                   | and the maximum number of address and/or port |
   |                   | mappings that can be maintained by a NAT      |
   |                   | instance (limit-address-mappings and limit-   |
   |                   | port-mappings).  Also, limits specific to     |
   |                   | protocols (e.g., TCP, UDP, ICMP) can also be  |
   |                   | specified (limit-per-protocol).               |
   +-------------------+-----------------------------------------------+
   | connection-limits | In order to prevent exhausting the resources  |
   |                   | of a NAT implementation and to ensure         |
   |                   | fairness usage among subscribers, various     |
   |                   | rate limits can be specified.  Rate-limiting  |
   |                   | can be enforced per subscriber (limit-        |
   |                   | subscriber), per NAT instance (limit-per-     |
   |                   | instance), and/or be specified for each       |
   |                   | supported protocol (limit-per-protocol).      |
   +-------------------+-----------------------------------------------+
        

Table 5: NAT Limits

表5:NATの制限

Table 6 describes limits that, once exceeded, will trigger notifications to be generated:

表6は、一度超過すると通知の生成をトリガーする制限を示しています。

   +--------------------------+----------------------------------------+
   | Notification Threshold   | Description                            |
   +--------------------------+----------------------------------------+
   | high-threshold           | Used to notify high address            |
   |                          | utilization of a given pool.  When     |
   |                          | exceeded, a nat-pool-event             |
   |                          | notification will be generated.        |
   +--------------------------+----------------------------------------+
   | low-threshold            | Used to notify low address utilization |
   |                          | of a given pool.  An administrator is  |
   |                          | supposed to configure low-threshold so |
   |                          | that it can reflect an abnormal usage  |
   |                          | of NAT resources.  When exceeded, a    |
   |                          | nat-pool-event notification will be    |
   |                          | generated.                             |
   +--------------------------+----------------------------------------+
   | notify-addresses-usage   | Used to notify high address            |
   |                          | utilization of all pools configured to |
   |                          | a NAT instance.  When exceeded, a nat- |
   |                          | instance-event will be generated.      |
   +--------------------------+----------------------------------------+
   | notify-ports-usage       | Used to notify high port allocation    |
   |                          | taking into account all pools          |
   |                          | configured to a NAT instance.  When    |
   |                          | exceeded, a nat-instance-event         |
   |                          | notification will be generated.        |
   +--------------------------+----------------------------------------+
   | notify-subscribers-limit | Used to notify a high number of active |
   |                          | subscribers that are serviced by a NAT |
   |                          | instance.  When exceeded, a nat-       |
   |                          | instance-event notification will be    |
   |                          | generated.                             |
   +--------------------------+----------------------------------------+
        

Table 6: Notification Thresholds

表6:通知のしきい値

In order to prevent a NAT implementation from generating frequent notifications, the NAT YANG module supports the following limits (Table 7) used to control how frequent notifications can be generated. That is, notifications are subject to rate-limiting imposed by these intervals.

NAT実装が頻繁な通知を生成しないようにするために、NAT YANGモジュールは、頻繁な通知の生成方法を制御するために使用される次の制限(表7)をサポートしています。つまり、通知はこれらの間隔によって課されるレート制限の対象となります。

   +-------------------------------------+-----------------------------+
   | Interval                            | Description                 |
   +-------------------------------------+-----------------------------+
   | notify-pool-usage/notify-interval   | Indicates the minimum       |
   |                                     | number of seconds between   |
   |                                     | successive notifications    |
   |                                     | for a given address pool.   |
   +-------------------------------------+-----------------------------+
   | notification-limits/notify-interval | Indicates the minimum       |
   |                                     | number of seconds between   |
   |                                     | successive notifications    |
   |                                     | for a NAT instance.         |
   +-------------------------------------+-----------------------------+
        

Table 7: Notification Intervals

表7:通知間隔

2.10. Binding the NAT Function to an External Interface
2.10. NAT機能を外部インターフェイスにバインドする

The module is designed to specify an external realm on which the NAT function must be applied (external-realm). The module supports indicating an interface as an external realm [RFC8343], but the module is extensible so that other choices can be indicated in the future (e.g., Virtual Routing and Forwarding (VRF) instance).

このモジュールは、NAT機能を適用する必要がある外部レルム(外部レルム)を指定するように設計されています。モジュールはインターフェースを外部レルム[RFC8343]として示すことをサポートしますが、モジュールは拡張可能であるため、将来、他の選択肢を示すことができます(たとえば、仮想ルーティングおよび転送(VRF)インスタンス)。

Distinct external realms can be provided as a function of the NAT policy (see, for example, Section 4 of [RFC7289]).

個別の外部レルムは、NATポリシーの機能として提供できます(たとえば、[RFC7289]のセクション4を参照)。

If no external realm is provided, this assumes that the system is able to determine the external interface (VRF instance, etc.) on which the NAT will be applied. Typically, the WAN and LAN interfaces of Customer Premises Equipment (CPE) are determined by the CPE.

外部レルムが提供されていない場合、これは、NATが適用される外部インターフェイス(VRFインスタンスなど)をシステムが決定できることを前提としています。通常、顧客宅内機器(CPE)のWANおよびLANインターフェイスは、CPEによって決定されます。

2.11. Relationship to NATV2-MIB
2.11. NATV2-MIBとの関係

Section of 5.1 of [RFC7659] indicates that the NATV2-MIB assumes that the following information is configured on the NAT by some means, which is not specified in [RFC7659]:

[RFC7659]の5.1のセクションは、NATV2-MIBが、[RFC7659]で指定されていない以下の情報が何らかの方法でNATに設定されていると想定していることを示しています。

o The set of address realms to which the device connects.

o デバイスが接続するアドレスレルムのセット。

o For the CGN case, per-subscriber information including the subscriber index, address realm, assigned prefix or address, and (possibly) policies regarding address pool selection in the various possible address realms to which the subscriber may connect.

o CGNの場合、サブスクライバーインデックス、アドレスレルム、割り当てられたプレフィックスまたはアドレス、およびサブスクライバーが接続できるさまざまな可能なアドレスレルムでのアドレスプールの選択に関するポリシー(場合によっては)を含むサブスクライバーごとの情報。

o The set of NAT instances running on the device, identified by NAT instance index and name.

o デバイスで実行されているNATインスタンスのセット。NATインスタンスのインデックスと名前で識別されます。

o The port mapping, filtering, pooling, and fragment behaviors for each NAT instance.

o 各NATインスタンスのポートマッピング、フィルタリング、プーリング、フラグメントの動作。

o The set of protocols supported by each NAT instance.

o 各NATインスタンスによってサポートされるプロトコルのセット。

o Address pools for each NAT instance, including for each pool the pool index, address realm, and minimum and maximum port numbers.

o 各NATインスタンスのアドレスプール。各プールには、プールインデックス、アドレスレルム、最小および最大ポート番号が含まれます。

o Static address and port mapping entries.

o 静的アドレスおよびポートマッピングエントリ。

All the above parameters can be configured by means of the NAT YANG module.

上記のすべてのパラメーターは、NAT YANGモジュールを使用して構成できます。

Unlike the NATV2-MIB, the NAT YANG module allows the configuration of multiple policies per NAT instance.

NATV2-MIBとは異なり、NAT YANGモジュールでは、NATインスタンスごとに複数のポリシーを構成できます。

2.12. Tree Structure
2.12. ツリー構造

The tree structure of the NAT YANG module is provided below:

NAT YANGモジュールのツリー構造を以下に示します。

  module: ietf-nat
    +--rw nat
       +--rw instances
          +--rw instance* [id]
             +--rw id                       uint32
             +--rw name?                    string
             +--rw enable?                  boolean
             +--ro capabilities
             |  +--ro nat-flavor*
             |  |       identityref
             |  +--ro per-interface-binding*
             |  |       enumeration
             |  +--ro transport-protocols* [protocol-id]
             |  |  +--ro protocol-id      uint8
             |  |  +--ro protocol-name?   string
             |  +--ro restricted-port-support?
             |  |       boolean
             |  +--ro static-mapping-support?
             |  |       boolean
        
             |  +--ro port-randomization-support?
             |  |       boolean
             |  +--ro port-range-allocation-support?
             |  |       boolean
             |  +--ro port-preservation-suport?
             |  |       boolean
             |  +--ro port-parity-preservation-support?
             |  |       boolean
             |  +--ro address-roundrobin-support?
             |  |       boolean
             |  +--ro paired-address-pooling-support?
             |  |       boolean
             |  +--ro endpoint-independent-mapping-support?
             |  |       boolean
             |  +--ro address-dependent-mapping-support?
             |  |       boolean
             |  +--ro address-and-port-dependent-mapping-support?
             |  |       boolean
             |  +--ro endpoint-independent-filtering-support?
             |  |       boolean
             |  +--ro address-dependent-filtering?
             |  |       boolean
             |  +--ro address-and-port-dependent-filtering?
             |  |       boolean
             |  +--ro fragment-behavior?
             |          enumeration
             +--rw type?                    identityref
             +--rw per-interface-binding?   enumeration
             +--rw nat-pass-through* [id]
             |       {basic-nat44 or napt44 or dst-nat}?
             |  +--rw id        uint32
             |  +--rw prefix    inet:ip-prefix
             |  +--rw port?     inet:port-number
             +--rw policy* [id]
             |  +--rw id                          uint32
             |  +--rw clat-parameters {clat}?
             |  |  +--rw clat-ipv6-prefixes* [ipv6-prefix]
             |  |  |  +--rw ipv6-prefix    inet:ipv6-prefix
             |  |  +--rw ipv4-prefixes* [ipv4-prefix]
             |  |     +--rw ipv4-prefix    inet:ipv4-prefix
             |  +--rw nptv6-prefixes* [internal-ipv6-prefix] {nptv6}?
             |  |  +--rw internal-ipv6-prefix    inet:ipv6-prefix
             |  |  +--rw external-ipv6-prefix    inet:ipv6-prefix
             |  +--rw eam* [ipv4-prefix] {eam}?
             |  |  +--rw ipv4-prefix    inet:ipv4-prefix
             |  |  +--rw ipv6-prefix    inet:ipv6-prefix
        
             |  +--rw nat64-prefixes* [nat64-prefix]
             |  |       {siit or nat64 or clat}?
             |  |  +--rw nat64-prefix               inet:ipv6-prefix
             |  |  +--rw destination-ipv4-prefix* [ipv4-prefix]
             |  |  |  +--rw ipv4-prefix    inet:ipv4-prefix
             |  |  +--rw stateless-enable?          boolean
             |  +--rw external-ip-address-pool* [pool-id]
             |  |       {basic-nat44 or napt44 or nat64}?
             |  |  +--rw pool-id             uint32
             |  |  +--rw external-ip-pool    inet:ipv4-prefix
             |  +--rw port-set-restrict {napt44 or nat64}?
             |  |  +--rw (port-type)?
             |  |     +--:(port-range)
             |  |     |  +--rw start-port-number?   inet:port-number
             |  |     |  +--rw end-port-number?     inet:port-number
             |  |     +--:(port-set-algo)
             |  |        +--rw psid-offset?         uint8
             |  |        +--rw psid-len             uint8
             |  |        +--rw psid                 uint16
             |  +--rw dst-nat-enable?             boolean
             |  |       {basic-nat44 or napt44}?
             |  +--rw dst-ip-address-pool* [pool-id] {dst-nat}?
             |  |  +--rw pool-id            uint32
             |  |  +--rw dst-in-ip-pool?    inet:ip-prefix
             |  |  +--rw dst-out-ip-pool    inet:ip-prefix
             |  +--rw transport-protocols* [protocol-id]
             |  |       {napt44 or nat64 or dst-nat}?
             |  |  +--rw protocol-id      uint8
             |  |  +--rw protocol-name?   string
             |  +--rw subscriber-mask-v6?         uint8
             |  +--rw subscriber-match* [match-id]
             |  |       {basic-nat44 or napt44 or dst-nat}?
             |  |  +--rw match-id    uint32
             |  |  +--rw subnet      inet:ip-prefix
             |  +--rw address-allocation-type?    enumeration
             |  +--rw port-allocation-type?       enumeration
             |  |       {napt44 or nat64}?
             |  +--rw mapping-type?               enumeration
             |  |       {napt44 or nat64}?
             |  +--rw filtering-type?             enumeration
             |  |       {napt44 or nat64}?
             |  +--rw fragment-behavior?          enumeration
             |  |       {napt44 or nat64}?
             |  +--rw port-quota* [quota-type] {napt44 or nat64}?
             |  |  +--rw port-limit?   uint16
             |  |  +--rw quota-type    uint8
        
             |  +--rw port-set {napt44 or nat64}?
             |  |  +--rw port-set-size       uint16
             |  |  +--rw port-set-timeout?   uint32
             |  +--rw timers {napt44 or nat64}?
             |  |  +--rw udp-timeout?               uint32
             |  |  +--rw tcp-idle-timeout?          uint32
             |  |  +--rw tcp-trans-open-timeout?    uint32
             |  |  +--rw tcp-trans-close-timeout?   uint32
             |  |  +--rw tcp-in-syn-timeout?        uint32
             |  |  +--rw fragment-min-timeout?      uint32
             |  |  +--rw icmp-timeout?              uint32
             |  |  +--rw per-port-timeout* [port-number]
             |  |  |  +--rw port-number    inet:port-number
             |  |  |  +--rw protocol?      uint32
             |  |  |  +--rw timeout        uint32
             |  |  +--rw hold-down-timeout?         uint32
             |  |  +--rw hold-down-max?             uint32
             |  +--rw fragments-limit?            uint32
             |  +--rw algs* [name]
             |  |  +--rw name                  string
             |  |  +--rw transport-protocol?   uint32
             |  |  +--rw dst-transport-port
             |  |  |  +--rw start-port-number?   inet:port-number
             |  |  |  +--rw end-port-number?     inet:port-number
             |  |  +--rw src-transport-port
             |  |  |  +--rw start-port-number?   inet:port-number
             |  |  |  +--rw end-port-number?     inet:port-number
             |  |  +--rw status?               boolean
             |  +--rw all-algs-enable?            boolean
             |  +--rw notify-pool-usage
             |  |       {basic-nat44 or napt44 or nat64}?
             |  |  +--rw pool-id?           uint32
             |  |  +--rw low-threshold?    percent
             |  |  +--rw high-threshold?     percent
             |  |  +--rw notify-interval?   uint32
             |  +--rw external-realm
             |     +--rw (realm-type)?
             |        +--:(interface)
             |           +--rw external-interface?   if:interface-ref
             +--rw mapping-limits {napt44 or nat64}?
             |  +--rw limit-subscribers?        uint32
             |  +--rw limit-address-mappings?   uint32
             |  +--rw limit-port-mappings?      uint32
             |  +--rw limit-per-protocol* [protocol-id]
             |          {napt44 or nat64 or dst-nat}?
             |     +--rw protocol-id    uint8
             |     +--rw limit?         uint32
        
             +--rw connection-limits
             |       {basic-nat44 or napt44 or nat64}?
             |  +--rw limit-per-subscriber?   uint32
             |  +--rw limit-per-instance?     uint32
             |  +--rw limit-per-protocol* [protocol-id]
             |          {napt44 or nat64}?
             |     +--rw protocol-id    uint8
             |     +--rw limit?         uint32
             +--rw notification-limits
             |  +--rw notify-interval?            uint32
             |  |       {basic-nat44 or napt44 or nat64}?
             |  +--rw notify-addresses-usage?     percent
             |  |       {basic-nat44 or napt44 or nat64}?
             |  +--rw notify-ports-usage?         percent
             |  |       {napt44 or nat64}?
             |  +--rw notify-subscribers-limit?   uint32
             |          {basic-nat44 or napt44 or nat64}?
             +--rw mapping-table
             |  |{basic-nat44 or napt44 or nat64 or clat or dst-nat}?
             |  +--rw mapping-entry* [index]
             |     +--rw index                   uint32
             |     +--rw type?                   enumeration
             |     +--rw transport-protocol?     uint8
             |     +--rw internal-src-address?   inet:ip-prefix
             |     +--rw internal-src-port
             |     |  +--rw start-port-number?   inet:port-number
             |     |  +--rw end-port-number?     inet:port-number
             |     +--rw external-src-address?   inet:ip-prefix
             |     +--rw external-src-port
             |     |  +--rw start-port-number?   inet:port-number
             |     |  +--rw end-port-number?     inet:port-number
             |     +--rw internal-dst-address?   inet:ip-prefix
             |     +--rw internal-dst-port
             |     |  +--rw start-port-number?   inet:port-number
             |     |  +--rw end-port-number?     inet:port-number
             |     +--rw external-dst-address?   inet:ip-prefix
             |     +--rw external-dst-port
             |     |  +--rw start-port-number?   inet:port-number
             |     |  +--rw end-port-number?     inet:port-number
             |     +--rw lifetime?               uint32
             +--ro statistics
                +--ro discontinuity-time     yang:date-and-time
                +--ro traffic-statistics
                |  +--ro sent-packets?
                |  |       yang:zero-based-counter64
                |  +--ro sent-bytes?
                |  |       yang:zero-based-counter64
        
                |  +--ro rcvd-packets?
                |  |       yang:zero-based-counter64
                |  +--ro rcvd-bytes?
                |  |       yang:zero-based-counter64
                |  +--ro dropped-packets?
                |  |       yang:zero-based-counter64
                |  +--ro dropped-bytes?
                |  |       yang:zero-based-counter64
                |  +--ro dropped-fragments?
                |  |       yang:zero-based-counter64
                |  |       {napt44 or nat64}?
                |  +--ro dropped-address-limit-packets?
                |  |       yang:zero-based-counter64
                |  |       {basic-nat44 or napt44 or nat64}?
                |  +--ro dropped-address-limit-bytes?
                |  |       yang:zero-based-counter64
                |  |       {basic-nat44 or napt44 or nat64}?
                |  +--ro dropped-address-packets?
                |  |       yang:zero-based-counter64
                |  |       {basic-nat44 or napt44 or nat64}?
                |  +--ro dropped-address-bytes?
                |  |       yang:zero-based-counter64
                |  |       {basic-nat44 or napt44 or nat64}?
                |  +--ro dropped-port-limit-packets?
                |  |       yang:zero-based-counter64
                |  |       {napt44 or nat64}?
                |  +--ro dropped-port-limit-bytes?
                |  |       yang:zero-based-counter64
                |  |       {napt44 or nat64}?
                |  +--ro dropped-port-packets?
                |  |       yang:zero-based-counter64
                |  |       {napt44 or nat64}?
                |  +--ro dropped-port-bytes?
                |  |       yang:zero-based-counter64
                |  |       {napt44 or nat64}?
                |  +--ro dropped-subscriber-limit-packets?
                |  |       yang:zero-based-counter64
                |  |       {basic-nat44 or napt44 or nat64}?
                |  +--ro dropped-subscriber-limit-bytes?
                |          yang:zero-based-counter64
                |          {basic-nat44 or napt44 or nat64}?
                +--ro mappings-statistics
                |  +--ro total-active-subscribers?   yang:gauge32
                |  |       {basic-nat44 or napt44 or nat64}?
                |  +--ro total-address-mappings?     yang:gauge32
                |  |{basic-nat44 or napt44 or nat64 or clat or dst-nat}?
                |  +--ro total-port-mappings?        yang:gauge32
                |  |       {napt44 or nat64}?
        
                |  +--ro total-per-protocol* [protocol-id]
                |          {napt44 or nat64}?
                |     +--ro protocol-id    uint8
                |     +--ro total?         yang:gauge32
                +--ro pools-stats {basic-nat44 or napt44 or nat64}?
                   +--ro addresses-allocated?   yang:gauge32
                   +--ro addresses-free?        yang:gauge32
                   +--ro ports-stats {napt44 or nat64}?
                   |  +--ro ports-allocated?   yang:gauge32
                   |  +--ro ports-free?        yang:gauge32
                   +--ro per-pool-stats* [pool-id]
                      |    {basic-nat44 or napt44 or nat64}?
                      +--ro pool-id               uint32
                      +--ro discontinuity-time    yang:date-and-time
                      +--ro pool-stats
                      |  +--ro addresses-allocated?   yang:gauge32
                      |  +--ro addresses-free?        yang:gauge32
                      +--ro port-stats {napt44 or nat64}?
                         +--ro ports-allocated?   yang:gauge32
                         +--ro ports-free?        yang:gauge32
        
    notifications:
      +---n nat-pool-event {basic-nat44 or napt44 or nat64}?
      |  +--ro id        -> /nat/instances/instance/id
      |  +--ro policy-id?
      |  |       -> /nat/instances/instance/policy/id
      |  +--ro pool-id
      |  |       -> /nat/instances/instance/policy/
      |  |            external-ip-address-pool/pool-id
      |  +--ro notify-pool-threshold    percent
      +---n nat-instance-event {basic-nat44 or napt44 or nat64}?
         +--ro id
         |       -> /nat/instances/instance/id
         +--ro notify-subscribers-threshold?   uint32
         +--ro notify-addresses-threshold?     percent
         +--ro notify-ports-threshold?         percent
        
3. NAT YANG Module
3. NAT YANGモジュール
 <CODE BEGINS> file "ietf-nat@2019-01-10.yang"
        
 module ietf-nat {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-nat";
  prefix nat;
        
  import ietf-inet-types {
    prefix inet;
    reference
      "Section 4 of RFC 6991";
  }
  import ietf-yang-types {
    prefix yang;
    reference
      "Section 3 of RFC 6991";
  }
  import ietf-interfaces {
    prefix if;
    reference
      "RFC 8343: A YANG Data Model for Interface Management";
  }
        
  organization
    "IETF OPSAWG (Operations and Management Area Working Group)";
  contact
    "WG Web:   <https://datatracker.ietf.org/wg/opsawg/>
     WG List:  <mailto:opsawg@ietf.org>
        
     Editor:  Mohamed Boucadair
              <mailto:mohamed.boucadair@orange.com>
        
     Author:  Senthil Sivakumar
              <mailto:ssenthil@cisco.com>
        
     Author:  Christian Jacquenet
              <mailto:christian.jacquenet@orange.com>
        
     Author:  Suresh Vinapamula
              <mailto:sureshk@juniper.net>
        
     Author:  Qin Wu
              <mailto:bill.wu@huawei.com>";
        

description "This module is a YANG module for NAT implementations.

説明「このモジュールは、NAT実装用のYANGモジュールです。

NAT44, Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers (NAT64), customer-side translator (CLAT), Stateless IP/ICMP Translation (SIIT), Explicit Address Mappings (EAM) for SIIT, IPv6 Network Prefix Translation (NPTv6), and Destination NAT are covered.

NAT44、IPv6クライアントからIPv4サーバーへのネットワークアドレスおよびプロトコル変換(NAT64)、顧客側トランスレータ(CLAT)、ステートレスIP / ICMP変換(SIIT)、SIITの明示的アドレスマッピング(EAM)、IPv6ネットワークプレフィックス変換(NPTv6) 、および宛先NATがカバーされています。

Copyright (c) 2018 IETF Trust and the persons identified as authors of the code. All rights reserved.

Copyright(c)2018 IETF Trustおよびコードの作成者として識別された人物。全著作権所有。

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

ソースおよびバイナリ形式での再配布および使用は、変更の有無にかかわらず、IETFドキュメントに関連するIETFトラストの法的規定のセクション4.cに記載されているSimplified BSD Licenseに準拠し、それに含まれるライセンス条項に従って許可されます( http://trustee.ietf.org/license-info)。

This version of this YANG module is part of RFC 8512; see the RFC itself for full legal notices.";

このYANGモジュールのこのバージョンはRFC 8512の一部です。完全な法的通知については、RFC自体を参照してください。 ";

  revision 2019-01-10 {
    description
      "Initial revision.";
    reference
      "RFC 8512: A YANG Module for Network Address Translation
                 (NAT) and Network Prefix Translation (NPT)";
  }
        
  /*
   * Definitions
   */
        
  typedef percent {
    type uint8 {
      range "0 .. 100";
    }
    description
      "Percentage";
  }
        
  /*
   * Features
   */
        
  feature basic-nat44 {
    description
      "Basic NAT44 translation is limited to IP addresses alone.";
    reference
      "RFC 3022: Traditional IP Network Address Translator
        
                 (Traditional NAT)";
  }
        

feature napt44 { description "Network Address Port Translator (NAPT): translation is extended to include IP addresses and transport identifiers (such as a TCP/UDP port or ICMP query ID).

機能napt44 {説明 "ネットワークアドレスポートトランスレータ(NAPT):変換が拡張され、IPアドレスとトランスポート識別子(TCP / UDPポートやICMPクエリIDなど)が含まれるようになりました。

       If the internal IP address is not sufficient to uniquely
       disambiguate NAPT44 mappings, an additional attribute is
       required.  For example, that additional attribute may
       be an IPv6 address (a.k.a., DS-Lite) or
       a Layer 2 identifier (a.k.a., Per-Interface NAT)";
    reference
      "RFC 3022: Traditional IP Network Address Translator
                 (Traditional NAT)";
  }
        
  feature dst-nat {
    description
      "Destination NAT is a translation that acts on the destination
       IP address and/or destination port number.  This flavor is
       usually deployed in load balancers or at devices
       in front of public servers.";
  }
        
  feature nat64 {
    description
      "NAT64 translation allows IPv6-only clients to contact IPv4
       servers using, e.g., UDP, TCP, or ICMP.  One or more
       public IPv4 addresses assigned to a NAT64 translator are
       shared among several IPv6-only clients.";
    reference
      "RFC 6146: Stateful NAT64: Network Address and Protocol
                 Translation from IPv6 Clients to IPv4 Servers";
  }
        

feature siit { description "The Stateless IP/ICMP Translation Algorithm (SIIT), which translates between IPv4 and IPv6 packet headers (including ICMP headers).

feature siit {description "ステートレスIP / ICMP変換アルゴリズム(SIIT)。IPv4とIPv6パケットヘッダー(ICMPヘッダーを含む)の間で変換を行います。

In the stateless mode, an IP/ICMP translator converts IPv4 addresses to IPv6, and vice versa, solely based on the configuration of the stateless IP/ICMP translator and information contained within the packet being translated.

ステートレスモードでは、IP / ICMPトランスレーターは、ステートレスIP / ICMPトランスレーターの構成と変換されるパケットに含まれる情報のみに基づいて、IPv4アドレスをIPv6に、またはその逆に変換します。

       The translator must support the stateless address mapping
       algorithm defined in RFC 6052, which is the default behavior.";
    reference
      "RFC 7915: IP/ICMP Translation Algorithm";
  }
        

feature clat { description "CLAT is customer-side translator that algorithmically translates 1:1 private IPv4 addresses to global IPv6 addresses, and vice versa.

feature clat {description "CLATは、1:1プライベートIPv4アドレスをグローバルIPv6アドレスに、またはその逆にアルゴリズムで変換する顧客側トランスレータです。

       When a dedicated /64 prefix is not available for translation
       from DHCPv6-PD, the CLAT may perform NAT44 for all IPv4 LAN
       packets so that all the LAN-originated IPv4 packets appear
       from a single IPv4 address and are then statelessly translated
       to one interface IPv6 address that is claimed by the CLAT via
       the Neighbor Discovery Protocol (NDP) and defended with
       Duplicate Address Detection.";
    reference
      "RFC 6877: 464XLAT: Combination of Stateful and
                 Stateless Translation";
  }
        
  feature eam {
    description
      "Explicit Address Mapping (EAM) is a bidirectional coupling
       between an IPv4 prefix and an IPv6 prefix.";
    reference
      "RFC 7757: Explicit Address Mappings for Stateless IP/ICMP
                 Translation";
  }
        
  feature nptv6 {
    description
      "NPTv6 is a stateless transport-agnostic IPv6-to-IPv6
       prefix translation.";
    reference
      "RFC 6296: IPv6-to-IPv6 Network Prefix Translation";
  }
        
  /*
   * Identities
   */
        
  identity nat-type {
    description
      "Base identity for nat type.";
        

}

  identity basic-nat44 {
    base nat:nat-type;
    description
      "Identity for Basic NAT support.";
    reference
      "RFC 3022: Traditional IP Network Address Translator
                 (Traditional NAT)";
  }
        
  identity napt44 {
    base nat:nat-type;
    description
      "Identity for NAPT support.";
    reference
      "RFC 3022: Traditional IP Network Address Translator
                 (Traditional NAT)";
  }
        
  identity dst-nat {
    base nat:nat-type;
    description
      "Identity for Destination NAT support.";
  }
        
  identity nat64 {
    base nat:nat-type;
    description
      "Identity for NAT64 support.";
    reference
      "RFC 6146: Stateful NAT64: Network Address and Protocol
                 Translation from IPv6 Clients to IPv4 Servers";
  }
        
  identity siit {
    base nat:nat-type;
    description
      "Identity for SIIT support.";
    reference
      "RFC 7915: IP/ICMP Translation Algorithm";
  }
        
  identity clat {
    base nat:nat-type;
    description
      "Identity for CLAT support.";
    reference
        
      "RFC 6877: 464XLAT: Combination of Stateful and Stateless
                 Translation";
  }
        
  identity eam {
    base nat:nat-type;
    description
      "Identity for EAM support.";
    reference
      "RFC 7757: Explicit Address Mappings for Stateless IP/ICMP
                 Translation";
  }
        
  identity nptv6 {
    base nat:nat-type;
    description
      "Identity for NPTv6 support.";
    reference
      "RFC 6296: IPv6-to-IPv6 Network Prefix Translation";
  }
        
  /*
   * Grouping
   */
        
  grouping port-number {
    description
      "An individual port number or a range of ports.
       When only start-port-number is present,
       it represents a single port number.";
    leaf start-port-number {
      type inet:port-number;
      description
        "Beginning of the port range.";
      reference
        "Section 3.2.9 of RFC 8045";
    }
    leaf end-port-number {
      type inet:port-number;
      must '. >= ../start-port-number' {
        error-message
          "The end-port-number must be greater than or
           equal to start-port-number.";
      }
      description
        "End of the port range.";
      reference
        "Section 3.2.10 of RFC 8045";
        
    }
  }
        

grouping port-set { description "Indicates a set of port numbers.

grouping port-set {description "ポート番号のセットを示します。

       It may be a simple port range, or use the Port Set
       Identifier (PSID) algorithm to represent a range of
       transport-layer port numbers that will be used by a
       NAPT.";
    choice port-type {
      default "port-range";
      description
        "Port type: port-range or port-set-algo.";
      case port-range {
        uses port-number;
      }
      case port-set-algo {
        leaf psid-offset {
          type uint8 {
            range "0..15";
          }
          description
            "The number of offset bits (a.k.a., 'a' bits).
             Specifies the numeric value for the excluded port
             range/offset bits.
        
             Allowed values are between 0 and 15.";
          reference
            "Section 5.1 of RFC 7597";
        }
        leaf psid-len {
          type uint8 {
            range "0..15";
          }
          mandatory true;
          description
            "The length of PSID, representing the sharing
             ratio for an IPv4 address.
        

(also known as 'k').

(「k」とも呼ばれます)。

             The address-sharing ratio would be 2^k.";
          reference
            "Section 5.1 of RFC 7597";
        }
        leaf psid {
        
          type uint16;
          mandatory true;
          description
            "PSID value, which identifies a set
             of ports algorithmically.";
          reference
            "Section 5.1 of RFC 7597";
        }
      }
      reference
        "RFC 7597: Mapping of Address and Port with
                   Encapsulation (MAP-E)";
    }
  }
        

grouping mapping-entry { description "NAT mapping entry.

grouping mapping-entry {description "NATマッピングエントリ。

       If an attribute is not stored in the mapping/session table,
       it means the corresponding field of a packet that
       matches this entry is not rewritten by the NAT or this
       information is not required for NAT filtering purposes.";
    leaf index {
      type uint32;
      description
        "A unique identifier of a mapping entry.  This identifier
         can be automatically assigned by the NAT instance or be
         explicitly configured.";
    }
    leaf type {
      type enumeration {
        enum static {
          description
            "The mapping entry is explicitly configured
             (e.g., via a command-line interface).";
        }
        enum dynamic-implicit {
          description
            "This mapping is created implicitly as a side effect
             of processing a packet that requires a new mapping.";
        }
        enum dynamic-explicit {
          description
            "This mapping is created as a result of an explicit
             request, e.g., a PCP message.";
        }
      }
      description
        "Indicates the type of a mapping entry.  For example,
         a mapping can be: static, implicit dynamic,
         or explicit dynamic.";
    }
    leaf transport-protocol {
      type uint8;
      description
        "The upper-layer protocol associated with this mapping.
         Values are taken from the IANA Protocol Numbers registry:
         <https://www.iana.org/assignments/protocol-numbers/>.
        

For example, this field contains 6 for TCP, 17 for UDP, 33 for DCCP, or 132 for SCTP.

たとえば、このフィールドには、TCPの場合6、UDPの場合17、DCCPの場合33、SCTPの場合132が含まれます。

         If this leaf is not instantiated, then the mapping
         applies to any protocol.";
    }
    leaf internal-src-address {
      type inet:ip-prefix;
      description
        "Corresponds to the source IPv4/IPv6 address/prefix
         of the packet received on an internal interface.";
    }
    container internal-src-port {
      description
        "Corresponds to the source port of the packet received
         on an internal interface.
        

It is also used to indicate the internal source ICMP identifier.

また、内部ソースICMP識別子を示すためにも使用されます。

         As a reminder, all the ICMP Query messages contain
         an 'Identifier' field, which is referred to in this
         document as the 'ICMP Identifier'.";
      uses port-number;
    }
    leaf external-src-address {
      type inet:ip-prefix;
      description
        "Source IP address/prefix of the packet sent on an
         external interface of the NAT.";
    }
    container external-src-port {
      description
        "Source port of the packet sent on an external
         interface of the NAT.
        
         It is also used to indicate the external source ICMP
         identifier.";
      uses port-number;
    }
    leaf internal-dst-address {
      type inet:ip-prefix;
      description
        "Corresponds to the destination IP address/prefix
         of the packet received on an internal interface
         of the NAT.
        
         For example, some NAT implementations support
         the translation of both source and destination
         addresses and port numbers, sometimes referred to
         as 'Twice NAT'.";
    }
    container internal-dst-port {
      description
        "Corresponds to the destination port of the
         IP packet received on the internal interface.
        
         It is also used to include the internal
         destination ICMP identifier.";
      uses port-number;
    }
    leaf external-dst-address {
      type inet:ip-prefix;
      description
        "Corresponds to the destination IP address/prefix
         of the packet sent on an external interface
         of the NAT.";
    }
    container external-dst-port {
      description
        "Corresponds to the destination port number of
         the packet sent on the external interface
         of the NAT.
        
         It is also used to include the external
         destination ICMP identifier.";
      uses port-number;
    }
    leaf lifetime {
      type uint32;
      units "seconds";
      description
        "When specified, it is used to track the connection that is
         fully formed (e.g., once the three-way handshake
         TCP is completed) or the duration for maintaining
         an explicit mapping alive.  The mapping entry will be
         removed by the NAT instance once this lifetime is expired.
        

When reported in a get operation, the lifetime indicates the remaining validity lifetime.

get操作で報告される場合、寿命は残りの有効寿命を示します。

         Static mappings may not be associated with a
         lifetime.  If no lifetime is associated with a
         static mapping, an explicit action is required to
         remove that mapping.";
    }
  }
        
  /*
   * NAT Module
   */
        
  container nat {
    description
      "NAT module";
    container instances {
      description
        "NAT instances";
      list instance {
        key "id";
        description
          "A NAT instance.  This identifier can be automatically
           assigned or explicitly configured.";
        leaf id {
          type uint32;
          must '. >= 1';
          description
            "NAT instance identifier.
        
             The identifier must be greater than zero.";
          reference
            "RFC 7659: Definitions of Managed Objects for Network
                       Address Translators (NATs)";
        }
        leaf name {
          type string;
          description
            "A name associated with the NAT instance.";
          reference
            "RFC 7659: Definitions of Managed Objects for Network
                       Address Translators (NATs)";
        }
        leaf enable {
          type boolean;
          description
            "Status of the NAT instance.";
        }
        container capabilities {
          config false;
          description
            "NAT capabilities.";
          leaf-list nat-flavor {
            type identityref {
              base nat-type;
            }
            description
              "Supported translation type(s).";
          }
          leaf-list per-interface-binding {
            type enumeration {
              enum unsupported {
                description
                  "No capability to associate a NAT binding with
                   an extra identifier.";
              }
              enum layer-2 {
                description
                  "The NAT instance is able to associate a mapping with
                   a Layer 2 identifier.";
              }
              enum dslite {
                description
                  "The NAT instance is able to associate a mapping with
                   an IPv6 address (a.k.a., DS-Lite).";
              }
            }
            description
              "Indicates the capability of a NAT to associate a
               particular NAT session not only with the five
               tuples used for the transport connection on both
               sides of the NAT but also with the internal
               interface on which the user device is
               connected to the NAT.";
            reference
              "Section 4 of RFC 6619";
          }
          list transport-protocols {
            key "protocol-id";
            description
              "List of supported protocols.";
        
            leaf protocol-id {
              type uint8;
              mandatory true;
              description
                "The upper-layer protocol associated with a mapping.
        

Values are taken from the IANA Protocol Numbers registry.

値はIANAプロトコル番号レジストリから取得されます。

                 For example, this field contains 6 for TCP,
                 17 for UDP, 33 for DCCP, or 132 for SCTP.";
            }
            leaf protocol-name {
              type string;
              description
                "The name of the upper-layer protocol associated
                 with this mapping.
        
                 For example, TCP, UDP, DCCP, and SCTP.";
            }
          }
          leaf restricted-port-support {
            type boolean;
            description
              "Indicates source port NAT restriction support.";
            reference
              "RFC 7596: Lightweight 4over6: An Extension to
                         the Dual-Stack Lite Architecture";
          }
          leaf static-mapping-support {
            type boolean;
            description
              "Indicates whether static mappings are supported.";
          }
          leaf port-randomization-support {
            type boolean;
            description
              "Indicates whether port randomization is supported.";
            reference
              "Section 4.2.1 of RFC 4787";
          }
          leaf port-range-allocation-support {
            type boolean;
            description
              "Indicates whether port range allocation is supported.";
            reference
              "Section 1.1 of RFC 7753";
          }
          leaf port-preservation-suport {
            type boolean;
            description
              "Indicates whether port preservation is supported.";
            reference
              "Section 4.2.1 of RFC 4787";
          }
          leaf port-parity-preservation-support {
            type boolean;
            description
              "Indicates whether port parity preservation is
               supported.";
            reference
              "Section 8 of RFC 7857";
          }
          leaf address-roundrobin-support {
            type boolean;
            description
              "Indicates whether address allocation round robin is
               supported.";
          }
          leaf paired-address-pooling-support {
            type boolean;
            description
              "Indicates whether paired-address-pooling is
               supported";
            reference
              "REQ-2 of RFC 4787";
          }
          leaf endpoint-independent-mapping-support {
            type boolean;
            description
              "Indicates whether endpoint-independent-
               mapping is supported.";
            reference
              "Section 4 of RFC 4787";
          }
          leaf address-dependent-mapping-support {
            type boolean;
            description
              "Indicates whether address-dependent-mapping is
               supported.";
            reference
              "Section 4 of RFC 4787";
          }
          leaf address-and-port-dependent-mapping-support {
            type boolean;
            description
        
              "Indicates whether address-and-port-dependent-mapping is
               supported.";
            reference
              "Section 4 of RFC 4787";
          }
          leaf endpoint-independent-filtering-support {
            type boolean;
            description
              "Indicates whether endpoint-independent-filtering is
               supported.";
            reference
              "Section 5 of RFC 4787";
          }
          leaf address-dependent-filtering {
            type boolean;
            description
              "Indicates whether address-dependent-filtering is
               supported.";
            reference
              "Section 5 of RFC 4787";
          }
          leaf address-and-port-dependent-filtering {
            type boolean;
            description
              "Indicates whether address-and-port-dependent is
               supported.";
            reference
              "Section 5 of RFC 4787";
          }
          leaf fragment-behavior {
            type enumeration {
              enum unsupported {
                description
                  "No capability to translate incoming fragments.
                   All received fragments are dropped.";
              }
              enum in-order {
                description
                  "The NAT instance is able to translate fragments
                   only if they are received in order.  That is, in
                   particular the header is in the first packet.
                   Fragments received out of order are dropped. ";
              }
              enum out-of-order {
                description
                  "The NAT instance is able to translate a fragment even
                   if it is received out of order.
        
                   This behavior is recommended.";
                reference
                  "REQ-14 of RFC 4787";
              }
            }
            description
              "The fragment behavior is the NAT instance's capability to
               translate fragments received on the external interface of
               the NAT.";
          }
        }
        leaf type {
          type identityref {
            base nat-type;
          }
          description
            "Specify the translation type.  Particularly useful when
             multiple translation flavors are supported.
        
             If one type is supported by a NAT, this parameter is by
             default set to that type.";
        }
        leaf per-interface-binding {
          type enumeration {
            enum disabled {
              description
                "Disable the capability to associate an extra identifier
                 with NAT mappings.";
            }
            enum layer-2 {
              description
                "The NAT instance is able to associate a mapping with
                 a Layer 2 identifier.";
            }
            enum dslite {
              description
                "The NAT instance is able to associate a mapping with
                 an IPv6 address (a.k.a., DS-Lite).";
            }
          }
          description
            "A NAT that associates a particular NAT session not
             only with the five tuples used for the transport
             connection on both sides of the NAT but also with
             the internal interface on which the user device is
             connected to the NAT.
        
             If supported, this mode of operation should be
             configurable, and it should be disabled by default in
             general-purpose NAT devices.
             If one single per-interface binding behavior is
             supported by a NAT, this parameter is by default set to
             that behavior.";
          reference
            "Section 4 of RFC 6619";
        }
        list nat-pass-through {
          if-feature "basic-nat44 or napt44 or dst-nat";
          key "id";
          description
            "IP prefix NAT pass-through.";
          leaf id {
            type uint32;
            description
              "An identifier of the IP prefix pass-through.";
          }
          leaf prefix {
            type inet:ip-prefix;
            mandatory true;
            description
              "The IP addresses that match should not be translated.
        
               It must be possible to administratively turn
               off translation for specific destination addresses
               and/or ports.";
            reference
              "REQ-6 of RFC 6888";
          }
          leaf port {
            type inet:port-number;
            description
              "It must be possible to administratively turn off
               translation for specific destination addresses
               and/or ports.
        
               If no prefix is defined, the NAT pass-through bound
               to a given port applies for any destination address.";
            reference
              "REQ-6 of RFC 6888";
          }
        }
        list policy {
          key "id";
          description
            "NAT parameters for a given instance";
          leaf id {
        
            type uint32;
            description
              "An identifier of the NAT policy.  It must be unique
               within the NAT instance.";
          }
          container clat-parameters {
            if-feature "clat";
            description
              "CLAT parameters.";
            list clat-ipv6-prefixes {
              key "ipv6-prefix";
              description
                "464XLAT double-translation treatment is stateless
                 when a dedicated /64 is available for translation
                 on the CLAT.  Otherwise, the CLAT will have both
                 stateful and stateless translation since it requires
                 NAT44 from the LAN to a single IPv4 address and then
                 stateless translation to a single IPv6 address.";
              reference
                "RFC 6877: 464XLAT: Combination of Stateful and
                           Stateless Translation";
              leaf ipv6-prefix {
                type inet:ipv6-prefix;
                description
                  "An IPv6 prefix used for CLAT.";
              }
            }
            list ipv4-prefixes {
              key "ipv4-prefix";
              description
                "Pool of IPv4 addresses used for CLAT.
                 192.0.0.0/29 is the IPv4 service continuity prefix.";
              reference
                "RFC 7335: IPv4 Service Continuity Prefix";
              leaf ipv4-prefix {
                type inet:ipv4-prefix;
                description
                  "464XLAT double-translation treatment is
                   stateless when a dedicated /64 is available
                   for translation on the CLAT.  Otherwise, the
                   CLAT will have both stateful and stateless
                   translation since it requires NAT44 from the
                   LAN to a single IPv4 address and then stateless
                   translation to a single IPv6 address.
                   The CLAT performs NAT44 for all IPv4 LAN
                   packets so that all the LAN-originated IPv4
                   packets appear from a single IPv4 address
                   and are then statelessly translated to one
                   interface IPv6 address that is claimed by
                   the CLAT.
        
                   An IPv4 address from this pool is also
                   provided to an application that makes
                   use of literals.";
                reference
                  "RFC 6877: 464XLAT: Combination of Stateful and
                             Stateless Translation";
              }
            }
          }
          list nptv6-prefixes {
            if-feature "nptv6";
            key "internal-ipv6-prefix";
            description
              "Provides one or a list of (internal IPv6 prefix,
               external IPv6 prefix) required for NPTv6.
        
               In its simplest form, NPTv6 interconnects two
               network links: one is an 'internal' network
               link attached to a leaf network within a single
               administrative domain, and the other is an
               'external' network with connectivity to the
               global Internet.";
            reference
              "RFC 6296: IPv6-to-IPv6 Network Prefix Translation";
            leaf internal-ipv6-prefix {
              type inet:ipv6-prefix;
              mandatory true;
              description
                "An IPv6 prefix used by an internal interface of
                 NPTv6.";
              reference
                "RFC 6296: IPv6-to-IPv6 Network Prefix Translation";
            }
            leaf external-ipv6-prefix {
              type inet:ipv6-prefix;
              mandatory true;
              description
                "An IPv6 prefix used by the external interface of
                 NPTv6.";
              reference
                "RFC 6296: IPv6-to-IPv6 Network Prefix Translation";
            }
          }
          list eam {
            if-feature "eam";
        

key "ipv4-prefix"; description "The Explicit Address Mapping Table is a conceptual table in which each row represents an EAM.

キー「ipv4-prefix」;説明「明示的なアドレスマッピングテーブルは、各行がEAMを表す概念的なテーブルです。

               Each EAM describes a mapping between IPv4 and IPv6
               prefixes/addresses.";
            reference
              "Section 3.1 of RFC 7757";
            leaf ipv4-prefix {
              type inet:ipv4-prefix;
              mandatory true;
              description
                "The IPv4 prefix of an EAM.";
              reference
                "Section 3.2 of RFC 7757";
            }
            leaf ipv6-prefix {
              type inet:ipv6-prefix;
              mandatory true;
              description
                "The IPv6 prefix of an EAM.";
              reference
                "Section 3.2 of RFC 7757";
            }
          }
          list nat64-prefixes {
            if-feature "siit or nat64 or clat";
            key "nat64-prefix";
            description
              "Provides one or a list of NAT64 prefixes
               with or without a list of destination IPv4 prefixes.
               It allows mapping IPv4 address ranges to IPv6 prefixes.
               For example:
               192.0.2.0/24 is mapped to 2001:db8:122:300::/56.
               198.51.100.0/24 is mapped to 2001:db8:122::/48.";
            reference
              "Section 5.1 of RFC 7050";
            leaf nat64-prefix {
              type inet:ipv6-prefix;
              mandatory true;
              description
                "A NAT64 prefix.  Can be a Network-Specific Prefix (NSP)
                 or a Well-Known Prefix (WKP).
        

Organizations deploying stateless IPv4/IPv6 translation should assign an NSP to their IPv4/IPv6 translation service.

ステートレスIPv4 / IPv6変換を展開する組織は、IPv4 / IPv6変換サービスにNSPを割り当てる必要があります。

For stateless NAT64, IPv4-translatable IPv6 addresses must use the selected NSP.

ステートレスNAT64の場合、IPv4変換可能なIPv6アドレスは、選択されたNSPを使用する必要があります。

                 Both IPv4-translatable IPv6 addresses and
                 IPv4-converted IPv6 addresses should use
                 the same prefix.";
              reference
                "Sections 3.3 and 3.4 of RFC 6052";
            }
            list destination-ipv4-prefix {
              key "ipv4-prefix";
              description
                "An IPv4 prefix/address.";
              leaf ipv4-prefix {
                type inet:ipv4-prefix;
                description
                  "An IPv4 address/prefix.";
              }
            }
            leaf stateless-enable {
              type boolean;
              default "false";
              description
                "Enable explicitly stateless NAT64.";
            }
          }
          list external-ip-address-pool {
            if-feature "basic-nat44 or napt44 or nat64";
            key "pool-id";
            description
              "Pool of external IP addresses used to service internal
               hosts.
        
               A pool is a set of IP prefixes.";
            leaf pool-id {
              type uint32;
              must '. >= 1';
              description
                "An identifier that uniquely identifies the address pool
                 within a NAT instance.
        
                 The identifier must be greater than zero.";
              reference
                "RFC 7659: Definitions of Managed Objects for
                           Network Address Translators (NATs)";
            }
            leaf external-ip-pool {
              type inet:ipv4-prefix;
        
              mandatory true;
              description
                "An IPv4 prefix used for NAT purposes.";
            }
          }
          container port-set-restrict {
            if-feature "napt44 or nat64";
            description
              "Configures contiguous and non-contiguous port ranges.
        
               The port set is used to restrict the external source
               port numbers used by the translator.";
            uses port-set;
          }
          leaf dst-nat-enable {
            if-feature "basic-nat44 or napt44";
            type boolean;
            default "false";
            description
              "Enable/disable Destination NAT.
        
               A NAT44 may be configured to enable Destination
               NAT, too.";
          }
          list dst-ip-address-pool {
            if-feature "dst-nat";
            key "pool-id";
            description
              "Pool of IP addresses used for Destination NAT.";
            leaf pool-id {
              type uint32;
              description
                "An identifier of the address pool.";
            }
            leaf dst-in-ip-pool {
              type inet:ip-prefix;
              description
                "Is used to identify an internal destination
                 IP prefix/address to be translated.";
            }
            leaf dst-out-ip-pool {
              type inet:ip-prefix;
              mandatory true;
              description
                "IP address/prefix used for Destination NAT.";
            }
          }
          list transport-protocols {
        
            if-feature "napt44 or nat64 or dst-nat";
            key "protocol-id";
            description
              "Configure the transport protocols to be handled by
               the translator.
        
               TCP and UDP are supported by default.";
            leaf protocol-id {
              type uint8;
              mandatory true;
              description
                "The upper-layer protocol associated with this
                 mapping.
        

Values are taken from the IANA Protocol Numbers registry.

値はIANAプロトコル番号レジストリから取得されます。

                 For example, this field contains 6 for TCP,
                 17 for UDP, 33 for DCCP, or 132 for SCTP.";
            }
            leaf protocol-name {
              type string;
              description
                "The name of the upper-layer protocol associated
                 with this mapping.
        
                 For example, TCP, UDP, DCCP, and SCTP.";
            }
          }
          leaf subscriber-mask-v6 {
            type uint8 {
              range "0 .. 128";
            }
            description
              "The subscriber mask is an integer that indicates
               the length of significant bits to be applied on
               the source IPv6 address (internal side) to
               unambiguously identify a user device (e.g., CPE).
        

Subscriber mask is a system-wide configuration parameter that is used to enforce generic per-subscriber policies (e.g., port-quota).

サブスクライバーマスクは、システム全体の構成パラメーターであり、サブスクライバーごとの一般的なポリシー(ポートクォータなど)を適用するために使用されます。

The enforcement of these generic policies does not require the configuration of every subscriber's prefix.

これらの一般的なポリシーを適用するために、すべてのサブスクライバーのプレフィックスを構成する必要はありません。

               Example: suppose the 2001:db8:100:100::/56 prefix
               is assigned to a NAT64-serviced CPE.  Suppose also
               that 2001:db8:100:100::1 is the IPv6 address used
               by the client that resides in that CPE.  When the
               NAT64 receives a packet from this client,
               it applies the subscriber-mask-v6 (e.g., 56) on
               the source IPv6 address to compute the associated
               prefix for this client (2001:db8:100:100::/56).
               Then, the NAT64 enforces policies based on that
               prefix (2001:db8:100:100::/56), not on the exact
               source IPv6 address.";
          }
          list subscriber-match {
            if-feature "basic-nat44 or napt44 or dst-nat";
            key "match-id";
            description
              "IP prefix match.
               A subscriber is identified by a subnet.";
            leaf match-id {
              type uint32;
              description
                "An identifier of the subscriber match.";
            }
            leaf subnet {
              type inet:ip-prefix;
              mandatory true;
              description
                "The IP address subnets that match
                 should be translated.  For example, all addresses
                 that belong to the 192.0.2.0/24 prefix must
                 be processed by the NAT.";
            }
          }
          leaf address-allocation-type {
            type enumeration {
              enum arbitrary {
                if-feature "basic-nat44 or napt44 or nat64";
                description
                  "Arbitrary pooling behavior means that the NAT
                   instance may create the new port mapping using any
                   address in the pool that has a free port for the
                   protocol concerned.";
              }
              enum roundrobin {
                if-feature "basic-nat44 or napt44 or nat64";
                description
                  "Round-robin allocation.";
              }
              enum paired {
        
                if-feature "napt44 or nat64";
                description
                  "Paired address pooling informs the NAT
                   that all the flows from an internal IP
                   address must be assigned the same external
                   address.  This is the recommended behavior
                   for NAPT/NAT64.";
                reference
                  "RFC 4787: Network Address Translation (NAT)
                             Behavioral Requirements for Unicast UDP";
              }
            }
            description
              "Specifies how external IP addresses are allocated.";
          }
          leaf port-allocation-type {
            if-feature "napt44 or nat64";
            type enumeration {
              enum random {
                description
                  "Port randomization is enabled.  A NAT port allocation
                   scheme should make it hard for attackers to guess
                   port numbers";
                reference
                  "REQ-15 of RFC 6888";
              }
              enum port-preservation {
                description
                  "Indicates whether the NAT should preserve the
                   internal port number.";
              }
              enum port-parity-preservation {
                description
                  "Indicates whether the NAT should preserve the port
                   parity of the internal port number.";
              }
              enum port-range-allocation {
                description
                  "Indicates whether the NAT assigns a range of ports
                   for an internal host.  This scheme allows the
                   minimizing of the log volume.";
                reference
                  "REQ-14 of RFC 6888";
              }
            }
            description
              "Indicates the type of port allocation.";
          }
          leaf mapping-type {
            if-feature "napt44 or nat64";
            type enumeration {
              enum eim {
                description
                  "endpoint-independent-mapping.";
                reference
                  "Section 4 of RFC 4787";
              }
              enum adm {
                description
                  "address-dependent-mapping.";
                reference
                  "Section 4 of RFC 4787";
              }
              enum edm {
                description
                  "address-and-port-dependent-mapping.";
                reference
                  "Section 4 of RFC 4787";
              }
            }
            description
              "Indicates the type of NAT mapping.";
          }
          leaf filtering-type {
            if-feature "napt44 or nat64";
            type enumeration {
              enum eif {
                description
                  "endpoint-independent-filtering.";
                reference
                  "Section 5 of RFC 4787";
              }
              enum adf {
                description
                  "address-dependent-filtering.";
                reference
                  "Section 5 of RFC 4787";
              }
              enum edf {
                description
                  "address-and-port-dependent-filtering";
                reference
                  "Section 5 of RFC 4787";
              }
            }
            description
        
              "Indicates the type of NAT filtering.";
          }
          leaf fragment-behavior {
            if-feature "napt44 or nat64";
            type enumeration {
              enum drop-all {
                description
                  "All received fragments are dropped.";
              }
              enum in-order {
                description
                  "Translate fragments only if they are received
                   in order.";
              }
              enum out-of-order {
                description
                  "Translate a fragment even if it is received out
                   of order.
        
                   This behavior is recommended.";
                reference
                  "REQ-14 of RFC 4787";
              }
            }
            description
              "The fragment behavior instructs the NAT about the
               behavior to follow to translate fragments received
               on the external interface of the NAT.";
          }
          list port-quota {
            if-feature "napt44 or nat64";
            key "quota-type";
            description
              "Configures a port quota to be assigned per subscriber.
               It corresponds to the maximum number of ports to be
               used by a subscriber.";
            leaf port-limit {
              type uint16;
              description
                "Configures a port quota to be assigned per subscriber.
                 It corresponds to the maximum number of ports to be
                 used by a subscriber.";
              reference
                "REQ-4 of RFC 6888";
            }
            leaf quota-type {
              type uint8;
              description
        
                "Indicates whether the port quota applies to
                 all protocols (0) or to a specific protocol.";
            }
          }
          container port-set {
            when "../port-allocation-type = 'port-range-allocation'";
            if-feature "napt44 or nat64";
            description
              "Manages port-set assignments.";
            leaf port-set-size {
              type uint16;
              mandatory true;
              description
                "Indicates the size of assigned port sets.";
            }
            leaf port-set-timeout {
              type uint32;
              units "seconds";
              description
                "inactivity timeout for port sets.";
            }
          }
          container timers {
            if-feature "napt44 or nat64";
            description
              "Configure values of various timeouts.";
            leaf udp-timeout {
              type uint32;
              units "seconds";
              default "300";
              description
                "UDP inactivity timeout.  That is the time a mapping
                 will stay active without packets traversing the NAT.";
              reference
                "RFC 4787: Network Address Translation (NAT)
                           Behavioral Requirements for Unicast UDP";
            }
            leaf tcp-idle-timeout {
              type uint32;
              units "seconds";
              default "7440";
              description
                "TCP idle timeout should be 2 hours and 4 minutes.";
              reference
                "RFC 5382: NAT Behavioral Requirements for TCP";
            }
            leaf tcp-trans-open-timeout {
              type uint32;
        
              units "seconds";
              default "240";
              description
                "The value of the transitory open connection
                 idle-timeout.
        

A NAT should provide different configurable parameters for configuring the open and closing idle timeouts.

NATは、オープンとクローズのアイドルタイムアウトを構成するために、さまざまな構成可能なパラメーターを提供する必要があります。

To accommodate deployments that consider a partially open timeout of 4 minutes as being excessive from a security standpoint, a NAT may allow the configured timeout to be less than 4 minutes.

4分の部分的に開いたタイムアウトをセキュリティの観点から過度であると見なす配備に対応するために、NATでは、構成されたタイムアウトを4分未満にすることができます。

                 However, a minimum default transitory connection
                 idle-timeout of 4 minutes is recommended.";
              reference
                "Section 2.1 of RFC 7857";
            }
            leaf tcp-trans-close-timeout {
              type uint32;
              units "seconds";
              default "240";
              description
                "The value of the transitory close connection
                 idle-timeout.
        
                 A NAT should provide different configurable
                 parameters for configuring the open and
                 closing idle timeouts.";
              reference
                "Section 2.1 of RFC 7857";
            }
            leaf tcp-in-syn-timeout {
              type uint32;
              units "seconds";
              default "6";
              description
                "A NAT must not respond to an unsolicited
                 inbound SYN packet for at least 6 seconds
                 after the packet is received.  If during
                 this interval the NAT receives and translates
                 an outbound SYN for the connection the NAT
                 must silently drop the original unsolicited
                 inbound SYN packet.";
              reference
        
                "RFC 5382 NAT Behavioral Requirements for TCP";
            }
            leaf fragment-min-timeout {
              when "../../fragment-behavior='out-of-order'";
              type uint32;
              units "seconds";
              default "2";
              description
                "As long as the NAT has available resources,
                 the NAT allows the fragments to arrive
                 over the fragment-min-timeout interval.
                 The default value is inspired from RFC 6146.";
            }
            leaf icmp-timeout {
              type uint32;
              units "seconds";
              default "60";
              description
                "An ICMP Query session timer must not expire
                 in less than 60 seconds.  It is recommended
                 that the ICMP Query session timer be made
                 configurable";
              reference
                "RFC 5508: NAT Behavioral Requirements for ICMP";
            }
            list per-port-timeout {
              key "port-number";
              description
                "Some NATs are configurable with short timeouts
                 for some ports, e.g., as 10 seconds on
                 port 53 (DNS) and 123 (NTP), and longer timeouts
                 on other ports.";
              leaf port-number {
                type inet:port-number;
                description
                  "A port number.";
              }
              leaf protocol {
                type uint8;
                description
                  "The upper-layer protocol associated with this port.
        

Values are taken from the IANA Protocol Numbers registry.

値はIANAプロトコル番号レジストリから取得されます。

                   If no protocol is indicated, it means 'any
                   protocol'.";
              }
              leaf timeout {
                type uint32;
                units "seconds";
                mandatory true;
                description
                  "Timeout for this port number";
              }
            }
            leaf hold-down-timeout {
              type uint32;
              units "seconds";
              default "120";
              description
                "Hold-down timer.
        

Ports in the hold-down pool are not reassigned until hold-down-timeout expires.

ホールドダウンプール内のポートは、ホールドダウンタイムアウトの期限が切れるまで再割り当てされません。

The length of time and the maximum number of ports in this state must be configurable by the administrator.

この状態にある時間の長さとポートの最大数は、管理者が構成できる必要があります。

                 This is necessary in order to prevent collisions
                 between old and new mappings and sessions.  It ensures
                 that all established sessions are broken instead of
                 redirected to a different peer.";
              reference
                "REQ-8 of RFC 6888";
            }
            leaf hold-down-max {
              type uint32;
              description
                "Maximum ports in the hold-down port pool.";
              reference
                "REQ-8 of RFC 6888";
            }
          }
          leaf fragments-limit {
            when "../fragment-behavior='out-of-order'";
            type uint32;
            description
              "Limits the number of out-of-order fragments that can
               be handled.";
            reference
              "Section 11 of RFC 4787";
          }
          list algs {
            key "name";
            description
        
              "Features related to the Application Layer
               Gateway (ALG).";
            leaf name {
              type string;
              description
                "The name of the ALG.";
            }
            leaf transport-protocol {
              type uint32;
              description
                "The transport protocol used by the ALG
                 (e.g., TCP and UDP).";
            }
            container dst-transport-port {
              uses port-number;
              description
                "The destination port number(s) used by the ALG.
                 For example,
                   - 21 for the FTP ALG
                   - 53 for the DNS ALG.";
            }
            container src-transport-port {
              uses port-number;
              description
                "The source port number(s) used by the ALG.";
            }
            leaf status {
              type boolean;
              description
                "Enable/disable the ALG.";
            }
          }
          leaf all-algs-enable {
            type boolean;
            description
              "Disable/enable all ALGs.
        
               When specified, this parameter overrides the one
               that may be indicated, eventually, by the 'status'
               of an individual ALG.";
          }
          container notify-pool-usage {
            if-feature "basic-nat44 or napt44 or nat64";
            description
              "Notification of pool usage when certain criteria
               are met.";
            leaf pool-id {
              type uint32;
        
              description
                "Pool-ID for which the notification criteria
                 is defined";
            }
            leaf low-threshold {
              type percent;
              description
                "Notification must be generated when the defined low
                 threshold is reached.
        

For example, if a notification is required when the pool utilization reaches below 10%, this configuration parameter must be set to 10.

たとえば、プールの使用率が10%未満に達したときに通知が必要な場合、この構成パラメーターを10に設定する必要があります。

                 0% indicates that low-threshold notification is
                 disabled.";
            }
            leaf high-threshold {
              type percent;
              must '. >= ../low-threshold' {
                error-message
                  "The high threshold must be greater than or equal
                   to the low threshold.";
              }
              description
                "Notification must be generated when the defined high
                 threshold is reached.
        

For example, if a notification is required when the pool utilization reaches 90%, this configuration parameter must be set to 90.

たとえば、プールの使用率が90%に達したときに通知が必要な場合、この構成パラメーターを90に設定する必要があります。

                 Setting the same value as low-threshold is equivalent
                 to disabling high-threshold notification.";
            }
            leaf notify-interval {
              type uint32 {
                range "1 .. 3600";
              }
              units "seconds";
              default "20";
              description
                "Minimum number of seconds between successive
                 notifications for this pool.";
              reference
                "RFC 7659: Definitions of Managed Objects for
                           Network Address Translators (NATs)";
            }
        
          }
          container external-realm {
            description
              "Identifies the external realm of the NAT instance.";
            choice realm-type {
              description
                "Can be an interface, VRF instance, etc.";
              case interface {
                description
                  "External interface.";
                leaf external-interface {
                  type if:interface-ref;
                  description
                    "Name of the external interface.";
                }
              }
            }
          }
        }
        container mapping-limits {
          if-feature "napt44 or nat64";
          description
            "Information about the configuration parameters that
             limits the mappings based upon various criteria.";
          leaf limit-subscribers {
            type uint32;
            description
              "Maximum number of subscribers that can be serviced
               by a NAT instance.
        
               A subscriber is identified by a given prefix.";
            reference
              "RFC 7659: Definitions of Managed Objects for
                         Network Address Translators (NATs)";
          }
          leaf limit-address-mappings {
            type uint32;
            description
              "Maximum number of address mappings that can be
               handled by a NAT instance.
        
               When this limit is reached, packets that would
               normally trigger translation will be dropped.";
            reference
              "RFC 7659: Definitions of Managed Objects for
                         Network Address Translators (NATs)";
          }
          leaf limit-port-mappings {
        

type uint32; description "Maximum number of port mappings that can be handled by a NAT instance.

タイプuint32;説明 "NATインスタンスで処理できるポートマッピングの最大数。

               When this limit is reached, packets that would
               normally trigger translation will be dropped.";
            reference
              "RFC 7659: Definitions of Managed Objects for
                         Network Address Translators (NATs)";
          }
          list limit-per-protocol {
            if-feature "napt44 or nat64 or dst-nat";
            key "protocol-id";
            description
              "Configure limits per transport protocol";
            leaf protocol-id {
              type uint8;
              mandatory true;
              description
                "The upper-layer protocol.
        

Values are taken from the IANA Protocol Numbers registry.

値はIANAプロトコル番号レジストリから取得されます。

                 For example, this field contains 6 for TCP,
                 17 for UDP, 33 for DCCP, or 132 for SCTP.";
            }
            leaf limit {
              type uint32;
              description
                "Maximum number of protocol-specific NAT mappings
                 per instance.";
            }
          }
        }
        container connection-limits {
          if-feature "basic-nat44 or napt44 or nat64";
          description
            "Information about the configuration parameters that
             rate-limit the translation based upon various criteria.";
          leaf limit-per-subscriber {
            type uint32;
            units "bits/second";
            description
              "Rate-limit the number of new mappings and sessions
               per subscriber.";
          }
          leaf limit-per-instance {
            type uint32;
            units "bits/second";
            description
              "Rate-limit the number of new mappings and sessions
               per instance.";
          }
          list limit-per-protocol {
            if-feature "napt44 or nat64";
            key "protocol-id";
            description
              "Configure limits per transport protocol";
            leaf protocol-id {
              type uint8;
              mandatory true;
              description
                "The upper-layer protocol.
        

Values are taken from the IANA Protocol Numbers registry.

値はIANAプロトコル番号レジストリから取得されます。

                 For example, this field contains 6 for TCP,
                 17 for UDP, 33 for DCCP, or 132 for SCTP.";
            }
            leaf limit {
              type uint32;
              description
                "Limit the number of protocol-specific mappings
                 and sessions per instance.";
            }
          }
        }
        container notification-limits {
          description
            "Sets notification limits.";
          leaf notify-interval {
            if-feature "basic-nat44 or napt44 or nat64";
            type uint32 {
              range "1 .. 3600";
            }
            units "seconds";
            default "10";
            description
              "Minimum number of seconds between successive
               notifications for this NAT instance.";
            reference
              "RFC 7659: Definitions of Managed Objects for
                         Network Address Translators (NATs)";
        
          }
          leaf notify-addresses-usage {
            if-feature "basic-nat44 or napt44 or nat64";
            type percent;
            description
              "Notification of address mappings usage over
               the whole NAT instance.
        

Notification must be generated when the defined threshold is reached.

定義されたしきい値に達したときに通知を生成する必要があります。

               For example, if a notification is required when
               the address mappings utilization reaches 90%,
               this configuration parameter must be set
               to 90.";
          }
          leaf notify-ports-usage {
            if-feature "napt44 or nat64";
            type percent;
            description
              "Notification of port mappings usage over the
               whole NAT instance.
        

Notification must be generated when the defined threshold is reached.

定義されたしきい値に達したときに通知を生成する必要があります。

               For example, if a notification is required when
               the port mappings utilization reaches 90%, this
               configuration parameter must be set to 90.";
          }
          leaf notify-subscribers-limit {
            if-feature "basic-nat44 or napt44 or nat64";
            type uint32;
            description
              "Notification of active subscribers per NAT
               instance.
        
               Notification must be generated when the defined
               threshold is reached.";
          }
        }
        container mapping-table {
          if-feature "basic-nat44 or napt44 or nat64 "
                   + "or clat or dst-nat";
          description
            "NAT mapping table.  Applicable for functions that maintain
             static and/or dynamic mappings, such as NAT44, Destination
             NAT, NAT64, or CLAT.";
        
          list mapping-entry {
            key "index";
            description
              "NAT mapping entry.";
            uses mapping-entry;
          }
        }
        container statistics {
          config false;
          description
            "Statistics related to the NAT instance.";
          leaf discontinuity-time {
            type yang:date-and-time;
            mandatory true;
            description
              "The time on the most recent occasion at which the NAT
               instance suffered a discontinuity.  This must be
               initialized when the NAT instance is configured
               or rebooted.";
          }
          container traffic-statistics {
            description
              "Generic traffic statistics.";
            leaf sent-packets {
              type yang:zero-based-counter64;
              description
                "Number of packets sent.";
            }
            leaf sent-bytes {
              type yang:zero-based-counter64;
              units "bytes";
              description
                "Counter for sent traffic in bytes.";
            }
            leaf rcvd-packets {
              type yang:zero-based-counter64;
              description
                "Number of received packets.";
            }
            leaf rcvd-bytes {
              type yang:zero-based-counter64;
              units "bytes";
              description
                "Counter for received traffic in bytes.";
            }
            leaf dropped-packets {
              type yang:zero-based-counter64;
              description
        
                "Number of dropped packets.";
            }
            leaf dropped-bytes {
              type yang:zero-based-counter64;
              units "bytes";
              description
                "Counter for dropped traffic in bytes.";
            }
            leaf dropped-fragments {
              if-feature "napt44 or nat64";
              type yang:zero-based-counter64;
              description
                "Number of dropped fragments on the external realm.";
            }
            leaf dropped-address-limit-packets {
              if-feature "basic-nat44 or napt44 or nat64";
              type yang:zero-based-counter64;
              description
                "Number of dropped packets because an address limit
                  is reached.";
            }
            leaf dropped-address-limit-bytes {
              if-feature "basic-nat44 or napt44 or nat64";
              type yang:zero-based-counter64;
              units "bytes";
              description
                "Counter of dropped packets because an address limit
                  is reached, in bytes.";
            }
            leaf dropped-address-packets {
              if-feature "basic-nat44 or napt44 or nat64";
              type yang:zero-based-counter64;
              description
                "Number of dropped packets because no address is
                 available for allocation.";
            }
            leaf dropped-address-bytes {
              if-feature "basic-nat44 or napt44 or nat64";
              type yang:zero-based-counter64;
              units "bytes";
              description
                "Counter of dropped packets because no address is
                 available for allocation, in bytes.";
            }
            leaf dropped-port-limit-packets {
              if-feature "napt44 or nat64";
              type yang:zero-based-counter64;
              description
        
                "Number of dropped packets because a port limit
                 is reached.";
            }
            leaf dropped-port-limit-bytes {
              if-feature "napt44 or nat64";
              type yang:zero-based-counter64;
              units "bytes";
              description
                "Counter of dropped packets because a port limit
                 is reached, in bytes.";
            }
            leaf dropped-port-packets {
              if-feature "napt44 or nat64";
              type yang:zero-based-counter64;
              description
                "Number of dropped packets because no port is
                 available for allocation.";
            }
            leaf dropped-port-bytes {
              if-feature "napt44 or nat64";
              type yang:zero-based-counter64;
              units "bytes";
              description
                "Counter of dropped packets because no port is
                 available for allocation, in bytes.";
            }
            leaf dropped-subscriber-limit-packets {
              if-feature "basic-nat44 or napt44 or nat64";
              type yang:zero-based-counter64;
              description
                "Number of dropped packets because the subscriber
                 limit per instance is reached.";
            }
            leaf dropped-subscriber-limit-bytes {
              if-feature "basic-nat44 or napt44 or nat64";
              type yang:zero-based-counter64;
              units "bytes";
              description
                "Counter of dropped packets because the subscriber
                  limit per instance is reached, in bytes.";
            }
          }
          container mappings-statistics {
            description
              "Mappings statistics.";
            leaf total-active-subscribers {
              if-feature "basic-nat44 or napt44 or nat64";
              type yang:gauge32;
        

description "Total number of active subscribers (that is, subscribers for which the NAT maintains active mappings).

説明 "アクティブなサブスクライバー(つまり、NATがアクティブなマッピングを維持するサブスクライバー)の総数。

                 A subscriber is identified by a subnet,
                 subscriber-mask, etc.";
            }
            leaf total-address-mappings {
              if-feature "basic-nat44 or napt44 or nat64 "
                       + "or clat or dst-nat";
              type yang:gauge32;
              description
                "Total number of address mappings present at a given
                 time.  It includes both static and dynamic mappings.";
              reference
                "Section 3.3.8 of RFC 7659";
            }
            leaf total-port-mappings {
              if-feature "napt44 or nat64";
              type yang:gauge32;
              description
                "Total number of NAT port mappings present at
                 a given time.  It includes both static and dynamic
                 mappings.";
              reference
                "Section 3.3.9 of RFC 7659";
            }
            list total-per-protocol {
              if-feature "napt44 or nat64";
              key "protocol-id";
              description
                "Total mappings for each enabled/supported protocol.";
              leaf protocol-id {
                type uint8;
                mandatory true;
                description
                  "The upper-layer protocol.
                   For example, this field contains 6 for TCP,
                   17 for UDP, 33 for DCCP, or 132 for SCTP.";
              }
              leaf total {
                type yang:gauge32;
                description
                  "Total number of a protocol-specific mappings present
                   at a given time.  The protocol is identified by
                   protocol-id.";
              }
        
            }
          }
          container pools-stats {
            if-feature "basic-nat44 or napt44 or nat64";
            description
              "Statistics related to address/prefix pools
               usage";
            leaf addresses-allocated {
              type yang:gauge32;
              description
                "Number of all allocated addresses.";
            }
            leaf addresses-free {
              type yang:gauge32;
              description
                "Number of unallocated addresses of all pools at
                 a given time.  The sum of unallocated and allocated
                 addresses is the total number of addresses of
                 the pools.";
            }
            container ports-stats {
              if-feature "napt44 or nat64";
              description
                "Statistics related to port numbers usage.";
              leaf ports-allocated {
                type yang:gauge32;
                description
                  "Number of allocated ports from all pools.";
              }
              leaf ports-free {
                type yang:gauge32;
                description
                  "Number of unallocated addresses from all pools.";
              }
            }
            list per-pool-stats {
              if-feature "basic-nat44 or napt44 or nat64";
              key "pool-id";
              description
                "Statistics related to address/prefix pool usage";
              leaf pool-id {
                type uint32;
                description
                  "Unique identifier that represents a pool of
                   addresses/prefixes.";
              }
              leaf discontinuity-time {
                type yang:date-and-time;
        
                mandatory true;
                description
                  "The time on the most recent occasion at which this
                   pool counter suffered a discontinuity.  This must
                   be initialized when the address pool is
                   configured.";
              }
              container pool-stats {
                description
                  "Statistics related to address/prefix pool usage";
                leaf addresses-allocated {
                  type yang:gauge32;
                  description
                    "Number of allocated addresses from this pool.";
                }
                leaf addresses-free {
                  type yang:gauge32;
                  description
                    "Number of unallocated addresses in this pool.";
                }
              }
              container port-stats {
                if-feature "napt44 or nat64";
                description
                  "Statistics related to port numbers usage.";
                leaf ports-allocated {
                  type yang:gauge32;
                  description
                    "Number of allocated ports from this pool.";
                }
                leaf ports-free {
                  type yang:gauge32;
                  description
                    "Number of unallocated addresses from this pool.";
                }
              }
            }
          }
        }
      }
    }
  }
        
  /*
   * Notifications
   */
        

notification nat-pool-event {

通知nat-pool-event {

    if-feature "basic-nat44 or napt44 or nat64";
    description
      "Notifications must be generated when the defined high/low
       threshold is reached.  Related configuration parameters
       must be provided to trigger the notifications.";
    leaf id {
      type leafref {
        path "/nat/instances/instance/id";
      }
      mandatory true;
      description
        "NAT instance identifier.";
    }
    leaf policy-id {
      type leafref {
        path "/nat/instances/instance/policy/id";
      }
      description
        "Policy identifier.";
    }
    leaf pool-id {
      type leafref {
        path "/nat/instances/instance/policy"
           + "/external-ip-address-pool/pool-id";
      }
      mandatory true;
      description
        "Pool Identifier.";
    }
    leaf notify-pool-threshold {
      type percent;
      mandatory true;
      description
        "A threshold (high threshold or low threshold) has
         been fired.";
    }
  }
        
  notification nat-instance-event {
    if-feature "basic-nat44 or napt44 or nat64";
    description
      "Notifications must be generated when notify-addresses-usage
       and/or notify-ports-usage thresholds are reached.";
    leaf id {
      type leafref {
        path "/nat/instances/instance/id";
      }
      mandatory true;
        
      description
        "NAT instance identifier.";
    }
    leaf notify-subscribers-threshold {
      type uint32;
      description
        "The notify-subscribers-limit threshold has been fired.";
    }
    leaf notify-addresses-threshold {
      type percent;
      description
        "The notify-addresses-usage threshold has been fired.";
    }
    leaf notify-ports-threshold {
      type percent;
      description
        "The notify-ports-usage threshold has been fired.";
    }
  }
 }
        

<CODE ENDS>

<コード終了>

4. Security Considerations
4. セキュリティに関する考慮事項

Security considerations related to address and prefix translation are discussed in [RFC6888], [RFC6146], [RFC6877], [RFC6296], and [RFC7757].

アドレスおよびプレフィックス変換に関連するセキュリティの考慮事項は、[RFC6888]、[RFC6146]、[RFC6877]、[RFC6296]、および[RFC7757]で説明されています。

The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

このドキュメントで指定されているYANGモジュールは、NETCONF [RFC6241]やRESTCONF [RFC8040]などのネットワーク管理プロトコルを介してアクセスするように設計されたデータのスキーマを定義します。最下層のNETCONF層はセキュアなトランスポート層であり、実装に必須のセキュアなトランスポートはセキュアシェル(SSH)[RFC6242]です。最下位のRESTCONFレイヤーはHTTPSであり、実装に必須のセキュアなトランスポートはTLS [RFC8446]です。

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

ネットワーク構成アクセス制御モデル(NACM)[RFC8341]は、特定のNETCONFまたはRESTCONFユーザーのアクセスを、利用可能なすべてのNETCONFまたはRESTCONFプロトコル操作およびコンテンツの事前構成済みサブセットに制限する手段を提供します。

All data nodes defined in the YANG module that can be created, modified, and deleted (i.e., config true, which is the default) are considered sensitive. Write operations (e.g., edit-config) applied to these data nodes without proper protection can negatively affect network operations. The NAT YANG module provides a method to set parameters to prevent a user from aggressively using NAT resources (port-quota), rate-limit connections as a guard against DoS, or to enable notifications so that appropriate measures are enforced to anticipate traffic drops. Nevertheless, an attacker who is able to access the NAT can undertake various attacks, such as:

YANGモジュールで定義、作成、変更、削除できるすべてのデータノード(つまり、デフォルトであるconfig true)は機密と見なされます。適切な保護なしにこれらのデータノードに適用された書き込み操作(edit-configなど)は、ネットワーク操作に悪影響を与える可能性があります。 NAT YANGモジュールは、ユーザーがNATリソース(ポートクォータ)を積極的に使用しないようにパラメーターを設定する方法、DoSに対するガードとして接続をレート制限する方法、またはトラフィックのドロップを予測するために適切な対策が実施されるように通知を有効にする方法を提供します。それにもかかわらず、NATにアクセスできる攻撃者は、次のようなさまざまな攻撃を行うことができます。

o Set a high or low resource limit to cause a DoS attack:

o リソースの上限または下限を設定して、DoS攻撃を引き起こします。

      *  /nat/instances/instance/policy/port-quota
        
      *  /nat/instances/instance/policy/fragments-limit
        
      *  /nat/instances/instance/mapping-limits
        
      *  /nat/instances/instance/connection-limits
        

o Set a low notification threshold to cause useless notifications to be generated:

o 通知しきい値を低く設定して、役に立たない通知が生成されるようにします。

      *  /nat/instances/instance/policy/notify-pool-usage/high-threshold
        
      *  /nat/instances/instance/notification-limits/notify-addresses-
         usage
        
      *  /nat/instances/instance/notification-limits/notify-ports-usage
        
      *  /nat/instances/instance/notification-limits/notify-subscribers-
         limit
        

o Set an arbitrarily high threshold, which may lead to the deactivation of notifications:

o 通知の非アクティブ化につながる可能性がある、任意の高いしきい値を設定します。

      *  /nat/instances/instance/policy/notify-pool-usage/high-threshold
        
      *  /nat/instances/instance/notification-limits/notify-addresses-
         usage
        
      *  /nat/instances/instance/notification-limits/notify-ports-usage
        
      *  /nat/instances/instance/notification-limits/notify-subscribers-
         limit
        

o Set a low notification interval and a low notification threshold to induce useless notifications to be generated:

o 低い通知間​​隔と低い通知しきい値を設定して、役に立たない通知が生成されるようにします。

      *  /nat/instances/instance/policy/notify-pool-usage/notify-
         interval
        
      *  /nat/instances/instance/notification-limits/notify-interval
        

o Access to privacy data maintained in the mapping table. Such data can be misused to track the activity of a host:

o マッピングテーブルに保持されているプラ​​イバシーデータへのアクセス。このようなデータは、ホストのアクティビティを追跡するために悪用される可能性があります。

      *  /nat/instances/instance/mapping-table
        
5. IANA Considerations
5. IANAに関する考慮事項

IANA has registered the following URI in the "ns" subregistry within the "IETF XML Registry" [RFC3688]:

IANAは、「IETF XMLレジストリ」[RFC3688]内の「ns」サブレジストリに次のURIを登録しました。

URI: urn:ietf:params:xml:ns:yang:ietf-nat Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.

URI:urn:ietf:params:xml:ns:yang:ietf-nat登録者の連絡先:IESG。 XML:なし。要求されたURIはXML名前空間です。

IANA has registered the following YANG module in the "YANG Module Names" subregistry [RFC7950] within the "YANG Parameters" registry.

IANAは、「YANGパラメータ」レジストリ内の「YANGモジュール名」サブレジストリ[RFC7950]に次のYANGモジュールを登録しました。

            name: ietf-nat
            namespace: urn:ietf:params:xml:ns:yang:ietf-nat
            prefix: nat
            reference: RFC 8512
        
6. References
6. 参考文献
6.1. Normative References
6.1. 引用文献

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>.

[RFC3688] Mealling、M。、「The IETF XML Registry」、BCP 81、RFC 3688、DOI 10.17487 / RFC3688、2004年1月、<https://www.rfc-editor.org/info/rfc3688>。

[RFC4787] Audet, F., Ed. and C. Jennings, "Network Address Translation (NAT) Behavioral Requirements for Unicast UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January 2007, <https://www.rfc-editor.org/info/rfc4787>.

[RFC4787]オーデ、F、エド。およびC.ジェニングス、「ユニキャストUDPのネットワークアドレス変換(NAT)動作要件」、BCP 127、RFC 4787、DOI 10.17487 / RFC4787、2007年1月、<https://www.rfc-editor.org/info/rfc4787> 。

[RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P. Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142, RFC 5382, DOI 10.17487/RFC5382, October 2008, <https://www.rfc-editor.org/info/rfc5382>.

[RFC5382] Guha、S。、編、Biswas、K.、Ford、B.、Sivakumar、S。、およびP. Srisuresh、「TCPのNAT動作要件」、BCP 142、RFC 5382、DOI 10.17487 / RFC5382、 2008年10月、<https://www.rfc-editor.org/info/rfc5382>。

[RFC5508] Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha, "NAT Behavioral Requirements for ICMP", BCP 148, RFC 5508, DOI 10.17487/RFC5508, April 2009, <https://www.rfc-editor.org/info/rfc5508>.

[RFC5508] Srisuresh、P.、Ford、B.、Sivakumar、S。、およびS. Guha、「ICMPのNAT動作要件」、BCP 148、RFC 5508、DOI 10.17487 / RFC5508、2009年4月、<https:// www.rfc-editor.org/info/rfc5508>。

[RFC6052] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X. Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052, DOI 10.17487/RFC6052, October 2010, <https://www.rfc-editor.org/info/rfc6052>.

[RFC6052] Bao、C.、Huitema、C.、Bagnulo、M.、Boucadair、M。、およびX. Li、「IPv4 / IPv6トランスレータのIPv6アドレッシング」、RFC 6052、DOI 10.17487 / RFC6052、2010年10月、< https://www.rfc-editor.org/info/rfc6052>。

[RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146, April 2011, <https://www.rfc-editor.org/info/rfc6146>.

[RFC6146] Bagnulo、M.、Matthews、P。、およびI. van Beijnum、「ステートフルNAT64:IPv6クライアントからIPv4サーバーへのネットワークアドレスおよびプロトコル変換」、RFC 6146、DOI 10.17487 / RFC6146、2011年4月、<https: //www.rfc-editor.org/info/rfc6146>。

[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.

[RFC6241] Enns、R。、編、Bjorklund、M。、編、Schoenwaelder、J。、編、およびA. Bierman、編、「Network Configuration Protocol(NETCONF)」、RFC 6241、DOI 10.17487 / RFC6241、2011年6月、<https://www.rfc-editor.org/info/rfc6241>。

[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/info/rfc6242>.

[RFC6242] Wasserman、M。、「Using the NETCONF Protocol over Secure Shell(SSH)」、RFC 6242、DOI 10.17487 / RFC6242、2011年6月、<https://www.rfc-editor.org/info/rfc6242>。

[RFC6296] Wasserman, M. and F. Baker, "IPv6-to-IPv6 Network Prefix Translation", RFC 6296, DOI 10.17487/RFC6296, June 2011, <https://www.rfc-editor.org/info/rfc6296>.

[RFC6296] Wasserman、M。およびF. Baker、「IPv6-to-IPv6 Network Prefix Translation」、RFC 6296、DOI 10.17487 / RFC6296、2011年6月、<https://www.rfc-editor.org/info/rfc6296 >。

[RFC6619] Arkko, J., Eggert, L., and M. Townsley, "Scalable Operation of Address Translators with Per-Interface Bindings", RFC 6619, DOI 10.17487/RFC6619, June 2012, <https://www.rfc-editor.org/info/rfc6619>.

[RFC6619] Arkko、J.、Eggert、L。、およびM. Townsley、「インターフェイスごとのバインディングによるアドレストランスレータのスケーラブルな操作」、RFC 6619、DOI 10.17487 / RFC6619、2012年6月、<https://www.rfc -editor.org/info/rfc6619>。

[RFC6877] Mawatari, M., Kawashima, M., and C. Byrne, "464XLAT: Combination of Stateful and Stateless Translation", RFC 6877, DOI 10.17487/RFC6877, April 2013, <https://www.rfc-editor.org/info/rfc6877>.

[RFC6877] Mawatari、M.、Kawashima、M。、およびC. Byrne、「464XLAT:Combination of Stateful and Stateless Translation」、RFC 6877、DOI 10.17487 / RFC6877、2013年4月、<https://www.rfc-editor .org / info / rfc6877>。

[RFC6888] Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa, A., and H. Ashida, "Common Requirements for Carrier-Grade NATs (CGNs)", BCP 127, RFC 6888, DOI 10.17487/RFC6888, April 2013, <https://www.rfc-editor.org/info/rfc6888>.

[RFC6888] Perreault、S.、Ed。、Yamagata、I.、Miyakawa、S.、Nakagawa、A.、and H. Ashida、 "Common Requirements for Carrier-Grade NATs(CGNs)"、BCP 127、RFC 6888、 DOI 10.17487 / RFC6888、2013年4月、<https://www.rfc-editor.org/info/rfc6888>。

[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.

[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.

[RFC7596] Cui, Y., Sun, Q., Boucadair, M., Tsou, T., Lee, Y., and I. Farrer, "Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture", RFC 7596, DOI 10.17487/RFC7596, July 2015, <https://www.rfc-editor.org/info/rfc7596>.

[RFC7596] Cui、Y.、Sun、Q.、Boucadair、M.、Tsou、T.、Lee、Y.、I。Farrer、「Lightweight 4over6:An Extension to the Dual-Stack Lite Architecture」、RFC 7596 、DOI 10.17487 / RFC7596、2015年7月、<https://www.rfc-editor.org/info/rfc7596>。

[RFC7597] Troan, O., Ed., Dec, W., Li, X., Bao, C., Matsushima, S., Murakami, T., and T. Taylor, Ed., "Mapping of Address and Port with Encapsulation (MAP-E)", RFC 7597, DOI 10.17487/RFC7597, July 2015, <https://www.rfc-editor.org/info/rfc7597>.

[RFC7597] Troan、O.、Ed。、Dec、W.、Li、X.、Bao、C.、Matsushima、S.、Murakami、T.、and T. Taylor、Ed。、 "アドレスのマッピングカプセル化あり(MAP-E)」、RFC 7597、DOI 10.17487 / RFC7597、2015年7月、<https://www.rfc-editor.org/info/rfc7597>。

[RFC7757] Anderson, T. and A. Leiva Popper, "Explicit Address Mappings for Stateless IP/ICMP Translation", RFC 7757, DOI 10.17487/RFC7757, February 2016, <https://www.rfc-editor.org/info/rfc7757>.

[RFC7757] Anderson, T. and A. Leiva Popper, "Explicit Address Mappings for Stateless IP/ICMP Translation", RFC 7757, DOI 10.17487/RFC7757, February 2016, <https://www.rfc-editor.org/info/rfc7757>.

[RFC7857] Penno, R., Perreault, S., Boucadair, M., Ed., Sivakumar, S., and K. Naito, "Updates to Network Address Translation (NAT) Behavioral Requirements", BCP 127, RFC 7857, DOI 10.17487/RFC7857, April 2016, <https://www.rfc-editor.org/info/rfc7857>.

[RFC7857] Penno、R.、Perreault、S.、Boucadair、M.、Ed。、Sivakumar、S.、and K. Naito、 "Updates to Network Address Translation(NAT)Behavioral Requirements"、BCP 127、RFC 7857、 DOI 10.17487 / RFC7857、2016年4月、<https://www.rfc-editor.org/info/rfc7857>。

[RFC7915] Bao, C., Li, X., Baker, F., Anderson, T., and F. Gont, "IP/ICMP Translation Algorithm", RFC 7915, DOI 10.17487/RFC7915, June 2016, <https://www.rfc-editor.org/info/rfc7915>.

[RFC7915] Bao, C., Li, X., Baker, F., Anderson, T., and F. Gont, "IP/ICMP Translation Algorithm", RFC 7915, DOI 10.17487/RFC7915, June 2016, <https://www.rfc-editor.org/info/rfc7915>.

[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.

[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.

[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.

[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.

[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>.

[RFC8341] Bierman、A。およびM. Bjorklund、「Network Configuration Access Control Model」、STD 91、RFC 8341、DOI 10.17487 / RFC8341、2018年3月、<https://www.rfc-editor.org/info/rfc8341 >。

[RFC8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>.

[RFC8343] Bjorklund、M。、「A YANG Data Model for Interface Management」、RFC 8343、DOI 10.17487 / RFC8343、March 2018、<https://www.rfc-editor.org/info/rfc8343>。

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.

[RFC8446] Rescorla、E。、「The Transport Layer Security(TLS)Protocol Version 1.3」、RFC 8446、DOI 10.17487 / RFC8446、2018年8月、<https://www.rfc-editor.org/info/rfc8446>。

6.2. Informative References
6.2. 参考引用

[NAT-SUPP] Stewart, R., Tuexen, M., and I. Ruengeler, "Stream Control Transmission Protocol (SCTP) Network Address Translation Support", Work in Progress, draft-ietf-tsvwg-natsupp-12, July 2018.

[NAT-SUPP] Stewart、R.、Tuexen、M.、I。Ruengeler、「Stream Control Transmission Protocol(SCTP)Network Address Translation Support」、Work in Progress、draft-ietf-tsvwg-natsupp-12、2018年7月。

[RFC2663] Srisuresh, P. and M. Holdrege, "IP Network Address Translator (NAT) Terminology and Considerations", RFC 2663, DOI 10.17487/RFC2663, August 1999, <https://www.rfc-editor.org/info/rfc2663>.

[RFC2663] Srisuresh、P。およびM. Holdrege、「IPネットワークアドレス変換(NAT)の用語と考慮事項」、RFC 2663、DOI 10.17487 / RFC2663、1999年8月、<https://www.rfc-editor.org/info / rfc2663>。

[RFC3022] Srisuresh, P. and K. Egevang, "Traditional IP Network Address Translator (Traditional NAT)", RFC 3022, DOI 10.17487/RFC3022, January 2001, <https://www.rfc-editor.org/info/rfc3022>.

[RFC3022] Srisuresh、P。およびK. Egevang、「Traditional IP Network Address Translator(Traditional NAT)」、RFC 3022、DOI 10.17487 / RFC3022、2001年1月、<https://www.rfc-editor.org/info/ rfc3022>。

[RFC5597] Denis-Courmont, R., "Network Address Translation (NAT) Behavioral Requirements for the Datagram Congestion Control Protocol", BCP 150, RFC 5597, DOI 10.17487/RFC5597, September 2009, <https://www.rfc-editor.org/info/rfc5597>.

[RFC5597] Denis-Courmont、R。、「データグラム輻輳制御プロトコルのネットワークアドレス変換(NAT)動作要件」、BCP 150、RFC 5597、DOI 10.17487 / RFC5597、2009年9月、<https://www.rfc- editor.org/info/rfc5597>。

[RFC6269] Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and P. Roberts, "Issues with IP Address Sharing", RFC 6269, DOI 10.17487/RFC6269, June 2011, <https://www.rfc-editor.org/info/rfc6269>.

[RFC6269] Ford、M.、Ed。、Boucadair、M.、Durand、A.、Levis、P。、およびP. Roberts、「Issues with IP Address Sharing」、RFC 6269、DOI 10.17487 / RFC6269、2011年6月、 <https://www.rfc-editor.org/info/rfc6269>。

[RFC6736] Brockners, F., Bhandari, S., Singh, V., and V. Fajardo, "Diameter Network Address and Port Translation Control Application", RFC 6736, DOI 10.17487/RFC6736, October 2012, <https://www.rfc-editor.org/info/rfc6736>.

[RFC6736] Brockners、F.、Bhandari、S.、Singh、V。、およびV. Fajardo、「Diameterネットワークアドレスおよびポート変換制御アプリケーション」、RFC 6736、DOI 10.17487 / RFC6736、2012年10月、<https:// www.rfc-editor.org/info/rfc6736>。

[RFC6887] Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and P. Selkirk, "Port Control Protocol (PCP)", RFC 6887, DOI 10.17487/RFC6887, April 2013, <https://www.rfc-editor.org/info/rfc6887>.

[RFC6887] Wing、D.、Ed。、Cheshire、S.、Boucadair、M.、Penno、R.、and P. Selkirk、 "Port Control Protocol(PCP)"、RFC 6887、DOI 10.17487 / RFC6887、April 2013 、<https://www.rfc-editor.org/info/rfc6887>。

[RFC6908] Lee, Y., Maglione, R., Williams, C., Jacquenet, C., and M. Boucadair, "Deployment Considerations for Dual-Stack Lite", RFC 6908, DOI 10.17487/RFC6908, March 2013, <https://www.rfc-editor.org/info/rfc6908>.

[RFC6908] Lee, Y., Maglione, R., Williams, C., Jacquenet, C., and M. Boucadair, "Deployment Considerations for Dual-Stack Lite", RFC 6908, DOI 10.17487/RFC6908, March 2013, <https://www.rfc-editor.org/info/rfc6908>.

[RFC7050] Savolainen, T., Korhonen, J., and D. Wing, "Discovery of the IPv6 Prefix Used for IPv6 Address Synthesis", RFC 7050, DOI 10.17487/RFC7050, November 2013, <https://www.rfc-editor.org/info/rfc7050>.

[RFC7050] Savolainen、T.、Korhonen、J。、およびD. Wing、「IPv6アドレス合成に使用されるIPv6プレフィックスの発見」、RFC 7050、DOI 10.17487 / RFC7050、2013年11月、<https://www.rfc -editor.org/info/rfc7050>。

[RFC7289] Kuarsingh, V., Ed. and J. Cianfarani, "Carrier-Grade NAT (CGN) Deployment with BGP/MPLS IP VPNs", RFC 7289, DOI 10.17487/RFC7289, June 2014, <https://www.rfc-editor.org/info/rfc7289>.

[RFC7289] Kuarsingh, V., Ed. and J. Cianfarani, "Carrier-Grade NAT (CGN) Deployment with BGP/MPLS IP VPNs", RFC 7289, DOI 10.17487/RFC7289, June 2014, <https://www.rfc-editor.org/info/rfc7289>.

[RFC7335] Byrne, C., "IPv4 Service Continuity Prefix", RFC 7335, DOI 10.17487/RFC7335, August 2014, <https://www.rfc-editor.org/info/rfc7335>.

[RFC7335] Byrne、C。、「IPv4 Service Continuity Prefix」、RFC 7335、DOI 10.17487 / RFC7335、2014年8月、<https://www.rfc-editor.org/info/rfc7335>。

[RFC7659] Perreault, S., Tsou, T., Sivakumar, S., and T. Taylor, "Definitions of Managed Objects for Network Address Translators (NATs)", RFC 7659, DOI 10.17487/RFC7659, October 2015, <https://www.rfc-editor.org/info/rfc7659>.

[RFC7659] Perreault, S., Tsou, T., Sivakumar, S., and T. Taylor, "Definitions of Managed Objects for Network Address Translators (NATs)", RFC 7659, DOI 10.17487/RFC7659, October 2015, <https://www.rfc-editor.org/info/rfc7659>.

[RFC7753] Sun, Q., Boucadair, M., Sivakumar, S., Zhou, C., Tsou, T., and S. Perreault, "Port Control Protocol (PCP) Extension for Port-Set Allocation", RFC 7753, DOI 10.17487/RFC7753, February 2016, <https://www.rfc-editor.org/info/rfc7753>.

[RFC7753] Sun, Q., Boucadair, M., Sivakumar, S., Zhou, C., Tsou, T., and S. Perreault, "Port Control Protocol (PCP) Extension for Port-Set Allocation", RFC 7753, DOI 10.17487/RFC7753, February 2016, <https://www.rfc-editor.org/info/rfc7753>.

[RFC8045] Cheng, D., Korhonen, J., Boucadair, M., and S. Sivakumar, "RADIUS Extensions for IP Port Configuration and Reporting", RFC 8045, DOI 10.17487/RFC8045, January 2017, <https://www.rfc-editor.org/info/rfc8045>.

[RFC8045] Cheng, D., Korhonen, J., Boucadair, M., and S. Sivakumar, "RADIUS Extensions for IP Port Configuration and Reporting", RFC 8045, DOI 10.17487/RFC8045, January 2017, <https://www.rfc-editor.org/info/rfc8045>.

[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>.

[RFC8340] Bjorklund、M。およびL. Berger、編、「YANG Tree Diagrams」、BCP 215、RFC 8340、DOI 10.17487 / RFC8340、2018年3月、<https://www.rfc-editor.org/info/ rfc8340>。

[RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of Documents Containing YANG Data Models", BCP 216, RFC 8407, DOI 10.17487/RFC8407, October 2018, <https://www.rfc-editor.org/info/rfc8407>.

[RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of Documents Containing YANG Data Models", BCP 216, RFC 8407, DOI 10.17487/RFC8407, October 2018, <https://www.rfc-editor.org/info/rfc8407>.

[RFC8513] Boucadair, M., Jacquenet, C., and S. Sivakumar, "A YANG Data Model for Dual-Stack Lite (DS-Lite)", RFC 8513, DOI 10.17487/RFC8513, January 2019, <https://www.rfc-editor.org/info/rfc8513>.

[RFC8513] Boucadair, M., Jacquenet, C., and S. Sivakumar, "A YANG Data Model for Dual-Stack Lite (DS-Lite)", RFC 8513, DOI 10.17487/RFC8513, January 2019, <https://www.rfc-editor.org/info/rfc8513>.

[YANG-PCP] Boucadair, M., Jacquenet, C., Sivakumar, S., and S. Vinapamula, "YANG Modules for the Port Control Protocol (PCP)", Work in Progress, draft-boucadair-pcp-yang-05, October 2017.

[YANG-PCP] Boucadair, M., Jacquenet, C., Sivakumar, S., and S. Vinapamula, "YANG Modules for the Port Control Protocol (PCP)", Work in Progress, draft-boucadair-pcp-yang-05, October 2017.

Appendix A. Some Examples
付録A.いくつかの例

This section provides a non-exhaustive set of examples to illustrate the use of the NAT YANG module.

This section provides a non-exhaustive set of examples to illustrate the use of the NAT YANG module.

A.1. Traditional NAT44
A.1. 従来のNAT44

Traditional NAT44 is a Basic NAT44 or NAPT that is used to share the same IPv4 address among hosts that are owned by the same subscriber. This is typically the NAT that is embedded in CPE devices.

Traditional NAT44 is a Basic NAT44 or NAPT that is used to share the same IPv4 address among hosts that are owned by the same subscriber. This is typically the NAT that is embedded in CPE devices.

This NAT is usually provided with one single external IPv4 address; disambiguating connections is achieved by rewriting the source port number. The XML snippet to configure the external IPv4 address in such case together with a mapping entry is depicted below:

This NAT is usually provided with one single external IPv4 address; disambiguating connections is achieved by rewriting the source port number. The XML snippet to configure the external IPv4 address in such case together with a mapping entry is depicted below:

   <instances>
     <instance>
       <id>1</id>
       <name>NAT_Subscriber_A</name>
        ....
       <external-ip-address-pool>
         <pool-id>1</pool-id>
           <external-ip-pool>
             198.51.100.1/32
           </external-ip-pool>
         </external-ip-address-pool>
         ....
       <mapping-table>
         ....
         <external-src-address>
           198.51.100.1/32
         </external-src-address>
           ....
       </mapping-table>
     </instance>
   </instances>
   The following shows the XML excerpt depicting a dynamic UDP mapping
   entry maintained by a traditional NAPT44.  In reference to this
   example, the UDP packet received with a source IPv4 address
   (192.0.2.1) and source port number (1568) is translated into a UDP
   packet having a source IPv4 address (198.51.100.1) and source port
   (15000).  The remaining lifetime of this mapping is 300 seconds.
        
   <mapping-entry>
     <index>15</index>
     <type>
       dynamic-explicit
     </type>
     <transport-protocol>
       17
     </transport-protocol>
     <internal-src-address>
       192.0.2.1/32
     </internal-src-address>
     <internal-src-port>
       <start-port-number>
         1568
       </start-port-number>
     </internal-src-port>
     <external-src-address>
       198.51.100.1/32
     </external-src-address>
     <external-src-port>
       <start-port-number>
         15000
       </start-port-number>
     </external-src-port>
     <lifetime>
       300
     </lifetime>
   </mapping-entry>
        
A.2. Carrier Grade NAT (CGN)
A.2. キャリアグレードNAT(CGN)

The following XML snippet shows the example of the capabilities supported by a CGN as retrieved using NETCONF.

次のXMLスニペットは、NETCONFを使用して取得されたCGNによってサポートされる機能の例を示しています。

   <capabilities>
     <nat-flavor>napt44</nat-flavor>
     <transport-protocols>
       <protocol-id>1</protocol-id>
     </transport-protocols>
     <transport-protocols>
       <protocol-id>6</protocol-id>
        

</transport-protocols> <transport-protocols> <protocol-id>17</protocol-id> </transport-protocols> <restricted-port-support> false </restricted-port-support> <static-mapping-support> true </static-mapping-support> <port-randomization-support> true </port-randomization-support> <port-range-allocation-support> true </port-range-allocation-support> <port-preservation-suport> true </port-preservation-suport> <port-parity-preservation-support> false </port-parity-preservation-support> <address-roundrobin-support> true </address-roundrobin-support> <paired-address-pooling-support> true </paired-address-pooling-support> <endpoint-independent-mapping-support> true </endpoint-independent-mapping-support> <address-dependent-mapping-support> true </address-dependent-mapping-support> <address-and-port-dependent-mapping-support> true </address-and-port-dependent-mapping-support> <endpoint-independent-filtering-support> true </endpoint-independent-filtering-support> <address-dependent-filtering> true </address-dependent-filtering> <address-and-port-dependent-filtering> true </address-and-port-dependent-filtering> </capabilities> The following XML snippet shows the example of a CGN that is provisioned with one contiguous pool of external IPv4 addresses (198.51.100.0/24). Further, the CGN is instructed to limit the number of allocated ports per subscriber to 1024. Ports can be allocated by the CGN by assigning ranges of 256 ports (that is, a subscriber can be allocated up to four port ranges of 256 ports each).

</ transport-protocols> <transport-protocols> <protocol-id> 17 </ protocol-id> </ transport-protocols> <restricted-port-support> false </ restricted-port-support> <static-mapping- support> true </ static-mapping-support> <port-randomization-support> true </ port-randomization-support> <port-range-allocation-support> true </ port-range-allocation-support> <port- preservation-suport> true </ port-preservation-suport> <port-parity-preservation-support> false </ port-parity-preservation-support> <address-roundrobin-support> true </ address-roundrobin-support> < paired-address-pooling-support> true </ paired-address-pooling-support> <endpoint-independent-mapping-support> true </ endpoint-independent-mapping-support> <address-dependent-mapping-support> true < / address-dependent-mapping-support> <address-and-port-dependent-mapping-support> true </ address-and-port-dependent-mapping-support> <endpoint-independent-filtering-support> true </ endpoint -independent-filtering-support> <address-dependent-filtering> true </ address-dependent-filtering> <address-and-port-dependent-filtering> true </ address-and-port-dependent-filtering> </ capabilities>次のXMLスニペットは、プロビジョニングされたCGNの例を示しています外部IPv4アドレスの連続した1つのプール(198.51.100.0/24)。さらに、CGNは、サブスクライバーごとに割り当てられるポートの数を1024に制限するように指示されています。ポートは、256ポートの範囲を割り当てることによってCGNによって割り当てることができます(つまり、サブスクライバーには、それぞれ256ポートの最大4つのポート範囲を割り当てることができます)。 。

   <instances>
     <instance>
       <id>1</id>
       <name>myCGN</name>
       ....
       <external-ip-address-pool>
         <pool-id>1</pool-id>
         <external-ip-pool>
           198.51.100.0/24
         </external-ip-pool>
       </external-ip-address-pool>
       <port-quota>
         <port-limit>
           1024
         </port-limit>
         <quota-type >
           all
         </quota-type >
       </port-quota>
         <port-allocation-type>
           port-range-allocation
         </port-allocation-type>
         <port-set>
           <port-set-size>
             256
           </port-set-size>
         </port-set>
       ....
     </instance>
   </instances>
   An administrator may decide to allocate one single port range per
   subscriber (e.g., a port range of 1024 ports) as shown below:
        
   <instances>
     <instance>
       <id>1</id>
       <name>myCGN</name>
       ....
       <external-ip-address-pool>
         <pool-id>1</pool-id>
         <external-ip-pool>
           198.51.100.0/24
         </external-ip-pool>
       </external-ip-address-pool>
       <port-quota>
         <port-limit>
           1024
         </port-limit>
         <quota-type >
           all
         </quota-type >
       </port-quota>
         <port-allocation-type>
           port-range-allocation
         </port-allocation-type>
         <port-set>
           <port-set-size>
             1024
           </port-set-size>
         </port-set>
       ....
     </instance>
   </instances>
        
A.3. CGN Pass-Through
A.3. CGNパススルー

Figure 1 illustrates an example of the CGN pass-through feature.

Figure 1 illustrates an example of the CGN pass-through feature.

                     X1:x1            X1':x1'            X2:x2
                     +---+from X1:x1  +---+from X1:x1    +---+
                     | C |  to X2:x2  |   |  to X2:x2    | S |
                     | l |>>>>>>>>>>>>| C |>>>>>>>>>>>>>>| e |
                     | i |            | G |              | r |
                     | e |<<<<<<<<<<<<| N |<<<<<<<<<<<<<<| v |
                     | n |from X2:x2  |   |from X2:x2    | e |
                     | t |  to X1:x1  |   |  to X1:x1    | r |
                     +---+            +---+              +---+
        

Figure 1: CGN Pass-Through

図1:CGNパススルー

For example, in order to disable NAT for communications issued by the client (192.0.2.1), the following configuration parameter must be set:

たとえば、クライアント(192.0.2.1)が発行した通信でNATを無効にするには、次の構成パラメーターを設定する必要があります。

   <nat-pass-through>
     ...
     <prefix>192.0.2.1/32</prefix>
     ...
   </nat-pass-through>
        
A.4. NAT64
A.4. NAT64

Let's consider the example of a NAT64 that should use 2001:db8:122:300::/56 to perform IPv6 address synthesis [RFC6052]. The XML snippet to configure the NAT64 prefix in such case is depicted below:

2001:db8:122:300 :: / 56を使用してIPv6アドレス合成を実行する必要があるNAT64の例を考えてみましょう[RFC6052]。このような場合にNAT64プレフィックスを構成するためのXMLスニペットを以下に示します。

<nat64-prefixes> <nat64-prefix> 2001:db8:122:300::/56 </nat64-prefix> </nat64-prefixes> Let's now consider the example of a NAT64 that should use 2001:db8:122::/48 to perform IPv6 address synthesis [RFC6052] only if the destination address matches 198.51.100.0/24. The XML snippet to configure the NAT64 prefix in such case is shown below:

<nat64-prefixes> <nat64-prefix> 2001:db8:122:300 :: / 56 </ nat64-prefix> </ nat64-prefixes>では、2001:db8:122を使用する必要があるNAT64の例を見てみましょう。 :/ 48は、宛先アドレスが198.51.100.0/24と一致する場合にのみ、IPv6アドレス合成[RFC6052]を実行します。このような場合にNAT64プレフィックスを構成するためのXMLスニペットを以下に示します。

   <nat64-prefixes>
     <nat64-prefix>
       2001:db8:122::/48
     </nat64-prefix>
     <destination-ipv4-prefix>
       <ipv4-prefix>
         198.51.100.0/24
       </ipv4-prefix>
     </destination-ipv4-prefix>
   </nat64-prefixes>
        
A.5. Stateless IP/ICMP Translation (SIIT)
A.5. ステートレスIP / ICMP変換(HERE)

Let's consider the example of a stateless translator that is configured with 2001:db8:100::/40 to perform IPv6 address synthesis [RFC6052]. Similar to the NAT64 case, the XML snippet to configure the NAT64 prefix in such case is depicted below:

IPv6アドレス合成[RFC6052]を実行するために2001:db8:100 :: / 40で構成されたステートレストランスレーターの例を考えてみましょう。 NAT64の場合と同様に、このような場合にNAT64プレフィックスを構成するためのXMLスニペットを以下に示します。

   <nat64-prefixes>
     <nat64-prefix>
       2001:db8:100::/40
     </nat64-prefix>
   </nat64-prefixes>
        

When the translator receives an IPv6 packet, for example, with a source address (2001:db8:1c0:2:21::) and destination address (2001:db8:1c6:3364:2::), it extracts embedded IPv4 addresses following rules per RFC 6052 with 2001:db8:100::/40 as the NSP:

トランスレータは、たとえばソースアドレス(2001:db8:1c0:2:21::)および宛先アドレス(2001:db8:1c6:3364:2::)を含むIPv6パケットを受信すると、埋め込まれたIPv4アドレスを抽出しますNSPとして2001:db8:100 :: / 40を使用したRFC 6052に基づく次のルール:

o 192.0.2.33 is extracted from 2001:db8:1c0:2:21::

o 192.0.2.33 is extracted from 2001:db8:1c0:2:21::

o 198.51.100.2 is extracted from 2001:db8:1c6:3364:2::

o 198.51.100.2は2001:db8:1c6:3364:2 ::から抽出されます

The translator transforms the IPv6 header into an IPv4 header using the IP/ICMP Translation Algorithm [RFC7915]. The IPv4 packets will include 192.0.2.33 as the source address and 198.51.100.2 as the destination address.

トランスレータは、IP / ICMP変換アルゴリズム[RFC7915]を使用してIPv6ヘッダーをIPv4ヘッダーに変換します。 IPv4パケットには、送信元アドレスとして192.0.2.33が含まれ、宛先アドレスとして198.51.100.2が含まれます。

Also, a NAT64 can be instructed to behave in the stateless mode by providing the following configuration. The same NAT64 prefix is used for constructing both IPv4-translatable IPv6 addresses and IPv4-converted IPv6 addresses (see Section 3.3 of [RFC6052]).

Also, a NAT64 can be instructed to behave in the stateless mode by providing the following configuration. The same NAT64 prefix is used for constructing both IPv4-translatable IPv6 addresses and IPv4-converted IPv6 addresses (see Section 3.3 of [RFC6052]).

   <nat64-prefixes>
     <nat64-prefix>
       2001:db8:122:300::/56
     </nat64-prefix>
     <stateless-enable>
       true
     </stateless-enable>
   </nat64-prefixes>
        

A.6. Explicit Address Mappings (EAM) for Stateless IP/ICMP Translation (SIIT)

A.6. Explicit Address Mappings (EAM) for Stateless IP/ICMP Translation (SIIT)

As specified in [RFC7757], an EAM consists of an IPv4 prefix and an IPv6 prefix. Let's consider the set of EAM examples in Table 8.

As specified in [RFC7757], an EAM consists of an IPv4 prefix and an IPv6 prefix. Let's consider the set of EAM examples in Table 8.

                  +----------------+----------------------+
                  |  IPv4 Prefix   |     IPv6 Prefix      |
                  +----------------+----------------------+
                  | 192.0.2.1      | 2001:db8:aaaa::      |
                  | 192.0.2.2/32   | 2001:db8:bbbb::b/128 |
                  | 192.0.2.16/28  | 2001:db8:cccc::/124  |
                  | 192.0.2.128/26 | 2001:db8:dddd::/64   |
                  | 192.0.2.192/29 | 2001:db8:eeee:8::/62 |
                  | 192.0.2.224/31 | 64:ff9b::/127        |
                  +----------------+----------------------+
        

Table 8: EAM Examples (RFC 7757)

Table 8: EAM Examples (RFC 7757)

The following XML excerpt illustrates how these EAMs can be configured using the NAT YANG module:

The following XML excerpt illustrates how these EAMs can be configured using the NAT YANG module:

   <eam>
     <ipv4-prefix>
       192.0.2.1/32
     </ipv4-prefix>
     <ipv6-prefix>
       2001:db8:aaaa::/128
     </ipv6-prefix>
   </eam>
   <eam>
     <ipv4-prefix>
       192.0.2.2/32
     </ipv4-prefix>
     <ipv6-prefix>
       2001:db8:bbbb::b/128
     </ipv6-prefix>
   </eam>
        

<eam> <ipv4-prefix> 192.0.2.16/28 </ipv4-prefix> <ipv6-prefix> 2001:db8:cccc::/124 </ipv6-prefix> </eam> <eam> <ipv4-prefix> 192.0.2.128/26 </ipv4-prefix> <ipv6-prefix> 2001:db8:dddd::/64 </ipv6-prefix> </eam> <eam> <ipv4-prefix> 192.0.2.192/29 </ipv4-prefix> <ipv6-prefix> 2001:db8:eeee:8::/62 </ipv6-prefix> </eam> <eam> <ipv4-prefix> 192.0.2.224/31 </ipv4-prefix> <ipv6-prefix> 64:ff9b::/127 </ipv6-prefix> </eam> EAMs may be enabled jointly with stateful NAT64. This example shows a NAT64 function that supports static mappings:

<eam> <ipv4-prefix> 192.0.2.16/28 </ipv4-prefix> <ipv6-prefix> 2001:db8:cccc::/124 </ipv6-prefix> </eam> <eam> <ipv4-prefix> 192.0.2.128/26 </ipv4-prefix> <ipv6-prefix> 2001:db8:dddd::/64 </ipv6-prefix> </eam> <eam> <ipv4-prefix> 192.0.2.192/29 </ipv4-prefix> <ipv6-prefix> 2001:db8:eeee:8::/62 </ipv6-prefix> </eam> <eam> <ipv4-prefix> 192.0.2.224/31 </ipv4-prefix> <ipv6-prefix> 64:ff9b::/127 </ipv6-prefix> </eam> EAMs may be enabled jointly with stateful NAT64. This example shows a NAT64 function that supports static mappings:

   <capabilities>
     <nat-flavor>
       nat64
     </nat-flavor>
     <static-mapping-support>
       true
     </static-mapping-support>
     <port-randomization-support>
       true
     </port-randomization-support>
     <port-range-allocation-support>
       true
     </port-range-allocation-support>
     <port-preservation-suport>
       true
     </port-preservation-suport>
     <address-roundrobin-support>
       true
     </address-roundrobin-support>
     <paired-address-pooling-support>
       true
     </paired-address-pooling-support>
     <endpoint-independent-mapping-support>
       true
     </endpoint-independent-mapping-support>
     <endpoint-independent-filtering-support>
       true
     </endpoint-independent-filtering-support>
   </capabilities>
        
A.7. Static Mappings with Port Ranges
A.7. Static Mappings with Port Ranges

The following example shows a static mapping that instructs a NAT to translate packets issued from 192.0.2.1 and with source ports in the 100-500 range to 198.51.100.1:1100-1500.

The following example shows a static mapping that instructs a NAT to translate packets issued from 192.0.2.1 and with source ports in the 100-500 range to 198.51.100.1:1100-1500.

   <mapping-entry>
     <index>1</index>
     <type>
       static
     </type>
     <transport-protocol>
       6
     </transport-protocol>
     <internal-src-address>
       192.0.2.1/32
     </internal-src-address>
     <internal-src-port>
       <start-port-number>
         100
       </start-port-number>
       <end-port-number>
         500
       </end-port-number>
     </internal-src-port>
     <external-src-address>
       198.51.100.1/32
     </external-src-address>
     <external-src-port>
       <start-port-number>
         1100
       </start-port-number>
       <end-port-number>
         1500
       </end-port-number>
     </external-src-port>
     ...
   </mapping-entry>
        
A.8. Static Mappings with IP Prefixes
A.8. IPプレフィックスを使用した静的マッピング

The following example shows a static mapping that instructs a NAT to translate TCP packets issued from 192.0.2.0/24 to 198.51.100.0/24.

次の例は、192.0.2.0 / 24から発行されたTCPパケットを198.51.100.0/24に変換するようにNATに指示する静的マッピングを示しています。

   <mapping-entry>
     <index>1</index>
     <type>
       static
     </type>
     <transport-protocol>
       6
     </transport-protocol>
     <internal-src-address>
       192.0.2.0/24
     </internal-src-address>
     <external-src-address>
       198.51.100.0/24
     </external-src-address>
     ...
   </mapping-entry>
        
A.9. Destination NAT
A.9. 宛先NAT

The following XML snippet shows an example of a Destination NAT that is instructed to translate all packets having 192.0.2.1 as a destination IP address to 198.51.100.1.

次のXMLスニペットは、192.0.2.1を宛先IPアドレスとして持つすべてのパケットを198.51.100.1に変換するように指示されている宛先NATの例を示しています。

<dst-ip-address-pool> <pool-id>1</pool-id> <dst-in-ip-pool> 192.0.2.1/32 </dst-in-ip-pool> <dst-out-ip-pool> 198.51.100.1/32 </dst-out-ip-pool> </dst-ip-address-pool> In order to instruct a NAT to translate TCP packets destined to '192.0.2.1:80' to '198.51.100.1:8080', the following XML snippet shows the static mapping configured on the NAT:

<dst-ip-address-pool> <pool-id> 1 </ pool-id> <dst-in-ip-pool> 192.0.2.1/32 </ dst-in-ip-pool> <dst-out- ip-pool> 198.51.100.1/32 </ dst-out-ip-pool> </ dst-ip-address-pool> NATに「192.0.2.1:80」宛てのTCPパケットを「 198.51.100.1:8080 '、次のXMLスニペットは、NATで構成された静的マッピングを示しています。

<mapping-entry> <index>1568</index> <type> static </type> <transport-protocol> 6 </transport-protocol> <internal-dst-address> 192.0.2.1/32 </internal-dst-address> <internal-dst-port> <start-port-number> 80 </start-port-number> </internal-dst-port> <external-dst-address> 198.51.100.1/32 </external-dst-address> <external-dst-port> <start-port-number> 8080 </start-port-number> </external-dst-port> </mapping-entry> In order to instruct a NAT to translate TCP packets destined to '192.0.2.1:80' (HTTP traffic) to 198.51.100.1 and '192.0.2.1:22' (SSH traffic) to 198.51.100.2, the following XML snippet shows the static mappings configured on the NAT:

<mapping-entry> <index>1568</index> <type> static </type> <transport-protocol> 6 </transport-protocol> <internal-dst-address> 192.0.2.1/32 </internal-dst-address> <internal-dst-port> <start-port-number> 80 </start-port-number> </internal-dst-port> <external-dst-address> 198.51.100.1/32 </external-dst-address> <external-dst-port> <start-port-number> 8080 </start-port-number> </external-dst-port> </mapping-entry> In order to instruct a NAT to translate TCP packets destined to '192.0.2.1:80' (HTTP traffic) to 198.51.100.1 and '192.0.2.1:22' (SSH traffic) to 198.51.100.2, the following XML snippet shows the static mappings configured on the NAT:

<mapping-entry> <index>123</index> <type> static </type> <transport-protocol> 6 </transport-protocol> <internal-dst-address> 192.0.2.1/32 </internal-dst-address> <internal-dst-port> <start-port-number> 80 </start-port-number> </internal-dst-port> <external-dst-address> 198.51.100.1/32 </external-dst-address> ... </mapping-entry> <mapping-entry> <index>1236</index> <type> static </type> <transport-protocol> 6 </transport-protocol> <internal-dst-address> 192.0.2.1/32 </internal-dst-address> <internal-dst-port> <start-port-number> 22 </start-port-number> </internal-dst-port> <external-dst-address> 198.51.100.2/32 </external-dst-address> ... </mapping-entry> The NAT may also be instructed to proceed with both source and Destination NAT. To do so, in addition to the above example to configure Destination NAT, the NAT may be provided, for example with a pool of external IP addresses (198.51.100.0/24) to use for source address translation. An example of the corresponding XML snippet is provided hereafter:

<mapping-entry> <index>123</index> <type> static </type> <transport-protocol> 6 </transport-protocol> <internal-dst-address> 192.0.2.1/32 </internal-dst-address> <internal-dst-port> <start-port-number> 80 </start-port-number> </internal-dst-port> <external-dst-address> 198.51.100.1/32 </external-dst-address> ... </mapping-entry> <mapping-entry> <index>1236</index> <type> static </type> <transport-protocol> 6 </transport-protocol> <internal-dst-address> 192.0.2.1/32 </internal-dst-address> <internal-dst-port> <start-port-number> 22 </start-port-number> </internal-dst-port> <external-dst-address> 198.51.100.2/32 </external-dst-address> ... </mapping-entry> The NAT may also be instructed to proceed with both source and Destination NAT. To do so, in addition to the above example to configure Destination NAT, the NAT may be provided, for example with a pool of external IP addresses (198.51.100.0/24) to use for source address translation. An example of the corresponding XML snippet is provided hereafter:

   <external-ip-address-pool>
     <pool-id>1</pool-id>
     <external-ip-pool>
       198.51.100.0/24
     </external-ip-pool>
   </external-ip-address-pool>
        

Instead of providing an external IP address to share, the NAT may be configured with static mapping entries that modify the internal IP address and/or port number.

共有する外部IPアドレスを提供する代わりに、内部IPアドレスやポート番号を変更する静的マッピングエントリでNATを構成できます。

A.10. Customer-Side Translator (CLAT)
A.10. カスタマーサイドトランスレータ(CLAT)

The following XML snippet shows the example of a CLAT that is configured with 2001:db8:1234::/96 as a PLAT-side IPv6 prefix and 2001:db8:aaaa::/96 as a CLAT-side IPv6 prefix. The CLAT is also provided with 192.0.0.1/32 (which is selected from the IPv4 service continuity prefix defined in [RFC7335]).

次のXMLスニペットは、2001:db8:1234 :: / 96をPLAT側のIPv6プレフィックスとして、2001:db8:aaaa :: / 96をCLAT側のIPv6プレフィックスとして構成したCLATの例を示しています。 CLATには192.0.0.1/32も用意されています(これは[RFC7335]で定義されているIPv4サービス継続性プレフィックスから選択されます)。

   <clat-ipv6-prefixes>
     <ipv6-prefix>
       2001:db8:aaaa::/96
     </ipv6-prefix>
   </clat-ipv6-prefixes>
   <clat-ipv4-prefixes>
     <ipv4-prefix>
       192.0.0.1/32
     </ipv4-prefix>
   </clat-ipv4-prefixes>
   <nat64-prefixes>
     <nat64-prefix>
       2001:db8:1234::/96
     </nat64-prefix>
   </nat64-prefixes>
        
A.11. IPv6 Network Prefix Translation (NPTv6)
A.11. IPv6ネットワークプレフィックス変換(NPTv6)

Let's consider the example of an NPTv6 translator that should rewrite packets with the source prefix (fd03:c03a:ecab::/48) with the external prefix (2001:db8:1::/48). The internal interface is "eth0" while the external interface is "eth1" (Figure 2).

ソースプレフィックス(fd03:c03a:ecab :: / 48)と外部プレフィックス(2001:db8:1 :: / 48)を使用してパケットを書き換えるNPTv6トランスレーターの例を考えてみましょう。内部インターフェースは「eth0」ですが、外部インターフェースは「eth1」です(図2)。

                  External Network:  Prefix = 2001:db8:1::/48
                      --------------------------------------
                                        |
                                        |eth1
                                 +-------------+
                             eth4|     NPTv6   |eth2
                         ...-----|             |------...
                                 +-------------+
                                        |eth0
                                        |
                      --------------------------------------
                  Internal Network:  Prefix = fd03:c03a:ecab::/48
        

Figure 2: Example of NPTv6

Figure 2: Example of NPTv6

The XML snippet to configure NPTv6 prefixes in such case is depicted below:

このような場合にNPTv6プレフィックスを構成するためのXMLスニペットを以下に示します。

<nptv6-prefixes> <internal-ipv6-prefix> fd03:c03a:ecab::/48 </internal-ipv6-prefix> <external-ipv6-prefix> 2001:db8:1::/48 </external-ipv6-prefix> </nptv6-prefixes> ... <external-realm> <external-interface> eth1 </external-interface> </external-realm> Figure 3 shows an example of an NPTv6 translator that interconnects two internal networks (fd03:c03a:ecab::/48 and fda8:d5cb:14f3::/48); each is translated using a dedicated prefix (2001:db8:1::/48 and 2001:db8:6666::/48, respectively).

<nptv6-prefixes> <internal-ipv6-prefix> fd03:c03a:ecab :: / 48 </ internal-ipv6-prefix> <external-ipv6-prefix> 2001:db8:1 :: / 48 </ external-ipv6 -prefix> </ nptv6-prefixes> ... <external-realm> <external-interface> eth1 </ external-interface> </ external-realm>図3は、2つの内部ネットワークを相互接続するNPTv6トランスレータの例を示しています( fd03:c03a:ecab :: / 48およびfda8:d5cb:14f3 :: / 48);それぞれが専用のプレフィックスを使用して変換されます(それぞれ2001:db8:1 :: / 48および2001:db8:6666 :: / 48)。

                     Internal Prefix = fda8:d5cb:14f3::/48
                     --------------------------------------
                          V            |      External Prefix
                          V            |eth1   2001:db8:1::/48
                          V        +---------+      ^
                          V        |  NPTv6  |      ^
                          V        |         |      ^
                          V        +---------+      ^
                 External Prefix       |eth0        ^
                 2001:db8:6666::/48    |            ^
                     --------------------------------------
                     Internal Prefix = fd03:c03a:ecab::/48
        

Figure 3: Connecting Two Peer Networks

図3:2つのピアネットワークの接続

To that aim, the following configuration is provided to the NPTv6 translator:

そのために、次の構成がNPTv6トランスレータに提供されています。

   <policy>
     <id>1</id>
     <nptv6-prefixes>
       <internal-ipv6-prefix>
         fd03:c03a:ecab::/48
       </internal-ipv6-prefix>
       <external-ipv6-prefix>
         2001:db8:1::/48
       </external-ipv6-prefix>
     </nptv6-prefixes>
     <external-realm>
       <external-interface>
         eth1
       </external-interface>
     </external-realm>
   </policy>
   <policy>
     <id>2</id>
     <nptv6-prefixes>
       <internal-ipv6-prefix>
         fda8:d5cb:14f3::/48
       </internal-ipv6-prefix>
       <external-ipv6-prefix>
         2001:db8:6666::/48
       </external-ipv6-prefix>
     </nptv6-prefixes>
     <external-realm>
       <external-interface>
         eth0
       </external-interface>
     </external-realm>
   </policy>
        

Acknowledgements

謝辞

Many thanks to Dan Wing, Tianran Zhou, Tom Petch, Warren Kumari, and Benjamin Kaduk for their review.

Dan Wing、Tianran Zhou、Tom Petch、Warren Kumari、Benjamin Kadukのレビューに感謝します。

Thanks to Juergen Schoenwaelder for the comments on the YANG structure and the suggestion to use NMDA. Mahesh Jethanandani provided useful comments.

YANG構造に関するコメントとNMDAの使用を提案してくれたJuergen Schoenwaelderに感謝します。 Mahesh Jethanandaniさんは有益なコメントを提供しました。

Thanks to Lee Howard and Jordi Palet for the CLAT comments, Fred Baker for the NPTv6 comments, Tore Anderson for the EAM SIIT review, and Kristian Poscic for the CGN review.

CLATコメントについてはLee HowardとJordi Palet、NPTv6コメントについてはFred Baker、EAM SIITレビューについてはTore Anderson、CGNレビューについてはKristian Poscicに感謝します。

Special thanks to Maros Marsalek and Marek Gradzki for sharing their comments based on the FD.io implementation of this module (https://git.fd.io/hc2vpp/tree/nat/nat-api/src/main/yang).

このモジュールのFD.io実装(https://git.fd.io/hc2vpp/tree/nat/nat-api/src/main/yang)に基づいてコメントを共有してくれたMaros MarsalekとMarek Gradzkiに特に感謝します。

Rajiv Asati suggested clarifying how the module applies for both stateless and stateful NAT64.

Rajiv Asatiは、モジュールがステートレスとステートフルの両方のNAT64にどのように適用されるかを明確にすることを提案しました。

Juergen Schoenwaelder provided an early YANG Doctors review. Many thanks to him.

Juergen Schoenwaelderが初期のYANG Doctorsレビューを提供しました。彼に感謝します。

Thanks to Roni Even, Mach(Guoyi) Chen, Tim Chown, and Stephen Farrell for the directorates review. Igor Ryzhov identified a nit in one example.

局のレビューをしてくれたRoni Even、Mach(Guoyi)Chen、Tim Chown、Stephen Farrellに感謝します。 Igor Ryzhovは、一例でnitを特定しました。

Mirja Kuehlewind made a comment about the reuse of some TCP timers for any connection-oriented protocol.

Mirja Kuehlewindさんは、コネクション型プロトコルでのTCPタイマーの再利用についてコメントしました。

Authors' Addresses

著者のアドレス

Mohamed Boucadair (editor) Orange Rennes 35000 France

Mohamed Boucadair(編集者)Orange Rennes 35000フランス

   Email: mohamed.boucadair@orange.com
        

Senthil Sivakumar Cisco Systems 7100-8 Kit Creek Road Research Triangle Park, North Carolina 27709 United States of America

Senthil Sivakumar Cisco Systems 7100-8 Kit Creek Road Research Triangle Park、North Carolina 27709 United States of America

   Phone: +1 919 392 5158
   Email: ssenthil@cisco.com
        

Christian Jacquenet Orange Rennes 35000 France

クリスチャンジャケネオレンジレンヌ35000フランス

   Email: christian.jacquenet@orange.com
        

Suresh Vinapamula Juniper Networks 1133 Innovation Way Sunnyvale 94089 United States of America

Suresh Vinapamula Juniper Networks 1133 Innovation Way Sunnyvale 94089 United States of America

   Email: sureshk@juniper.net
        

Qin Wu Huawei 101 Software Avenue, Yuhua District Nanjing, Jiangsu 210012 China

Qin Wu Huawei 101 Software Avenue, Yuhua District Nanjing, Jiangsu 210012 China

   Email: bill.wu@huawei.com