[要約] RFC 8519は、ネットワークアクセス制御リスト(ACL)のためのYANGデータモデルに関するものです。このRFCの目的は、ネットワークデバイスのACL設定を標準化し、ネットワークセキュリティの向上を図ることです。

Internet Engineering Task Force (IETF)                   M. Jethanandani
Request for Comments: 8519                                        VMware
Category: Standards Track                                     S. Agarwal
ISSN: 2070-1721                                      Cisco Systems, Inc.
                                                                L. Huang
                                                                D. Blair
                                                              March 2019
        

YANG Data Model for Network Access Control Lists (ACLs)

ネットワークアクセスコントロールリスト(ACL)のYANGデータモデル

Abstract

概要

This document defines a data model for Access Control Lists (ACLs). An ACL is a user-ordered set of rules used to configure the forwarding behavior in a device. Each rule is used to find a match on a packet and define actions that will be performed on the packet.

このドキュメントでは、アクセス制御リスト(ACL)のデータモデルを定義します。 ACLは、デバイスで転送動作を構成するために使用される、ユーザーが注文したルールのセットです。各ルールは、パケットの一致を検索し、パケットで実行されるアクションを定義するために使用されます。

Status of This Memo

本文書の状態

This is an Internet Standards Track document.

これはInternet Standards Trackドキュメントです。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。インターネット標準の詳細については、RFC 7841のセクション2をご覧ください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8519.

このドキュメントの現在のステータス、正誤表、およびフィードバックの提供方法に関する情報は、https://www.rfc-editor.org/info/rfc8519で入手できます。

Copyright Notice

著作権表示

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2019 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

この文書は、BCP 78およびIETF文書に関するIETFトラストの法的規定(https://trustee.ietf.org/license-info)の対象であり、この文書の発行日に有効です。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseのテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。

Table of Contents

目次

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Definitions and Acronyms  . . . . . . . . . . . . . . . .   3
     1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   4
     1.3.  Tree Diagram  . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Problem Statement . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Understanding ACL's Filters and Actions . . . . . . . . . . .   4
     3.1.  ACL Modules . . . . . . . . . . . . . . . . . . . . . . .   5
   4.  ACL YANG Models . . . . . . . . . . . . . . . . . . . . . . .   9
     4.1.  IETF Access Control List Module . . . . . . . . . . . . .   9
     4.2.  IETF Packet Fields Module . . . . . . . . . . . . . . . .  24
     4.3.  ACL Examples  . . . . . . . . . . . . . . . . . . . . . .  37
     4.4.  Port Range Usage and Other Examples . . . . . . . . . . .  39
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  42
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  43
     6.1.  URI Registration  . . . . . . . . . . . . . . . . . . . .  43
     6.2.  YANG Module Name Registration . . . . . . . . . . . . . .  44
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  44
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  44
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  46
   Appendix A.  Extending ACL Model Examples . . . . . . . . . . . .  47
     A.1.  Example of a Company's Proprietary Module . . . . . . . .  47
     A.2.  Linux nftables  . . . . . . . . . . . . . . . . . . . . .  50
     A.3.  Ethertypes  . . . . . . . . . . . . . . . . . . . . . . .  51
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  60
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  60
        
1. Introduction
1. はじめに

An Access Control List (ACL) is one of the basic elements used to configure device-forwarding behavior. It is used in many networking technologies such as Policy-Based Routing (PBR), firewalls, etc.

アクセス制御リスト(ACL)は、デバイス転送動作の構成に使用される基本要素の1つです。これは、ポリシーベースルーティング(PBR)、ファイアウォールなどの多くのネットワーキングテクノロジーで使用されています。

An ACL is a user-ordered set of rules that is used to filter traffic on a networking device. Each rule is represented by an Access Control Entry (ACE).

ACLは、ネットワーキングデバイス上のトラフィックをフィルタリングするために使用される、ユーザーが注文した一連のルールです。各ルールは、アクセス制御エントリ(ACE)によって表されます。

Each ACE has a group of match criteria and a group of actions.

各ACEには、一致基準のグループとアクションのグループがあります。

The match criteria allow for the definition of packet headers and metadata, the contents of which must match the definitions.

一致基準により、パケットヘッダーとメタデータを定義できます。これらの内容は定義と一致する必要があります。

o Packet header matches apply to fields visible in the packet such as address, Class of Service (CoS), or port number.

o パケットヘッダーの一致は、アドレス、サービスクラス(CoS)、ポート番号など、パケットに表示されるフィールドに適用されます。

o In case a vendor supports it, metadata matches apply to fields associated with the packet, that are not in the packet header, such as the input interface or length of the packet as received over the wire.

o ベンダーがサポートしている場合、メタデータの一致は、パケットに関連付けられているフィールドに適用されます。これらのフィールドは、入力インターフェイスや、ワイヤー経由で受信したパケットの長さなど、パケットヘッダーにはありません。

The actions specify what to do with the packet when the matching criteria are met. These actions are any operations that would apply to the packet, such as counting, policing, or simply forwarding. The list of potential actions is unbounded depending on the capabilities of the networking devices.

アクションは、一致基準が満たされたときにパケットをどうするかを指定します。これらのアクションは、カウント、ポリシング、単に転送など、パケットに適用されるすべての操作です。潜在的なアクションのリストは、ネットワーキングデバイスの機能に応じて制限されません。

Access Control List is also widely known as ACL (pronounced as [ak-uh l]) or Access List. In this document, Access Control List, ACL, and Access List are used interchangeably.

アクセスコントロールリストは、ACL([ak-uh l]と発音)またはアクセスリストとしても広く知られています。このドキュメントでは、アクセスコントロールリスト、ACL、およびアクセスリストを同じ意味で使用しています。

The matching of filters and actions in an ACE/ACL is triggered only after the application/attachment of the ACL to an interface, a Virtual Routing and Forwarding (VRF) interface, a vty/tty session, a QoS policy, or routing protocols, amongst various other configuration attachment points. Once attached, it is used for filtering traffic using the match criteria in the ACEs and taking appropriate action(s) that has been configured against that ACE. In order to apply an ACL to any attachment point other than an interface, vendors would have to augment the ACL YANG model.

ACE / ACLでのフィルターとアクションのマッチングは、ACLのアプリケーションへの適用/インターフェース、仮想ルーティングおよび転送(VRF)インターフェース、vty / ttyセッション、QoSポリシー、またはルーティングプロトコルの後にのみトリガーされます。他のさまざまな構成アタッチメントポイントの中で。接続されると、ACEの一致基準を使用してトラフィックをフィルタリングし、そのACEに対して構成されている適切なアクションを実行するために使用されます。 ACLをインターフェイス以外の接続ポイントに適用するには、ベンダーはACL YANGモデルを拡張する必要があります。

1.1. Definitions and Acronyms
1.1. 定義と頭字語

ACE: Access Control Entry

ACE:アクセス制御エントリ

ACL: Access Control List

ACL:アクセス制御リスト

CoS: Class of Service

CoS:サービスクラス

DSCP: Differentiated Services Code Point

DSCP:DiffServコードポイント

ICMP: Internet Control Message Protocol

ICMP:インターネット制御メッセージプロトコル

IP: Internet Protocol

IP:インターネットプロトコル

IPv4: Internet Protocol version 4

IPv4:インターネットプロトコルバージョン4

IPv6: Internet Protocol version 6

IPv6:インターネットプロトコルバージョン6

MAC: Media Access Control

MAC:メディアアクセスコントロール

PBR: Policy-Based Routing TCP: Transmission Control Protocol

PBR:ポリシーベースのルーティングTCP:伝送制御プロトコル

UDP: User Datagram Protocol

UDP:ユーザーデータグラムプロトコル

1.2. Terminology
1.2. 用語

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

キーワード「MUST」、「MUST NOT」、「REQUIRED」、「SHALL」、「SHALL NOT」、「SHOULD」、「SHOULD NOT」、「RECOMMENDED」、「NOT RECOMMENDED」、「MAY」、「OPTIONALこのドキュメントの「」は、BCP 14 [RFC2119] [RFC8174]で説明されているように解釈されます。

1.3. Tree Diagram
1.3. 樹形図

For a reference to the annotations used in the tree diagrams included in this document, please see "YANG Tree Diagrams" [RFC8340].

このドキュメントに含まれているツリー図で使用されている注釈のリファレンスについては、「YANGツリー図」[RFC8340]を参照してください。

2. Problem Statement
2. 問題文

This document defines a YANG 1.1 data model [RFC7950] for the configuration of ACLs. The model defines matching rules for commonly used protocols such as Ethernet, IPv4, IPv6, TCP, UDP, and ICMP. If more protocols need to be supported in the future, this base model can be augmented. An example of such an augmentation can be seen in Appendix A.

このドキュメントでは、ACLの構成用にYANG 1.1データモデル[RFC7950]を定義しています。このモデルは、イーサネット、IPv4、IPv6、TCP、UDP、ICMPなどの一般的に使用されるプロトコルのマッチングルールを定義します。今後さらに多くのプロトコルをサポートする必要がある場合は、この基本モデルを拡張できます。このような拡張の例は、付録Aにあります。

ACL implementations in every device may vary greatly in terms of the filter constructs and actions that they support. Therefore, this document proposes a model that can be augmented by standard extensions and vendor proprietary models.

すべてのデバイスでのACLの実装は、それらがサポートするフィルター構造とアクションの点で大きく異なる場合があります。したがって、このドキュメントでは、標準の拡張機能とベンダー独自のモデルによって拡張できるモデルを提案します。

3. Understanding ACL's Filters and Actions
3. ACLのフィルターとアクションについて

Although different vendors have different ACL data models, there is a common understanding of what an ACL is. A network system usually has a list of ACLs, and each ACL contains an ordered list of rules, also known as ACEs. Each ACE has a group of match criteria and a group of actions. The match criteria allows for definition of the contents of the packet headers or metadata, if supported by the vendor. Packet header matching applies to fields visible in the packet such as address, CoS, or port number. Metadata matching applies to fields associated with the packet, that are not in the packet header, such as the input interface, packet length, or source or destination prefix length. The actions can be any sort of operation from logging to rate-limiting or dropping to simply forwarding. Actions on the first matching ACE are applied with no processing of subsequent ACEs.

ベンダーが異なればACLデータモデルも異なりますが、ACLとは何かについて共通の理解があります。通常、ネットワークシステムにはACLのリストがあり、各ACLには、ACEとも呼ばれるルールの順序付きリストが含まれています。各ACEには、一致基準のグループとアクションのグループがあります。ベンダーによってサポートされている場合、一致基準により、パケットヘッダーまたはメタデータの内容を定義できます。パケットヘッダーの照合は、アドレス、CoS、ポート番号など、パケットに表示されるフィールドに適用されます。メタデータのマッチングは、入力インターフェイス、パケット長、送信元または宛先のプレフィックス長など、パケットヘッダーにないパケットに関連付けられたフィールドに適用されます。アクションは、ロギングからレート制限またはドロップ、単純な転送まで、あらゆる種類の操作です。最初に一致したACEのアクションが適用され、後続のACEは処理されません。

The model also includes a container to hold overall operational state for each ACL and for each ACE. One ACL can be applied to multiple targets within the device, such as the interface of a networking device, applications or features running in the device, etc. When applied to interfaces of a networked device, distinct ACLs are defined for the ingress (input) or egress (output) interface.

このモデルには、各ACLおよび各ACEの全体的な動作状態を保持するコンテナーも含まれています。 1つのACLは、ネットワークデバイスのインターフェイス、デバイスで実行されているアプリケーションまたは機能など、デバイス内の複数のターゲットに適用できます。ネットワークデバイスのインターフェイスに適用すると、入力(入力)に対して個別のACLが定義されますまたは出力(出力)インターフェイス。

This document tries to address the commonalities between all vendors and creates a common model, which can be augmented with proprietary models. The base model is simple in design, and we hope to achieve enough flexibility for each vendor to extend the base model.

このドキュメントでは、すべてのベンダー間の共通点に取り組み、独自のモデルで拡張できる共通モデルを作成します。基本モデルは設計がシンプルであり、各ベンダーが基本モデルを拡張するのに十分な柔軟性を実現したいと考えています。

The use of feature statements in the model allows vendors to advertise match rules they are capable and willing to support. There are two sets of feature statements a device needs to advertise. The first set of feature statements specifies the capability of the device. These include features such as "Device can support matching on Ethernet headers" or "Device can support matching on IPv4 headers". The second set of feature statements specifies the combinations of headers the device is willing to support. These include features such as "Plain IPv6 ACL supported" or "Ethernet, IPv4 and IPv6 ACL combinations supported".

モデルで機能ステートメントを使用することにより、ベンダーは、対応可能でサポートする意思のある一致ルールをアドバタイズできます。デバイスがアドバタイズする必要がある機能ステートメントの2つのセットがあります。機能ステートメントの最初のセットは、デバイスの機能を指定します。これらには、「デバイスはイーサネットヘッダーのマッチングをサポートできる」または「デバイスはIPv4ヘッダーのマッチングをサポートできる」などの機能が含まれます。機能ステートメントの2番目のセットは、デバイスがサポートする用意があるヘッダーの組み合わせを指定します。これらには、「プレーンIPv6 ACLのサポート」または「イーサネット、IPv4およびIPv6 ACLの組み合わせのサポート」などの機能が含まれます。

3.1. ACL Modules
3.1. ACLモジュール

There are two YANG modules in the model. The first module, "ietf-access-control-list", defines generic ACL aspects that are common to all ACLs regardless of their type or vendor. In effect, the module can be viewed as providing a generic ACL "superclass". It imports the second module, "ietf-packet-fields". The match container in "ietf-access-control-list" uses groupings in "ietf-packet-fields" to specify match fields such as port numbers or protocols. The combination of 'if-feature' checks and 'must' statements allows for the selection of relevant match fields that a user can define rules for.

モデルには2つのYANGモジュールがあります。最初のモジュール「ietf-access-control-list」は、タイプやベンダーに関係なく、すべてのACLに共通の一般的なACLアスペクトを定義します。実際、このモジュールは、一般的なACL「スーパークラス」を提供するものと見なすことができます。 2番目のモジュール「ietf-packet-fields」をインポートします。 「ietf-access-control-list」の一致コンテナは、「ietf-packet-fields」のグループを使用して、ポート番号やプロトコルなどの一致フィールドを指定します。 「if-feature」チェックと「must」ステートメントの組み合わせにより、ユーザーがルールを定義できる関連する一致フィールドを選択できます。

If there is a need to define a new "matches" choice, such as IP Flow Information Export (IPFIX) [RFC7011], the container "matches" can be augmented.

IPフロー情報エクスポート(IPFIX)[RFC7011]など、新しい「一致」の選択を定義する必要がある場合は、コンテナの「一致」を拡張できます。

   module: ietf-access-control-list
     +--rw acls
        +--rw acl* [name]
        |  +--rw name    string
        |  +--rw type?   acl-type
        |  +--rw aces
        |     +--rw ace* [name]
        |        +--rw name          string
        |        +--rw matches
        |        |  +--rw (l2)?
        |        |  |  +--:(eth)
        |        |  |     +--rw eth {match-on-eth}?
        |        |  |        +--rw destination-mac-address?
        |        |  |        |       yang:mac-address
        |        |  |        +--rw destination-mac-address-mask?
        |        |  |        |       yang:mac-address
        |        |  |        +--rw source-mac-address?
        |        |  |        |       yang:mac-address
        |        |  |        +--rw source-mac-address-mask?
        |        |  |        |       yang:mac-address
        |        |  |        +--rw ethertype?
        |        |  |                eth:ethertype
        |        |  +--rw (l3)?
        |        |  |  +--:(ipv4)
        |        |  |  |  +--rw ipv4 {match-on-ipv4}?
        |        |  |  |     +--rw dscp?
        |        |  |  |     |       inet:dscp
        |        |  |  |     +--rw ecn?
        |        |  |  |     |       uint8
        |        |  |  |     +--rw length?
        |        |  |  |     |       uint16
        |        |  |  |     +--rw ttl?
        |        |  |  |     |       uint8
        |        |  |  |     +--rw protocol?
        |        |  |  |     |       uint8
        |        |  |  |     +--rw ihl?
        |        |  |  |     |       uint8
        |        |  |  |     +--rw flags?
        |        |  |  |     |       bits
        |        |  |  |     +--rw offset?
        |        |  |  |     |       uint16
        |        |  |  |     +--rw identification?
        |        |  |  |     |       uint16
        |        |  |  |     +--rw (destination-network)?
        |        |  |  |     |  +--:(destination-ipv4-network)
        |        |  |  |     |     +--rw destination-ipv4-network?
        |        |  |  |     |             inet:ipv4-prefix
        
        |        |  |  |     +--rw (source-network)?
        |        |  |  |        +--:(source-ipv4-network)
        |        |  |  |           +--rw source-ipv4-network?
        |        |  |  |                   inet:ipv4-prefix
        |        |  |  +--:(ipv6)
        |        |  |     +--rw ipv6 {match-on-ipv6}?
        |        |  |        +--rw dscp?
        |        |  |        |       inet:dscp
        |        |  |        +--rw ecn?
        |        |  |        |       uint8
        |        |  |        +--rw length?
        |        |  |        |       uint16
        |        |  |        +--rw ttl?
        |        |  |        |       uint8
        |        |  |        +--rw protocol?
        |        |  |        |       uint8
        |        |  |        +--rw (destination-network)?
        |        |  |        |  +--:(destination-ipv6-network)
        |        |  |        |     +--rw destination-ipv6-network?
        |        |  |        |             inet:ipv6-prefix
        |        |  |        +--rw (source-network)?
        |        |  |        |  +--:(source-ipv6-network)
        |        |  |        |     +--rw source-ipv6-network?
        |        |  |        |             inet:ipv6-prefix
        |        |  |        +--rw flow-label?
        |        |  |                inet:ipv6-flow-label
        |        |  +--rw (l4)?
        |        |  |  +--:(tcp)
        |        |  |  |  +--rw tcp {match-on-tcp}?
        |        |  |  |     +--rw sequence-number?          uint32
        |        |  |  |     +--rw acknowledgement-number?   uint32
        |        |  |  |     +--rw data-offset?              uint8
        |        |  |  |     +--rw reserved?                 uint8
        |        |  |  |     +--rw flags?                    bits
        |        |  |  |     +--rw window-size?              uint16
        |        |  |  |     +--rw urgent-pointer?           uint16
        |        |  |  |     +--rw options?                  binary
        |        |  |  |     +--rw source-port
        |        |  |  |     |  +--rw (source-port)?
        |        |  |  |     |     +--:(range-or-operator)
        |        |  |  |     |        +--rw (port-range-or-operator)?
        |        |  |  |     |           +--:(range)
        |        |  |  |     |           |  +--rw lower-port
        |        |  |  |     |           |  |       inet:port-number
        |        |  |  |     |           |  +--rw upper-port
        |        |  |  |     |           |          inet:port-number
        |        |  |  |     |           +--:(operator)
        
        |        |  |  |     |              +--rw operator?     operator
        |        |  |  |     |              +--rw port
        |        |  |  |     |                      inet:port-number
        |        |  |  |     +--rw destination-port
        |        |  |  |        +--rw (destination-port)?
        |        |  |  |           +--:(range-or-operator)
        |        |  |  |              +--rw (port-range-or-operator)?
        |        |  |  |                 +--:(range)
        |        |  |  |                 |  +--rw lower-port
        |        |  |  |                 |  |       inet:port-number
        |        |  |  |                 |  +--rw upper-port
        |        |  |  |                 |          inet:port-number
        |        |  |  |                 +--:(operator)
        |        |  |  |                    +--rw operator?     operator
        |        |  |  |                    +--rw port
        |        |  |  |                            inet:port-number
        |        |  |  +--:(udp)
        |        |  |  |  +--rw udp {match-on-udp}?
        |        |  |  |     +--rw length?             uint16
        |        |  |  |     +--rw source-port
        |        |  |  |     |  +--rw (source-port)?
        |        |  |  |     |     +--:(range-or-operator)
        |        |  |  |     |        +--rw (port-range-or-operator)?
        |        |  |  |     |           +--:(range)
        |        |  |  |     |           |  +--rw lower-port
        |        |  |  |     |           |  |       inet:port-number
        |        |  |  |     |           |  +--rw upper-port
        |        |  |  |     |           |          inet:port-number
        |        |  |  |     |           +--:(operator)
        |        |  |  |     |              +--rw operator?     operator
        |        |  |  |     |              +--rw port
        |        |  |  |     |                      inet:port-number
        |        |  |  |     +--rw destination-port
        |        |  |  |        +--rw (destination-port)?
        |        |  |  |           +--:(range-or-operator)
        |        |  |  |              +--rw (port-range-or-operator)?
        |        |  |  |                 +--:(range)
        |        |  |  |                 |  +--rw lower-port
        |        |  |  |                 |  |       inet:port-number
        |        |  |  |                 |  +--rw upper-port
        |        |  |  |                 |          inet:port-number
        |        |  |  |                 +--:(operator)
        |        |  |  |                    +--rw operator?     operator
        |        |  |  |                    +--rw port
        |        |  |  |                            inet:port-number
        |        |  |  +--:(icmp)
        
        |        |  |     +--rw icmp {match-on-icmp}?
        |        |  |        +--rw type?             uint8
        |        |  |        +--rw code?             uint8
        |        |  |        +--rw rest-of-header?   binary
        |        |  +--rw egress-interface?    if:interface-ref
        |        |  +--rw ingress-interface?   if:interface-ref
        |        +--rw actions
        |        |  +--rw forwarding    identityref
        |        |  +--rw logging?      identityref
        |        +--ro statistics {acl-aggregate-stats}?
        |           +--ro matched-packets?   yang:counter64
        |           +--ro matched-octets?    yang:counter64
        +--rw attachment-points
           +--rw interface* [interface-id] {interface-attachment}?
              +--rw interface-id    if:interface-ref
              +--rw ingress
              |  +--rw acl-sets
              |     +--rw acl-set* [name]
              |        +--rw name              -> /acls/acl/name
              |        +--ro ace-statistics* [name] {interface-stats}?
              |           +--ro name
              |           |       -> /acls/acl/aces/ace/name
              |           +--ro matched-packets?   yang:counter64
              |           +--ro matched-octets?    yang:counter64
              +--rw egress
                 +--rw acl-sets
                    +--rw acl-set* [name]
                       +--rw name              -> /acls/acl/name
                       +--ro ace-statistics* [name] {interface-stats}?
                          +--ro name
                          |       -> /acls/acl/aces/ace/name
                          +--ro matched-packets?   yang:counter64
                          +--ro matched-octets?    yang:counter64
        
4. ACL YANG Models
4. ACL YANGモデル
4.1. IETF Access Control List Module
4.1. IETFアクセスコントロールリストモジュール

The "ietf-access-control-list" module defines the "acls" container that has a list of each "acl". Each "acl" has information identifying the access list by a name ("name") and a list ("aces") of rules associated with the "name". Each of the entries in the list ("aces"), indexed by the string "name", has containers defining "matches" and "actions".

「ietf-access-control-list」モジュールは、各「acl」のリストを持つ「acls」コンテナを定義します。各「acl」には、名前(「name」)と「name」に関連付けられたルールのリスト(「aces」)によってアクセスリストを識別する情報があります。文字列「name」でインデックス付けされたリスト内の各エントリ(「aces」)には、「matches」と「actions」を定義するコンテナがあります。

The model defines several ACL types and actions in the form of identities and features. Features are used by implementors to select the ACL types the system can support, and identities are used to validate the types that have been selected. These types are implicitly inherited by the "ace", thus safeguarding against misconfiguration of "ace" types in an "acl".

モデルは、IDと機能の形式でいくつかのACLタイプとアクションを定義します。機能は、システムがサポートできるACLタイプを選択するために実装者によって使用され、IDは選択されたタイプを検証するために使用されます。これらのタイプは「ace」によって暗黙的に継承されるため、「acl」内の「ace」タイプの誤った構成から保護されます。

The "matches" define criteria used to identify patterns in "ietf-packet-fields". The choice statements within the match container allow for the selection of one header within each of "l2", "l3", or "l4" headers. The "actions" define the behavior to undertake once a "match" has been identified. In addition to permit and deny actions, a logging option allows for a match to be logged that can later be used to determine which rule was matched upon. The model also defines the ability for ACLs to be attached to a particular interface.

「一致」は、「ietf-packet-fields」のパターンを識別するために使用される基準を定義します。一致コンテナ内の選択ステートメントでは、「l2」、「l3」、または「l4」の各ヘッダー内で1つのヘッダーを選択できます。 「アクション」は、「一致」が識別されたときに実行する動作を定義します。アクションを許可および拒否することに加えて、ロギングオプションを使用すると、後で一致するルールを決定するために使用できる一致をログに記録できます。このモデルは、ACLを特定のインターフェースに接続する機能も定義します。

Statistics in the ACL can be collected for an "ace" or for an "interface". The feature statements defined for statistics can be used to determine whether statistics are being collected per "ace" or per "interface".

ACLの統計は、「エース」または「インターフェース」について収集できます。統計用に定義された機能ステートメントは、統計が「エース」ごとに収集されているのか、「インターフェース」ごとに収集されているのかを判別するために使用できます。

This module imports definitions from "Common YANG Data Types" [RFC6991] and "A YANG Data Model for Interface Management" [RFC8343].

このモジュールは、「一般的なYANGデータ型」[RFC6991]および「インターフェース管理用のYANGデータモデル」[RFC8343]から定義をインポートします。

<CODE BEGINS> file "ietf-access-control-list@2019-03-04.yang"
        
module ietf-access-control-list {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-access-control-list";
  prefix acl;
        
  import ietf-yang-types {
    prefix yang;
    reference
      "RFC 6991 - Common YANG Data Types.";
  }
        
  import ietf-packet-fields {
    prefix pf;
    reference
      "RFC 8519 - YANG Data Model for Network Access Control
                  Lists (ACLs).";
  }
        
  import ietf-interfaces {
    prefix if;
    reference
        
      "RFC 8343 - A YANG Data Model for Interface Management.";
  }
        

organization "IETF NETMOD (Network Modeling) Working Group.";

組織「IETF NETMOD(ネットワークモデリング)ワーキンググループ」;

  contact
    "WG Web:  <https://datatracker.ietf.org/wg/netmod/>
     WG List: netmod@ietf.org
        

Editor: Mahesh Jethanandani mjethanandani@gmail.com Editor: Lisa Huang huangyi_99@yahoo.com Editor: Sonal Agarwal sagarwal12@gmail.com Editor: Dana Blair dana@blairhome.com";

編集者:Mahesh Jethanandani mjethanandani@gmail.com編集者:Lisa Huang huangyi_99@yahoo.com編集者:Sonal Agarwal sagarwal12@gmail.com編集者:Dana Blair dana@blairhome.com ";

description "This YANG module defines a component that describes the configuration and monitoring of Access Control Lists (ACLs).

説明「このYANGモジュールは、アクセス制御リスト(ACL)の構成と監視を記述するコンポーネントを定義します。

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here.

キーワード「MUST」、「MUST NOT」、「REQUIRED」、「SHALL」、「SHALL NOT」、「SHOULD」、「SHOULD NOT」、「RECOMMENDED」、「NOT RECOMMENDED」、「MAY」、「OPTIONALこのドキュメントの 'は、ここに示すように、BCP 14(RFC 2119)(RFC 8174)で説明されているように解釈されます。

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2019 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

ソースおよびバイナリ形式での再配布および使用は、変更の有無にかかわらず、IETF文書に関連するIETFトラストの法的規定のセクション4.cに記載されているSimplified BSD Licenseに従い、それに含まれるライセンス条項に従って許可されます( http://trustee.ietf.org/license-info)。

This version of this YANG module is part of RFC 8519; see the RFC itself for full legal notices.";

このYANGモジュールのこのバージョンはRFC 8519の一部です。完全な法的通知については、RFC自体を参照してください。 ";

  revision 2019-03-04 {
    description
      "Initial version.";
    reference
      "RFC 8519: YANG Data Model for Network Access Control
        
                 Lists (ACLs).";
  }
        
  /*
   * Identities
   */
  /*
   * Forwarding actions for a packet
   */
        
  identity forwarding-action {
    description
      "Base identity for actions in the forwarding category.";
  }
        
  identity accept {
    base forwarding-action;
    description
      "Accept the packet.";
  }
        
  identity drop {
    base forwarding-action;
    description
      "Drop packet without sending any ICMP error message.";
  }
        
  identity reject {
    base forwarding-action;
    description
      "Drop the packet and send an ICMP error message to the source.";
  }
        
  /*
   * Logging actions for a packet
   */
        
  identity log-action {
    description
      "Base identity for defining the destination for logging
       actions.";
  }
        
  identity log-syslog {
    base log-action;
    description
      "System log (syslog) the information for the packet.";
  }
  identity log-none {
    base log-action;
    description
      "No logging for the packet.";
  }
        
  /*
   * ACL type identities
   */
        
  identity acl-base {
    description
      "Base Access Control List type for all Access Control List type
       identifiers.";
  }
        
  identity ipv4-acl-type {
    base acl:acl-base;
    if-feature "ipv4";
    description
      "An ACL that matches on fields from the IPv4 header
       (e.g., IPv4 destination address) and Layer 4 headers (e.g., TCP
       destination port).  An ACL of type ipv4 does not contain
       matches on fields in the Ethernet header or the IPv6 header.";
  }
        
  identity ipv6-acl-type {
    base acl:acl-base;
    if-feature "ipv6";
    description
      "An ACL that matches on fields from the IPv6 header
       (e.g., IPv6 destination address) and Layer 4 headers (e.g., TCP
       destination port).  An ACL of type ipv6 does not contain
       matches on fields in the Ethernet header or the IPv4 header.";
  }
        
  identity eth-acl-type {
    base acl:acl-base;
    if-feature "eth";
    description
      "An ACL that matches on fields in the Ethernet header,
       like 10/100/1000baseT or a Wi-Fi Access Control List.  An ACL
       of type ethernet does not contain matches on fields in the
       IPv4 header, the IPv6 header, or Layer 4 headers.";
  }
        
  identity mixed-eth-ipv4-acl-type {
    base acl:eth-acl-type;
        
    base acl:ipv4-acl-type;
    if-feature "mixed-eth-ipv4";
    description
      "An ACL that contains a mix of entries that match
       on fields in Ethernet headers and in IPv4 headers.
       Matching on Layer 4 header fields may also exist in the
       list.";
  }
        
  identity mixed-eth-ipv6-acl-type {
    base acl:eth-acl-type;
    base acl:ipv6-acl-type;
    if-feature "mixed-eth-ipv6";
    description
      "An ACL that contains a mix of entries that match on fields
       in Ethernet headers and in IPv6 headers.  Matching
       on Layer 4 header fields may also exist in the list.";
  }
        
  identity mixed-eth-ipv4-ipv6-acl-type {
    base acl:eth-acl-type;
    base acl:ipv4-acl-type;
    base acl:ipv6-acl-type;
    if-feature "mixed-eth-ipv4-ipv6";
    description
      "An ACL that contains a mix of entries that
       match on fields in Ethernet headers, IPv4 headers, and IPv6
       headers.  Matching on Layer 4 header fields may also exist
       in the list.";
  }
        
  /*
   * Features
   */
        
  /*
   * Features supported by device
   */
  feature match-on-eth {
    description
      "The device can support matching on Ethernet headers.";
  }
        
  feature match-on-ipv4 {
    description
      "The device can support matching on IPv4 headers.";
  }
  feature match-on-ipv6 {
    description
      "The device can support matching on IPv6 headers.";
  }
        
  feature match-on-tcp {
    description
      "The device can support matching on TCP headers.";
  }
        
  feature match-on-udp {
    description
      "The device can support matching on UDP headers.";
  }
        
  feature match-on-icmp {
    description
      "The device can support matching on ICMP (v4 and v6) headers.";
  }
        
  /*
   * Header classifications combinations supported by
   * device
   */
        
  feature eth {
    if-feature "match-on-eth";
    description
      "Plain Ethernet ACL supported.";
  }
        
  feature ipv4 {
    if-feature "match-on-ipv4";
    description
      "Plain IPv4 ACL supported.";
  }
        
  feature ipv6 {
    if-feature "match-on-ipv6";
    description
      "Plain IPv6 ACL supported.";
  }
        
  feature mixed-eth-ipv4 {
    if-feature "match-on-eth and match-on-ipv4";
    description
      "Ethernet and IPv4 ACL combinations supported.";
  }
  feature mixed-eth-ipv6 {
    if-feature "match-on-eth and match-on-ipv6";
    description
      "Ethernet and IPv6 ACL combinations supported.";
  }
        
  feature mixed-eth-ipv4-ipv6 {
    if-feature
      "match-on-eth and match-on-ipv4
       and match-on-ipv6";
    description
      "Ethernet, IPv4, and IPv6 ACL combinations supported.";
  }
        
  /*
   * Stats Features
   */
  feature interface-stats {
    description
      "ACL counters are available and reported only per interface.";
  }
        
  feature acl-aggregate-stats {
    description
      "ACL counters are aggregated over all interfaces and reported
       only per ACL entry.";
  }
        
  /*
   * Attachment point features
   */
  feature interface-attachment {
    description
      "ACLs are set on interfaces.";
  }
        
  /*
   * Typedefs
   */
  typedef acl-type {
    type identityref {
      base acl-base;
    }
    description
      "This type is used to refer to an ACL type.";
  }
        
  /*
        
   * Groupings
   */
  grouping acl-counters {
    description
      "Common grouping for ACL counters.";
    leaf matched-packets {
      type yang:counter64;
      config false;
      description
        "Count of the number of packets matching the current ACL
         entry.
        

An implementation should provide this counter on a per-interface, per-ACL-entry basis if possible.

実装では、可能であれば、インターフェイスごと、ACLエントリごとにこのカウンタを提供する必要があります。

If an implementation only supports ACL counters on a per-entry basis (i.e., not broken out per interface), then the value should be equal to the aggregate count across all interfaces.

実装がエントリごとのACLカウンターのみをサポートする場合(つまり、インターフェイスごとに分割されない場合)、値はすべてのインターフェイスの合計数と等しくなければなりません。

         An implementation that provides counters on a per-entry, per-
         interface basis is not required to also provide an aggregate
         count, e.g., per entry -- the user is expected to be able to
         implement the required aggregation if such a count is
         needed.";
    }
        
    leaf matched-octets {
      type yang:counter64;
      config false;
      description
        "Count of the number of octets (bytes) matching the current
         ACL entry.
        

An implementation should provide this counter on a per-interface, per-ACL-entry basis if possible.

実装では、可能であれば、インターフェイスごと、ACLエントリごとにこのカウンタを提供する必要があります。

If an implementation only supports ACL counters per entry (i.e., not broken out per interface), then the value should be equal to the aggregate count across all interfaces.

実装がエントリごとのACLカウンターのみをサポートしている場合(つまり、インターフェースごとに分割されていない場合)、値はすべてのインターフェースの合計数と等しくなければなりません。

         An implementation that provides counters per entry per
         interface is not required to also provide an aggregate count,
         e.g., per entry -- the user is expected to be able to
         implement the required aggregation if such a count is needed.";
    }
  }
        
  /*
   * Configuration and monitoring data nodes
   */
        
  container acls {
    description
      "This is a top-level container for Access Control Lists.
       It can have one or more acl nodes.";
    list acl {
      key "name";
      description
        "An ACL is an ordered list of ACEs.  Each ACE has a
         list of match criteria and a list of actions.
         Since there are several kinds of ACLs implemented
         with different attributes for different vendors,
         this model accommodates customizing ACLs for
         each kind and for each vendor.";
      leaf name {
        type string {
          length "1..64";
        }
        description
          "The name of the access list.  A device MAY further
           restrict the length of this name; space and special
           characters are not allowed.";
      }
      leaf type {
        type acl-type;
        description
          "Type of ACL.  Indicates the primary intended
           type of match criteria (e.g., Ethernet, IPv4, IPv6, mixed,
           etc.) used in the list instance.";
      }
      container aces {
        description
          "The aces container contains one or more ACE nodes.";
        list ace {
          key "name";
          ordered-by user;
          description
            "List of ACEs.";
          leaf name {
            type string {
              length "1..64";
            }
            description
              "A unique name identifying this ACE.";
          }
          container matches {
            description
              "The rules in this set determine what fields will be
               matched upon before any action is taken on them.
               The rules are selected based on the feature set
               defined by the server and the acl-type defined.
               If no matches are defined in a particular container,
               then any packet will match that container.  If no
               matches are specified at all in an ACE, then any
               packet will match the ACE.";
        
            choice l2 {
              container eth {
                when "derived-from-or-self(/acls/acl/type, "
                   + "'acl:eth-acl-type')";
                if-feature "match-on-eth";
                uses pf:acl-eth-header-fields;
                description
                  "Rule set that matches Ethernet headers.";
              }
              description
                "Match Layer 2 headers, for example, Ethernet
                 header fields.";
            }
        
            choice l3 {
              container ipv4 {
                when "derived-from-or-self(/acls/acl/type, "
                   + "'acl:ipv4-acl-type')";
                if-feature "match-on-ipv4";
                uses pf:acl-ip-header-fields;
                uses pf:acl-ipv4-header-fields;
                description
                  "Rule set that matches IPv4 headers.";
              }
        
              container ipv6 {
                when "derived-from-or-self(/acls/acl/type, "
                   + "'acl:ipv6-acl-type')";
                if-feature "match-on-ipv6";
                uses pf:acl-ip-header-fields;
                uses pf:acl-ipv6-header-fields;
                description
                  "Rule set that matches IPv6 headers.";
              }
              description
                "Choice of either IPv4 or IPv6 headers";
            }
            choice l4 {
              container tcp {
                if-feature "match-on-tcp";
                uses pf:acl-tcp-header-fields;
                container source-port {
                  choice source-port {
                    case range-or-operator {
                      uses pf:port-range-or-operator;
                      description
                        "Source port definition from range or
                         operator.";
                    }
                    description
                      "Choice of source port definition using
                       range/operator or a choice to support future
                       'case' statements, such as one enabling a
                       group of source ports to be referenced.";
                  }
                  description
                    "Source port definition.";
                }
                container destination-port {
                  choice destination-port {
                    case range-or-operator {
                      uses pf:port-range-or-operator;
                      description
                        "Destination port definition from range or
                         operator.";
                    }
                    description
                      "Choice of destination port definition using
                       range/operator or a choice to support future
                       'case' statements, such as one enabling a
                       group of destination ports to be referenced.";
                  }
                  description
                    "Destination port definition.";
                }
                description
                  "Rule set that matches TCP headers.";
              }
        
              container udp {
                if-feature "match-on-udp";
                uses pf:acl-udp-header-fields;
                container source-port {
                  choice source-port {
                    case range-or-operator {
        
                      uses pf:port-range-or-operator;
                      description
                        "Source port definition from range or
                         operator.";
                    }
                    description
                      "Choice of source port definition using
                       range/operator or a choice to support future
                       'case' statements, such as one enabling a
                       group of source ports to be referenced.";
                  }
                  description
                    "Source port definition.";
                }
                container destination-port {
                  choice destination-port {
                    case range-or-operator {
                      uses pf:port-range-or-operator;
                      description
                        "Destination port definition from range or
                         operator.";
                    }
                    description
                      "Choice of destination port definition using
                       range/operator or a choice to support future
                       'case' statements, such as one enabling a
                       group of destination ports to be referenced.";
                  }
                  description
                    "Destination port definition.";
                }
                description
                  "Rule set that matches UDP headers.";
              }
        
              container icmp {
                if-feature "match-on-icmp";
                uses pf:acl-icmp-header-fields;
                description
                  "Rule set that matches ICMP headers.";
              }
              description
                "Choice of TCP, UDP, or ICMP headers.";
            }
        
            leaf egress-interface {
              type if:interface-ref;
              description
        
                "Egress interface.  This should not be used if this ACL
                 is attached as an egress ACL (or the value should
                 equal the interface to which the ACL is attached).";
            }
        
            leaf ingress-interface {
              type if:interface-ref;
              description
                "Ingress interface.  This should not be used if this ACL
                 is attached as an ingress ACL (or the value should
                 equal the interface to which the ACL is attached).";
            }
          }
        
          container actions {
            description
              "Definition of actions for this ace entry.";
            leaf forwarding {
              type identityref {
                base forwarding-action;
              }
              mandatory true;
              description
                "Specifies the forwarding action per ace entry.";
            }
        
            leaf logging {
              type identityref {
                base log-action;
              }
              default "log-none";
              description
                "Specifies the log action and destination for
                 matched packets.  Default value is not to log the
                 packet.";
            }
          }
          container statistics {
            if-feature "acl-aggregate-stats";
            config false;
            description
              "Statistics gathered across all attachment points for the
               given ACL.";
            uses acl-counters;
          }
        }
      }
    }
    container attachment-points {
      description
        "Enclosing container for the list of
         attachment points on which ACLs are set.";
      /*
       * Groupings
       */
      grouping interface-acl {
        description
          "Grouping for per-interface ingress ACL data.";
        container acl-sets {
          description
            "Enclosing container for the list of ingress ACLs on the
             interface.";
          list acl-set {
            key "name";
            ordered-by user;
            description
              "List of ingress ACLs on the interface.";
            leaf name {
              type leafref {
                path "/acls/acl/name";
              }
              description
                "Reference to the ACL name applied on the ingress.";
            }
            list ace-statistics {
              if-feature "interface-stats";
              key "name";
              config false;
              description
                "List of ACEs.";
              leaf name {
                type leafref {
                  path "/acls/acl/aces/ace/name";
                }
                description
                  "Name of the ace entry.";
              }
              uses acl-counters;
            }
          }
        }
      }
        
      list interface {
        if-feature "interface-attachment";
        key "interface-id";
        

description "List of interfaces on which ACLs are set.";

説明 "ACLが設定されているインターフェースのリスト。";

        leaf interface-id {
          type if:interface-ref;
          description
            "Reference to the interface id list key.";
        }
        
        container ingress {
          uses interface-acl;
          description
            "The ACLs applied to the ingress interface.";
        }
        container egress {
          uses interface-acl;
          description
            "The ACLs applied to the egress interface.";
        }
      }
    }
  }
}
        

<CODE ENDS>

<コード終了>

4.2. IETF Packet Fields Module
4.2. IETFパケットフィールドモジュール

The packet fields module defines the necessary groups for matching on fields in the packet including Ethernet, IPv4, IPv6, and transport-layer fields. The "type" node determines which of these fields get included for any given ACL with the exception of TCP, UDP, and ICMP header fields. Those fields can be used in conjunction with any of the above Layer 2 or Layer 3 fields.

パケットフィールドモジュールは、イーサネット、IPv4、IPv6、トランスポート層フィールドなど、パケット内のフィールドの照合に必要なグループを定義します。 「タイプ」ノードは、TCP、UDP、およびICMPヘッダーフィールドを除いて、これらのフィールドのどれが特定のACLに含まれるかを決定します。これらのフィールドは、上記のレイヤー2またはレイヤー3フィールドのいずれかと組み合わせて使用​​できます。

Since the number of match criteria are very large, the base specification does not include these directly but references them by the 'uses' statement to keep the base module simple. In case more match conditions are needed, those can be added by augmenting choices within container "matches" in the ietf-access-control-list.yang data model.

一致基準の数は非常に多いため、基本仕様にはこれらが直接含まれていませんが、「uses」ステートメントによってそれらを参照して、基本モジュールを単純にしています。さらに一致条件が必要な場合は、ietf-access-control-list.yangデータモデルのコンテナー「matches」内の選択肢を増やすことで追加できます。

   This module imports definitions from "Common YANG Data Types"
   [RFC6991] and references "Internet Protocol" [RFC791], "Internet
   Control Message Protocol" [RFC792], "Transmission Control Protocol"
   [RFC793], "Definition of the Differentiated Services Field (DS Field)
   in the IPv4 and IPv6 Headers" [RFC2474], "The Addition of Explicit
   Congestion Notification (ECN) to IP" [RFC3168], "IPv6 Scoped Address
   Architecture" [RFC4007], "IP Version 6 Addressing Architecture"
   [RFC4291], "A Recommendation for IPv6 Address Text Representation"
   [RFC5952], and "Internet Protocol, Version 6 (IPv6) Specification"
   [RFC8200].
        
<CODE BEGINS> file "ietf-packet-fields@2019-03-04.yang"
        
module ietf-packet-fields {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-packet-fields";
  prefix packet-fields;
        
  import ietf-inet-types {
    prefix inet;
    reference
      "RFC 6991 - Common YANG Data Types.";
  }
        
  import ietf-yang-types {
    prefix yang;
    reference
      "RFC 6991 - Common YANG Data Types.";
  }
        
  import ietf-ethertypes {
    prefix eth;
    reference
      "RFC 8519 - YANG Data Model for Network Access Control
                  Lists (ACLs).";
  }
        

organization "IETF NETMOD (Network Modeling) Working Group.";

組織「IETF NETMOD(ネットワークモデリング)ワーキンググループ」;

  contact
    "WG Web:  <https://datatracker.ietf.org/wg/netmod/>
     WG List: netmod@ietf.org
        

Editor: Mahesh Jethanandani mjethanandani@gmail.com Editor: Lisa Huang huangyi_99@yahoo.com Editor: Sonal Agarwal sagarwal12@gmail.com Editor: Dana Blair dana@blairhome.com";

編集者:Mahesh Jethanandani mjethanandani@gmail.com編集者:Lisa Huang huangyi_99@yahoo.com編集者:Sonal Agarwal sagarwal12@gmail.com編集者:Dana Blair dana@blairhome.com ";

description "This YANG module defines groupings that are used by the ietf-access-control-list YANG module. Their usage is not limited to ietf-access-control-list and can be used anywhere as applicable.

説明 "このYANGモジュールは、ietf-access-control-list YANGモジュールによって使用されるグループを定義します。それらの使用法はietf-access-control-listに限定されず、必要に応じてどこでも使用できます。

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2019 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

ソースおよびバイナリ形式での再配布および使用は、変更の有無にかかわらず、IETF文書に関連するIETFトラストの法的規定のセクション4.cに記載されているSimplified BSD Licenseに従い、それに含まれるライセンス条項に従って許可されます( http://trustee.ietf.org/license-info)。

This version of this YANG module is part of RFC 8519; see the RFC itself for full legal notices.";

このYANGモジュールのこのバージョンはRFC 8519の一部です。完全な法的通知については、RFC自体を参照してください。 ";

  revision 2019-03-04 {
    description
      "Initial version.";
    reference
      "RFC 8519: YANG Data Model for Network Access Control
                 Lists (ACLs).";
  }
        
  /*
   * Typedefs
   */
  typedef operator {
    type enumeration {
      enum lte {
        description
          "Less than or equal to.";
      }
      enum gte {
        description
          "Greater than or equal to.";
      }
      enum eq {
        description
          "Equal to.";
      }
      enum neq {
        description
          "Not equal to.";
      }
        
    }
    description
      "The source and destination port range definitions
       can be further qualified using an operator.  An
       operator is needed only if the lower-port is specified
       and the upper-port is not specified.  The operator
       therefore further qualifies the lower-port only.";
  }
        
  /*
   * Groupings
   */
  grouping port-range-or-operator {
    choice port-range-or-operator {
      case range {
        leaf lower-port {
          type inet:port-number;
          must '. <= ../upper-port' {
            error-message
              "The lower-port must be less than or equal to
               the upper-port.";
          }
          mandatory true;
          description
            "Lower boundary for a port.";
        }
        leaf upper-port {
          type inet:port-number;
          mandatory true;
          description
            "Upper boundary for a port.";
        }
      }
      case operator {
        leaf operator {
          type operator;
          default "eq";
          description
            "Operator to be applied on the port below.";
        }
        leaf port {
          type inet:port-number;
          mandatory true;
          description
            "Port number along with the operator on which to
             match.";
        }
      }
      description
        "Choice of specifying a port range or a single
         port along with an operator.";
    }
    description
      "Grouping for port definitions in the form of a
       choice statement.";
  }
        
  grouping acl-ip-header-fields {
    description
      "IP header fields common to IPv4 and IPv6";
    reference
      "RFC 791: Internet Protocol.";
        
    leaf dscp {
      type inet:dscp;
      description
        "Differentiated Services Code Point.";
      reference
        "RFC 2474: Definition of the Differentiated Services
                   Field (DS Field) in the IPv4 and IPv6
                   Headers.";
    }
        
    leaf ecn {
      type uint8 {
        range "0..3";
      }
      description
        "Explicit Congestion Notification.";
      reference
        "RFC 3168: The Addition of Explicit Congestion
                   Notification (ECN) to IP.";
    }
        
    leaf length {
      type uint16;
      description
        "In the IPv4 header field, this field is known as the Total
         Length.  Total Length is the length of the datagram, measured
         in octets, including internet header and data.
        

In the IPv6 header field, this field is known as the Payload Length, which is the length of the IPv6 payload, i.e., the rest of the packet following the IPv6 header, in octets."; reference "RFC 791: Internet Protocol

IPv6ヘッダーフィールドでは、このフィールドはペイロード長として知られています。これはIPv6ペイロードの長さ、つまりIPv6ヘッダーに続くパケットの残りのオクテットです。;「RFC 791:インターネットプロトコル

         RFC 8200: Internet Protocol, Version 6 (IPv6) Specification.";
    }
    leaf ttl {
      type uint8;
      description
        "This field indicates the maximum time the datagram is allowed
         to remain in the internet system.  If this field contains the
         value zero, then the datagram must be dropped.
        
         In IPv6, this field is known as the Hop Limit.";
      reference
        "RFC 791: Internet Protocol
         RFC 8200: Internet Protocol, Version 6 (IPv6) Specification.";
    }
    leaf protocol {
      type uint8;
      description
        "Internet Protocol number.  Refers to the protocol of the
         payload.  In IPv6, this field is known as 'next-header',
         and if extension headers are present, the protocol is
         present in the 'upper-layer' header.";
      reference
        "RFC 791: Internet Protocol
         RFC 8200: Internet Protocol, Version 6 (IPv6) Specification.";
    }
  }
        
  grouping acl-ipv4-header-fields {
    description
      "Fields in the IPv4 header.";
    leaf ihl {
      type uint8 {
        range "5..60";
      }
      description
        "In an IPv4 header field, the Internet Header Length (IHL) is
         the length of the internet header in 32-bit words and
         thus points to the beginning of the data.  Note that the
         minimum value for a correct header is 5.";
    }
    leaf flags {
      type bits {
        bit reserved {
          position 0;
          description
            "Reserved.  Must be zero.";
        }
        bit fragment {
        
          position 1;
          description
            "Setting the value to 0 indicates may fragment, while
             setting the value to 1 indicates do not fragment.";
        }
        bit more {
          position 2;
          description
            "Setting the value to 0 indicates this is the last fragment,
             and setting the value to 1 indicates more fragments are
             coming.";
        }
      }
      description
        "Bit definitions for the Flags field in the IPv4 header.";
    }
    leaf offset {
      type uint16 {
        range "20..65535";
      }
      description
        "The fragment offset is measured in units of 8 octets (64 bits).
         The first fragment has offset zero.  The length is 13 bits";
    }
    leaf identification {
      type uint16;
      description
        "An identifying value assigned by the sender to aid in
         assembling the fragments of a datagram.";
    }
        
    choice destination-network {
      case destination-ipv4-network {
        leaf destination-ipv4-network {
          type inet:ipv4-prefix;
          description
            "Destination IPv4 address prefix.";
        }
      }
      description
        "Choice of specifying a destination IPv4 address or
         referring to a group of IPv4 destination addresses.";
    }
        
    choice source-network {
      case source-ipv4-network {
        leaf source-ipv4-network {
          type inet:ipv4-prefix;
        
          description
            "Source IPv4 address prefix.";
        }
      }
      description
        "Choice of specifying a source IPv4 address or
         referring to a group of IPv4 source addresses.";
    }
  }
        
  grouping acl-ipv6-header-fields {
    description
      "Fields in the IPv6 header.";
        
    choice destination-network {
      case destination-ipv6-network {
        leaf destination-ipv6-network {
          type inet:ipv6-prefix;
          description
            "Destination IPv6 address prefix.";
        }
      }
      description
        "Choice of specifying a destination IPv6 address
         or referring to a group of IPv6 destination
         addresses.";
    }
        
    choice source-network {
      case source-ipv6-network {
        leaf source-ipv6-network {
          type inet:ipv6-prefix;
          description
            "Source IPv6 address prefix.";
        }
      }
      description
        "Choice of specifying a source IPv6 address or
         referring to a group of IPv6 source addresses.";
    }
        
    leaf flow-label {
      type inet:ipv6-flow-label;
      description
        "IPv6 Flow label.";
    }
    reference
      "RFC 4291: IP Version 6 Addressing Architecture
        
       RFC 4007: IPv6 Scoped Address Architecture
       RFC 5952: A Recommendation for IPv6 Address Text
                 Representation.";
  }
        
  grouping acl-eth-header-fields {
    description
      "Fields in the Ethernet header.";
    leaf destination-mac-address {
      type yang:mac-address;
      description
        "Destination IEEE 802 Media Access Control (MAC)
         address.";
    }
    leaf destination-mac-address-mask {
      type yang:mac-address;
      description
        "Destination IEEE 802 MAC address mask.";
    }
    leaf source-mac-address {
      type yang:mac-address;
      description
        "Source IEEE 802 MAC address.";
    }
    leaf source-mac-address-mask {
      type yang:mac-address;
      description
        "Source IEEE 802 MAC address mask.";
    }
    leaf ethertype {
      type eth:ethertype;
      description
        "The Ethernet Type (or Length) value represented
         in the canonical order defined by IEEE 802.
         The canonical representation uses lowercase
         characters.";
      reference
        "IEEE 802-2014, Clause 9.2.";
    }
    reference
      "IEEE 802: IEEE Standard for Local and Metropolitan
       Area Networks: Overview and Architecture.";
  }
        
  grouping acl-tcp-header-fields {
    description
      "Collection of TCP header fields that can be used to
       set up a match filter.";
        
    leaf sequence-number {
      type uint32;
      description
        "Sequence number that appears in the packet.";
    }
    leaf acknowledgement-number {
      type uint32;
      description
        "The acknowledgement number that appears in the
         packet.";
    }
    leaf data-offset {
      type uint8 {
        range "5..15";
      }
      description
        "Specifies the size of the TCP header in 32-bit
         words.  The minimum size header is 5 words and
         the maximum is 15 words; thus, this gives a
         minimum size of 20 bytes and a maximum of 60
         bytes, allowing for up to 40 bytes of options
         in the header.";
    }
    leaf reserved {
      type uint8;
      description
        "Reserved for future use.";
    }
    leaf flags {
      type bits {
        bit cwr {
          position 1;
          description
            "The Congestion Window Reduced (CWR) flag is set
             by the sending host to indicate that it received
             a TCP segment with the ECN-Echo (ECE) flag set
             and had responded in the congestion control
             mechanism.";
          reference
            "RFC 3168: The Addition of Explicit Congestion
                       Notification (ECN) to IP.";
        }
        bit ece {
          position 2;
          description
            "ECN-Echo has a dual role, depending on the value
             of the SYN flag.  It indicates the following: if
             the SYN flag is set (1), the TCP peer is ECN
             capable, and if the SYN flag is clear (0), a packet
             with the Congestion Experienced flag set (ECN=11)
             in the IP header was received during normal
             transmission (added to the header by RFC 3168).
             This serves as an indication of network congestion
             (or impending congestion) to the TCP sender.";
          reference
            "RFC 3168: The Addition of Explicit Congestion
                       Notification (ECN) to IP.";
        }
        bit urg {
          position 3;
          description
            "Indicates that the Urgent Pointer field is significant.";
        }
        bit ack {
          position 4;
          description
            "Indicates that the Acknowledgement field is significant.
             All packets after the initial SYN packet sent by the
             client should have this flag set.";
        }
        bit psh {
          position 5;
          description
            "Push function.  Asks to push the buffered data to the
             receiving application.";
        }
        bit rst {
          position 6;
          description
            "Reset the connection.";
        }
        bit syn {
          position 7;
          description
            "Synchronize sequence numbers.  Only the first packet
             sent from each end should have this flag set.  Some
             other flags and fields change meaning based on this
             flag, and some are only valid for when it is set,
             and others when it is clear.";
        }
        bit fin {
          position 8;
          description
            "Last package from the sender.";
        }
      }
      description
        "Also known as Control Bits.  Contains nine 1-bit flags.";
      reference
        "RFC 793: Transmission Control Protocol.";
    }
    leaf window-size {
      type uint16;
      units "bytes";
      description
        "The size of the receive window, which specifies
         the number of window size units beyond the segment
         identified by the sequence number in the Acknowledgement
         field that the sender of this segment is currently
         willing to receive.";
    }
    leaf urgent-pointer {
      type uint16;
      description
        "This field is an offset from the sequence number
         indicating the last urgent data byte.";
    }
    leaf options {
      type binary {
        length "1..40";
      }
      description
        "The length of this field is determined by the
         Data Offset field.  Options have up to three
         fields: Option-Kind (1 byte), Option-Length
         (1 byte), and Option-Data (variable).  The Option-Kind
         field indicates the type of option and is the
         only field that is not optional.  Depending on
         what kind of option we are dealing with,
         the next two fields may be set: the Option-Length
         field indicates the total length of the option,
         and the Option-Data field contains the value of
         the option, if applicable.";
    }
  }
        
  grouping acl-udp-header-fields {
    description
      "Collection of UDP header fields that can be used
       to set up a match filter.";
    leaf length {
      type uint16;
      description
        "A field that specifies the length in bytes of
        

the UDP header and UDP data. The minimum length is 8 bytes because that is the length of the header. The field size sets a theoretical limit of 65,535 bytes (8-byte header plus 65,527 bytes of data) for a UDP datagram. However, the actual limit for the data length, which is imposed by the underlying IPv4 protocol, is 65,507 bytes (65,535 minus 8-byte UDP header minus 20-byte IP header).

UDPヘッダーとUDPデータ。最小長は8バイトです。これはヘッダーの長さです。フィールドサイズは、UDPデータグラムの理論上の制限である65,535バイト(8バイトのヘッダーと65,527バイトのデータ)を設定します。ただし、基になるIPv4プロトコルによって課されるデータ長の実際の制限は、65,507バイト(65,535-8バイトのUDPヘッダー-20バイトのIPヘッダー)です。

         In IPv6 jumbograms, it is possible to have
         UDP packets of a size greater than 65,535 bytes.
         RFC 2675 specifies that the Length field is set
         to zero if the length of the UDP header plus
         UDP data is greater than 65,535.";
    }
  }
        
  grouping acl-icmp-header-fields {
    description
      "Collection of ICMP header fields that can be
       used to set up a match filter.";
    leaf type {
      type uint8;
      description
        "Also known as control messages.";
      reference
        "RFC 792: Internet Control Message Protocol
         RFC 4443: Internet Control Message Protocol (ICMPv6)
                   for Internet Protocol Version 6 (IPv6)
                   Specification.";
    }
    leaf code {
      type uint8;
      description
        "ICMP subtype.  Also known as control messages.";
      reference
        "RFC 792: Internet Control Message Protocol
         RFC 4443: Internet Control Message Protocol (ICMPv6)
                   for Internet Protocol Version 6 (IPv6)
                   Specification.";
    }
    leaf rest-of-header {
      type binary;
      description
        "Unbounded in length, the contents vary based on the
         ICMP type and code.  Also referred to as 'Message Body'
         in ICMPv6.";
        
      reference
        "RFC 792: Internet Control Message Protocol
         RFC 4443: Internet Control Message Protocol (ICMPv6)
                   for Internet Protocol Version 6 (IPv6)
                   Specification.";
    }
  }
}
        

<CODE ENDS>

<コード終了>

4.3. ACL Examples
4.3. ACLの例

Requirement: Deny tcp traffic from 192.0.2.0/24, destined to 198.51.100.0/24.

要件:198.51.100.0/24宛ての192.0.2.0/24からのtcpトラフィックを拒否します。

Here is the ACL configuration xml for this Access Control List:

このアクセス制御リストのACL構成xmlは次のとおりです。

[note: '\' line wrapping for formatting only]

[注:書式設定のみの '\'行の折り返し]

<?xml version="1.0" encoding="UTF-8"?> <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <acls xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"> <acl> <name>sample-ipv4-acl</name> <type>ipv4-acl-type</type> <aces> <ace> <name>rule1</name> <matches> <ipv4> <protocol>6</protocol> <destination-ipv4-network>198.51.100.0/24</destination\ -ipv4-network> <source-ipv4-network>192.0.2.0/24</source-ipv4-network> </ipv4> </matches> <actions> <forwarding>drop</forwarding> </actions> </ace> </aces> </acl> </acls> </config> The ACL and ACEs can be described in the command-line interface (CLI) as the following:

<?xml version = "1.0" encoding = "UTF-8"?> <config xmlns = "urn:ietf:params:xml:ns:netconf:base:1.0"> <acls xmlns = "urn:ietf:params: xml:ns:yang:ietf-access-control-list "> <acl> <name> sample-ipv4-acl </ name> <type> ipv4-acl-type </ type> <aces> <ace> <name > rule1 </ name> <matches> <ipv4> <protocol> 6 </ protocol> <destination-ipv4-network> 198.51.100.0/24 </ destination \ -ipv4-network> <source-ipv4-network> 192.0。 2.0 / 24 </ source-ipv4-network> </ ipv4> </ matches> <actions> <forwarding> drop </ forwarding> </ actions> </ ace> </ aces> </ acl> </ acls> </ config> ACLとACEは、コマンドラインインターフェイス(CLI)で次のように説明できます。

acl ipv4 sample-ipv4-acl deny tcp 192.0.2.0/24 198.51.100.0/24

acl ipv4 sample-ipv4-acl deny tcp 192.0.2.0/24 198.51.100.0/24

Requirement: Accept all DNS traffic destined for 2001:db8::/32 on port 53.

要件:2001:db8 :: / 32宛てのすべてのDNSトラフィックをポート53で受け入れます。

[note: '\' line wrapping for formatting only]

[注:書式設定のみの '\'行の折り返し]

   <?xml version="1.0" encoding="UTF-8"?>
   <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
     <acls
       xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list">
       <acl>
         <name>allow-dns-packets</name>
         <type>ipv6-acl-type</type>
         <aces>
           <ace>
             <name>rule1</name>
             <matches>
               <ipv6>
                 <destination-ipv6-network>2001:db8::/32</destination-i\
   pv6-network>
               </ipv6>
               <udp>
                 <destination-port>
                   <operator>eq</operator>
                   <port>53</port>
                 </destination-port>
               </udp>
             </matches>
             <actions>
               <forwarding>accept</forwarding>
             </actions>
           </ace>
         </aces>
       </acl>
     </acls>
   </config>
        
4.4. Port Range Usage and Other Examples
4.4. ポート範囲の使用法とその他の例

When a lower-port and an upper-port are both present, it represents a range between the lower-port and upper-port with both the lower-port and upper-port included. When only a port is present, it represents a port, with the operator specifying the range.

下位ポートと上位ポートの両方が存在する場合、下位ポートと上位ポートの両方を含む、下位ポートと上位ポートの間の範囲を表します。ポートのみが存在する場合、ポートを表し、オペレーターが範囲を指定します。

The following XML example represents a configuration where TCP traffic from source ports 16384, 16385, 16386, and 16387 is dropped.

次のXMLの例は、送信元ポート16384、16385、16386、および16387からのTCPトラフィックがドロップされる構成を表しています。

<?xml version="1.0" encoding="UTF-8"?> <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <acls xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"> <acl> <name>sample-port-acl</name> <type>ipv4-acl-type</type> <aces> <ace> <name>rule1</name> <matches> <tcp> <source-port> <lower-port>16384</lower-port> <upper-port>16387</upper-port> </source-port> </tcp> </matches> <actions> <forwarding>drop</forwarding> </actions> </ace> </aces> </acl> </acls> </config> The following XML example represents a configuration where all IPv4 ICMP echo requests are dropped.

<?xml version = "1.0" encoding = "UTF-8"?> <config xmlns = "urn:ietf:params:xml:ns:netconf:base:1.0"> <acls xmlns = "urn:ietf:params: xml:ns:yang:ietf-access-control-list "> <acl> <name> sample-port-acl </ name> <type> ipv4-acl-type </ type> <aces> <ace> <name > rule1 </ name> <matches> <tcp> <source-port> <lower-port> 16384 </ lower-port> <upper-port> 16387 </ upper-port> </ source-port> </ tcp > </ matches> <actions> <forwarding> drop </ forwarding> </ actions> </ ace> </ aces> </ acl> </ acls> </ config>次のXMLの例は、すべてのIPv4 ICMPエコー要求はドロップされます。

<?xml version="1.0" encoding="UTF-8"?> <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <acls xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"> <acl> <name>sample-icmp-acl</name> <aces> <ace> <name>rule1</name> <matches> <ipv4> <protocol>1</protocol> </ipv4> <icmp> <type>8</type> <code>0</code> </icmp> </matches> <actions> <forwarding>drop</forwarding> </actions> </ace> </aces> </acl> </acls> </config> The following XML example represents a configuration of a single port, port 21, that accepts TCP traffic.

<?xml version = "1.0" encoding = "UTF-8"?> <config xmlns = "urn:ietf:params:xml:ns:netconf:base:1.0"> <acls xmlns = "urn:ietf:params: xml:ns:yang:ietf-access-control-list "> <acl> <name> sample-icmp-acl </ name> <aces> <ace> <name> rule1 </ name> <matches> <ipv4> <protocol> 1 </ protocol> </ ipv4> <icmp> <type> 8 </ type> <code> 0 </ code> </ icmp> </ matches> <actions> <forwarding> drop </ forwarding> </ actions> </ ace> </ aces> </ acl> </ acls> </ config>次のXMLの例は、TCPトラフィックを受け入れる単一ポート(ポート21)の構成を表しています。

<?xml version="1.0" encoding="UTF-8"?> <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <acls xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"> <acl> <name>sample-ipv4-acl</name> <type>ipv4-acl-type</type> <aces> <ace> <name>rule1</name> <matches> <tcp> <destination-port> <operator>eq</operator> <port>21</port> </destination-port> </tcp> </matches> <actions> <forwarding>accept</forwarding> </actions> </ace> </aces> </acl> </acls> </config> The following XML example represents a configuration specifying all ports that are not equal to 21 that will drop TCP packets destined for those ports.

<?xml version = "1.0" encoding = "UTF-8"?> <config xmlns = "urn:ietf:params:xml:ns:netconf:base:1.0"> <acls xmlns = "urn:ietf:params: xml:ns:yang:ietf-access-control-list "> <acl> <name> sample-ipv4-acl </ name> <type> ipv4-acl-type </ type> <aces> <ace> <name > rule1 </ name> <matches> <tcp> <destination-port> <operator> eq </ operator> <port> 21 </ port> </ destination-port> </ tcp> </ matches> <actions> <forwarding> accept </ forwarding> </ actions> </ ace> </ aces> </ acl> </ acls> </ config>次のXMLの例は、21と等しくないすべてのポートを指定する構成を表しています。それらのポートを宛先とするTCPパケットをドロップします。

   <?xml version="1.0" encoding="UTF-8"?>
   <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
     <acls
       xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list">
       <acl>
         <name>sample-ipv4-acl</name>
         <type>ipv4-acl-type</type>
         <aces>
           <ace>
             <name>rule1</name>
             <matches>
               <tcp>
                 <destination-port>
                   <operator>neq</operator>
                   <port>21</port>
                 </destination-port>
               </tcp>
             </matches>
             <actions>
               <forwarding>drop</forwarding>
             </actions>
           </ace>
         </aces>
       </acl>
     </acls>
   </config>
        
5. Security Considerations
5. セキュリティに関する考慮事項

The YANG modules specified in this document define a schema for data that is designed to be accessed via network management protocol such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

このドキュメントで指定されているYANGモジュールは、NETCONF [RFC6241]やRESTCONF [RFC8040]などのネットワーク管理プロトコルを介してアクセスするように設計されたデータのスキーマを定義します。最下位のNETCONFレイヤーはセキュアなトランスポートレイヤーであり、実装に必須のセキュアなトランスポートはセキュアシェル(SSH)です[RFC6242]。最下位のRESTCONFレイヤーはHTTPSであり、実装に必須のセキュアなトランスポートはTLS [RFC8446]です。

The NETCONF Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

NETCONFアクセス制御モデル(NACM)[RFC8341]は、特定のNETCONFまたはRESTCONFユーザーのアクセスを、利用可能なすべてのNETCONFまたはRESTCONFプロトコル操作およびコンテンツの事前構成済みサブセットに制限する手段を提供します。

There are a number of data nodes defined in these YANG modules that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

これらのYANGモジュールには、書き込み/作成/削除が可能なデータノードがいくつか定義されています(つまり、config true、デフォルトです)。これらのデータノードは、一部のネットワーク環境では機密または脆弱であると見なされる場合があります。適切な保護なしにこれらのデータノードに書き込み操作(edit-configなど)を行うと、ネットワーク操作に悪影響を与える可能性があります。これらは、サブツリーとデータノード、およびそれらの機密性/脆弱性です。

/acls/acl/aces: This list specifies all the configured access control entries on the device. Unauthorized write access to this list can allow intruders to modify the entries so as to permit traffic that should not be permitted, or deny traffic that should be permitted. The former may result in a DoS attack, or compromise the device. The latter may result in a DoS attack. The impact of an unauthorized read access of the list will allow the attacker to determine which rules are in effect, to better craft an attack.

/ acls / acl / aces:このリストは、デバイスに構成されているすべてのアクセス制御エントリを指定します。このリストへの不正な書き込みアクセスにより、侵入者はエントリを変更して、許可されるべきでないトラフィックを許可したり、許可されるべきトラフィックを拒否したりすることができます。前者はDoS攻撃につながるか、デバイスを危険にさらす可能性があります。後者はDoS攻撃を引き起こす可能性があります。リストの不正な読み取りアクセスの影響により、攻撃者はどのルールが有効であるかを判断して、攻撃を巧みに作成することができます。

/acls/acl/aces/ace/actions/logging: This node specifies ability to log packets that match this ace entry. Unauthorized write access to this node can allow intruders to enable logging on one or many ace entries, overwhelming the server in the process. Unauthorized read access of this node can allow intruders to access logging information, which could be used to craft an attack the server.

/ acls / acl / aces / ace / actions / logging:このノードは、このaceエントリに一致するパケットをログに記録する機能を指定します。このノードへの不正な書き込みアクセスにより、侵入者が1つまたは複数のaceエントリへのログオンを有効にして、サーバーを処理中に圧倒する可能性があります。このノードの不正な読み取りアクセスにより、侵入者がログ情報にアクセスできるようになり、サーバーを攻撃するために使用される可能性があります。

6. IANA Considerations
6. IANAに関する考慮事項

This document registers three URIs and three YANG modules.

このドキュメントには、3つのURIと3つのYANGモジュールが登録されています。

6.1. URI Registration
6.1. うり れぎstらちおん

This document registers three URIs in the "IETF XML Registry" [RFC3688] as follows:

このドキュメントは、「IETF XMLレジストリ」[RFC3688]に次の3つのURIを登録します。

   URI: urn:ietf:params:xml:ns:yang:ietf-access-control-list
   URI: urn:ietf:params:xml:ns:yang:ietf-packet-fields
   URI: urn:ietf:params:xml:ns:yang:ietf-ethertypes
        

Registrant Contact: The IESG.

登録者の連絡先:IESG。

XML: N/A; the requested URI is an XML namespace.

XML:なし。要求されたURIはXML名前空間です。

6.2. YANG Module Name Registration
6.2. YANGモジュール名の登録

This document registers three YANG modules in the "YANG Module Names" registry [RFC6020].

このドキュメントは、「YANG Module Names」レジストリ[RFC6020]に3つのYANGモジュールを登録します。

   Name: ietf-access-control-list
   Namespace: urn:ietf:params:xml:ns:yang:ietf-access-control-list
   Prefix: acl
   Reference: RFC 8519
        
   Name: ietf-packet-fields
   Namespace: urn:ietf:params:xml:ns:yang:ietf-packet-fields
   Prefix: packet-fields
   Reference: RFC 8519
        
   Name: ietf-ethertypes
   Namespace: urn:ietf:params:xml:ns:yang:ietf-ethertypes
   Prefix: ethertypes
   Reference: RFC 8519
        
7. References
7. 参考文献
7.1. Normative References
7.1. 引用文献

[RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, DOI 10.17487/RFC0791, September 1981, <https://www.rfc-editor.org/info/rfc791>.

[RFC791] Postel、J。、「インターネットプロトコル」、STD 5、RFC 791、DOI 10.17487 / RFC0791、1981年9月、<https://www.rfc-editor.org/info/rfc791>。

[RFC792] Postel, J., "Internet Control Message Protocol", STD 5, RFC 792, DOI 10.17487/RFC0792, September 1981, <https://www.rfc-editor.org/info/rfc792>.

[RFC792] Postel、J。、「インターネット制御メッセージプロトコル」、STD 5、RFC 792、DOI 10.17487 / RFC0792、1981年9月、<https://www.rfc-editor.org/info/rfc792>。

[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, DOI 10.17487/RFC0793, September 1981, <https://www.rfc-editor.org/info/rfc793>.

[RFC793] Postel、J。、「Transmission Control Protocol」、STD 7、RFC 793、DOI 10.17487 / RFC0793、1981年9月、<https://www.rfc-editor.org/info/rfc793>。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.

[RFC2119] Bradner、S。、「要件レベルを示すためにRFCで使用するキーワード」、BCP 14、RFC 2119、DOI 10.17487 / RFC2119、1997年3月、<https://www.rfc-editor.org/info/ rfc2119>。

[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, DOI 10.17487/RFC2474, December 1998, <https://www.rfc-editor.org/info/rfc2474>.

[RFC2474]ニコルズ、K。、ブレイク、S。、ベイカー、F。、およびD.ブラック、「IPv4およびIPv6ヘッダーのDiffServフィールド(DSフィールド)の定義」、RFC 2474、DOI 10.17487 / RFC2474、 1998年12月、<https://www.rfc-editor.org/info/rfc2474>。

[RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of Explicit Congestion Notification (ECN) to IP", RFC 3168, DOI 10.17487/RFC3168, September 2001, <https://www.rfc-editor.org/info/rfc3168>.

[RFC3168]ラマクリシュナン、K。、フロイド、S。、およびD.ブラック、「IPへの明示的輻輳通知(ECN)の追加」、RFC 3168、DOI 10.17487 / RFC3168、2001年9月、<https:// www。 rfc-editor.org/info/rfc3168>。

[RFC4007] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and B. Zill, "IPv6 Scoped Address Architecture", RFC 4007, DOI 10.17487/RFC4007, March 2005, <https://www.rfc-editor.org/info/rfc4007>.

[RFC4007] Deering、S.、Haberman、B.、Jinmei、T.、Nordmark、E。、およびB. Zill、「IPv6 Scoped Address Architecture」、RFC 4007、DOI 10.17487 / RFC4007、2005年3月、<https:/ /www.rfc-editor.org/info/rfc4007>。

[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, DOI 10.17487/RFC4291, February 2006, <https://www.rfc-editor.org/info/rfc4291>.

[RFC4291] Hinden、R。およびS. Deering、「IPバージョン6アドレッシングアーキテクチャ」、RFC 4291、DOI 10.17487 / RFC4291、2006年2月、<https://www.rfc-editor.org/info/rfc4291>。

[RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6 Address Text Representation", RFC 5952, DOI 10.17487/RFC5952, August 2010, <https://www.rfc-editor.org/info/rfc5952>.

[RFC5952] Kawamura、S. and M. Kawashima、 "A Recommendation for IPv6 Address Text Representation"、RFC 5952、DOI 10.17487 / RFC5952、August 2010、<https://www.rfc-editor.org/info/rfc5952> 。

[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.

[RFC6991] Schoenwaelder、J。、編、「Common YANG Data Types」、RFC 6991、DOI 10.17487 / RFC6991、2013年7月、<https://www.rfc-editor.org/info/rfc6991>。

[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.

[RFC7950] Bjorklund、M。、編、「The YANG 1.1 Data Modeling Language」、RFC 7950、DOI 10.17487 / RFC7950、2016年8月、<https://www.rfc-editor.org/info/rfc7950>。

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[RFC8174] Leiba、B。、「RFC 2119キーワードの大文字と小文字のあいまいさ」、BCP 14、RFC 8174、DOI 10.17487 / RFC8174、2017年5月、<https://www.rfc-editor.org/info/ rfc8174>。

[RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, July 2017, <https://www.rfc-editor.org/info/rfc8200>.

[RFC8200] Deering、S。およびR. Hinden、「インターネットプロトコル、バージョン6(IPv6)仕様」、STD 86、RFC 8200、DOI 10.17487 / RFC8200、2017年7月、<https://www.rfc-editor.org / info / rfc8200>。

[RFC8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>.

[RFC8343] Bjorklund、M。、「A YANG Data Model for Interface Management」、RFC 8343、DOI 10.17487 / RFC8343、2018年3月、<https://www.rfc-editor.org/info/rfc8343>。

7.2. Informative References
7.2. 参考引用

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>.

[RFC3688] Mealling、M。、「The IETF XML Registry」、BCP 81、RFC 3688、DOI 10.17487 / RFC3688、2004年1月、<https://www.rfc-editor.org/info/rfc3688>。

[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>.

[RFC6020] Bjorklund、M。、編、「YANG-ネットワーク構成プロトコル(NETCONF)のデータモデリング言語」、RFC 6020、DOI 10.17487 / RFC6020、2010年10月、<https://www.rfc-editor。 org / info / rfc6020>。

[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.

[RFC6241] Enns、R。、編、Bjorklund、M。、編、Schoenwaelder、J。、編、およびA. Bierman、編、「Network Configuration Protocol(NETCONF)」、RFC 6241、DOI 10.17487 / RFC6241、2011年6月、<https://www.rfc-editor.org/info/rfc6241>。

[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/info/rfc6242>.

[RFC6242] Wasserman、M。、「Using the NETCONF Protocol over Secure Shell(SSH)」、RFC 6242、DOI 10.17487 / RFC6242、2011年6月、<https://www.rfc-editor.org/info/rfc6242>。

[RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken, "Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow Information", STD 77, RFC 7011, DOI 10.17487/RFC7011, September 2013, <https://www.rfc-editor.org/info/rfc7011>.

[RFC7011] Claise、B。、編、Trammell、B。、編、およびP. Aitken、「フロー情報の交換のためのIPフロー情報エクスポート(IPFIX)プロトコルの仕様」、STD 77、RFC 7011、 DOI 10.17487 / RFC7011、2013年9月、<https://www.rfc-editor.org/info/rfc7011>。

[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.

[RFC8040] Bierman、A.、Bjorklund、M。、およびK. Watsen、「RESTCONFプロトコル」、RFC 8040、DOI 10.17487 / RFC8040、2017年1月、<https://www.rfc-editor.org/info/rfc8040 >。

[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>.

[RFC8340] Bjorklund、M。およびL. Berger、編、「YANG Tree Diagrams」、BCP 215、RFC 8340、DOI 10.17487 / RFC8340、2018年3月、<https://www.rfc-editor.org/info/ rfc8340>。

[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>.

[RFC8341] Bierman、A。およびM. Bjorklund、「Network Configuration Access Control Model」、STD 91、RFC 8341、DOI 10.17487 / RFC8341、2018年3月、<https://www.rfc-editor.org/info/rfc8341 >。

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.

[RFC8446] Rescorla、E。、「The Transport Layer Security(TLS)Protocol Version 1.3」、RFC 8446、DOI 10.17487 / RFC8446、2018年8月、<https://www.rfc-editor.org/info/rfc8446>。

Appendix A. Extending ACL Model Examples
付録A. ACLモデルの例の拡張
A.1. Example of a Company's Proprietary Module
A.1. 企業独自のモジュールの例

The "example-newco-acl" module is an example of a company's proprietary model that augments the "ietf-acl" module. It shows how to use 'augment' with an XML Path Language (XPath) expression to add additional match criteria, actions, and default actions for when no ACE matches are found. All these are company proprietary extensions or system feature extensions. "example-newco-acl" is just an example, and it is expected that vendors will create their own proprietary models.

「example-newco-acl」モジュールは、「ietf-acl」モジュールを補強する企業独自のモデルの例です。これは、XMLパス言語(XPath)式で「拡張」を使用して、追加の一致基準、アクション、およびACE一致が見つからない場合のデフォルトアクションを追加する方法を示しています。これらはすべて、会社独自の拡張機能またはシステム機能拡張です。 「example-newco-acl」は単なる例であり、ベンダーが独自の独自モデルを作成することが予想されます。

module example-newco-acl {

module example-newco-acl {

yang-version 1.1;

ヤンバージョン1.1;

     namespace "http://example.com/ns/example-newco-acl";
        

prefix example-newco-acl;

接頭辞example-newco-acl;

     import ietf-access-control-list {
       prefix acl;
     }
        

organization "Newco model group.";

組織「ニューコモデルグループ。」;

     contact
       "abc@newco.com";
     description
       "This YANG module augments the IETF ACL YANG module.";
        
     revision 2019-03-04 {
       description
         "Creating NewCo proprietary extensions to the ietf-acl
          model.";
        
       reference
         "RFC 8519: YANG Data Model for Network Access Control
                    Lists (ACLs).";
     }
        
     augment "/acl:acls/acl:acl/"
           + "acl:aces/acl:ace/"
           + "acl:matches" {
       description
         "Newco proprietary simple filter matches.";
        
       choice protocol-payload-choice {
         description
           "Newco proprietary payload match condition.";
         list protocol-payload {
           key "value-keyword";
           ordered-by user;
           description
             "Match protocol payload.";
           uses match-simple-payload-protocol-value;
         }
       }
        
       choice metadata {
         description
           "Newco proprietary interface match condition.";
         leaf packet-length {
           type uint16;
           description
             "Match on packet length.";
         }
       }
     }
        
     augment "/acl:acls/acl:acl/"
           + "acl:aces/acl:ace/"
           + "acl:actions" {
       description
         "Newco proprietary simple filter actions.";
       choice action {
         description
           "Newco proprietary action choices.";
         case count {
           description
             "Count the packet in the named counter.";
           leaf count {
             type uint32;
             description
               "Count.";
           }
         }
         case policer {
           description
             "Name of policer used to rate-limit traffic.";
           leaf policer {
             type string;
             description
               "Name of the policer.";
           }
        
         }
         case hierarchical-policer {
           leaf hierarchical-policer {
             type string;
             description
               "Name of the hierarchical policer.";
           }
           description
             "Name of the hierarchical policer used to
              rate-limit traffic.";
         }
       }
     }
        
     augment "/acl:acls/acl:acl"
           + "/acl:aces/acl:ace/"
           + "acl:actions" {
       leaf default-action {
         type identityref {
           base acl:forwarding-action;
         }
         default "acl:drop";
         description
           "Actions that occur if no ACE is matched.";
       }
       description
         "Newco proprietary default action.";
     }
        
     grouping match-simple-payload-protocol-value {
       description
         "Newco proprietary payload";
       leaf value-keyword {
         type enumeration {
           enum icmp {
             description
               "Internet Control Message Protocol.";
           }
           enum icmp6 {
             description
               "Internet Control Message Protocol
                Version 6.";
           }
           enum range {
             description
               "Range of values.";
           }
         }
         description
           "(null).";
       }
     }
   }
        

The following figure is the tree diagram of example-newco-acl. In this example, /ietf-acl:acls/ietf-acl:acl/ietf-acl:aces/ietf-acl:ace/ ietf-acl:matches are augmented with two new choices: protocol-payload-choice and metadata. The protocol-payload-choice uses a grouping with an enumeration of all supported protocol values. Metadata matches apply to fields associated with the packet, that are not in the packet header, such as overall packet length. In another example, /ietf-acl:acls/ietf-acl:acl/ietf-acl:aces/ietf-acl:ace/ ietf-acl:actions are augmented with a new choice of actions.

次の図は、example-newco-aclのツリー図です。この例では、/ ietf-acl:acls / ietf-acl:acl / ietf-acl:aces / ietf-acl:ace / ietf-acl:matchesに、protocol-payload-choiceとメタデータという2つの新しい選択肢が追加されています。 protocol-payload-choiceは、サポートされているすべてのプロトコル値を列挙したグループを使用します。メタデータの一致は、全体的なパケット長など、パケットヘッダーに含まれていない、パケットに関連付けられたフィールドに適用されます。別の例では、/ ietf-acl:acls / ietf-acl:acl / ietf-acl:aces / ietf-acl:ace / ietf-acl:actionsに、新しいアクションの選択肢が追加されています。

   module: example-newco-acl
     augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:
       +--rw (protocol-payload-choice)?
       |  +--:(protocol-payload)
       |     +--rw protocol-payload* [value-keyword]
       |        +--rw value-keyword    enumeration
       +--rw (metadata)?
          +--:(packet-length)
             +--rw packet-length?      uint16
     augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:actions:
       +--rw (action)?
          +--:(count)
          |  +--rw count?                   uint32
          +--:(policer)
          |  +--rw policer?                 string
          +--:(hierarchical-policer)
             +--rw hierarchical-policer?   string
     augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:actions:
       +--rw default-action?   identityref
        
A.2. Linux nftables
A.2. Linux nftables

As the Linux platform is becoming more popular than the networking platform, the Linux data model is changing. Previously, ACLs in Linux were highly protocol specific, and different utilities were used (iptables, ip6tables, arptables, and ebtables), so each one had a separate data model. Recently, this has changed, and a single utility, nftables, has been developed. With a single application, it has a single data model for firewall filters, and it follows very similarly the ietf-access-control list module proposed in this document. The nftables support input and output ACEs, and each ACE can be defined with match and action.

Linuxプラットフォームがネットワーキングプラットフォームよりも一般的になるにつれて、Linuxデータモデルは変化しています。以前は、LinuxのACLはプロトコル固有であり、さまざまなユーティリティ(iptables、ip6tables、arptables、ebtables)が使用されていたため、それぞれに個別のデータモデルがありました。最近、これは変更され、単一のユーティリティnftablesが開発されました。単一のアプリケーションの場合、ファイアウォールフィルターの単一のデータモデルがあり、このドキュメントで提案されているietf-access-control listモジュールと非常によく似ています。 nftablesは入力と出力のACEをサポートし、各ACEは一致とアクションで定義できます。

The example in Section 4.3 can be configured using nftable tool as below.

セクション4.3の例は、以下のようにnftableツールを使用して構成できます。

nft add table ip filter nft add chain filter input nft add rule ip filter input ip protocol tcp ip saddr \ 192.0.2.1/24 drop

nft add table ip filter nft add chain filter input nft add rule ip filter input ip protocol tcp ip saddr \ 192.0.2.1/24 drop

The configuration entries added in nftable would be:

nftableに追加される構成エントリは次のようになります。

         table ip filter {
           chain input {
             ip protocol tcp ip saddr 192.0.2.1/24 drop
           }
         }
        

We can see that there are many similarities between Linux nftables and IETF ACL YANG data models and their extension models. It should be fairly easy to do translation between the ACL YANG model described in this document and Linux nftables.

We can see that there are many similarities between Linux nftables and IETF ACL YANG data models and their extension models. It should be fairly easy to do translation between the ACL YANG model described in this document and Linux nftables.

A.3. Ethertypes
A.3. イーサタイプ

The ACL module is dependent on the definition of Ethertypes. IEEE owns the allocation of those Ethertypes. This model is being included here to enable the definition of those types till such time that IEEE takes up the task of publication of the model that defines those Ethertypes. At that time, this model can be deprecated.

ACLモジュールは、Ethertypeの定義に依存しています。 IEEEは、これらのEthertypeの割り当てを所有しています。このモデルは、IEEEがこれらのEthertypeを定義するモデルの公開のタスクを引き継ぐまで、これらのタイプの定義を可能にするためにここに含まれています。現時点では、このモデルは廃止される可能性があります。

   <CODE BEGINS> file "ietf-ethertypes@2019-03-04.yang"
        
   module ietf-ethertypes {
     namespace "urn:ietf:params:xml:ns:yang:ietf-ethertypes";
     prefix ethertypes;
        

organization "IETF NETMOD (Network Modeling) Working Group.";

組織「IETF NETMOD(ネットワークモデリング)ワーキンググループ」;

     contact
       "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>
        
        Editor:   Mahesh Jethanandani
                  <mjethanandani@gmail.com>";
        

description "This module contains common definitions for the

description "This module contains common definitions for the

Ethertype used by different modules. It is a placeholder module, till such time that IEEE starts a project to define these Ethertypes and publishes a standard.

異なるモジュールで使用されるEthertype。 IEEEがこれらのEthertypeを定義するプロジェクトを開始して標準を公開するまでは、プレースホルダーモジュールです。

At that time, this module can be deprecated.

At that time, this module can be deprecated.

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

ソースおよびバイナリ形式での再配布および使用は、変更の有無にかかわらず、IETF文書に関連するIETFトラストの法的規定のセクション4.cに記載されているSimplified BSD Licenseに従い、それに含まれるライセンス条項に従って許可されます( http://trustee.ietf.org/license-info)。

This version of this YANG module is part of RFC 8519; see the RFC itself for full legal notices.";

This version of this YANG module is part of RFC 8519; see the RFC itself for full legal notices.";

     revision 2019-03-04 {
       description
         "Initial revision.";
       reference
         "RFC 8519: YANG Data Model for Network Access Control
                    Lists (ACLs).";
     }
        
     typedef ethertype {
       type union {
         type uint16;
         type enumeration {
           enum ipv4 {
             value 2048;
             description
               "Internet Protocol version 4 (IPv4) with a
                hex value of 0x0800.";
             reference
               "RFC 791: Internet Protocol.";
           }
           enum arp {
             value 2054;
             description
               "Address Resolution Protocol (ARP) with a
                hex value of 0x0806.";
             reference
               "RFC 826: An Ethernet Address Resolution Protocol: Or
                         Converting Network Protocol Addresses to 48.bit
                         Ethernet Address for Transmission on Ethernet
                         Hardware.";
           }
           enum wlan {
             value 2114;
             description
               "Wake-on-LAN.  Hex value of 0x0842.";
           }
           enum trill {
             value 8947;
             description
               "Transparent Interconnection of Lots of Links.
                Hex value of 0x22F3.";
             reference
               "RFC 6325: Routing Bridges (RBridges): Base Protocol
                          Specification.";
           }
           enum srp {
             value 8938;
             description
               "Stream Reservation Protocol.  Hex value of
                0x22EA.";
             reference
               "IEEE 801.1Q-2011.";
           }
           enum decnet {
             value 24579;
             description
               "DECnet Phase IV.  Hex value of 0x6003.";
           }
           enum rarp {
             value 32821;
             description
               "Reverse Address Resolution Protocol.
                Hex value 0x8035.";
             reference
               "RFC 903: A Reverse Address Resolution Protocol.";
           }
           enum appletalk {
             value 32923;
             description
               "Appletalk (Ethertalk).  Hex value of 0x809B.";
           }
           enum aarp {
             value 33011;
             description
               "Appletalk Address Resolution Protocol.  Hex value
                of 0x80F3.";
        
           }
           enum vlan {
             value 33024;
             description
               "VLAN-tagged frame (IEEE 802.1Q) and Shortest Path
                Bridging IEEE 802.1aq with Network-Network
                Interface (NNI) compatibility.  Hex value of
                0x8100.";
             reference
               "IEEE 802.1Q.";
           }
           enum ipx {
             value 33079;
             description
               "Internetwork Packet Exchange (IPX).  Hex value
                of 0x8137.";
           }
           enum qnx {
             value 33284;
             description
               "QNX Qnet.  Hex value of 0x8204.";
           }
           enum ipv6 {
             value 34525;
             description
               "Internet Protocol Version 6 (IPv6).  Hex value
                of 0x86DD.";
             reference
               "RFC 8200: Internet Protocol, Version 6 (IPv6)
                          Specification
                RFC 8201: Path MTU Discovery for IP version 6.";
           }
           enum efc {
             value 34824;
             description
               "Ethernet flow control using pause frames.
                Hex value of 0x8808.";
             reference
               "IEEE 802.1Qbb.";
           }
           enum esp {
             value 34825;
             description
               "Ethernet Slow Protocol.  Hex value of 0x8809.";
             reference
               "IEEE 802.3-2015.";
           }
           enum cobranet {
        
             value 34841;
             description
               "CobraNet.  Hex value of 0x8819.";
           }
           enum mpls-unicast {
             value 34887;
             description
               "Multiprotocol Label Switching (MPLS) unicast traffic.
                Hex value of 0x8847.";
             reference
               "RFC 3031: Multiprotocol Label Switching Architecture.";
           }
           enum mpls-multicast {
             value 34888;
             description
               "MPLS multicast traffic.  Hex value of 0x8848.";
             reference
               "RFC 3031: Multiprotocol Label Switching Architecture.";
           }
           enum pppoe-discovery {
             value 34915;
             description
               "Point-to-Point Protocol over Ethernet.  Used during
                the discovery process.  Hex value of 0x8863.";
             reference
               "RFC 2516: A Method for Transmitting PPP Over Ethernet
                          (PPPoE).";
           }
           enum pppoe-session {
             value 34916;
             description
               "Point-to-Point Protocol over Ethernet.  Used during
                session stage.  Hex value of 0x8864.";
             reference
               "RFC 2516: A Method for Transmitting PPP Over Ethernet
                          (PPPoE).";
           }
           enum intel-ans {
             value 34925;
             description
               "Intel Advanced Networking Services.  Hex value of
                0x886D.";
           }
           enum jumbo-frames {
             value 34928;
             description
               "Jumbo frames or Ethernet frames with more than
                1500 bytes of payload, up to 9000 bytes.";
        
           }
           enum homeplug {
             value 34939;
             description
               "Family name for the various power line
                communications.  Hex value of 0x887B.";
           }
           enum eap {
             value 34958;
             description
               "Ethernet Access Protocol (EAP) over LAN.  Hex value
                of 0x888E.";
             reference
               "IEEE 802.1X.";
           }
           enum profinet {
             value 34962;
             description
               "PROcess FIeld Net (PROFINET).  Hex value of 0x8892.";
           }
           enum hyperscsi {
             value 34970;
             description
               "Small Computer System Interface (SCSI) over Ethernet.
                Hex value of 0x889A.";
           }
           enum aoe {
             value 34978;
             description
               "Advanced Technology Advancement (ATA) over Ethernet.
                Hex value of 0x88A2.";
           }
           enum ethercat {
             value 34980;
             description
               "Ethernet for Control Automation Technology (EtherCAT).
                Hex value of 0x88A4.";
           }
           enum provider-bridging {
             value 34984;
             description
               "Provider Bridging (802.1ad) and Shortest Path Bridging
                (801.1aq).  Hex value of 0x88A8.";
             reference
               "IEEE 802.1ad and IEEE 802.1aq).";
           }
           enum ethernet-powerlink {
             value 34987;
        
             description
               "Ethernet Powerlink.  Hex value of 0x88AB.";
           }
           enum goose {
             value 35000;
             description
               "Generic Object Oriented Substation Event (GOOSE).
                Hex value of 0x88B8.";
             reference
               "IEC/ISO 8802-2 and 8802-3.";
           }
           enum gse {
             value 35001;
             description
               "Generic Substation Events.  Hex value of 88B9.";
             reference
               "IEC 61850.";
           }
           enum sv {
             value 35002;
             description
               "Sampled Value Transmission.  Hex value of 0x88BA.";
             reference
               "IEC 61850.";
           }
           enum lldp {
             value 35020;
             description
               "Link Layer Discovery Protocol (LLDP).  Hex value of
                0x88CC.";
             reference
               "IEEE 802.1AB.";
           }
           enum sercos {
             value 35021;
             description
               "Sercos Interface.  Hex value of 0x88CD.";
           }
           enum wsmp {
             value 35036;
             description
               "WAVE Short Message Protocol (WSMP).  Hex value of
                0x88DC.";
           }
           enum homeplug-av-mme {
             value 35041;
             description
               "HomePlug AV Mobile Management Entity (MME).  Hex value
        
                of 88E1.";
           }
           enum mrp {
             value 35043;
             description
               "Media Redundancy Protocol (MRP).  Hex value of
                0x88E3.";
             reference
               "IEC 62439-2.";
           }
           enum macsec {
             value 35045;
             description
               "MAC Security.  Hex value of 0x88E5.";
             reference
               "IEEE 802.1AE.";
           }
           enum pbb {
             value 35047;
             description
               "Provider Backbone Bridges (PBB).  Hex value of
                0x88E7.";
             reference
               "IEEE 802.1ah.";
           }
           enum cfm {
             value 35074;
             description
               "Connectivity Fault Management (CFM).  Hex value of
                0x8902.";
             reference
               "IEEE 802.1ag.";
           }
           enum fcoe {
             value 35078;
             description
               "Fiber Channel over Ethernet (FCoE).  Hex value of
                0x8906.";
             reference
               "T11 FC-BB-5.";
           }
           enum fcoe-ip {
             value 35092;
             description
               "FCoE Initialization Protocol.  Hex value of 0x8914.";
           }
           enum roce {
             value 35093;
        
             description
               "RDMA over Converged Ethernet (RoCE).  Hex value of
                0x8915.";
           }
           enum tte {
             value 35101;
             description
               "TTEthernet Protocol Control Frame (TTE).  Hex value
                of 0x891D.";
             reference
               "SAE AS6802.";
           }
           enum hsr {
             value 35119;
             description
               "High-availability Seamless Redundancy (HSR).  Hex
                value of 0x892F.";
             reference
               "IEC 62439-3:2016.";
           }
         }
       }
       description
         "The uint16 type placeholder is defined to enable
          users to manage their own ethertypes not
          covered by the module.  Otherwise, the module contains
          enum definitions for the more commonly used ethertypes.";
     }
   }
        

<CODE ENDS>

<コード終了>

Acknowledgements

謝辞

Alex Clemm, Andy Bierman, and Lisa Huang started by sketching an initial draft version in several past IETF meetings. That document included an ACL YANG model structure and a rich set of match filters, and it acknowledged contributions by Louis Fourie, Dana Blair, Tula Kraiser, Patrick Gili, George Serpa, Martin Bjorklund, Kent Watsen, and Phil Shafer. Many people have reviewed the various earlier draft versions that made the document that went into IETF charter.

Alex Clemm、Andy Bierman、およびLisa Huangは、過去のIETFミーティングで最初のドラフトバージョンをスケッチすることから始めました。そのドキュメントには、ACL YANGモデル構造と豊富な一致フィルターのセットが含まれており、ルイフーリー、ダナブレア、トゥーラクレイザー、パトリックギリ、ジョージセルパ、マーティンビョークランド、ケントワッセン、フィルシェーファーによる寄稿を認めています。多くの人々は、IETF憲章に入ったドキュメントを作成したさまざまな以前のドラフトバージョンをレビューしました。

Dean Bogdanovic, Kiran Agrahara Sreenivasa, Lisa Huang, and Dana Blair each evaluated the YANG model in earlier draft versions separately, and then they worked together to create an ACL draft version that was supported by different vendors. That document removed vendor-specific features and gave examples that allowed vendors to extend their own proprietary ACLs. That earlier draft version was superseded with this document and received participation from many vendors.

Dean Bogdanovic, Kiran Agrahara Sreenivasa, Lisa Huang, and Dana Blair each evaluated the YANG model in earlier draft versions separately, and then they worked together to create an ACL draft version that was supported by different vendors. That document removed vendor-specific features and gave examples that allowed vendors to extend their own proprietary ACLs. That earlier draft version was superseded with this document and received participation from many vendors.

The authors would like to thank Jason Sterne, Lada Lhotka, Juergen Schoenwalder, David Bannister, Jeff Haas, Kristian Larsson, and Einar Nilsen-Nygaard for their reviews of and suggestions for the document.

著者は、ドキュメントのレビューと提案について、Jason Sterne、Lada Lhotka、Juergen Schoenwalder、David Bannister、Jeff Haas、Kristian Larsson、およびEinar Nilsen-Nygaardに感謝します。

Authors' Addresses

著者のアドレス

Mahesh Jethanandani VMware

マヘシュジェタナンダニVMware

   Email: mjethanandani@gmail.com
        

Sonal Agarwal Cisco Systems, Inc.

Sonal Agarwal Cisco Systems、Inc.

   Email: sagarwal12@gmail.com
        

Lisa Huang

Lisa Huang

   Email: huangyi_99@yahoo.com
        

Dana Blair

ダナブレア

   Email: dana@blairhome.com