Internet Engineering Task Force (IETF)                  E. Grossman, Ed.
Request for Comments: 8578                                         DOLBY
Category: Informational                                         May 2019
ISSN: 2070-1721

Deterministic Networking Use Cases




This document presents use cases for diverse industries that have in common a need for "deterministic flows". "Deterministic" in this context means that such flows provide guaranteed bandwidth, bounded latency, and other properties germane to the transport of time-sensitive data. These use cases differ notably in their network topologies and specific desired behavior, providing as a group broad industry context for Deterministic Networking (DetNet). For each use case, this document will identify the use case, identify representative solutions used today, and describe potential improvements that DetNet can enable.

このドキュメントでは、「決定論的フロー」を共通して必要とするさまざまな業界の使用例を示します。この文脈での「確定的」とは、そのようなフローが保証された帯域幅、制限された待ち時間、および時間に敏感なデータの転送に密接に関連するその他のプロパティを提供することを意味します。これらの使用例は、ネットワークトポロジと特定の望ましい動作が著しく異なり、グループとしてDeterministic Networking(DetNet)の幅広い業界コンテキストを提供します。このドキュメントでは、ユースケースごとに、ユースケースを特定し、現在使用されている代表的なソリューションを特定し、DetNetによって実現できる潜在的な改善について説明します。

Status of This Memo


This document is not an Internet Standards Track specification; it is published for informational purposes.

このドキュメントはInternet Standards Trackの仕様ではありません。情報提供を目的として公開されています。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。 IESGによって承認されたすべてのドキュメントが、あらゆるレベルのインターネット標準の候補であるとは限りません。 RFC 7841のセクション2をご覧ください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(c)2019 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

この文書は、BCP 78およびIETF文書に関するIETFトラストの法的規定(の対象であり、この文書の発行日に有効です。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseのテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。

Table of Contents


   1. Introduction ....................................................6
   2. Pro Audio and Video .............................................7
      2.1. Use Case Description .......................................7
           2.1.1. Uninterrupted Stream Playback .......................8
           2.1.2. Synchronized Stream Playback ........................9
           2.1.3. Sound Reinforcement .................................9
           2.1.4. Secure Transmission ................................10
         Safety ....................................10
      2.2. Pro Audio Today ...........................................10
      2.3. Pro Audio in the Future ...................................10
           2.3.1. Layer 3 Interconnecting Layer 2 Islands ............10
           2.3.2. High-Reliability Stream Paths ......................11
           2.3.3. Integration of Reserved Streams into IT Networks ...11
           2.3.4. Use of Unused Reservations by Best-Effort Traffic ..11
           2.3.5. Traffic Segregation ................................11
         Packet-Forwarding Rules, VLANs,
                           and Subnets ...............................12
         Multicast Addressing (IPv4 and IPv6) ......12
           2.3.6. Latency Optimization by a Central Controller .......12
           2.3.7. Reduced Device Costs due to Reduced Buffer Memory ..13
      2.4. Pro Audio Requests to the IETF ............................13
   3. Electrical Utilities ...........................................14
      3.1. Use Case Description ......................................14
           3.1.1. Transmission Use Cases .............................14
         Protection ................................14
         Intra-substation Process Bus
                           Communications ............................21
         Wide-Area Monitoring and Control Systems ..23
         WAN Engineering Guidelines
                           Requirement Classification ................25
           3.1.2. Generation Use Case ................................26
         Control of the Generated Power ............26
         Control of the Generation Infrastructure ..27
           3.1.3. Distribution Use Case ..............................32
         Fault Location, Isolation, and
                           Service Restoration (FLISR) ...............32
      3.2. Electrical Utilities Today ................................33
           3.2.1. Current Security Practices and Their Limitations ...34
      3.3. Electrical Utilities in the Future ........................35
           3.3.1. Migration to Packet-Switched Networks ..............36
           3.3.2. Telecommunications Trends ..........................37
         General Telecommunications Requirements ...37
         Specific Network Topologies of
                           Smart-Grid Applications ...................38
         Precision Time Protocol ...................38
           3.3.3. Security Trends in Utility Networks ................39
      3.4. Electrical Utilities Requests to the IETF .................41
   4. Building Automation Systems (BASs) .............................41
      4.1. Use Case Description ......................................41
      4.2. BASs Today ................................................42
           4.2.1. BAS Architecture ...................................42
           4.2.2. BAS Deployment Model ...............................44
           4.2.3. Use Cases for Field Networks .......................45
         Environmental Monitoring ..................45
         Fire Detection ............................46
         Feedback Control ..........................46
           4.2.4. BAS Security Considerations ........................46
      4.3. BASs in the Future ........................................46
      4.4. BAS Requests to the IETF ..................................47
   5. Wireless for Industrial Applications ...........................47
      5.1. Use Case Description ......................................47
           5.1.1. Network Convergence Using 6TiSCH ...................48
           5.1.2. Common Protocol Development for 6TiSCH .............48
      5.2. Wireless Industrial Today .................................49
      5.3. Wireless Industrial in the Future .........................49
           5.3.1. Unified Wireless Networks and Management ...........49
         PCE and 6TiSCH ARQ Retries ................51
           5.3.2. Schedule Management by a PCE .......................52
         PCE Commands and 6TiSCH CoAP Requests .....52
         6TiSCH IP Interface .......................54
           5.3.3. 6TiSCH Security Considerations .....................54
      5.4. Wireless Industrial Requests to the IETF ..................54
   6. Cellular Radio .................................................54
      6.1. Use Case Description ......................................54
           6.1.1. Network Architecture ...............................54
           6.1.2. Delay Constraints ..................................55
           6.1.3. Time-Synchronization Constraints ...................57
           6.1.4. Transport-Loss Constraints .........................59
           6.1.5. Cellular Radio Network Security Considerations .....60
      6.2. Cellular Radio Networks Today .............................60
           6.2.1. Fronthaul ..........................................60
           6.2.2. Midhaul and Backhaul ...............................60
      6.3. Cellular Radio Networks in the Future .....................61
      6.4. Cellular Radio Networks Requests to the IETF ..............64
   7. Industrial Machine to Machine (M2M) ............................64
      7.1. Use Case Description ......................................64
      7.2. Industrial M2M Communications Today .......................66
           7.2.1. Transport Parameters ...............................66
           7.2.2. Stream Creation and Destruction ....................67
      7.3. Industrial M2M in the Future ..............................67
      7.4. Industrial M2M Requests to the IETF .......................67
   8. Mining Industry ................................................68
      8.1. Use Case Description ......................................68
      8.2. Mining Industry Today .....................................68
      8.3. Mining Industry in the Future .............................69
      8.4. Mining Industry Requests to the IETF ......................70
   9. Private Blockchain .............................................70
      9.1. Use Case Description ......................................70
           9.1.1. Blockchain Operation ...............................71
           9.1.2. Blockchain Network Architecture ....................71
           9.1.3. Blockchain Security Considerations .................72
      9.2. Private Blockchain Today ..................................72
      9.3. Private Blockchain in the Future ..........................72
      9.4. Private Blockchain Requests to the IETF ...................72
   10. Network Slicing ...............................................73
      10.1. Use Case Description .....................................73
      10.2. DetNet Applied to Network Slicing ........................73
           10.2.1. Resource Isolation across Slices ..................73
           10.2.2. Deterministic Services within Slices ..............74
      10.3. A Network Slicing Use Case Example - 5G Bearer Network ...74
      10.4. Non-5G Applications of Network Slicing ...................75
      10.5. Limitations of DetNet in Network Slicing .................75
      10.6. Network Slicing Today and in the Future ..................75
      10.7. Network Slicing Requests to the IETF .....................75
   11. Use Case Common Themes ........................................76
      11.1. Unified, Standards-Based Networks ........................76
           11.1.1. Extensions to Ethernet ............................76
           11.1.2. Centrally Administered Networks ...................76
           11.1.3. Standardized Data-Flow Information Models .........76
           11.1.4. Layer 2 and Layer 3 Integration ...................76
           11.1.5. IPv4 Considerations ...............................76
           11.1.6. Guaranteed End-to-End Delivery ....................77
           11.1.7. Replacement for Multiple Proprietary
                   Deterministic Networks ............................77
           11.1.8. Mix of Deterministic and Best-Effort Traffic ......77
           11.1.9. Unused Reserved Bandwidth to Be Available
                   to Best-Effort Traffic ............................77
           11.1.10. Lower-Cost, Multi-Vendor Solutions ...............77
      11.2. Scalable Size ............................................78
           11.2.1. Scalable Number of Flows ..........................78
      11.3. Scalable Timing Parameters and Accuracy ..................78
           11.3.1. Bounded Latency ...................................78
           11.3.2. Low Latency .......................................78
           11.3.3. Bounded Jitter (Latency Variation) ................79
           11.3.4. Symmetrical Path Delays ...........................79
      11.4. High Reliability and Availability ........................79
      11.5. Security .................................................79
      11.6. Deterministic Flows ......................................79
   12. Security Considerations .......................................80
   13. IANA Considerations ...........................................80
   14. Informative References ........................................80
   Appendix A. Use Cases Explicitly Out of Scope for DetNet ..........90
     A.1. DetNet Scope Limitations ...................................90
     A.2. Internet-Based Applications ................................90
       A.2.1. Use Case Description ...................................91
         A.2.1.1. Media Content Delivery .............................91
         A.2.1.2. Online Gaming ......................................91
         A.2.1.3. Virtual Reality ....................................91
       A.2.2. Internet-Based Applications Today ......................91
       A.2.3. Internet-Based Applications in the Future ..............91
       A.2.4. Internet-Based Applications Requests to the IETF .......92
     A.3. Pro Audio and Video - Digital Rights Management (DRM) ......92
     A.4. Pro Audio and Video - Link Aggregation .....................92
     A.5. Pro Audio and Video - Deterministic Time to Establish
          Streaming ..................................................93
   Acknowledgments ...................................................93
   Contributors ......................................................95
   Author's Address ..................................................97
1. Introduction
1. はじめに

This memo documents use cases for diverse industries that require deterministic flows over multi-hop paths. Deterministic Networking (DetNet) flows can be established from either a Layer 2 or Layer 3 (IP) interface, and such flows can coexist on an IP network with best-effort traffic. DetNet also provides for highly reliable flows through provision for redundant paths.

このメモは、マルチホップパス上の決定論的フローを必要とする多様な業界の使用例を文書化しています。確定的ネットワーキング(DetNet)フローは、レイヤー2またはレイヤー3(IP)インターフェースから確立でき、そのようなフローはIPネットワーク上でベストエフォートトラフィックと共存できます。 DetNetは、冗長パスのプロビジョニングを通じて、信頼性の高いフローも提供します。

The DetNet use cases explicitly do not suggest any specific design for DetNet architecture or protocols; these are topics for other DetNet documents.


The DetNet use cases, as originally submitted, explicitly were not considered by the DetNet Working Group (WG) to be concrete requirements. The DetNet WG and Design Team considered these use cases, identifying which of their elements could be feasibly implemented within the charter of DetNet; as a result, certain originally submitted use cases (or elements thereof) were moved to Appendix A ("Use Cases Explicitly Out of Scope for DetNet") of this document.

最初に提出されたとおりのDetNetユースケースは、DetNetワーキンググループ(WG)によって具体的な要件であると明確に見なされていません。 DetNet WGと設計チームは、これらのユースケースを検討し、DetNetのチャーター内で実装可能な要素を特定しました。その結果、最初に提出された特定のユースケース(またはその要素)は、このドキュメントの付録A(「DetNetの範囲外にあることを明示的に示したユースケース」)に移動されました。

This document provides context regarding DetNet design decisions. It also serves a long-lived purpose of helping those learning (or new to) DetNet understand the types of applications that can be supported by DetNet. It also allows those WG contributors who are users to ensure that their concerns are addressed by the WG; for them, this document (1) covers their contributions and (2) provides a long-term reference regarding the problems that they expect will be served by the technology, in terms of the short-term deliverables and also as the technology evolves in the future.


This document has served as a "yardstick" against which proposed DetNet designs can be measured, answering the question "To what extent does a proposed design satisfy these various use cases?"


The industries covered by the use cases in this document are


o professional audio and video (Section 2)

o プロのオーディオとビデオ(セクション2)

o electrical utilities (Section 3)

o 電気事業(セクション3)

o building automation systems (BASs) (Section 4)

o ビルディングオートメーションシステム(BAS)(セクション4)

o wireless for industrial applications (Section 5)

o 産業用アプリケーション向けワイヤレス(セクション5)

o cellular radio (Section 6)

o セルラーラジオ(セクション6)

o industrial machine to machine (M2M) (Section 7)

o 産業用機械間(M2M)(セクション7)

o mining (Section 8)

o 鉱業(セクション8)

o private blockchain (Section 9)

o プライベートブロックチェーン(セクション9)

o network slicing (Section 10)

o ネットワークスライシング(セクション10)

For each use case, the following questions are answered:


o What is the use case?

o ユースケースは何ですか?

o How is it addressed today?

o 今日はどのように対処されていますか?

o How should it be addressed in the future?

o 将来どのように対処すべきですか?

o What should the IETF deliver to enable this use case?

o この使用例を可能にするために、IETFは何を提供する必要がありますか?

The level of detail in each use case is intended to be sufficient to express the relevant elements of the use case but no more than that.


DetNet does not directly address clock distribution or time synchronization; these are considered to be part of the overall design and implementation of a time-sensitive network, using existing (or future) time-specific protocols (such as [IEEE-8021AS] and/or [RFC5905]).


Section 11 enumerates the set of common properties implied by these use cases.


2. Pro Audio and Video
2. プロオーディオとビデオ
2.1. Use Case Description
2.1. ユースケースの説明

The professional audio and video industry ("ProAV") includes:


o Music and film content creation

o 音楽と映画のコンテンツ作成

o Broadcast

o 放送

o Cinema

o シネマ

o Live sound

o ライブサウンド

o Public address, media, and emergency systems at large venues (e.g., airports, stadiums, churches, theme parks)

o 大規模な会場(例:空港、スタジアム、教会、テーマパーク)でのパブリックアドレス、メディア、緊急システム

These industries have already transitioned audio and video signals from analog to digital. However, the digital interconnect systems remain primarily point to point, with a single signal or a small number of signals per link, interconnected with purpose-built hardware.


These industries are now transitioning to packet-based infrastructures to reduce cost, increase routing flexibility, and integrate with existing IT infrastructures.


Today, ProAV applications have no way to establish deterministic flows from a standards-based Layer 3 (IP) interface; this is a fundamental limitation of the use cases described here. Today, deterministic flows can be created within standards-based Layer 2 LANs (e.g., using IEEE 802.1 TSN ("TSN" stands for "Time-Sensitive Networking")); however, these flows are not routable via IP and thus are not effective for distribution over wider areas (for example, broadcast events that span wide geographical areas).

今日、ProAVアプリケーションは、標準ベースのレイヤー3(IP)インターフェースから確定的フローを確立する方法がありません。これは、ここで説明する使用例の基本的な制限です。現在、確定的なフローは標準ベースのレイヤー2 LAN内で作成できます(たとえば、IEEE 802.1 TSN(「TSN」は「Time-Sensitive Networking」の略)を使用)。ただし、これらのフローはIP経由でルーティングできないため、より広いエリアへの配信には効果的ではありません(たとえば、広い地理的エリアにまたがるブロードキャストイベント)。

It would be highly desirable if such flows could be routed over the open Internet; however, solutions of more-limited scope (e.g., enterprise networks) would still provide substantial improvements.


The following sections describe specific ProAV use cases.


2.1.1. Uninterrupted Stream Playback
2.1.1. 途切れないストリーム再生

Transmitting audio and video streams for live playback is unlike common file transfer in that uninterrupted stream playback in the presence of network errors cannot be achieved by retrying the transmission; by the time the missing or corrupt packet has been identified, it is too late to execute a retry operation. Buffering can be used to provide enough delay to allow time for one or more retries; however, this is not an effective solution in applications where large delays (latencies) are not acceptable (as discussed below).


Streams with guaranteed bandwidth can eliminate congestion on the network as a cause of transmission errors that would lead to playback interruption. The use of redundant paths can further mitigate transmission errors and thereby provide greater stream reliability.


Additional techniques, such as Forward Error Correction (FEC), can also be used to improve stream reliability.

Forward Error Correction(FEC)などの追加の手法を使用して、ストリームの信頼性を向上させることもできます。

2.1.2. Synchronized Stream Playback
2.1.2. 同期ストリーム再生

Latency in this context is the time between when a signal is initially sent over a stream and when it is received. A common example in ProAV is time-synchronizing audio and video when they take separate paths through the playback system. In this case, the latency of both the audio stream and the video stream must be bounded and consistent if the sound is to remain matched to the movement in the video. A common tolerance for audio/video synchronization is one National Television System Committee (NTSC) video frame (about 33 ms); to maintain the audience's perception of correct lip-sync, the latency needs to be consistent within some reasonable tolerance -- for example, 10%.

この場合のレイテンシは、信号が最初にストリームを介して送信されてから受信されるまでの時間です。 ProAVの一般的な例は、オーディオとビデオが再生システムを介して別々のパスをたどるときのオーディオとビデオの時間同期です。この場合、音声がビデオの動きに一致したままである場合、オーディオストリームとビデオストリームの両方のレイテンシは制限され、一貫している必要があります。オーディオ/ビデオ同期の一般的な許容範囲は、1つのNational Television System Committee(NTSC)ビデオフレーム(約33 ms)です。オーディエンスの正しいリップシンクの認識を維持するには、レイテンシをある程度の許容範囲内(たとえば10%)で一定にする必要があります。

A common architecture for synchronizing multiple streams that have different paths through the network (and thus potentially different latencies) enables measurement of the latency of each path and has the data sinks (for example, speakers) delay (buffer) all packets on all but the slowest path. Each packet of each stream is assigned a presentation time that is based on the longest required delay. This implies that all sinks must maintain a common time reference of sufficient accuracy, which can be achieved by various techniques.


This type of architecture is commonly implemented using a central controller that determines path delays and arbitrates buffering delays.


2.1.3. Sound Reinforcement
2.1.3. 音の補強

Consider the latency (delay) between the time when a person speaks into a microphone and when their voice emerges from the speaker. If this delay is longer than about 10-15 ms, it is noticeable and can make a sound-reinforcement system unusable (see slide 6 of [SRP_LATENCY]). (If you have ever tried to speak in the presence of a delayed echo of your voice, you might be familiar with this experience.)

人がマイクに向かって話しかけるときと、スピーカーから声が出るときとの間の遅延(遅延)を考慮してください。この遅延が約10〜15ミリ秒よりも長い場合、それが顕著になり、サウンド補強システムが使用できなくなる可能性があります([SRP_LATENCY]のスライド6を参照)。 (あなたがあなたの声の遅れたエコーの存在下で話すことを試みたことがあるなら、あなたはこの経験に精通しているかもしれません。)

Note that the 15 ms latency bound includes all parts of the signal path -- not just the network -- so the network latency must be significantly less than 15 ms.


In some cases, local performers must perform in synchrony with a remote broadcast. In such cases, the latencies of the broadcast stream and the local performer must be adjusted to match each other, with a worst case of one video frame (33 ms for NTSC video).

場合によっては、ローカルパフォーマーはリモートブロードキャストと同期してパフォーマンスを行う必要があります。このような場合、ブロードキャストストリームとローカルパフォーマーのレイテンシは、最悪の場合は1つのビデオフレーム(NTSCビデオの場合は33 ms)になるように調整する必要があります。

In cases where audio phase is a consideration -- for example, beam-forming using multiple speakers -- latency can be in the 10 us range (one audio sample at 96 kHz).

複数のスピーカーを使用したビームフォーミングなど、オーディオ位相が重要な場合は、レイテンシが10 usの範囲になる可能性があります(96 kHzで1つのオーディオサンプル)。

2.1.4. Secure Transmission
2.1.4. 安全な送信 Safety 安全性

Professional audio systems can include amplifiers that are capable of generating hundreds or thousands of watts of audio power. If used incorrectly, such amplifiers can cause hearing damage to those in the vicinity. Apart from the usual care required by the systems operators to prevent such incidents, the network traffic that controls these devices must be secured (as with any sensitive application traffic).


2.2. Pro Audio Today
2.2. 今日のプロオーディオ

Some proprietary systems have been created that enable deterministic streams at Layer 3; however, they are "engineered networks" that require careful configuration to operate and often require that the system be over-provisioned. Also, it is implied that all devices on the network voluntarily play by the rules of that network. To enable these industries to successfully transition to an interoperable multi-vendor packet-based infrastructure requires effective open standards. Establishing relevant IETF standards is a crucial factor.


2.3. Pro Audio in the Future
2.3. 将来のプロオーディオ
2.3.1. Layer 3 Interconnecting Layer 2 Islands
2.3.1. レイヤー3相互接続レイヤー2アイランド

It would be valuable to enable IP to connect multiple Layer 2 LANs.

IPが複数のレイヤー2 LANを接続できるようにすることは価値があります。

As an example, ESPN constructed a state-of-the-art 194,000 sq. ft., $125-million broadcast studio called "Digital Center 2" (DC2). The DC2 network is capable of handling 46 Tbps of throughput with 60,000 simultaneous signals. Inside the facility are 1,100 miles of fiber feeding four audio control rooms (see [ESPN_DC2]).

たとえば、ESPNは最先端の194,000平方フィート、「デジタルセンター2」(DC2)と呼ばれる1億2500万ドルの放送スタジオを構築しました。 DC2ネットワークは、60 T000の同時信号で46 Tbpsのスループットを処理できます。施設内には、4つの音声制御室に1,100マイルのファイバーフィードがあります([ESPN_DC2]を参照)。

In designing DC2, they replaced as much point-to-point technology as they could with packet-based technology. They constructed seven individual studios using Layer 2 LANs (using IEEE 802.1 TSN) that were entirely effective at routing audio within the LANs. However, to interconnect these Layer 2 LAN islands together, they ended up using dedicated paths in a custom SDN (Software-Defined Networking) router because there is no standards-based routing solution available.

DC2の設計では、ポイントツーポイントテクノロジーを、パケットベーステクノロジーで可能な限り多く置き換えました。彼らは、LAN内でオーディオをルーティングするのに完全に効果的な、レイヤー2 LAN(IEEE 802.1 TSNを使用)を使用して7つの個別のスタジオを構築しました。ただし、これらのレイヤー2 LANアイランドを相互接続するために、標準ベースのルーティングソリューションが利用できないため、カスタムSDN(Software-Defined Networking)ルーターで専用パスを使用することになりました。

2.3.2. High-Reliability Stream Paths
2.3.2. 高信頼性ストリームパス

On-air and other live media streams are often backed up with redundant links that seamlessly act to deliver the content when the primary link fails for any reason. In point-to-point systems, this redundancy is provided by an additional point-to-point link; the analogous requirement in a packet-based system is to provide an alternate path through the network such that no individual link can bring down the system.


2.3.3. Integration of Reserved Streams into IT Networks
2.3.3. 予約済みストリームのITネットワークへの統合

A commonly cited goal of moving to a packet-based media infrastructure is that costs can be reduced by using off-the-shelf, commodity-network hardware. In addition, economy of scale can be realized by combining media infrastructure with IT infrastructure. In keeping with these goals, stream-reservation technology should be compatible with existing protocols and should not compromise the use of the network for best-effort (non-time-sensitive) traffic.


2.3.4. Use of Unused Reservations by Best-Effort Traffic
2.3.4. ベストエフォートトラフィックによる未使用の予約の使用

In cases where stream bandwidth is reserved but not currently used (or is underutilized), that bandwidth must be available to best-effort (i.e., non-time-sensitive) traffic. For example, a single stream may be "nailed up" (reserved) for specific media content that needs to be presented at different times of the day, ensuring timely delivery of that content, yet in between those times the full bandwidth of the network can be utilized for best-effort tasks such as file transfers.


This also addresses a concern of IT network administrators that are considering adding reserved-bandwidth traffic to their networks that "users will reserve large quantities of bandwidth and then never unreserve it even though they are not using it, and soon the network will have no bandwidth left."


2.3.5. Traffic Segregation
2.3.5. トラフィックの分離

Sink devices may be low-cost devices with limited processing power. In order to not overwhelm the CPUs in these devices, it is important to limit the amount of traffic that these devices must process.


As an example, consider the use of individual seat speakers in a cinema. These speakers are typically required to be cost reduced, since the quantities in a single theater can reach hundreds of seats. Discovery protocols alone in a 1,000-seat theater can generate enough broadcast traffic to overwhelm a low-powered CPU. Thus, an installation like this will benefit greatly from some type of traffic segregation that can define groups of seats to reduce traffic within each group. All seats in the theater must still be able to communicate with a central controller.

例として、映画館での個々の座席スピーカーの使用を検討してください。これらのスピーカーは通常、1つの劇場の数が数百の座席に達する可能性があるため、コスト削減が求められます。 1,000席の劇場にある発見プロトコルだけでも、低電力のCPUを圧倒するのに十分なブロードキャストトラフィックを生成できます。したがって、このようなインストールは、シートのグループを定義して各グループ内のトラフィックを削減できる、ある種のトラフィック分離から大きなメリットを得ます。劇場のすべての座席は、中央コントローラーと通信できる必要があります。

There are many techniques that can be used to support this feature, including (but not limited to) the following examples.

この機能をサポートするために使用できる手法は多数ありますが、次の例がこれに限定されません。 Packet-Forwarding Rules, VLANs, and Subnets パケット転送ルール、VLAN、およびサブネット

Packet-forwarding rules can be used to eliminate some extraneous streaming traffic from reaching potentially low-powered sink devices; however, there may be other types of broadcast traffic that should be eliminated via other means -- for example, VLANs or IP subnets.

パケット転送ルールを使用して、不要なストリーミングトラフィックが低電力のシンクデバイスに到達しないようにすることができます。ただし、VLANやIPサブネットなど、他の方法で排除する必要がある他のタイプのブロードキャストトラフィックが存在する場合があります。 Multicast Addressing (IPv4 and IPv6) マルチキャストアドレス指定(IPv4およびIPv6)

Multicast addressing is commonly used to keep bandwidth utilization of shared links to a minimum.


Because Layer 2 bridges by design forward Media Access Control (MAC) addresses, it is important that a multicast MAC address only be associated with one stream. This will prevent reservations from forwarding packets from one stream down a path that has no interested sinks simply because there is another stream on that same path that shares the same multicast MAC address.

レイヤー2は設計によりMAC(Media Access Control)アドレスを転送するため、マルチキャストMACアドレスは1つのストリームにのみ関連付けることが重要です。これにより、同じマルチキャストMACアドレスを共有する同じパス上に別のストリームが存在するという理由だけで、関係するシンクのないパスを経由して1つのストリームから予約がパケットを転送するのを防ぎます。

In other words, since each multicast MAC address can represent 32 different IPv4 multicast addresses, there must be a process in place to make sure that any given multicast MAC address is only associated with exactly one IPv4 multicast address. Requiring the use of IPv6 addresses could help in this regard, due to the much larger address range of IPv6; however, due to the continued prevalence of IPv4 installations, solutions that are effective for IPv4 installations would be practical in many more use cases.

つまり、各マルチキャストMACアドレスは32の異なるIPv4マルチキャストアドレスを表すことができるため、特定のマルチキャストMACアドレスが1つのIPv4マルチキャストアドレスにのみ関連付けられていることを確認するプロセスが必要です。 IPv6のアドレス範囲ははるかに広いため、IPv6アドレスの使用を必須にすることはこの点で役立ちます。ただし、IPv4インストールの普及が続いているため、IPv4インストールに効果的なソリューションは、さらに多くのユースケースで実用的です。

2.3.6. Latency Optimization by a Central Controller
2.3.6. 中央コントローラーによる待ち時間の最適化

A central network controller might also perform optimizations based on the individual path delays; for example, sinks that are closer to the source can inform the controller that they can accept greater latency, since they will be buffering packets to match presentation times of sinks that are farther away. The controller might then move a stream reservation on a short path to a longer path in order to free up bandwidth for other critical streams on that short path. See slides 3-5 of [SRP_LATENCY].

中央ネットワークコントローラは、個々のパス遅延に基づいて最適化を実行することもあります。たとえば、ソースに近いシンクは、より遠いシンクのプレゼンテーション時間と一致するようにパケットをバッファリングするため、より長いレイテンシを受け入れることができることをコントローラに通知できます。次に、コントローラーは、短いパス上のストリーム予約を長いパスに移動して、その短いパス上の他の重要なストリームの帯域幅を解放する場合があります。 [SRP_LATENCY]のスライド3〜5を参照してください。

Additional optimization can be achieved in cases where sinks have differing latency requirements; for example, at a live outdoor concert, the speaker sinks have stricter latency requirements than the recording-hardware sinks. See slide 7 of [SRP_LATENCY].

シンクのレイテンシ要件が異なる場合、追加の最適化を実現できます。たとえば、野外ライブコンサートでは、スピーカーシンクのレイテンシ要件が録音ハードウェアシンクよりも厳しくなっています。 [SRP_LATENCY]のスライド7を参照してください。

2.3.7. Reduced Device Costs due to Reduced Buffer Memory
2.3.7. バッファメモリの削減によるデバイスコストの削減

Device costs can be reduced in a system with guaranteed reservations with a small bounded latency due to the reduced requirements for buffering (i.e., memory) on sink devices. For example, a theme park might broadcast a live event across the globe via a Layer 3 protocol. In such cases, the size of the buffers required is defined by the worst-case latency and jitter values of the worst-case segment of the end-to-end network path. For example, on today's open Internet, the latency is typically unacceptable for audio and video streaming without many seconds of buffering. In such scenarios, a single gateway device at the local network that receives the feed from the remote site would provide the expensive buffering required to mask the latency and jitter issues associated with long-distance delivery. Sink devices in the local location would have no additional buffering requirements, and thus no additional costs, beyond those required for delivery of local content. The sink device would be receiving packets identical to those sent by the source and would be unaware of any latency or jitter issues along the path.


2.4. Pro Audio Requests to the IETF
2.4. IETFへのプロオーディオリクエスト

o Layer 3 routing on top of Audio Video Bridging (AVB) (and/or other high-QoS (Quality of Service) networks)

o オーディオビデオブリッジング(AVB)(および/または他の高QoS(Quality of Service)ネットワーク)上のレイヤー3ルーティング

o Content delivery with bounded, lowest possible latency

o 制限された、可能な限り低いレイテンシでのコンテンツ配信

o IntServ and DiffServ integration with AVB (where practical)

o IntServおよびDiffServとAVBの統合(実用的な場合)

o Single network for A/V and IT traffic

o A / VおよびITトラフィック用の単一ネットワーク

o Standards-based, interoperable, multi-vendor solutions

o 標準ベースの相互運用可能なマルチベンダーソリューション

o IT-department-friendly networks

o IT部門に適したネットワーク

o Enterprise-wide networks (e.g., the size of San Francisco but not the whole Internet (yet...))

o 企業全体のネットワーク(例:サンフランシスコのサイズですが、インターネット全体ではありません(まだ...))

3. Electrical Utilities
3. 電気ユーティリティ
3.1. Use Case Description
3.1. ユースケースの説明

Many systems that an electrical utility deploys today rely on high availability and deterministic behavior of the underlying networks. Presented here are use cases for transmission, generation, and distribution, including key timing and reliability metrics. In addition, security issues and industry trends that affect the architecture of next-generation utility networks are discussed.


3.1.1. Transmission Use Cases
3.1.1. トランスミッションの使用例 Protection 保護

"Protection" means not only the protection of human operators but also the protection of the electrical equipment and the preservation of the stability and frequency of the grid. If a fault occurs in the transmission or distribution of electricity, then severe damage can occur to human operators, electrical equipment, and the grid itself, leading to blackouts.


Communication links, in conjunction with protection relays, are used to selectively isolate faults on high-voltage lines, transformers, reactors, and other important electrical equipment. The role of the teleprotection system is to selectively disconnect a faulty part by transferring command signals within the shortest possible time.

通信リンクは、保護リレーと組み合わせて、高圧線、変圧器、リアクトル、およびその他の重要な電気機器の障害を選択的に分離するために使用されます。遠隔保護システムの役割は、コマンド信号を可能な限り最短時間で転送することにより、障害のある部分を選択的に切断することです。 Key Criteria 主な基準

The key criteria for measuring teleprotection performance are command transmission time, dependability, and security. These criteria are defined by International Electrotechnical Commission (IEC) Standard 60834 [IEC-60834] as follows:

遠隔保護性能を測定するための重要な基準は、コマンドの送信時間、信頼性、およびセキュリティです。これらの基準は、International Electrotechnical Commission(IEC)Standard 60834 [IEC-60834]によって次のように定義されています。

o Transmission time (speed): The time between the moment when a state change occurs at the transmitter input and the moment of the corresponding change at the receiver output, including propagation delay. The overall operating time for a teleprotection system is the sum of (1) the time required to initiate the command at the transmitting end, (2) the propagation delay over the network (including equipment), and (3) the time required to make the necessary selections and decisions at the receiving end, including any additional delay due to a noisy environment.

o 送信時間(速度):送信機の入力で状態変化が発生した瞬間と、受信機の出力で対応する変化の瞬間との間の時間(伝播遅延を含む)。遠隔保護システムの全体的な動作時間は、(1)送信側でコマンドを開始するために必要な時間、(2)ネットワーク(機器を含む)を介した伝播遅延、および(3)必要な時間の合計です。ノイズの多い環境による追加の遅延を含む、受信側で必要な選択と決定。

o Dependability: The ability to issue and receive valid commands in the presence of interference and/or noise, by minimizing the Probability of Missing Commands (PMC). Dependability targets are typically set for a specific Bit Error Rate (BER) level.

o 信頼性:欠落しているコマンドの確率(PMC)を最小化することにより、干渉やノイズがある場合に有効なコマンドを発行および受信する機能。依存性の目標は通常、特定のビット誤り率(BER)レベルに設定されます。

o Security: The ability to prevent false tripping due to a noisy environment, by minimizing the Probability of Unwanted Commands (PUC). Security targets are also set for a specific BER level.

o セキュリティー:不要なコマンドの確率(PUC)を最小化することにより、ノイズの多い環境による誤ったトリップを防止する機能。セキュリティターゲットは、特定のBERレベルにも設定されます。

Additional elements of the teleprotection system that impact its performance include:


o Network bandwidth

o ネットワーク帯域幅

o Failure recovery capacity (aka resiliency)

o 障害回復能力(耐障害性) Fault Detection and Clearance Timing 障害検出とクリアランスのタイミング

Most power-line equipment can tolerate short circuits or faults for up to approximately five power cycles before sustaining irreversible damage or affecting other segments in the network. This translates to a total fault clearance time of 100 ms. As a safety precaution, however, the actual operation time of protection systems is limited to 70-80% of this period, including fault recognition time, command transmission time, and line breaker switching time.

ほとんどの電力線機器は、不可逆的な損傷を被ったり、ネットワーク内の他のセグメントに影響を与える前に、最大約5回の電源サイクルの短絡または障害に耐えることができます。これは、100 msの合計障害クリアランス時間に相当します。ただし、安全対策として、保護システムの実際の動作時間は、この期間の70〜80%に制限されています。これには、障害認識時間、コマンド送信時間、およびラインブレーカーの切り替え時間が含まれます。

Some system components, such as large electromechanical switches, require a particularly long time to operate and take up the majority of the total clearance time, leaving only a 10 ms window for the telecommunications part of the protection scheme, independent of the distance of travel. Given the sensitivity of the issue, new networks impose requirements that are even more stringent: IEC Standard 61850-5:2013 [IEC-61850-5:2013] limits the transfer time for protection messages to 1/4-1/2 cycle or 4-8 ms (for 60 Hz lines) for messages considered the most critical.

大型の電気機械式スイッチなどの一部のシステムコンポーネントは、動作して総クリアランス時間の大部分を占めるのに特に長い時間を必要とし、移動距離に関係なく、保護スキームの通信部分に10 msのウィンドウしか残しません。問題の感度を考えると、新しいネットワークはさらに厳しい要件を課します。IEC規格61850-5:2013 [IEC-61850-5:2013]は、保護メッセージの転送時間を1 / 4-1 / 2サイクルまたは最も重要と考えられるメッセージの場合、4〜8ミリ秒(60 Hzラインの場合)。 Symmetric Channel Delay 対称チャネル遅延

Teleprotection channels that are differential must be synchronous; this means that any delays on the transmit and receive paths must match each other. Ideally, teleprotection systems support zero asymmetric delay; typical legacy relays can tolerate delay discrepancies of up to 750 us.

差動の遠隔保護チャネルは同期している必要があります。これは、送信パスと受信パスの遅延が互いに一致している必要があることを意味します。理想的には、遠隔保護システムは非対称遅延ゼロをサポートします。典型的なレガシーリレーは、最大750 usの遅延の不一致を許容できます。

Some tools available for lowering delay variation below this threshold are as follows:


o For legacy systems using Time-Division Multiplexing (TDM), jitter buffers at the multiplexers on each end of the line can be used to offset delay variation by queuing sent and received packets. The length of the queues must balance the need to regulate the rate of transmission with the need to limit overall delay, as larger buffers result in increased latency.

o Time-Division Multiplexing(TDM;時分割多重)を使用するレガシーシステムの場合、回線の両端のマルチプレクサにあるジッタバッファを使用して、送受信パケットをキューイングすることにより、遅延変動を相殺できます。バッファが大きくなると遅延が増加するため、キューの長さは、伝送速度を調整する必要性と全体的な遅延を制限する必要性のバランスをとる必要があります。

o For jitter-prone IP networks, traffic management tools can ensure that the teleprotection signals receive the highest transmission priority to minimize jitter.

o ジッタが発生しやすいIPネットワークの場合、トラフィック管理ツールは、遠隔保護信号がジッタを最小限に抑えるために最高の送信優先順位を受け取ることを保証できます。

o Standard packet-based synchronization technologies, such as the IEEE 1588-2008 Precision Time Protocol (PTP) [IEEE-1588] and synchronous Ethernet (syncE) [syncE], can help keep networks stable by maintaining a highly accurate clock source on the various network devices.

o IEEE 1588-2008プレシジョンタイムプロトコル(PTP)[IEEE-1588]や同期イーサネット(syncE)[syncE]などの標準のパケットベースの同期テクノロジーは、さまざまなデバイスで高精度のクロックソースを維持することにより、ネットワークの安定性を維持ネットワークデバイス。 Teleprotection Network Requirements 遠隔保護ネットワークの要件

Table 1 captures the main network metrics. (These metrics are based on IEC Standard 61850-5:2013 [IEC-61850-5:2013].)

表1に、主要なネットワークメトリックを示します。 (これらのメトリックは、IEC規格61850-5:2013 [IEC-61850-5:2013]に基づいています。)

   |    Teleprotection Requirement   |            Attribute            |
   |      One-way maximum delay      |             4-10 ms             |
   |                                 |                                 |
   |    Asymmetric delay required    |               Yes               |
   |                                 |                                 |
   |          Maximum jitter         |   Less than 250 us (750 us for  |
   |                                 |           legacy IEDs)          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |            0.1% to 1%           |

Table 1: Teleprotection Network Requirements

表1:遠隔保護ネットワークの要件 Inter-trip Protection Scheme トリップ間保護スキーム

"Inter-tripping" is the signal-controlled tripping of a circuit breaker to complete the isolation of a circuit or piece of apparatus in concert with the tripping of other circuit breakers.


   |      Inter-trip Protection      |            Attribute            |
   |           Requirement           |                                 |
   |      One-way maximum delay      |               5 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |               0.1%              |

Table 2: Inter-trip Protection Network Requirements

表2:トリップ間保護ネットワークの要件 Current Differential Protection Scheme 現在の差動保護スキーム

Current differential protection is commonly used for line protection and is typically used to protect parallel circuits. At both ends of the lines, the current is measured by the differential relays; both relays will trip the circuit breaker if the current going into the line does not equal the current going out of the line. This type of protection scheme assumes that some form of communication is present between the relays at both ends of the line, to allow both relays to compare measured current values. Line differential protection schemes assume that the telecommunications delay between both relays is very low -- often as low as 5 ms. Moreover, as those systems are often not time-synchronized, they also assume that the delay over symmetric telecommunications paths is constant; this allows the comparison of current measurement values taken at exactly the same time.

電流差動保護は、一般的にライン保護に使用され、通常は並列回路の保護に使用されます。ラインの両端で、電流は差動リレーによって測定されます。ラインに流れる電流がラインから流れる電流と等しくない場合、両方のリレーが回路ブレーカーをトリップします。このタイプの保護スキームでは、回線の両端のリレー間に何らかの通信が存在し、両方のリレーが測定された電流値を比較できるようにすることを前提としています。ライン差動保護スキームでは、両方のリレー間の通信遅延が非常に小さい(多くの場合5 ms程度)と想定しています。さらに、これらのシステムは時間同期されていないことが多いため、対称的な通信パス上の遅延は一定であると想定しています。これにより、正確に同時に取得された現在の測定値を比較できます。

   | Current Differential Protection |            Attribute            |
   |           Requirement           |                                 |
   |      One-way maximum delay      |               5 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |               Yes               |
   |                                 |                                 |
   |          Maximum jitter         |   Less than 250 us (750 us for  |
   |                                 |           legacy IEDs)          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |               0.1%              |

Table 3: Current Differential Protection Metrics

表3:現在の差動保護メトリック Distance Protection Scheme 距離保護スキーム

The distance (impedance relay) protection scheme is based on voltage and current measurements. The network metrics are similar (but not identical) to the metrics for current differential protection.


   | Distance Protection Requirement |            Attribute            |
   |      One-way maximum delay      |               5 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |               0.1%              |

Table 4: Distance Protection Requirements

表4:距離保護の要件 Inter-substation Protection Signaling 変電所間保護シグナリング

This use case describes the exchange of sampled values and/or GOOSE (Generic Object Oriented Substation Events) messages between Intelligent Electronic Devices (IEDs) in two substations for protection and tripping coordination. The two IEDs are in master-slave mode.

この使用例では、保護とトリップ調整のために2つの変電所のインテリジェント電子デバイス(IED)間でサンプル値やGOOSE(汎用オブジェクト指向変電所イベント)メッセージを交換する方法について説明します。 2つのIEDはマスタースレーブモードです。

The Current Transformer or Voltage Transformer (CT/VT) in one substation sends the sampled analog voltage or current value to the Merging Unit (MU) over hard wire. The MU sends the time-synchronized sampled values (as specified by IEC 61850-9-2:2011 [IEC-61850-9-2:2011]) to the slave IED. The slave IED forwards the information to the master IED in the other substation. The master IED makes the determination (for example, based on sampled value differentials) to send a trip command to the originating IED. Once the slave IED/relay receives the GOOSE message containing the command to trip the breaker, it opens the breaker. It then sends a confirmation message back to the master. All data exchanges between IEDs are through sampled values and/or GOOSE messages.

1つの変電所の変流器または変圧器(CT / VT)は、サンプリングされたアナログ電圧または電流値を、配線を介してマージユニット(MU)に送信します。 MUは時間同期されたサンプル値(IEC 61850-9-2:2011 [IEC-61850-9-2:2011]で指定)をスレーブIEDに送信します。スレーブIEDは、他の変電所のマスターIEDに情報を転送します。マスターIEDは、(たとえば、サンプリングされた値の差分に基づいて)トリップコマンドを送信元のIEDに送信することを決定します。スレーブIED /リレーは、ブレーカーをトリップするコマンドを含むGOOSEメッセージを受信すると、ブレーカーを開きます。次に、確認メッセージをマスターに送り返します。 IED間のすべてのデータ交換は、サンプル値やGOOSEメッセージを介して行われます。

   |   Inter-substation Protection   |            Attribute            |
   |           Requirement           |                                 |
   |      One-way maximum delay      |               5 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |                1%               |

Table 5: Inter-substation Protection Requirements

表5:変電所間の保護要件 Intra-substation Process Bus Communications 変電所内プロセスバス通信

This use case describes the data flow from the CT/VT to the IEDs in the substation via the MU. The CT/VT in the substation sends the analog voltage or current values to the MU over hard wire. The MU converts the analog values into digital format (typically time-synchronized sampled values as specified by IEC 61850-9-2:2011 [IEC-61850-9-2:2011]) and sends them to the IEDs in the substation. The Global Positioning System (GPS) Master Clock can send 1PPS or IRIG-B format to the MU through a serial port or IEEE 1588 protocol via a network. 1PPS (One Pulse Per Second) is an electrical signal that has a width of less than 1 second and a sharply rising or abruptly falling edge that accurately repeats once per second. 1PPS signals are output by radio beacons, frequency standards, other types of precision oscillators, and some GPS receivers. IRIG (Inter-Range Instrumentation Group) time codes are standard formats for transferring timing information. Atomic frequency standards and GPS receivers designed for precision timing are often equipped with an IRIG output. Process bus communication using IEC 61850-9-2:2011 [IEC-61850-9-2:2011] simplifies connectivity within the substation, removes the requirement for multiple serial connections, and removes the slow serial-bus architectures that are typically used. This also ensures increased flexibility and increased speed with the use of multicast messaging between multiple devices.

この使用例では、CT / VTから変電所のIEDへのMU経由のデータフローについて説明します。変電所のCT / VTは、ハードワイヤーを介してMUにアナログ電圧または電流値を送信します。 MUはアナログ値をデジタル形式(通常、IEC 61850-9-2:2011 [IEC-61850-9-2:2011]で指定されているように時間同期されたサンプリング値)に変換し、変電所のIEDに送信します。全地球測位システム(GPS)マスタークロックは、ネットワーク経由でシリアルポートまたはIEEE 1588プロトコルを介して1PPSまたはIRIG-B形式をMUに送信できます。 1PPS(One Pulse Per Second)は、1秒未満の幅と、1秒に1回正確に繰り返す鋭い立ち上がりエッジまたは突然の立ち下がりエッジを持つ電気信号です。 1PPS信号は、無線ビーコン、周波数標準、その他のタイプの高精度発振器、および一部のGPS受信機によって出力されます。 IRIG(Inter-Range Instrumentation Group)タイムコードは、タイミング情報を転送するための標準形式です。正確なタイミングのために設計された原子周波数標準とGPSレシーバーは、IRIG出力を備えていることがよくあります。 IEC 61850-9-2:2011 [IEC-61850-9-2:2011]を使用したプロセスバス通信は、変電所内の接続を簡素化し、複数のシリアル接続の要件を取り除き、通常使用される低速のシリアルバスアーキテクチャを取り除きます。これにより、複数のデバイス間でマルチキャストメッセージングを使用することで、柔軟性と速度が向上します。

   |   Intra-substation Protection   |            Attribute            |
   |           Requirement           |                                 |
   |      One-way maximum delay      |               5 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |            Yes or No            |
   |                                 |                                 |
   |           Packet loss           |               0.1%              |

Table 6: Intra-substation Protection Requirements

表6:変電所内保護の要件 Wide-Area Monitoring and Control Systems 広域監視および制御システム

The application of synchrophasor measurement data from Phasor Measurement Units (PMUs) to wide-area monitoring and control systems promises to provide important new capabilities for improving system stability. Access to PMU data enables more-timely situational awareness over larger portions of the grid than what has been possible historically with normal SCADA (Supervisory Control and Data Acquisition) data. Handling the volume and the real-time nature of synchrophasor data presents unique challenges for existing application architectures. The Wide-Area Management System (WAMS) makes it possible for the condition of the bulk power system to be observed and understood in real time so that protective, preventative, or corrective action can be taken. Because of the very high sampling rate of measurements and the strict requirement for time synchronization of the samples, the WAMS has stringent telecommunications requirements in an IP network, as captured in Table 7:

フェーザ測定ユニット(PMU)からのシンクロフェーザ測定データを広域監視および制御システムに適用すると、システムの安定性を向上させるための重要な新機能が提供されます。 PMUデータへのアクセスにより、通常のSCADA(監視制御およびデータ収集)データでこれまで可能であったものよりも、グリッドのより大きな部分でよりタイムリーな状況認識が可能になります。シンクロフェーザーデータの量とリアルタイムの性質を処理することは、既存のアプリケーションアーキテクチャに固有の課題を提示します。広域管理システム(WAMS)を使用すると、大容量電力システムの状態をリアルタイムで監視および理解できるため、保護、予防、または是正措置を講じることができます。測定のサンプリングレートが非常に高く、サンプルの時間同期が厳密に要求されるため、表7に示すように、WAMSにはIPネットワークでの厳しい電気通信要件があります。

   |         WAMS Requirement        |            Attribute            |
   |      One-way maximum delay      |              50 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |    multipoint, multipoint to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             100 kbps            |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |                1%               |
   |                                 |                                 |
   |     Consecutive packet loss     |     At least one packet per     |
   |                                 |    application cycle must be    |
   |                                 |            received.            |

Table 7: WAMS Special Communication Requirements

表7:WAMSの特別な通信要件 WAN Engineering Guidelines Requirement Classification WANエンジニアリングガイドラインの要件分類

The IEC has published a technical report (TR) that offers guidelines on how to define and deploy Wide-Area Networks (WANs) for the interconnection of electric substations, generation plants, and SCADA operation centers. IEC TR 61850-90-12:2015 [IEC-61850-90-12:2015] provides four classes of WAN communication requirements, as summarized in Table 8:

IECは、変電所、発電所、SCADAオペレーションセンターの相互接続用の広域ネットワーク(WAN)を定義および展開する方法に関するガイドラインを提供する技術レポート(TR)を公開しています。 IEC TR 61850-90-12:2015 [IEC-61850-90-12:2015]は、表8に要約されているように、WAN通信要件の4つのクラスを提供します。

   |      WAN       |  Class WA | Class WB | Class WC |    Class WD    |
   |  Requirement   |           |          |          |                |
   |  Application   |    EHV    | HV (High |    MV    |    General-    |
   |     field      |  (Extra-  | Voltage) | (Medium  |    purpose     |
   |                |    High   |          | Voltage) |                |
   |                |  Voltage) |          |          |                |
   |                |           |          |          |                |
   |    Latency     |    5 ms   |  10 ms   |  100 ms  |    >100 ms     |
   |                |           |          |          |                |
   |     Jitter     |   10 us   |  100 us  |   1 ms   |     10 ms      |
   |                |           |          |          |                |
   |    Latency     |   100 us  |   1 ms   |  10 ms   |     100 ms     |
   |   asymmetry    |           |          |          |                |
   |                |           |          |          |                |
   | Time accuracy  |    1 us   |  10 us   |  100 us  |  10 to 100 ms  |
   |                |           |          |          |                |
   |      BER       |  10^-7 to | 10^-5 to |  10^-3   |                |
   |                |   10^-6   |  10^-4   |          |                |
   |                |           |          |          |                |
   | Unavailability |  10^-7 to | 10^-5 to |  10^-3   |                |
   |                |   10^-6   |  10^-4   |          |                |
   |                |           |          |          |                |
   | Recovery delay |    Zero   |  50 ms   |   5 s    |      50 s      |
   |                |           |          |          |                |
   | Cybersecurity  | Extremely |   High   |  Medium  |     Medium     |
   |                |    high   |          |          |                |

Table 8: Communication Requirements (Courtesy of IEC TR 61850-90-12:2015)

表8:通信要件(IEC TR 61850-90-12:2015の礼儀)

3.1.2. Generation Use Case
3.1.2. ジェネレーションユースケース

Energy generation systems are complex infrastructures that require control of both the generated power and the generation infrastructure.

エネルギー生成システムは、生成された電力と生成インフラストラクチャの両方の制御を必要とする複雑なインフラストラクチャです。 Control of the Generated Power 発生電力の制御

The electrical power generation frequency must be maintained within a very narrow band. Deviations from the acceptable frequency range are detected, and the required signals are sent to the power plants for frequency regulation.


Automatic Generation Control (AGC) is a system for adjusting the power output of generators at different power plants, in response to changes in the load.


   |     FCAG (Frequency Control     |            Attribute            |
   |      Automatic Generation)      |                                 |
   |           Requirement           |                                 |
   |      One-way maximum delay      |              500 ms             |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |          Point to point         |
   |                                 |                                 |
   |            Bandwidth            |             20 kbps             |
   |                                 |                                 |
   |           Availability          |             99.999%             |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |               N/A               |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |                1%               |

Table 9: FCAG Communication Requirements

表9:FCAG通信の要件 Control of the Generation Infrastructure 発電インフラの管理

The control of the generation infrastructure combines requirements from industrial automation systems and energy generation systems. This section describes the use case for control of the generation infrastructure of a wind turbine.


Figure 1 presents the subsystems that operate a wind turbine.


                       |  +-----------------+
                       |  |   +----+        |
                       |  |   |WTRM| WGEN   |
                  WROT x==|===|    |        |
                       |  |   +----+    WCNV|
                       |  |WNAC             |
                       |  +---+---WYAW---+--+
                       |      |          |
                       |      |          |        +----+
                              |WTRF      |        |WMET|
                              |          |        |    |
                       Wind Turbine      |        +--+-+
                       Controller        |           |
                         WTUR |          |           |
                         WREP |          |           |
                         WSLG |          |           |
                         WALG |     WTOW |           |

Figure 1: Wind Turbine Control Network


The subsystems shown in Figure 1 include the following:


o WROT (rotor control)

o WROT(ローターコントロール)

o WNAC (nacelle control) (nacelle: housing containing the generator)

o WNAC(ナセル制御)(ナセル:発電機を含むハウジング)

o WTRM (transmission control)

o WTRM(伝送制御)

o WGEN (generator)

o WGEN(ジェネレーター)

o WYAW (yaw controller) (of the tower head)

o WYAW(ヨーコントローラー)(タワーヘッドの)

o WCNV (in-turbine power converter)

o WCNV(タービンパワーコンバーター)

o WTRF (wind turbine transformer information) o WMET (external meteorological station providing real-time information to the tower's controllers)

o WTRF(風力タービン変圧器情報)o WMET(タワーのコントローラーにリアルタイムの情報を提供する外部気象ステーション)

o WTUR (wind turbine general information)

o WTUR(風力タービンの一般情報)

o WREP (wind turbine report information)

o WREP(風力タービンレポート情報)

o WSLG (wind turbine state log information)

o WSLG(風力タービンの状態ログ情報)

o WALG (wind turbine analog log information)

o WALG(風力タービンのアナログログ情報)

o WTOW (wind turbine tower information)

o WTOW(風力タービンタワー情報)

Traffic characteristics relevant to the network planning and dimensioning process in a wind turbine scenario are listed below. The values in this section are based mainly on the relevant references [Ahm14] and [Spe09]. Each logical node (Figure 1) is a part of the metering network and produces analog measurements and status information that must comply with their respective data-rate constraints.


   | Subsystem | Sensor |  Analog  | Data Rate |   Status  | Data Rate |
   |           | Count  |  Sample  | (bytes/s) |   Sample  | (bytes/s) |
   |           |        |  Count   |           |   Count   |           |
   |    WROT   |   14   |    9     |    642    |     5     |     10    |
   |           |        |          |           |           |           |
   |    WTRM   |   18   |    10    |    2828   |     8     |     16    |
   |           |        |          |           |           |           |
   |    WGEN   |   14   |    12    |   73764   |     2     |     4     |
   |           |        |          |           |           |           |
   |    WCNV   |   14   |    12    |   74060   |     2     |     4     |
   |           |        |          |           |           |           |
   |    WTRF   |   12   |    5     |   73740   |     2     |     4     |
   |           |        |          |           |           |           |
   |    WNAC   |   12   |    9     |    112    |     3     |     6     |
   |           |        |          |           |           |           |
   |    WYAW   |   7    |    8     |    220    |     4     |     8     |
   |           |        |          |           |           |           |
   |    WTOW   |   4    |    1     |     8     |     3     |     6     |
   |           |        |          |           |           |           |
   |    WMET   |   7    |    7     |    228    |     -     |     -     |

Table 10: Wind Turbine Data-Rate Constraints


QoS constraints for different services are presented in Table 11. These constraints are defined by IEEE Standard 1646 [IEEE-1646] and IEC Standard 61400 Part 25 [IEC-61400-25].

さまざまなサービスのQoS制約を表11に示します。これらの制約は、IEEE標準1646 [IEEE-1646]およびIEC標準61400パート25 [IEC-61400-25]で定義されています。

   |       Service       | Latency | Reliability |   Packet Loss Rate  |
   |  Analog measurement |  16 ms  |    99.99%   |        <10^-6       |
   |                     |         |             |                     |
   |  Status information |  16 ms  |    99.99%   |        <10^-6       |
   |                     |         |             |                     |
   |  Protection traffic |   4 ms  |   100.00%   |        <10^-9       |
   |                     |         |             |                     |
   |    Reporting and    |   1 s   |    99.99%   |        <10^-6       |
   |       logging       |         |             |                     |
   |                     |         |             |                     |
   |  Video surveillance |   1 s   |    99.00%   |     No specific     |
   |                     |         |             |     requirement     |
   |                     |         |             |                     |
   | Internet connection |  60 min |    99.00%   |     No specific     |
   |                     |         |             |     requirement     |
   |                     |         |             |                     |
   |   Control traffic   |  16 ms  |   100.00%   |        <10^-9       |
   |                     |         |             |                     |
   |     Data polling    |  16 ms  |    99.99%   |        <10^-6       |

Table 11: Wind Turbine Reliability and Latency Constraints

表11:風力タービンの信頼性と遅延の制約 Intra-domain Network Considerations ドメイン内ネットワークの考慮事項

A wind turbine is composed of a large set of subsystems, including sensors and actuators that require time-critical operation. The reliability and latency constraints of these different subsystems are shown in Table 11. These subsystems are connected to an intra-domain network that is used to monitor and control the operation of the turbine and connect it to the SCADA subsystems. The different components are interconnected using fiber optics, industrial buses, industrial Ethernet, EtherCAT [EtherCAT], or a combination thereof. Industrial signaling and control protocols such as Modbus [MODBUS], PROFIBUS [PROFIBUS], PROFINET [PROFINET], and EtherCAT are used directly on top of the Layer 2 transport or encapsulated over TCP/IP.

風力タービンは、タイムクリティカルな動作を必要とするセンサーやアクチュエーターなど、多数のサブシステムで構成されています。これらのさまざまなサブシステムの信頼性と遅延の制約を表11に示します。これらのサブシステムは、タービンの動作を監視および制御し、それをSCADAサブシステムに接続するために使用されるドメイン内ネットワークに接続されます。さまざまなコンポーネントは、光ファイバー、産業用バス、産業用イーサネット、EtherCAT [EtherCAT]、またはそれらの組み合わせを使用して相互接続されます。 Modbus [MODBUS]、PROFIBUS [PROFIBUS]、PROFINET [PROFINET]、EtherCATなどの産業用シグナリングおよび制御プロトコルは、レイヤー2トランスポート上で直接使用されるか、TCP / IPでカプセル化されます。

The data collected from the sensors and condition-monitoring systems is multiplexed onto fiber cables for transmission to the base of the tower and to remote control centers. The turbine controller continuously monitors the condition of the wind turbine and collects statistics on its operation. This controller also manages a large number of switches, hydraulic pumps, valves, and motors within the wind turbine.


There is usually a controller at the bottom of the tower and also in the nacelle. The communication between these two controllers usually takes place using fiber optics instead of copper links. Sometimes, a third controller is installed in the hub of the rotor and manages the pitch of the blades. That unit usually communicates with the nacelle unit using serial communications.

通常、塔の下部とナセルにもコントローラーがあります。これら2つのコントローラー間の通信は、通常、銅線リンクの代わりに光ファイバーを使用して行われます。時々、ローターのハブに3番目のコントローラーが取り付けられ、ブレードのピッチを管理します。そのユニットは通常、シリアル通信を使用してナセルユニットと通信します。 Inter-domain Network Considerations ドメイン間ネットワークの考慮事項

A remote control center belonging to a grid operator regulates the power output, enables remote actuation, and monitors the health of one or more wind parks in tandem. It connects to the local control center in a wind park over the Internet (Figure 2) via firewalls at both ends. The Autonomous System (AS) path between the local control center and the wind park typically involves several ISPs at different tiers. For example, a remote control center in Denmark can regulate a wind park in Greece over the normal public AS path between the two locations.


   |              |
   |              |
   | Wind Park #1 +----+
   |              |    |      XXXXXX
   |              |    |      X    XXXXXXXX           +----------------+
   +--------------+    |   XXXX    X      XXXXX       |                |
                       +---+                XXX       | Remote Control |
                           XXX    Internet       +----+     Center     |
                       +----+X                XXX     |                |
   +--------------+    |    XXXXXXX             XX    |                |
   |              |    |          XX     XXXXXXX      +----------------+
   |              |    |            XXXXX
   | Wind Park #2 +----+
   |              |
   |              |

Figure 2: Wind Turbine Control via Internet


The remote control center is part of the SCADA system, setting the desired power output to the wind park and reading back the result once the new power output level has been set. Traffic between the remote control center and the wind park typically consists of protocols like IEC 60870-5-104 [IEC-60870-5-104], OPC XML-Data Access

リモートコントロールセンターはSCADAシステムの一部であり、ウィンドパークに必要な電力出力を設定し、新しい電力出力レベルが設定されると結果を読み取ります。リモートコントロールセンターとウィンドパーク間のトラフィックは、通常、IEC 60870-5-104 [IEC-60870-5-104]、OPC XML-Data Accessなどのプロトコルで構成されます。

(XML-DA) [OPCXML], Modbus [MODBUS], and SNMP [RFC3411]. At the time of this writing, traffic flows between the remote control center and the wind park are best effort. QoS requirements are not strict, so no Service Level Agreements (SLAs) or service-provisioning mechanisms (e.g., VPNs) are employed. In the case of such events as equipment failure, tolerance for alarm delay is on the order of minutes, due to redundant systems already in place.

(XML-DA)[OPCXML]、Modbus [MODBUS]、SNMP [RFC3411]。この記事の執筆時点では、リモートコントロールセンターとウィンドパーク間のトラフィックフローがベストエフォートです。 QoS要件は厳密ではないため、サービスレベルアグリーメント(SLA)やサービスプロビジョニングメカニズム(VPNなど)は採用されていません。機器の故障などのイベントの場合、冗長システムがすでに設置されているため、アラーム遅延の許容範囲は数分です。

Future use cases will require bounded latency, bounded jitter, and extraordinarily low packet loss for inter-domain traffic flows due to the softwarization and virtualization of core wind-park equipment (e.g., switches, firewalls, and SCADA server components). These factors will create opportunities for service providers to install new services and dynamically manage them from remote locations. For example, to enable failover of a local SCADA server, a SCADA server in another wind-park site (under the administrative control of the same operator) could be utilized temporarily (Figure 3). In that case, local traffic would be forwarded to the remote SCADA server, and existing intra-domain QoS and timing parameters would have to be met for inter-domain traffic flows.


   |              |
   |              |
   | Wind Park #1 +----+
   |              |    |      XXXXXX
   |              |    |      X    XXXXXXXX           +----------------+
   +--------------+    |   XXXX           XXXXX       |                |
                       +---+      Operator-   XXX     | Remote Control |
                           XXX    Administered   +----+     Center     |
                       +----+X    WAN         XXX     |                |
   +--------------+    |    XXXXXXX             XX    |                |
   |              |    |          XX     XXXXXXX      +----------------+
   |              |    |            XXXXX
   | Wind Park #2 +----+
   |              |
   |              |

Figure 3: Wind Turbine Control via Operator-Administered WAN


3.1.3. Distribution Use Case
3.1.3. 配布のユースケース Fault Location, Isolation, and Service Restoration (FLISR) 障害の場所、分離、およびサービスの復元(FLISR)

"Fault Location, Isolation, and Service Restoration (FLISR)" refers to the ability to automatically locate the fault, isolate the fault, and restore service in the distribution network. This will likely be the first widespread application of distributed intelligence in the grid.


The static power-switch status (open/closed) in the network dictates the power flow to secondary substations. Reconfiguring the network in the event of a fault is typically done manually on site to energize/de-energize alternate paths. Automating the operation of substation switchgear allows the flow of power to be altered automatically under fault conditions.


FLISR can be managed centrally from a Distribution Management System (DMS) or executed locally through distributed control via intelligent switches and fault sensors.

FLISRは、Distribution Management System(DMS)から集中管理したり、インテリジェントスイッチや障害センサーを介した分散制御によりローカルで実行したりできます。

   |        FLISR Requirement        |            Attribute            |
   |      One-way maximum delay      |              80 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |              40 ms              |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |    multipoint, multipoint to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Depends on customer impact   |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |               0.1%              |

Table 12: FLISR Communication Requirements


3.2. Electrical Utilities Today
3.2. 今日の電気事業

Many utilities still rely on complex environments consisting of multiple application-specific proprietary networks, including TDM networks.


In this kind of environment, there is no mixing of Operation Technology (OT) and IT applications on the same network, and information is siloed between operational areas.


Specific calibration of the full chain is required; this is costly.


This kind of environment prevents utility operations from realizing operational efficiency benefits, visibility, and functional integration of operational information across grid applications and data networks.


In addition, there are many security-related issues, as discussed in the following section.


3.2.1. Current Security Practices and Their Limitations
3.2.1. 現在のセキュリティ慣行とその制限

Grid-monitoring and control devices are already targets for cyber attacks, and legacy telecommunications protocols have many intrinsic network-related vulnerabilities. For example, the Distributed Network Protocol (DNP3) [IEEE-1815], Modbus, PROFIBUS/PROFINET, and other protocols are designed around a common paradigm of "request and respond". Each protocol is designed for a master device such as an HMI (Human-Machine Interface) system to send commands to subordinate slave devices to perform data retrieval (reading inputs) or control functions (writing to outputs). Because many of these protocols lack authentication, encryption, or other basic security measures, they are prone to network-based attacks, allowing a malicious actor or attacker to utilize the request-and-respond system as a mechanism for functionality similar to command and control. Specific security concerns common to most industrial-control protocols (including utility telecommunications protocols) include the following:

グリッド監視および制御デバイスはすでにサイバー攻撃の標的となっており、レガシー通信プロトコルには、ネットワークに関連する多くの本質的な脆弱性があります。たとえば、分散ネットワークプロトコル(DNP3)[IEEE-1815]、Modbus、PROFIBUS / PROFINET、およびその他のプロトコルは、「要求と応答」の一般的なパラダイムを中心に設計されています。各プロトコルは、HMI(Human-Machine Interface)システムなどのマスターデバイス用に設計されており、コマンドを下位スレーブデバイスに送信して、データの取得(入力の読み取り)または制御機能(出力への書き込み)を実行します。これらのプロトコルの多くには認証、暗号化、またはその他の基本的なセキュリティ対策がないため、ネットワークベースの攻撃を受けやすく、悪意のある攻撃者または攻撃者がコマンドアンドコントロールと同様の機能のメカニズムとしてリクエストアンドレスポンスシステムを利用できるようになります。ほとんどの産業用制御プロトコル(公益事業通信プロトコルを含む)に共通する特定のセキュリティ問題には、次のものがあります。

o Network or transport errors (e.g., malformed packets or excessive latency) can cause protocol failure.

o ネットワークまたはトランスポートエラー(不正なパケットや過度のレイテンシなど)は、プロトコル障害の原因となる可能性があります。

o Protocol commands may be available that are capable of forcing slave devices into inoperable states, including powering devices off, forcing them into a listen-only state, or disabling alarming.

o デバイスの電源オフ、リッスン専用状態への強制、またはアラームの無効化など、スレーブデバイスを動作不能状態に強制できるプロトコルコマンドが使用できる場合があります。

o Protocol commands may be available that are capable of interrupting processes (e.g., restarting communications).

o プロセスを中断する(通信を再開するなど)ことができるプロトコルコマンドを使用できる場合があります。

o Protocol commands may be available that are capable of clearing, erasing, or resetting diagnostic information such as counters and diagnostic registers.

o カウンタや診断レジスタなどの診断情報をクリア、消去、またはリセットできるプロトコルコマンドを使用できる場合があります。

o Protocol commands may be available that are capable of requesting sensitive information about the controllers, their configurations, or other need-to-know information.

o コントローラー、その構成、またはその他の知っておくべき情報に関する機密情報を要求できるプロトコルコマンドが使用できる場合があります。

o Most protocols are application-layer protocols transported over TCP; it is therefore easy to transport commands over non-standard ports or inject commands into authorized traffic flows.

o ほとんどのプロトコルは、TCPを介して転送されるアプリケーション層プロトコルです。したがって、非標準ポートを介してコマンドを転送したり、許可されたトラフィックフローにコマンドを挿入したりするのは簡単です。

o Protocol commands may be available that are capable of broadcasting messages to many devices at once (i.e., a potential DoS).

o 一度に多くのデバイスにメッセージをブロードキャストできるプロトコルコマンド(つまり、潜在的なDoS)が利用できる場合があります。

o Protocol commands may be available that will query the device network to obtain defined points and their values (i.e., perform a configuration scan).

o 定義されたポイントとその値を取得するためにデバイスネットワークにクエリを実行する(つまり、構成スキャンを実行する)プロトコルコマンドが利用できる場合があります。

o Protocol commands may be available that will list all available function codes (i.e., perform a function scan).

o 使用可能なすべての機能コードをリストするプロトコルコマンドが使用できる場合があります(つまり、機能スキャンを実行します)。

These inherent vulnerabilities, along with increasing connectivity between IT and OT networks, make network-based attacks very feasible. By injecting malicious protocol commands, an attacker could take control over the target process. Altering legitimate protocol traffic can also alter information about a process and disrupt the legitimate controls that are in place over that process. A man-in-the-middle attack could result in (1) improper control over a process and (2) misrepresentation of data that is sent back to operator consoles.


3.3. Electrical Utilities in the Future
3.3. 将来の電気ユーティリティ

The business and technology trends that are sweeping the utility industry will drastically transform the utility business from the way it has been for many decades. At the core of many of these changes is a drive to modernize the electrical grid with an integrated telecommunications infrastructure. However, interoperability concerns, legacy networks, disparate tools, and stringent security requirements all add complexity to the grid's transformation. Given the range and diversity of the requirements that should be addressed by the next-generation telecommunications infrastructure, utilities need to adopt a holistic architectural approach to integrate the electrical grid with digital telecommunications across the entire power delivery chain.


The key to modernizing grid telecommunications is to provide a common, adaptable, multi-service network infrastructure for the entire utility organization. Such a network serves as the platform for current capabilities while enabling future expansion of the network to accommodate new applications and services.


To meet this diverse set of requirements both today and in the future, the next-generation utility telecommunications network will be based on an open-standards-based IP architecture. An end-to-end IP architecture takes advantage of nearly three decades of IP technology development, facilitating interoperability and device management across disparate networks and devices, as has already been demonstrated in many mission-critical and highly secure networks.


IPv6 is seen as a future telecommunications technology for the smart grid; the IEC and different national committees have mandated a specific ad hoc group (AHG8) to define the strategy for migration to IPv6 for all the IEC Technical Committee 57 (TC 57) power automation standards. The AHG8 has finalized its work on the migration strategy, and IEC TR 62357-200:2015 [IEC-62357-200:2015] has been issued.

IPv6は、スマートグリッドの将来の通信技術と見なされています。 IECおよびさまざまな国内委員会は、すべてのIEC技術委員会57(TC 57)電力自動化規格のIPv6への移行戦略を定義する特定のアドホックグループ(AHG8)を義務付けています。 AHG8は移行戦略に関する作業を完了し、IEC TR 62357-200:2015 [IEC-62357-200:2015]が発行されました。

Cloud-based SCADA systems will control and monitor the critical and non-critical subsystems of generation systems -- for example, wind parks.


3.3.1. Migration to Packet-Switched Networks
3.3.1. パケット交換ネットワークへの移行

Throughout the world, utilities are increasingly planning for a future based on smart-grid applications requiring advanced telecommunications systems. Many of these applications utilize packet connectivity for communicating information and control signals across the utility's WAN, made possible by technologies such as Multiprotocol Label Switching (MPLS). The data that traverses the utility WAN includes:


o Grid monitoring, control, and protection data

o グリッドの監視、制御、保護データ

o Non-control grid data (e.g., asset data for condition monitoring)

o 非制御グリッドデータ(例:状態監視用の資産データ)

o Data (e.g., voice and video) related to physical safety and security

o 物理的な安全性とセキュリティに関連するデータ(例:音声とビデオ)

o Remote worker access to corporate applications (voice, maps, schematics, etc.)

o リモートワーカーによる企業アプリケーションへのアクセス(音声、マップ、回路図など)

o Field area network Backhaul for smart metering

o スマートメータリングのためのフィールドエリアネットワークバックホール

o Distribution-grid management

o 配電網管理

o Enterprise traffic (email, collaboration tools, business applications)

o エンタープライズトラフィック(メール、コラボレーションツール、ビジネスアプリケーション)

WANs support this wide variety of traffic to and from substations, the transmission and distribution grid, and generation sites; between control centers; and between work locations and data centers. To maintain this rapidly expanding set of applications, many utilities are taking steps to evolve present TDM-based and frame relay infrastructures to packet systems. Packet-based networks are designed to provide greater functionalities and higher levels of service for applications, while continuing to deliver reliability and deterministic (real-time) traffic support.


3.3.2. Telecommunications Trends
3.3.2. 通信トレンド

These general telecommunications topics are provided in addition to the use cases that have been addressed so far. These include both current and future telecommunications-related topics that should be factored into the network architecture and design.

これらの一般的な電気通信のトピックは、これまでに対処された使用例に加えて提供されます。これらには、ネットワークのアーキテクチャと設計に織り込む必要がある現在および将来の通信関連のトピックが含まれます。 General Telecommunications Requirements 一般的な通信要件

o IP connectivity everywhere

o どこでもIP接続

o Monitoring services everywhere, and from different remote centers

o あらゆる場所、およびさまざまなリモートセンターからの監視サービス

o Moving services to a virtual data center

o 仮想データセンターへのサービスの移動

o Unified access to applications/information from the corporate network

o 企業ネットワークからのアプリケーション/情報への統合アクセス

o Unified services

o 統合サービス

o Unified communications solutions

o ユニファイドコミュニケーションソリューション

o Mix of fiber and microwave technologies - obsolescence of the Synchronous Optical Network / Synchronous Digital Hierarchy (SONET/SDH) or TDM

o ファイバーとマイクロ波技術の混合-同期光ネットワーク/同期デジタル階層(SONET / SDH)またはTDMの廃止

o Standardizing grid telecommunications protocols to open standards, to ensure interoperability

o 相互運用性を確保するために、グリッド通信プロトコルをオープンスタンダードに標準化

o Reliable telecommunications for transmission and distribution substations

o 送電および配電変電所のための信頼できる通信

o IEEE 1588 time-synchronization client/server capabilities

o IEEE 1588時刻同期クライアント/サーバー機能

o Integration of multicast design

o マルチキャスト設計の統合

o Mapping of QoS requirements

o QoS要件のマッピング

o Enabling future network expansion

o 将来のネットワーク拡張を可能にする

o Substation network resilience

o 変電所ネットワークの回復力

o Fast convergence design

o 高速収束設計

o Scalable headend design

o スケーラブルなヘッドエンド設計

o Defining SLAs and enabling SLA monitoring o Integration of 3G/4G technologies and future technologies

o SLAの定義とSLA監視の有効化o 3G / 4Gテクノロジーと将来のテクノロジーの統合

o Ethernet connectivity for station bus architecture

o ステーションバスアーキテクチャのイーサネット接続

o Ethernet connectivity for process bus architecture

o プロセスバスアーキテクチャのイーサネット接続

o Protection, teleprotection, and PMUs on IP

o IP上の保護、遠隔保護、およびPMU Specific Network Topologies of Smart-Grid Applications スマートグリッドアプリケーションの特定のネットワークトポロジ

Utilities often have very large private telecommunications networks that can cover an entire territory/country. Until now, the main purposes of these networks have been to (1) support transmission network monitoring, control, and automation, (2) support remote control of generation sites, and (3) provide FCAPS (Fault, Configuration, Accounting, Performance, and Security) services from centralized network operation centers.


Going forward, one network will support the operation and maintenance of electrical networks (generation, transmission, and distribution), voice and data services for tens of thousands of employees and for exchanges with neighboring interconnections, and administrative services. To meet those requirements, a utility may deploy several physical networks leveraging different technologies across the country -- for instance, an optical network and a microwave network. Each protection and automation system between two points has two telecommunications circuits, one on each network. Path diversity between two substations is key. Regardless of the event type (hurricane, ice storm, etc.), one path needs to stay available so the system can still operate.

今後は、1つのネットワークで、電気ネットワーク(生成、伝送、および配電)の運用と保守、数万人の従業員向けの音声およびデータサービス、近隣の相互接続との交換、および管理サービスをサポートします。これらの要件を満たすために、公益事業者は、光ネットワークやマイクロ波ネットワークなど、全国のさまざまなテクノロジーを活用するいくつかの物理ネットワークを展開する場合があります。 2つのポイント間の各保護および自動化システムには、各ネットワークに1つずつ、2つの電気通信回路があります。 2つの変電所間の経路の多様性が鍵となります。イベントのタイプ(ハリケーン、アイスストームなど)に関係なく、システムが引き続き動作できるように、1つのパスを使用可能にしておく必要があります。

In the optical network, signals are transmitted over more than tens of thousands of circuits using fiber optic links, microwave links, and telephone cables. This network is the nervous system of the utility's power transmission operations. The optical network represents tens of thousands of kilometers of cable deployed along the power lines, with individual runs as long as 280 km.

光ネットワークでは、光ファイバーリンク、マイクロ波リンク、電話ケーブルを使用して、信号が数万を超える回路を介して送信されます。このネットワークは、電力会社の送電業務の神経系です。光ネットワークは、電力線に沿って配置された数万キロメートルのケーブルを表し、個別の配線は280 kmです。 Precision Time Protocol 高精度時間プロトコル

Some utilities do not use GPS clocks in generation substations. One of the main reasons is that some of the generation plants are 30 to 50 meters deep underground and the GPS signal can be weak and unreliable. Instead, atomic clocks are used. Clocks are synchronized amongst each other. Rubidium clocks provide clock and 1 ms timestamps for IRIG-B.

一部のユーティリティは、発電所の変電所でGPSクロックを使用していません。主な理由の1つは、一部の発電プラントが地下30〜50メートルの深さにあり、GPS信号が弱くて信頼できない可能性があることです。代わりに、原子時計が使用されます。クロックは互いに同期されます。 Rubidiumクロックは、IRIG-Bのクロックと1ミリ秒のタイムスタンプを提供します。

Some companies plan to transition to PTP [IEEE-1588], distributing the synchronization signal over the IP/MPLS network. PTP provides a mechanism for synchronizing the clocks of participating nodes to a high degree of accuracy and precision.

一部の企業は、PTP [IEEE-1588]に移行して、同期信号をIP / MPLSネットワーク経由で配信することを計画しています。 PTPは、参加するノードのクロックを高度な精度で正確に同期するメカニズムを提供します。

PTP operates based on the following assumptions:


o The network eliminates cyclic forwarding of PTP messages within each communication path (e.g., by using a spanning tree protocol).

o ネットワークは、各スパニングツリープロトコルを使用するなどして、各通信パス内のPTPメッセージの循環転送を排除します。

o PTP is tolerant of an occasional missed message, duplicated message, or message that arrived out of order. However, PTP assumes that such impairments are relatively rare.

o PTPは、メッセージの欠落、重複メッセージ、または順序が狂って到着したメッセージに耐性があります。ただし、PTPでは、このような障害は比較的まれであると想定しています。

o As designed, PTP expects a multicast communication model; however, PTP also supports a unicast communication model as long as the behavior of the protocol is preserved.

o 設計どおり、PTPはマルチキャスト通信モデルを想定しています。ただし、PTPは、プロトコルの動作が維持される限り、ユニキャスト通信モデルもサポートします。

o Like all message-based time transfer protocols, PTP time accuracy is degraded by delay asymmetry in the paths taken by event messages. PTP cannot detect asymmetry, but if such delays are known a priori, time values can be adjusted to correct for asymmetry.

o すべてのメッセージベースの時間転送プロトコルと同様に、PTP時間の精度は、イベントメッセージがたどるパスの遅延の非対称性によって低下します。 PTPは非対称を検出できませんが、そのような遅延が事前にわかっている場合は、時間値を調整して非対称を修正できます。

The use of PTP for power automation is defined in IEC/IEEE 61850-9-3:2016 [IEC-IEEE-61850-9-3:2016]. It is based on Annex B of IEC 62439-3:2016 [IEC-62439-3:2016], which offers the support of redundant attachment of clocks to Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR) networks.

電力自動化のためのPTPの使用は、IEC / IEEE 61850-9-3:2016 [IEC-IEEE-61850-9-3:2016]で定義されています。これは、IEC 62439-3:2016 [IEC-62439-3:2016]のAnnex Bに基づいており、パラレル冗長プロトコル(PRP)および高可用性シームレス冗長(HSR)ネットワークへのクロックの冗長接続をサポートしています。

3.3.3. Security Trends in Utility Networks
3.3.3. ユーティリティネットワークのセキュリティトレンド

Although advanced telecommunications networks can assist in transforming the energy industry by playing a critical role in maintaining high levels of reliability, performance, and manageability, they also introduce the need for an integrated security infrastructure. Many of the technologies being deployed to support smart-grid projects such as smart meters and sensors can increase the vulnerability of the grid to attack. Top security concerns for utilities migrating to an intelligent smart-grid telecommunications platform center on the following trends:


o Integration of distributed energy resources

o 分散型エネルギー資源の統合

o Proliferation of digital devices to enable management, automation, protection, and control

o 管理、自動化、保護、制御を可能にするデジタルデバイスの急増

o Regulatory mandates to comply with standards for critical infrastructure protection

o 規制により、重要なインフラストラクチャ保護の基準に準拠することが義務付けられています

o Migration to new systems for outage management, distribution automation, condition-based maintenance, load forecasting, and smart metering

o 停止管理、配電の自動化、状態ベースのメンテナンス、負荷予測、スマートメータリングのための新しいシステムへの移行

o Demand for new levels of customer service and energy management

o 新しいレベルの顧客サービスとエネルギー管理の需要

This development of a diverse set of networks to support the integration of microgrids, open-access energy competition, and the use of network-controlled devices is driving the need for a converged security infrastructure for all participants in the smart grid, including utilities, energy service providers, large commercial and industrial customers, and residential customers. Securing the assets of electric power delivery systems (from the control center to the substation, to the feeders and down to customer meters) requires an end-to-end security infrastructure that protects the myriad of telecommunications assets used to operate, monitor, and control power flow and measurement.


"Cybersecurity" refers to all the security issues in automation and telecommunications that affect any functions related to the operation of the electric power systems. Specifically, it involves the concepts of:


o Integrity: data cannot be altered undetectably

o 完全性:データを検出不能に変更することはできません

o Authenticity (data origin authentication): the telecommunications parties involved must be validated as genuine

o 真正性(データ発信元認証):関係する通信関係者は本物であると検証する必要があります

o Authorization: only requests and commands from authorized users can be accepted by the system

o 承認:承認されたユーザーからのリクエストとコマンドのみがシステムで受け入れられます

o Confidentiality: data must not be accessible to any unauthenticated users

o 機密性:認証されていないユーザーがデータにアクセスできないようにする必要があります

When designing and deploying new smart-grid devices and telecommunications systems, it is imperative to understand the various impacts of these new components under a variety of attack situations on the power grid. The consequences of a cyber attack on the grid telecommunications network can be catastrophic. This is why security for the smart grid is not just an ad hoc feature or product; it's a complete framework integrating both physical and cybersecurity requirements and covering the entire smart-grid networks from generation to distribution. Security has therefore become one of the main foundations of the utility telecom network architecture and must be considered at every layer with a defense-in-depth approach.


Migrating to IP-based protocols is key to addressing these challenges for two reasons:


o IP enables a rich set of features and capabilities to enhance the security posture.

o IPは、セキュリティ体制を強化するための豊富な機能と機能のセットを有効にします。

o IP is based on open standards; this allows interoperability between different vendors and products, driving down the costs associated with implementing security solutions in OT networks.

o IPはオープンスタンダードに基づいています。これにより、さまざまなベンダーと製品間の相互運用が可能になり、OTネットワークでのセキュリティソリューションの実装に関連するコストを削減できます。

Securing OT telecommunications over packet-switched IP networks follows the same principles that are foundational for securing the IT infrastructure, i.e., consideration must be given to (1) enforcing electronic access control for both person-to-machine and machine-to-machine communications and (2) providing the appropriate levels of data privacy, device and platform integrity, and threat detection and mitigation.

パケット交換IPネットワークを介したOT通信のセキュリティ保護は、ITインフラストラクチャのセキュリティ保護の基本と同じ原則に従います。つまり、(1)人とマシンの通信とマシン間の通信の両方に電子アクセス制御を適用することを考慮する必要があります。 (2)適切なレベルのデータプライバシー、デバイスとプラットフォームの整合性、脅威の検出と軽減を提供します。

3.4. Electrical Utilities Requests to the IETF
3.4. IETFへの電力会社の要求

o Mixed Layer 2 and Layer 3 topologies

o レイヤー2とレイヤー3の混合トポロジ

o Deterministic behavior

o 確定的行動

o Bounded latency and jitter

o 制限されたレイテンシとジッター

o Tight feedback intervals

o 厳しいフィードバック間隔

o High availability, low recovery time

o 高可用性、短い復旧時間

o Redundancy, low packet loss

o 冗長性、低パケット損失

o Precise timing

o 正確なタイミング

o Centralized computing of deterministic paths

o 確定的パスの一元化されたコンピューティング

o Distributed configuration (may also be useful)

o 分散構成(役立つ場合もあります)

4. Building Automation Systems (BASs)
4. ビルディングオートメーションシステム(BAS)
4.1. Use Case Description
4.1. ユースケースの説明

A BAS manages equipment and sensors in a building for improving residents' comfort, reducing energy consumption, and responding to failures and emergencies. For example, the BAS measures the temperature of a room using sensors and then controls the HVAC (heating, ventilating, and air conditioning) to maintain a set temperature and minimize energy consumption.


A BAS primarily performs the following functions:


o Periodically measures states of devices -- for example, humidity and illuminance of rooms, open/close state of doors, fan speed.

o 部屋の湿度や照度、ドアの開閉状態、ファンの速度など、デバイスの状態を定期的に測定します。

o Stores the measured data.

o 測定データを保存します。

o Provides the measured data to BAS operators.

o 測定されたデータをBASオペレーターに提供します。

o Generates alarms for abnormal state of devices.

o デバイスの異常状態のアラームを生成します。

o Controls devices (e.g., turns room lights off at 10:00 PM).

o デバイスを制御します(例:午後10時にルームライトをオフにします)。

4.2. BASs Today
4.2. 今日のBAS
4.2.1. BAS Architecture
4.2.1. BASアーキテクチャ

A typical present-day BAS architecture is shown in Figure 4.


                          |                            |
                          |       BMS        HMI       |
                          |        |          |        |
                          |  +----------------------+  |
                          |  |  Management Network  |  |
                          |  +----------------------+  |
                          |        |          |        |
                          |        LC         LC       |
                          |        |          |        |
                          |  +----------------------+  |
                          |  |     Field Network    |  |
                          |  +----------------------+  |
                          |     |     |     |     |    |
                          |    Dev   Dev   Dev   Dev   |
                          |                            |

BMS: Building Management Server HMI: Human-Machine Interface LC: Local Controller


Figure 4: BAS Architecture


There are typically two layers of a network in a BAS. The upper layer is called the management network, and the lower layer is called the field network. In management networks, an IP-based communication protocol is used, while in field networks, non-IP-based communication protocols ("field protocols") are mainly used. Field networks have specific timing requirements, whereas management networks can be best effort.


An HMI is typically a desktop PC used by operators to monitor and display device states, send device control commands to Local Controllers (LCs), and configure building schedules (for example, "turn off all room lights in the building at 10:00 PM").

HMIは通常、オペレーターがデバイスの状態を監視および表示し、デバイスコントローラーコマンドをローカルコントローラー(LC)に送信し、建物のスケジュールを構成するために使用するデスクトップPCです(たとえば、「建物のすべての部屋の照明を午後10時にオフにする」 ")。

A building management server (BMS) performs the following operations.


o Collects and stores device states from LCs at regular intervals.

o LCから定期的にデバイスの状態を収集して保存します。

o Sends control values to LCs according to a building schedule.

o 建物のスケジュールに従って管理値をLCに送信します。

o Sends an alarm signal to operators if it detects abnormal device states.

o 異常なデバイス状態を検出した場合、オペレーターにアラーム信号を送信します。

The BMS and HMI communicate with LCs via IP-based "management protocols" (see standards [BACnet-IP] and [KNX]).


An LC is typically a Programmable Logic Controller (PLC) that is connected to several tens or hundreds of devices using "field protocols". An LC performs the following kinds of operations:

LCは通常、「フィールドプロトコル」を使用して数十または数百のデバイスに接続されるプログラマブルロジックコントローラー(PLC)です。 LCは次の種類の操作を実行します。

o Measures device states and provides the information to a BMS or HMI.

o デバイスの状態を測定し、BMSまたはHMIに情報を提供します。

o Sends control values to devices, unilaterally or as part of a feedback control loop.

o 一方的またはフィードバック制御ループの一部として、制御値をデバイスに送信します。

At the time of this writing, many field protocols are in use; some are standards-based protocols, and others are proprietary (see standards [LonTalk], [MODBUS], [PROFIBUS], and [FL-net]). The result is that BASs have multiple MAC/PHY modules and interfaces. This makes BASs more expensive and slower to develop and can result in "vendor lock-in" with multiple types of management applications.

この記事の執筆時点では、多くのフィールドプロトコルが使用されています。一部は標準ベースのプロトコルであり、その他は独自仕様です(標準[LonTalk]、[MODBUS]、[PROFIBUS]、および[FL-net]を参照)。その結果、BASには複数のMAC / PHYモジュールとインターフェイスがあります。これにより、BASの開発がより高価で遅くなり、複数のタイプの管理アプリケーションで「ベンダーロックイン」が発生する可能性があります。

4.2.2. BAS Deployment Model
4.2.2. BAS配置モデル

An example BAS for medium or large buildings is shown in Figure 5. The physical layout spans multiple floors and includes a monitoring room where the BAS management entities are located. Each floor will have one or more LCs, depending on the number of devices connected to the field network.


               |                                          Floor 3 |
               |     +----LC~~~~+~~~~~+~~~~~+                     |
               |     |          |     |     |                     |
               |     |         Dev   Dev   Dev                    |
               |     |                                            |
               |---  |  ------------------------------------------|
               |     |                                    Floor 2 |
               |     +----LC~~~~+~~~~~+~~~~~+  Field Network      |
               |     |          |     |     |                     |
               |     |         Dev   Dev   Dev                    |
               |     |                                            |
               |---  |  ------------------------------------------|
               |     |                                    Floor 1 |
               |     +----LC~~~~+~~~~~+~~~~~+   +-----------------|
               |     |          |     |     |   | Monitoring Room |
               |     |         Dev   Dev   Dev  |                 |
               |     |                          |    BMS   HMI    |
               |     |   Management Network     |     |     |     |
               |     +--------------------------------+-----+     |
               |                                |                 |

Figure 5: BAS Deployment Model for Medium/Large Buildings


Each LC is connected to the monitoring room via the management network, and the management functions are performed within the building. In most cases, Fast Ethernet (e.g., 100BASE-T) is used for the management network. Since the management network is not a real-time network, the use of Ethernet without QoS is sufficient for today's deployments.


Many physical interfaces used in field networks have specific timing requirements -- for example, RS232C and RS485. Thus, if a field network is to be replaced with an Ethernet or wireless network, such networks must support time-critical deterministic flows.


Figure 6 shows another deployment model, in which the management system is hosted remotely. This model is becoming popular for small offices and residential buildings, in which a standalone monitoring system is not cost effective.


                                                     | Remote Center |
                                                     |               |
                                                     |  BMS     HMI  |
            +------------------------------------+   |   |       |   |
            |                            Floor 2 |   |   +---+---+   |
            |    +----LC~~~~+~~~~~+ Field Network|   |       |       |
            |    |          |     |              |   |     Router    |
            |    |         Dev   Dev             |   +-------|-------+
            |    |                               |           |
            |--- | ------------------------------|           |
            |    |                       Floor 1 |           |
            |    +----LC~~~~+~~~~~+              |           |
            |    |          |     |              |           |
            |    |         Dev   Dev             |           |
            |    |                               |           |
            |    |   Management Network          |     WAN   |
            |    +------------------------Router-------------+
            |                                    |

Figure 6: Deployment Model for Small Buildings


Some interoperability is possible in today's management networks but is not possible in today's field networks due to their non-IP-based design.


4.2.3. Use Cases for Field Networks
4.2.3. フィールドネットワークの使用例

Below are use cases for environmental monitoring, fire detection, and feedback control, and their implications for field network performance.

以下は、環境監視、火災検知、フィードバック制御の使用例と、フィールドネットワークのパフォーマンスへの影響です。 Environmental Monitoring 環境モニタリング

The BMS polls each LC at a maximum measurement interval of 100 ms (for example, to draw a historical chart of 1-second granularity with a 10x sampling interval) and then performs the operations as specified by the operator. Each LC needs to measure each of its several hundred sensors once per measurement interval. Latency is not critical in this scenario as long as all sensor value measurements are completed within the measurement interval. Availability is expected to be 99.999%.

BMSは、100 msの最大測定間隔で各LCをポーリングし(たとえば、10倍のサンプリング間隔で1秒の粒度の履歴グラフを描く)、オペレーターが指定した操作を実行します。各LCは、測定間隔ごとに1回、数百のセンサーのそれぞれを測定する必要があります。すべてのセンサー値測定が測定間隔内に完了している限り、このシナリオでは待ち時間は重要ではありません。可用性は99.999%と予想されます。 Fire Detection 火災検知

On detection of a fire, the BMS must stop the HVAC, close the fire shutters, turn on the fire sprinklers, send an alarm, etc. There are typically tens of fire sensors per LC that the BMS needs to manage. In this scenario, the measurement interval is 10-50 ms, the communication delay is 10 ms, and the availability must be 99.9999%.

火災が検出されると、BMSはHVACを停止し、防火シャッターを閉じ、防火スプリンクラーをオンにし、アラームを送信する必要があります。通常、BMSが管理する必要があるLCごとに数十の火災センサーがあります。このシナリオでは、測定間隔は10〜50 ms、通信遅延は10 ms、可用性は99.9999%でなければなりません。 Feedback Control フィードバック制御

BASs utilize feedback control in various ways; the most time-critical is control of DC motors, which require a short feedback interval (1-5 ms) with low communication delay (10 ms) and jitter (1 ms). The feedback interval depends on the characteristics of the device and on the requirements for the control values. There are typically tens of feedback sensors per LC.

BASはフィードバック制御をさまざまな方法で利用します。最もタイムクリティカルなのは、DCモーターの制御です。DCモーターは、短いフィードバック間隔(1〜5 ms)と低通信遅延(10 ms)およびジッター(1 ms)を必要とします。フィードバック間隔は、デバイスの特性と制御値の要件によって異なります。通常、LCあたり数十のフィードバックセンサーがあります。

Communication delay is expected to be less than 10 ms and jitter less than 1 ms, while the availability must be 99.9999%.


4.2.4. BAS Security Considerations
4.2.4. BASセキュリティの考慮事項
   When BAS field networks were developed, it was assumed that the field
   networks would always be physically isolated from external networks;
   therefore, security was not a concern.  In today's world, many BASs
   are managed remotely and are thus connected to shared IP networks;
   therefore, security is a definite concern.  Note, however, that
   security features are not currently available in the majority of BAS
   field network deployments.

The management network, being an IP-based network, has the protocols available to enable network security, but in practice many BASs do not implement even such available security features as device authentication or encryption for data in transit.


4.3. BASs in the Future
4.3. 将来のBAS

In the future, lower energy consumption and environmental monitoring that is more fine-grained will emerge; these will require more sensors and devices, thus requiring larger and more-complex building networks.


Building networks will be connected to or converged with other networks (enterprise networks, home networks, and the Internet).


Therefore, better facilities for network management, control, reliability, and security are critical in order to improve resident and operator convenience and comfort. For example, the ability to monitor and control building devices via the Internet would enable (for example) control of room lights or HVAC from a resident's desktop PC or phone application.


4.4. BAS Requests to the IETF
4.4. IETFへのBAS要求

The community would like to see an interoperable protocol specification that can satisfy the timing, security, availability, and QoS constraints described above, such that the resulting converged network can replace the disparate field networks. Ideally, this connectivity could extend to the open Internet.


This would imply an architecture that can guarantee


o Low communication delays (from <10 ms to 100 ms in a network of several hundred devices)

o 低い通信遅延(数百のデバイスのネットワークで<10ミリ秒から100ミリ秒)

o Low jitter (<1 ms)

o 低ジッター(<1 ms)

o Tight feedback intervals (1-10 ms)

o 厳しいフィードバック間隔(1-10 ms)

o High network availability (up to 99.9999%)

o 高いネットワーク可用性(最大99.9999%)

o Availability of network data in disaster scenarios

o 災害シナリオでのネットワークデータの可用性

o Authentication between management devices and field devices (both local and remote)

o 管理デバイスとフィールドデバイス(ローカルとリモートの両方)間の認証

o Integrity and data origin authentication of communication data between management devices and field devices

o 管理デバイスとフィールドデバイス間の通信データの整合性とデータ発信元認証

o Confidentiality of data when communicated to a remote device

o リモートデバイスと通信するときのデータの機密性

5. Wireless for Industrial Applications
5. 産業用アプリケーション向けのワイヤレス
5.1. Use Case Description
5.1. ユースケースの説明

Wireless networks are useful for industrial applications -- for example, (1) when portable, fast-moving, or rotating objects are involved and (2) for the resource-constrained devices found in the Internet of Things (IoT).


Such network-connected sensors, actuators, control loops, etc. typically require that the underlying network support real-time QoS, as well as such specific network properties as reliability, redundancy, and security.


These networks may also contain very large numbers of devices -- for example, for factories, "big data" acquisition, and the IoT. Given the large numbers of devices installed and the potential pervasiveness of the IoT, this is a huge and very cost-sensitive market such that small cost reductions can save large amounts of money.


5.1.1. Network Convergence Using 6TiSCH
5.1.1. 6TiSCHを使用したネットワークコンバージェンス

Some wireless network technologies support real-time QoS and are thus useful for these kinds of networks, but others do not.


This use case focuses on one specific wireless network technology that provides the required deterministic QoS: "IPv6 over the TSCH mode of IEEE 802.15.4e" (6TiSCH, where "TSCH" stands for "Time-Slotted Channel Hopping"; see [Arch-for-6TiSCH], [IEEE-802154], and [RFC7554]).

このユースケースは、必要な確定的QoSを提供する特定のワイヤレスネットワークテクノロジーに焦点を合わせています。 for-6TiSCH]、[IEEE-802154]、および[RFC7554])。

There are other deterministic wireless buses and networks available today; however, they are incompatible with each other and with IP traffic (for example, see [ISA100] and [WirelessHART]).


Thus, the primary goal of this use case is to apply 6TiSCH as a converged IP-based and standards-based wireless network for industrial applications, i.e., to replace multiple proprietary and/or incompatible wireless networking and wireless network management standards.


5.1.2. Common Protocol Development for 6TiSCH
5.1.2. 6TiSCHの共通プロトコル開発

Today, there are a number of protocols required by 6TiSCH that are still in development. Another goal of this use case is to highlight the ways in which these "missing" protocols share goals in common with DetNet. Thus, it is possible that some of the protocol technology developed for DetNet will also be applicable to 6TiSCH.


These protocol goals are identified here, along with their relationship to DetNet. It is likely that ultimately the resulting protocols will not be identical but will share design principles that contribute to the efficiency of enabling both DetNet and 6TiSCH.


One such commonality is that -- although on a different time scale -- in both TSN [IEEE-8021TSNTG] and TSCH, a packet that crosses the network from node to node follows a precise schedule, as does a train that leaves intermediate stations at precise times along its path. This kind of operation reduces collisions, saves energy, and enables engineering of the network for deterministic properties.

そのような共通点の1つは、TSN [IEEE-8021TSNTG]とTSCHの両方で、異なるタイムスケールではありますが、ノード間でネットワークを通過するパケットは、中間ステーションを出発する列車と同様に、正確なスケジュールに従います。その経路に沿った正確な時間。この種の操作は、衝突を減らし、エネルギーを節約し、決定論的特性のネットワークのエンジニアリングを可能にします。

Another commonality is remote monitoring and scheduling management of a TSCH network by a Path Computation Element (PCE) and Network Management Entity (NME). The PCE and NME manage timeslots and device resources in a manner that minimizes the interaction with, and the load placed on, resource-constrained devices. For example, a tiny IoT device may have just enough buffers to store one or a few IPv6 packets; it will have limited bandwidth between peers such that it can maintain only a small amount of peer information, and it will not be able to store many packets waiting to be forwarded. It is advantageous, then, for the IoT device to only be required to carry out the specific behavior assigned to it by the PCE and NME (as opposed to maintaining its own IP stack, for example).

もう1つの共通点は、Path Computation Element(PCE)とNetwork Management Entity(NME)によるTSCHネットワークのリモート監視とスケジューリング管理です。 PCEとNMEは、リソースに制約のあるデバイスとの相互作用を最小限に抑え、リソースに制約のあるデバイスにかかる負荷を最小限に抑えながら、タイムスロットとデバイスリソースを管理します。たとえば、小さなIoTデバイスには、1つまたはいくつかのIPv6パケットを格納するのに十分なバッファーがある場合があります。ピア間の帯域幅が制限されるため、ピア情報を少量しか維持できず、転送を待機している多くのパケットを格納できません。その場合、IoTデバイスが(たとえば、独自のIPスタックを維持するのではなく)PCEおよびNMEによって割り当てられた特定の動作を実行することのみを要求されることが有利です。

It is possible that there will be some peer-to-peer communication; for example, the PCE may communicate only indirectly with some devices in order to enable hierarchical configuration of the system.


6TiSCH depends on [PCE] and [DetNet-Arch].


6TiSCH also depends on the fact that DetNet will maintain consistency with [IEEE-8021TSNTG].


5.2. Wireless Industrial Today
5.2. 今日のワイヤレス産業

Today, industrial wireless technology ("wireless industrial") is accomplished using multiple deterministic wireless networks that are incompatible with each other and with IP traffic.


6TiSCH is not yet fully specified, so it cannot be used in today's applications.


5.3. Wireless Industrial in the Future
5.3. 将来のワイヤレス産業
5.3.1. Unified Wireless Networks and Management
5.3.1. 統合ワイヤレスネットワークと管理

DetNet and 6TiSCH together can enable converged transport of deterministic and best-effort traffic flows between real-time industrial devices and WANs via IP routing. A high-level view of this type of basic network is shown in Figure 7.


               ---+-------- ............ ------------
                  |      External Network       |
                  |                          +-----+
               +-----+                       | NME |
               |     | LLN Border            |     |
               |     | Router                +-----+
             o    o   o
      o     o   o     o
         o   o LLN   o    o     o
            o   o   o       o

LLN: Low-Power and Lossy Network


Figure 7: Basic 6TiSCH Network


Figure 8 shows a backbone router federating multiple synchronized 6TiSCH subnets into a single subnet connected to the external network.


                  ---+-------- ............ ------------
                     |      External Network       |
                     |                          +-----+
                     |             +-----+      | NME |
                  +-----+          |  +-----+   |     |
                  |     | Router   |  | PCE |   +-----+
                  |     |          +--|     |
                  +-----+             +-----+
                     |                   |
                     | Subnet Backbone   |
               |                    |                  |
            +-----+             +-----+             +-----+
            |     | Backbone    |     | Backbone    |     | Backbone
       o    |     | Router      |     | Router      |     | Router
            +-----+             +-----+             +-----+
       o                  o                   o                 o   o
           o    o   o         o   o  o   o         o  o   o    o
      o             o        o  LLN      o      o         o      o
         o   o    o      o      o o     o  o   o    o    o     o

Figure 8: Extended 6TiSCH Network


The backbone router must ensure end-to-end deterministic behavior between the LLN and the backbone. This should be accomplished in conformance with the work done in [DetNet-Arch] with respect to Layer 3 aspects of deterministic networks that span multiple Layer 2 domains.


The PCE must compute a deterministic path end to end across the TSCH network and IEEE 802.1 TSN Ethernet backbone, and DetNet protocols are expected to enable end-to-end deterministic forwarding.

PCEはTSCHネットワークとIEEE 802.1 TSNイーサネットバックボーン全体で確定的なパスをエンドツーエンドで計算する必要があり、DetNetプロトコルはエンドツーエンドの確定的な転送を可能にすることが期待されています。 PCE and 6TiSCH ARQ Retries PCEおよび6TiSCH ARQの再試行

6TiSCH uses the Automatic Repeat reQuest (ARQ) mechanism [IEEE-802154] to provide higher reliability of packet delivery. ARQ is related to Packet Replication and Elimination (PRE) because there are two independent paths for packets to arrive at the destination. If an expected packet does not arrive on one path, then it checks for the packet on the second path.


Although to date this mechanism is only used by wireless networks, this technique might be appropriate for DetNet, and aspects of the enabling protocol could therefore be co-developed.


For example, in Figure 9, a track is laid out from a field device in a 6TiSCH network to an IoT gateway that is located on an IEEE 802.1 TSN backbone.

たとえば、図9では、6TiSCHネットワークのフィールドデバイスから、IEEE 802.1 TSNバックボーン上にあるIoTゲートウェイまでトラックが配置されています。

                     | IoT |
                     | G/W |
                        ^  <---- Elimination
                       | |
        Track Branch   | |
               +-------+ +--------+ Subnet Backbone
               |                  |
            +--|--+            +--|--+
            |  |  | Backbone   |  |  | Backbone
       o    |  |  | Router     |  |  | Router
            +--/--+            +--|--+
       o     /    o     o---o----/       o
           o    o---o--/   o      o   o  o   o
      o     \  /     o               o   LLN    o
         o   v  <---- Replication

Figure 9: 6TiSCH Network with PRE


In ARQ, the replication function in the field device sends a copy of each packet over two different branches, and the PCE schedules each hop of both branches so that the two copies arrive in due time at the gateway. In the case of a loss on one branch, one hopes that the other copy of the packet will still arrive within the allocated time. If two copies make it to the IoT gateway, the elimination function in the gateway ignores the extra packet and presents only one copy to upper layers.

ARQでは、フィールドデバイスのレプリケーション機能が2つの異なるブランチを介して各パケットのコピーを送信し、PCEは両方のブランチの各ホップをスケジュールして、2つのコピーがゲートウェイに適時に到着するようにします。 1つのブランチで損失が発生した場合、パケットのもう1つのコピーが割り当てられた時間内に到着することを期待します。 2つのコピーがIoTゲートウェイに到達すると、ゲートウェイの除去機能は余分なパケットを無視し、1つのコピーのみを上位層に提示します。

At each 6TiSCH hop along the track, the PCE may schedule more than one timeslot for a packet, so as to support Layer 2 retries (ARQ).


At the time of this writing, a deployment's TSCH track does not necessarily support PRE but is systematically multipath. This means that a track is scheduled so as to ensure that each hop has at least two forwarding solutions. The forwarding decision will be to try the preferred solution and use the other solution in the case of Layer 2 transmission failure as detected by ARQ.


5.3.2. Schedule Management by a PCE
5.3.2. PCEによるスケジュール管理

A common feature of 6TiSCH and DetNet is actions taken by a PCE when configuring paths through the network. Specifically, what is needed is a protocol and data model that the PCE will use to get/set the relevant configuration from/to the devices, as well as perform operations on the devices. Specifically, both DetNet and 6TiSCH need to develop a protocol (and associated data model) that the PCE can use to (1) get/set the relevant configuration from/to the devices and (2) perform operations on the devices. These could be initially developed by DetNet, with consideration for their reuse by 6TiSCH. The remainder of this section provides a bit more context from the 6TiSCH side.

6TiSCHとDetNetの共通機能は、ネットワークを介してパスを構成するときにPCEによって実行されるアクションです。具体的には、PCEがデバイスとの間で関連する構成を取得/設定し、デバイスで操作を実行するために使用するプロトコルとデータモデルが必要です。具体的には、DetNetと6TiSCHの両方で、PCEが(1)デバイスとの間で関連する構成を取得/設定し、(2)デバイスで操作を実行するために使用できるプロトコル(および関連データモデル)を開発する必要があります。これらは、6TiSCHによる再利用を考慮して、最初はDetNetによって開発されました。このセクションの残りの部分では、6TiSCH側からもう少しコンテキストを提供します。 PCE Commands and 6TiSCH CoAP Requests PCEコマンドと6TiSCH CoAP要求

The 6TiSCH device does not expect to place the request for bandwidth between itself and another device in the network. Rather, an operation control system invoked through a human interface specifies the traffic requirements and the end nodes (in terms of latency and reliability). Based on this information, the PCE must compute a path between the end nodes and provision the network with per-flow state that describes the per-hop operation for a given packet, the corresponding timeslots, the flow identification that enables recognizing that a certain packet belongs to a certain path, etc.


For a static configuration that serves a certain purpose for a long period of time, it is expected that a node will be provisioned in one shot with a full schedule, i.e., a schedule that defines the behavior of the node with respect to all data flows through that node. 6TiSCH expects that the programming of the schedule will be done over the Constrained Application Protocol (CoAP) as discussed in [CoAP-6TiSCH].

長期間に渡って特定の目的を果たす静的構成の場合、ノードは完全なスケジュール、つまり、すべてのデータフローに対するノードの動作を定義するスケジュールでワンショットでプロビジョニングされることが期待されますそのノードを介して。 6TiSCHは、[CoAP-6TiSCH]で説明されているように、スケジュールのプログラミングがConstrained Application Protocol(CoAP)を介して行われることを期待しています。

6TiSCH expects that the PCE commands will be mapped back and forth into CoAP by a gateway function at the edge of the 6TiSCH network. For instance, it is possible that a mapping entity on the backbone transforms a non-CoAP protocol such as the Path Computation Element Communication Protocol (PCEP) into the RESTful interfaces that the 6TiSCH devices support. This architecture will be refined to comply with DetNet [DetNet-Arch] when the work is formalized. Related information about 6TiSCH can be found in [Interface-6TiSCH-6top] and [RFC6550] ("RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks").

6TiSCHは、PCEコマンドが6TiSCHネットワークのエッジにあるゲートウェイ機能によってCoAPに前後にマッピングされることを期待しています。たとえば、バックボーン上のマッピングエンティティが、パス計算要素通信プロトコル(PCEP)などの非CoAPプロトコルを、6TiSCHデバイスがサポートするRESTfulインターフェイスに変換する可能性があります。このアーキテクチャは、作業が正式化されると、DetNet [DetNet-Arch]に準拠するように改良されます。 6TiSCHに関する関連情報は、[Interface-6TiSCH-6top]および[RFC6550](「RPL:低電力および損失の多いネットワーク用のIPv6ルーティングプロトコル」)にあります。

A protocol may be used to update the state in the devices during runtime -- for example, if it appears that a path through the network has ceased to perform as expected, but in 6TiSCH that flow was not designed and no protocol was selected. DetNet should define the appropriate end-to-end protocols to be used in that case. The implication is that these state updates take place once the system is configured and running, i.e., they are not limited to the initial communication of the configuration of the system.

プロトコルは、ランタイム中にデバイスの状態を更新するために使用できます。たとえば、ネットワーク経由のパスが期待どおりに機能しなくなったように見える場合でも、6TiSCHではそのフローは設計されておらず、プロトコルが選択されていません。 DetNetは、その場合に使用される適切なエンドツーエンドプロトコルを定義する必要があります。つまり、システムが構成されて実行されると、これらの状態の更新が行われます。つまり、システムの構成の初期通信に限定されません。

A "slotFrame" is the base object that a PCE would manipulate to program a schedule into an LLN node [Arch-for-6TiSCH].


The PCE should read energy data from devices and compute paths that will implement policies on how energy in devices is consumed -- for instance, to ensure that the spent energy does not exceed the available energy over a period of time. Note that this statement implies that an extensible protocol for communicating device information to the PCE and enabling the PCE to act on it will be part of the DetNet architecture; however, for subnets with specific protocols (e.g., CoAP), a gateway may be required.


6TiSCH devices can discover their neighbors over the radio using a mechanism such as beacons, but even though the neighbor information is available in the 6TiSCH interface data model, 6TiSCH does not describe a protocol to proactively push the neighbor information to a PCE. DetNet should define such a protocol; one possible design alternative is that it could operate over CoAP. Alternatively, it could be converted to/from CoAP by a gateway. Such a protocol could carry multiple metrics -- for example, metrics similar to those used for RPL operations [RFC6551].

6TiSCHデバイスは、ビーコンなどのメカニズムを使用して無線でネイバーを検出できますが、6TiSCHインターフェイスデータモデルでネイバー情報が利用可能であっても、6TiSCHはPCEにネイバー情報を積極的にプッシュするプロトコルを記述していません。 DetNetはこのようなプロトコルを定義する必要があります。考えられる1つの設計代替案は、CoAPを介して動作できることです。または、ゲートウェイによってCoAPとの間で変換できます。このようなプロトコルは複数のメトリックを運ぶことができます-たとえば、RPL操作[RFC6551]に使用されるものと同様のメトリック。 6TiSCH IP Interface 6TiSCH IPインターフェース

Protocol translation between the TSCH MAC layer and IP is accomplished via the "6top" sublayer [Sublayer-6TiSCH-6top]. The 6top data model and management interfaces are further discussed in [Interface-6TiSCH-6top] and [CoAP-6TiSCH].

TSCH MACレイヤーとIP間のプロトコル変換は、「6top」サブレイヤー[Sublayer-6TiSCH-6top]を介して行われます。 6topデータモデルと管理インターフェイスについては、[Interface-6TiSCH-6top]および[CoAP-6TiSCH]でさらに説明します。

An IP packet that is sent along a 6TiSCH path uses a differentiated services Per-Hop Behavior Group (PHB) called "deterministic forwarding", as described in [Det-Fwd-PHB].

[Det-Fwd-PHB]で説明されているように、6TiSCHパスに沿って送信されるIPパケットは、「確定的転送」と呼ばれる差別化サービスのPer-Hop Behavior Group(PHB)を使用します。

5.3.3. 6TiSCH Security Considerations
5.3.3. 6TiSCHのセキュリティに関する考慮事項

In addition to the classical requirements for protection of control signaling, it must be noted that 6TiSCH networks operate on limited resources that can be depleted rapidly in a DoS attack on the system -- for instance, by placing a rogue device in the network or by obtaining management control and setting up unexpected additional paths.


5.4. Wireless Industrial Requests to the IETF
5.4. IETFへのワイヤレス産業の要求

6TiSCH depends on DetNet to define:


o Configuration (state) and operations for deterministic paths

o 確定的パスの構成(状態)と操作

o End-to-end protocols for deterministic forwarding (tagging, IP)

o 確定的転送のためのエンドツーエンドプロトコル(タグ付け、IP)

o A protocol for PRE

o PREのプロトコル

6. Cellular Radio
6. 携帯ラジオ
6.1. Use Case Description
6.1. ユースケースの説明

This use case describes the application of deterministic networking in the context of cellular telecom transport networks. Important elements include time synchronization, clock distribution, and ways to establish time-sensitive streams for both Layer 2 and Layer 3 user-plane traffic.


6.1.1. Network Architecture
6.1.1. ネットワークアーキテクチャー

Figure 10 illustrates a 3GPP-defined cellular network architecture typical at the time of this writing. The architecture includes "Fronthaul", "Midhaul", and "Backhaul" network segments. The "Fronthaul" is the network connecting base stations (Baseband Units (BBUs)) to the Remote Radio Heads (RRHs) (also referred to here as "antennas"). The "Midhaul" is the network that interconnects base stations (or small-cell sites). The "Backhaul" is the network or links connecting the radio base station sites to the network controller/gateway sites (i.e., the core of the 3GPP cellular network).

図10は、この記事の執筆時点で一般的な3GPP定義のセルラーネットワークアーキテクチャを示しています。アーキテクチャには、「フロントホール」、「ミッドホール」、および「バックホール」ネットワークセグメントが含まれます。 「フロントホール」は、ベースステーション(ベースバンドユニット(BBU))をリモートラジオヘッド(RRH)(ここでは「アンテナ」とも呼ばれます)に接続するネットワークです。 「ミッドホール」は、基地局(またはスモールセルサイト)を相互接続するネットワークです。 「バックホール」は、無線基地局サイトをネットワークコントローラ/ゲートウェイサイト(つまり、3GPPセルラーネットワークのコア)に接続するネットワークまたはリンクです。

              Y (RRHs (antennas))
           Y__  \.--.                   .--.         +------+
              \_(    `.     +---+     _(    `.       | 3GPP |
       Y------( Front- )----|eNB|----( Back-  )------| core |
             ( `  .haul )   +---+   ( ` .haul) )     | netw |
             /`--(___.-'      \      `--(___.-'      +------+
          Y_/     /            \.--.       \
               Y_/            _(Mid-`.      \
                             (   haul )      \
                            ( `  .  )  )      \
                             `--(___.-'\_____+---+    (small-cell sites)
                                   \         |SCe|__Y
                                  +---+      +---+
                                Y_/   \_Y ("local" radios)

Figure 10: Generic 3GPP-Based Cellular Network Architecture


In Figure 10, "eNB" ("E-UTRAN Node B") is the hardware that is connected to the mobile phone network and enables the mobile phone network to communicate with mobile handsets [TS36300]. ("E-UTRAN" stands for "Evolved Universal Terrestrial Radio Access Network".)

図10では、「eNB」(「E-UTRANノードB」)は、携帯電話ネットワークに接続され、携帯電話ネットワークが携帯電話と通信できるようにするハードウェアです[TS36300]。 (「E-UTRAN」は「進化したユニバーサル地上無線アクセスネットワーク」の略です。)

6.1.2. Delay Constraints
6.1.2. 遅延制約

The available processing time for Fronthaul networking overhead is limited to the available time after the baseband processing of the radio frame has completed. For example, in Long Term Evolution (LTE) radio, 3 ms is allocated for the processing of a radio frame, but typically the baseband processing uses most of it, allowing only a small fraction to be used by the Fronthaul network. In this example, out of 3 ms, the maximum time allocated to the Fronthaul network for one-way delay is 250 us, and the existing specification [NGMN-Fronth] specifies a maximum delay of only 100 us. This ultimately determines the distance the RRHs can be located from the base stations (e.g., 100 us equals roughly 20 km of optical fiber-based transport). Allocation options regarding the available time budget between processing and transport are currently undergoing heavy discussion in the mobile industry.

フロントホールネットワーキングオーバーヘッドの利用可能な処理時間は、無線フレームのベースバンド処理が完了した後の利用可能な時間に制限されます。たとえば、Long Term Evolution(LTE)無線では、3 msが無線フレームの処理に割り当てられますが、通常、ベースバンド処理はそのほとんどを使用するため、フロントホールネットワークで使用できるのはごく一部です。この例では、3ミリ秒のうち、一方向の遅延のためにフロントホールネットワークに割り当てられる最大時間は250 usであり、既存の仕様[NGMN-Fronth]は最大遅延が100 usのみを指定しています。これは最終的に、RRHが基地局から配置できる距離を決定します(たとえば、100 usは光ファイバーベースのトランスポートのおよそ20 kmに相当します)。処理とトランスポート間の利用可能な時間予算に関する割り当てオプションは、現在モバイル業界で激しい議論が繰り広げられています。

For packet-based transport, the allocated transport time between the RRH and the BBU is consumed by node processing, buffering, and distance-incurred delay. An example of the allocated transport time is 100 us (from the Common Public Radio Interface [CPRI]).

パケットベースのトランスポートの場合、RRHとBBUの間に割り当てられたトランスポート時間は、ノードの処理、バッファリング、および距離による遅延によって消費されます。割り当てられたトランスポート時間の例は100 usです(Common Public Radio Interface [CPRI]から)。

The baseband processing time and the available "delay budget" for the Fronthaul is likely to change in the forthcoming "5G" due to reduced radio round-trip times and other architectural and service requirements [NGMN].


The transport time budget, as noted above, places limitations on the distance that RRHs can be located from base stations (i.e., the link length). In the above analysis, it is assumed that the entire transport time budget is available for link propagation delay. However, the transport time budget can be broken down into three components: scheduling/queuing delay, transmission delay, and link propagation delay. Using today's Fronthaul networking technology, the queuing, scheduling, and transmission components might become the dominant factors in the total transport time, rather than the link propagation delay. This is especially true in cases where the Fronthaul link is relatively short and is shared among multiple Fronthaul flows -- for example, in indoor and small-cell networks, massive Multiple Input Multiple Output (MIMO) antenna networks, and split Fronthaul architectures.


DetNet technology can improve Fronthaul networks by controlling and reducing the time required for the queuing, scheduling, and transmission operations by properly assigning network resources, thus (1) leaving more of the transport time budget available for link propagation and (2) enabling longer link lengths. However, link length is usually a predetermined parameter and is not a controllable network parameter, since RRH and BBU sites are usually located in predetermined locations. However, the number of antennas in an RRH site might increase -- for example, by adding more antennas, increasing the MIMO capability of the network, or adding support for massive MIMO. This means increasing the number of Fronthaul flows sharing the same Fronthaul link. DetNet can now control the bandwidth assignment of the Fronthaul link and the scheduling of Fronthaul packets over this link and can provide adequate buffer provisioning for each flow to reduce the packet loss rate.

DetNetテクノロジーは、ネットワークリソースを適切に割り当てることにより、キューイング、スケジューリング、および送信操作に必要な時間を制御および削減することにより、フロントホールネットワークを改善できます。これにより、(1)リンク伝播に利用できるトランスポート時間バジェットを増やし、(2)より長いリンクを有効にします長さ。ただし、RRHおよびBBUサイトは通常、所定の場所にあるため、リンク長は通常、事前に決定されたパラメーターであり、制御可能なネットワークパラメーターではありません。ただし、RRHサイトのアンテナの数は増加する可能性があります。たとえば、アンテナを追加したり、ネットワークのMIMO機能を増やしたり、大規模MIMOのサポートを追加したりします。これは、同じフロントホールリンクを共有するフロントホールフローの数を増やすことを意味します。 DetNetは、フロントホールリンクの帯域幅割り当てとこのリンクを介したフロントホールパケットのスケジューリングを制御できるようになり、各フローに適切なバッファプロビジョニングを提供して、パケット損失率を削減できます。

Another way in which DetNet technology can aid Fronthaul networks is by providing effective isolation between flows -- for example, between flows originating in different slices within a network-sliced 5G network. Note, however, that this isolation applies to DetNet flows for which resources have been preallocated, i.e., it does not apply to best-effort flows within a DetNet. DetNet technology can also dynamically control the bandwidth-assignment, scheduling, and packet-forwarding decisions, as well as the buffer provisioning of the Fronthaul flows to guarantee the end-to-end delay of the Fronthaul packets and minimize the packet loss rate.

DetNetテクノロジーがフロントホールネットワークを支援するもう1つの方法は、フロー間(たとえば、ネットワークスライスされた5Gネットワ​​ーク内の異なるスライスで発生するフロー間)を効果的に分離することです。ただし、この分離は、リソースが事前に割り当てられているDetNetフローに適用されます。つまり、DetNet内のベストエフォートフローには適用されません。 DetNetテクノロジーは、帯域幅の割り当て、スケジューリング、パケット転送の決定、およびフロントホールフローのバッファープロビジョニングを動的に制御して、フロントホールパケットのエンドツーエンドの遅延を保証し、パケット損失率を最小限に抑えることもできます。

[METIS] documents the fundamental challenges as well as overall technical goals of the future 5G mobile and wireless systems as the starting point. These future systems should support much higher data volumes and rates and significantly lower end-to-end latency for 100x more connected devices (at cost and energy-consumption levels similar to today's systems).


For Midhaul connections, delay constraints are driven by inter-site radio functions such as Coordinated Multi-Point (CoMP) processing (see [CoMP]). CoMP reception and transmission constitute a framework in which multiple geographically distributed antenna nodes cooperate to improve performance for the users served in the common cooperation area. The design principle of CoMP is to extend single-cell-to-multi-UE (User Equipment) transmission to a multi-cell-to-multi-UE transmission via cooperation among base stations.

ミッドホール接続の場合、遅延制約は、協調マルチポイント(CoMP)処理([CoMP]を参照)などのサイト間無線機能によって駆動されます。 CoMPの受信と送信は、地理的に分散した複数のアンテナノードが協力して、共通の協力エリアでサービスを提供するユーザーのパフォーマンスを向上させるフレームワークを構成します。 CoMPの設計原理は、シングルセルからマルチUE(ユーザー機器)への送信を、基地局間の協調を介してマルチセルからマルチUEへの送信に拡張することです。

CoMP has delay-sensitive performance parameters: "Midhaul latency" and "CSI (Channel State Information) reporting and accuracy". The essential feature of CoMP is signaling between eNBs, so Midhaul latency is the dominating limitation of CoMP performance. Generally, CoMP can benefit from coordinated scheduling (either distributed or centralized) of different cells if the signaling delay between eNBs is within 1-10 ms. This delay requirement is both rigid and absolute, because any uncertainty in delay will degrade performance significantly.

CoMPには、遅延の影響を受けやすいパフォーマンスパラメータ「ミッドホールレイテンシ」と「CSI(チャネル状態情報)のレポートと精度」があります。 CoMPの重要な機能はeNB間のシグナリングであるため、ミッドホールレイテンシはCoMPパフォーマンスの支配的な制限です。一般に、eNB間のシグナリング遅延が1〜10ミリ秒以内の場合、CoMPは異なるセルの調整されたスケジューリング(分散型または集中型)の恩​​恵を受けることができます。遅延の不確実性はパフォーマンスを大幅に低下させるため、この遅延要件は厳格かつ絶対的です。

Inter-site CoMP is one of the key requirements for 5G and is also a goal for 4.5G network architectures.


6.1.3. Time-Synchronization Constraints
6.1.3. 時間同期の制約

Fronthaul time-synchronization requirements are given by [TS25104], [TS36104], [TS36211], and [TS36133]. These can be summarized for the 3GPP LTE-based networks as:

フロントホール時間同期要件は、[TS25104]、[TS36104]、[TS36211]、および[TS36133]によって指定されます。これらは、3GPP LTEベースのネットワークでは次のように要約できます。

Delay accuracy: +-8 ns (i.e., +-1/32 Tc, where Tc is the Universal Mobile Telecommunications System (UMTS) Chip time of 1/3.84 MHz), resulting in a round-trip accuracy of +-16 ns. The value is this low in order to meet the 3GPP Timing Alignment Error (TAE) measurement requirements. Note that performance guarantees of low-nanosecond values such as these are considered to be below the DetNet layer -- it is assumed that the underlying implementation (e.g., the hardware) will provide sufficient support (e.g., buffering) to enable this level of accuracy. These values are maintained in the use case to give an indication of the overall application.

遅延精度:+ -8 ns(つまり、+-1/32 Tc、TcはUniversal Mobile Telecommunications System(UMTS)のチップ時間1 / 3.84 MHz)であり、往復精度は+ -16 nsです。 3GPP Timing Alignment Error(TAE)測定要件を満たすために、この値はこのように低くなっています。これらのような低ナノ秒値のパフォーマンス保証は、DetNetレイヤーよりも下にあると見なされます-基礎となる実装(ハードウェアなど)がこのレベルの精度を可能にするための十分なサポート(バッファリングなど)を提供すると想定されています。これらの値は、アプリケーション全体を示すために、ユースケースで維持されます。

TAE: TAE is problematic for Fronthaul networks and must be minimized. If the transport network cannot guarantee TAE levels that are low enough, then additional buffering has to be introduced at the edges of the network to buffer out the jitter. Buffering is not desirable, as it reduces the total available delay budget.


Packet Delay Variation (PDV) requirements can be derived from TAE measurements for packet-based Fronthaul networks.


* For MIMO or TX diversity transmissions, at each carrier frequency, TAE measurements shall not exceed 65 ns (i.e., 1/4 Tc).

* MIMOまたはTXダイバーシティ送信の場合、各キャリア周波数で、TAE測定は65 ns(つまり、1/4 Tc)を超えてはなりません。

* For intra-band contiguous carrier aggregation, with or without MIMO or TX diversity, TAE measurements shall not exceed 130 ns (i.e., 1/2 Tc).

* MIMOまたはTXダイバーシティの有無にかかわらず、帯域内の連続キャリアアグリゲーションの場合、TAE測定は130 ns(つまり、1/2 Tc)を超えてはなりません。

* For intra-band non-contiguous carrier aggregation, with or without MIMO or TX diversity, TAE measurements shall not exceed 260 ns (i.e., 1 Tc).

* MIMOまたはTXダイバーシティの有無にかかわらず、帯域内の非連続キャリアアグリゲーションの場合、TAE測定は260 ns(つまり、1 Tc)を超えてはなりません。

* For inter-band carrier aggregation, with or without MIMO or TX diversity, TAE measurements shall not exceed 260 ns.

* バンド間キャリアアグリゲーションの場合、MIMOまたはTXダイバーシティの有無にかかわらず、TAE測定は260 nsを超えてはなりません。

Transport link contribution to radio frequency errors: +-2 PPB. This value is considered to be "available" for the Fronthaul link out of the total 50 PPB budget reserved for the radio interface. Note that the transport link contributes to radio frequency errors for the following reason: at the time of this writing, Fronthaul communication is direct communication from the radio unit to the RRH. The RRH is essentially a passive device (e.g., without buffering). The transport drives the antenna directly by feeding it with samples, and everything the transport adds will be introduced to the radio "as is". So, if the transport causes any additional frequency errors, the errors will show up immediately on the radio as well. Note that performance guarantees of low-nanosecond values such as these are considered to be below the DetNet layer -- it is assumed that the underlying implementation (e.g., the hardware) will provide sufficient support to enable this level of performance. These values are maintained in the use case to give an indication of the overall application.

無線周波数エラーへのトランスポートリンクの寄与:+ -2 PPB。この値は、無線インターフェース用に予約されている合計50 PPBバジェットのうち、フロントホールリンクで「使用可能」と見なされます。トランスポートリンクは、次の理由により無線周波数エラーの原因となることに注意してください。この記事の執筆時点では、フロントホール通信は無線ユニットからRRHへの直接通信です。 RRHは本質的にパッシブデバイスです(たとえば、バッファリングなし)。トランスポートはサンプルをアンテナに供給することでアンテナを直接駆動し、トランスポートが追加するすべてのものは「そのまま」無線に導入されます。そのため、トランスポートによって追加の周波数エラーが発生した場合、エラーは無線にもすぐに表示されます。これらのような低ナノ秒値のパフォーマンス保証は、DetNetレイヤーの下にあると見なされることに注意してください。基盤となる実装(ハードウェアなど)がこのレベルのパフォーマンスを実現するための十分なサポートを提供すると想定されています。これらの値は、アプリケーション全体を示すために、ユースケースで維持されます。

The above-listed time-synchronization requirements are difficult to meet with point-to-point connected networks and are more difficult to meet when the network includes multiple hops. It is expected that networks must include buffering at the ends of the connections as imposed by the jitter requirements, since trying to meet the jitter requirements in every intermediate node is likely to be too costly. However, every measure to reduce jitter and delay on the path makes it easier to meet the end-to-end requirements.


In order to meet the timing requirements, both senders and receivers must remain time synchronized, demanding very accurate clock distribution -- for example, support for IEEE 1588 transparent clocks or boundary clocks in every intermediate node.

タイミング要件を満たすには、送信側と受信側の両方が時間同期を維持し、非常に正確なクロック分配を要求する必要があります。たとえば、すべての中間ノードでIEEE 1588透過クロックまたは境界クロックをサポートする必要があります。

In cellular networks from the LTE radio era onward, phase synchronization is needed in addition to frequency synchronization [TS36300] [TS23401]. Time constraints are also important due to their impact on packet loss. If a packet is delivered too late, then the packet may be dropped by the host.

LTE無線時代以降のセルラーネットワークでは、周波数同期に加えて位相同期が必要です[TS36300] [TS23401]。パケット損失への影響のため、時間の制約も重要です。パケットの配信が遅すぎる場合、パケットはホストによってドロップされる可能性があります。

6.1.4. Transport-Loss Constraints
6.1.4. 輸送損失の制約

Fronthaul and Midhaul networks assume that transport is almost error free. Errors can cause a reset of the radio interfaces, in turn causing reduced throughput or broken radio connectivity for mobile customers.


For packetized Fronthaul and Midhaul connections, packet loss may be caused by BER, congestion, or network failure scenarios. Different Fronthaul "functional splits" are being considered by 3GPP, requiring strict Frame Loss Ratio (FLR) guarantees. As one example (referring to the legacy CPRI split, which is option 8 in 3GPP), lower-layer splits may imply an FLR of less than 10^-7 for data traffic and less than 10^-6 for control and management traffic.

パケット化されたフロントホール接続とミッドホール接続の場合、BER、輻輳、またはネットワーク障害のシナリオによってパケット損失が発生する可能性があります。 3GPPでは、さまざまなフロントホールの「機能分割」が検討されており、厳密なフレーム損失率(FLR)の保証が必要です。 1つの例として(3GPPのオプション8であるレガシーCPRIスプリットを参照)、下位層のスプリットは、データトラフィックの場合は10 ^ -7未満、制御および管理トラフィックの場合は10 ^ -6未満のFLRを意味します。

Many of the tools available for eliminating packet loss for Fronthaul and Midhaul networks have serious challenges; for example, retransmitting lost packets or using FEC to circumvent bit errors (or both) is practically impossible, due to the additional delay incurred. Using redundant streams for better guarantees of delivery is also practically impossible in many cases, due to high bandwidth requirements for Fronthaul and Midhaul networks. Protection switching is also a candidate, but at the time of this writing, available technologies for the path switch are too slow to avoid a reset of mobile interfaces.


It is assumed that Fronthaul links are symmetric. All Fronthaul streams (i.e., those carrying radio data) have equal priority and cannot delay or preempt each other.


All of this implies that it is up to the network to guarantee that each time-sensitive flow meets its schedule.


6.1.5. Cellular Radio Network Security Considerations
6.1.5. セルラー無線ネットワークのセキュリティに関する考慮事項

Establishing time-sensitive streams in the network entails reserving networking resources for long periods of time. It is important that these reservation requests be authenticated to prevent malicious reservation attempts from hostile nodes (or accidental misconfiguration). This is particularly important in the case where the reservation requests span administrative domains. Furthermore, the reservation information itself should be digitally signed to reduce the risk of a legitimate node pushing a stale or hostile configuration into another networking node.


Note: This is considered important for the security policy of the network but does not affect the core DetNet architecture and design.


6.2. Cellular Radio Networks Today
6.2. 今日のセルラー無線ネットワーク
6.2.1. Fronthaul
6.2.1. フロントホール

Today's Fronthaul networks typically consist of:


o Dedicated point-to-point fiber connection (common)

o 専用のポイントツーポイントファイバー接続(共通)

o Proprietary protocols and framings

o 独自のプロトコルとフレーミング

o Custom equipment and no real networking

o カスタム機器と実際のネットワーキングなし

At the time of this writing, solutions for Fronthaul are direct optical cables or Wavelength-Division Multiplexing (WDM) connections.


6.2.2. Midhaul and Backhaul
6.2.2. ミッドホールとバックホール

Today's Midhaul and Backhaul networks typically consist of:


o Mostly normal IP networks, MPLS-TP, etc.

o ほとんどの通常のIPネットワーク、MPLS-TPなど

o Clock distribution and synchronization using IEEE 1588 and syncE

o IEEE 1588とsyncEを使用したクロック分配と同期

Telecommunications networks in the Midhaul and Backhaul are already heading towards transport networks where precise time-synchronization support is one of the basic building blocks. In order to meet bandwidth and cost requirements, most transport networks have already transitioned to all-IP packet-based networks; however, highly accurate clock distribution has become a challenge.


In the past, Midhaul and Backhaul connections were typically based on TDM and provided frequency-synchronization capabilities as a part of the transport media. More recently, other technologies such as GPS or syncE [syncE] have been used.

以前は、ミッドホール接続とバックホール接続は通常TDMに基づいており、トランスポートメディアの一部として周波数同期機能を提供していました。最近では、GPSやsyncE [syncE]などの他のテクノロジーが使用されています。

   Ethernet, IP/MPLS [RFC3031], and pseudowires (as described in
   [RFC3985] ("Pseudo Wire Emulation Edge-to-Edge (PWE3) Architecture")
   for legacy transport support)) have become popular tools for building
   and managing new all-IP Radio Access Networks (RANs)
   [SR-IP-RAN-Use-Case].  Although various timing and synchronization
   optimizations have already been proposed and implemented, including
   PTP enhancements [IEEE-1588] (see also [Timing-over-MPLS] and
   [RFC8169]), these solutions are not necessarily sufficient for the
   forthcoming RAN architectures, nor do they guarantee the more
   stringent time-synchronization requirements such as [CPRI].

Existing solutions for TDM over IP include those discussed in [RFC4553], [RFC5086], and [RFC5087]; [MEF8] addresses TDM over Ethernet transports.

TDM over IPの既存のソリューションには、[RFC4553]、[RFC5086]、および[RFC5087]で説明されているものが含まれます。 [MEF8]はTDM over Ethernetトランスポートに対処します。

6.3. Cellular Radio Networks in the Future
6.3. 将来のセルラー無線ネットワーク

Future cellular radio networks will be based on a mix of different xHaul networks (xHaul = Fronthaul, Midhaul, and Backhaul), and future transport networks should be able to support all of them simultaneously. It is already envisioned today that:

将来のセルラー無線ネットワークは、さまざまなxHaulネットワーク(xHaul =フロントホール、ミッドホール、バックホール)の混合に基づいており、将来のトランスポートネットワークはそれらすべてを同時にサポートできるはずです。今日、すでに次のことが想定されています。

o Not all "cellular radio network" traffic will be IP; for example, some will remain at Layer 2 (e.g., Ethernet based). DetNet solutions must address all traffic types (Layer 2 and Layer 3) with the same tools and allow their transport simultaneously.

o すべての「セルラー無線ネットワーク」トラフィックがIPになるわけではありません。たとえば、一部はレイヤー2に残ります(イーサネットベースなど)。 DetNetソリューションは、同じツールですべてのトラフィックタイプ(レイヤー2およびレイヤー3)に対応し、それらのトランスポートを同時に許可する必要があります。

o All types of xHaul networks will need some types of DetNet solutions. For example, with the advent of 5G, some Backhaul traffic will also have DetNet requirements (for example, traffic belonging to time-critical 5G applications).

o すべてのタイプのxHaulネットワークには、いくつかのタイプのDetNetソリューションが必要です。たとえば、5Gの登場により、一部のバックホールトラフィックにもDetNet要件があります(たとえば、タイムクリティカルな5Gアプリケーションに属するトラフィック)。

o Different functional splits between the base stations and the on-site units could coexist on the same Fronthaul and Backhaul network.

o ベースステーションとオンサイトユニット間の異なる機能分割は、同じフロントホールネットワークとバックホールネットワーク上で共存できます。

Future cellular radio networks should contain the following:


o Unified standards-based transport protocols and standard networking equipment that can make use of underlying deterministic link-layer services

o 基盤となる確定的なリンク層サービスを利用できる統一された標準ベースのトランスポートプロトコルと標準ネットワーキング機器

o Unified and standards-based network management systems and protocols in all parts of the network (including Fronthaul)

o ネットワークのすべての部分(フロントホールを含む)における統一された標準ベースのネットワーク管理システムおよびプロトコル

New RAN deployment models and architectures may require TSN services with strict requirements on other parts of the network that previously were not considered to be packetized at all. Time and synchronization support are already topical for Backhaul and Midhaul packet networks [MEF22.1.1] and are also becoming a real issue for Fronthaul networks. Specifically, in Fronthaul networks, the timing and synchronization requirements can be extreme for packet-based technologies -- for example, on the order of a PDV of +-20 ns or less and frequency accuracy of +-0.002 PPM [Fronthaul].

新しいRAN配置モデルとアーキテクチャでは、以前はまったくパケット化されているとは考えられていなかったネットワークの他の部分に厳しい要件を持つTSNサービスが必要になる場合があります。時間と同期のサポートは、バックホールおよびミッドホールパケットネットワーク[MEF22.1.1]ですでに話題になっており、フロントホールネットワークでも大きな問題になっています。具体的には、フロントホールネットワークでは、タイミングと同期の要件がパケットベースのテクノロジーで極端になる可能性があります。たとえば、PDVが+ -20 ns以下、周波数精度が+ -0.002 PPM [フロントホール]の場合などです。

The actual transport protocols and/or solutions for establishing required transport "circuits" (pinned-down paths) for Fronthaul traffic are still undefined. Those protocols are likely to include (but are not limited to) solutions directly over Ethernet, over IP, and using MPLS/pseudowire transport.

フロントホールトラフィックに必要なトランスポート「回線」(ピンダウンされたパス)を確立するための実際のトランスポートプロトコルやソリューションはまだ定義されていません。これらのプロトコルには、イーサネット経由、IP経由、およびMPLS /疑似配線トランスポートを使用した直接ソリューションが含まれる可能性があります(これらに限定されません)。

Interesting and important work for TSN has been done for Ethernet [IEEE-8021TSNTG]; this work specifies the use of PTP [IEEE-1588] in the context of IEEE 802.1D and IEEE 802.1Q. [IEEE-8021AS] specifies a Layer 2 time-synchronizing service, and other specifications such as IEEE 1722 [IEEE-1722] specify Ethernet-based Layer 2 transport for time-sensitive streams.

TSNの興味深い重要な作業がイーサネット[IEEE-8021TSNTG]に対して行われました。この作品は、IEEE 802.1DおよびIEEE 802.1QのコンテキストでPTP [IEEE-1588]の使用を指定しています。 [IEEE-8021AS]は、レイヤー2時間同期サービスを指定し、IEEE 1722 [IEEE-1722]などの他の仕様は、時間依存のストリームに対してイーサネットベースのレイヤー2トランスポートを指定します。

However, even these Ethernet TSN features may not be sufficient for Fronthaul traffic. Therefore, having specific profiles that take Fronthaul requirements into account is desirable [IEEE-8021CM].


New promising work seeks to enable the transport of time-sensitive Fronthaul streams in Ethernet bridged networks [IEEE-8021CM]. Analogous to IEEE 1722, standardization efforts in the IEEE 1914.3 Task Force [IEEE-19143] to define the Layer 2 transport encapsulation format for transporting Radio over Ethernet (RoE) are ongoing.

イーサネットブリッジドネットワーク[IEEE-8021CM]で時間に敏感なフロントホールストリームの転送を可能にする新しい有望な作業。 IEEE 1722と同様に、IEEE 1914.3タスクフォース[IEEE-19143]で、Radio over Ethernet(RoE)を転送するためのレイヤー2転送カプセル化フォーマットを定義する標準化の取り組みが進行中です。

As mentioned in Section 6.1.2, 5G communications will provide one of the most challenging cases for delay-sensitive networking. In order to meet the challenges of ultra-low latency and ultra-high throughput, 3GPP has studied various functional splits for 5G, i.e., physical decomposition of the 5G "gNodeB" base station and deployment of its functional blocks in different locations [TR38801].

セクション6.1.2で述べたように、5G通信は遅延に敏感なネットワーキングにとって最も困難なケースの1つを提供します。超低レイテンシと超高スループットの課題に対応するために、3GPPは5Gのさまざまな機能分割、つまり5G "gNodeB"基地局の物理的分解とさまざまな場所へのその機能ブロックの配置を調査しました[TR38801] 。

These splits are numbered from split option 1 (dual connectivity, a split in which the radio resource control is centralized and other radio stack layers are in distributed units) to split option 8 (a PHY-RF split in which RF functionality is in a distributed unit and the rest of the radio stack is in the centralized unit), with each intermediate split having its own data-rate and delay requirements. Packetized versions of different splits have been proposed, including enhanced CPRI (eCPRI) [eCPRI] and RoE (as previously noted). Both provide Ethernet encapsulations, and eCPRI is also capable of IP encapsulation.


All-IP RANs and xHaul networks would benefit from time synchronization and time-sensitive transport services. Although Ethernet appears to be the unifying technology for the transport, there is still a disconnect when it comes to providing Layer 3 services. The protocol stack typically has a number of layers below Ethernet Layer 2 that might be "visible" to Layer 3. In a fairly common scenario, on top of the lowest-layer (optical) transport is the first (lowest) Ethernet layer, then one or more layers of MPLS, pseudowires, and/or other tunneling protocols, and finally one or more Ethernet layers that are visible to Layer 3.

All-IP RANとxHaulネットワークは、時間同期と時間依存のトランスポートサービスの恩恵を受けるでしょう。イーサネットはトランスポートの統合テクノロジーであるように見えますが、レイヤー3サービスの提供に関してはまだ切断されています。通常、プロトコルスタックには、レイヤー3から「見える」イーサネットレイヤー2の下にいくつかのレイヤーがあります。かなり一般的なシナリオでは、最下位レイヤー(光)トランスポートの上に最初の(最下位)イーサネットレイヤーがあります。 MPLS、疑似配線、および/またはその他のトンネリングプロトコルの1つ以上のレイヤー、そして最後にレイヤー3から見える1つ以上のイーサネットレイヤー。

Although there exist technologies for establishing circuits through the routed and switched networks (especially in the MPLS/PWE space), there is still no way to signal the time-synchronization and time-sensitive stream requirements/reservations for Layer 3 flows in a way that addresses the entire transport stack, including the Ethernet layers that need to be configured.

ルーテッドネットワークとスイッチドネットワーク(特にMPLS / PWEスペース)を介して回線を確立するテクノロジーは存在しますが、レイヤ3フローの時間同期と時間依存のストリーム要件/予約を、次のような方法でシグナリングする方法はまだありません。構成が必要なイーサネット層を含む、トランスポートスタック全体を処理します。

Furthermore, not all "user-plane" traffic will be IP. Therefore, the solution in question also must address the use cases where the user-plane traffic is on a different layer (for example, Ethernet frames).


6.4. Cellular Radio Networks Requests to the IETF
6.4. IETFへのセルラー無線ネットワークの要求

A standard for data-plane transport specifications that is:


o Unified among all xHauls (meaning that different flows with diverse DetNet requirements can coexist in the same network and traverse the same nodes without interfering with each other)

o すべてのxHaul間で統合(つまり、さまざまなDetNet要件を持つ異なるフローが同じネットワーク内で共存し、互いに干渉することなく同じノードを通過できることを意味します)

o Deployed in a highly deterministic network environment

o 非常に確定的なネットワーク環境に導入

o Capable of supporting multiple functional splits simultaneously, including existing Backhaul and CPRI Fronthaul, and (potentially) new modes as defined, for example, in 3GPP; these goals can be supported by the existing DetNet use case "common themes" (Section 11); of special note are Sections 11.1.8 ("Mix of Deterministic and Best-Effort Traffic"), 11.3.1 ("Bounded Latency"), 11.3.2 ("Low Latency"), 11.3.4 ("Symmetrical Path Delays"), and 11.6 ("Deterministic Flows")

o 既存のバックホールとCPRIフロントホールを含む複数の機能分割を同時にサポートする能力、および(たとえば)3GPPで定義されている新しいモードなど。これらの目標は、既存のDetNetユースケースの「一般的なテーマ」(セクション11)でサポートできます。特に注意が必要なのは、セクション11.1.8(「確定的トラフィ​​ックとベストエフォートトラフィックの混合」)、11.3.1(「有限遅延」)、11.3.2(「低遅延」)、11.3.4(「対称パス遅延」)です。 )、および11.6(「確定的フロー」)

o Capable of supporting network slicing and multi-tenancy; these goals can be supported by the same DetNet themes noted above

o ネットワークスライスとマルチテナンシーをサポートできます。これらの目標は、上記と同じDetNetテーマでサポートできます。

o Capable of transporting both in-band and out-of-band control traffic (e.g., Operations, Administration, and Maintenance (OAM) information)

o 帯域内と帯域外の両方の制御トラフィックを転送できます(運用、管理、保守(OAM)情報など)。

o Deployable over multiple data-link technologies (e.g., IEEE 802.3, mmWave)

o 複数のデータリンクテクノロジー(IEEE 802.3、mmWaveなど)を介して導入可能

A standard for data-flow information models that is:


o Aware of the time sensitivity and constraints of the target networking environment

o ターゲットのネットワーク環境の時間感度と制約を認識している

o Aware of underlying deterministic networking services (e.g., on the Ethernet layer)

o 基盤となる確定的なネットワーキングサービス(イーサネットレイヤーなど)を認識する

7. Industrial Machine to Machine (M2M)
7. 産業機械から機械(M2M)
7.1. Use Case Description
7.1. ユースケースの説明

"Industrial automation" in general refers to automation of manufacturing, quality control, and material processing. This M2M use case focuses on machine units on a plant floor that periodically exchange data with upstream or downstream machine modules and/or a supervisory controller within a LAN.


PLCs are the "actors" in M2M communications. Communication between PLCs, and between PLCs and the supervisory PLC (S-PLC), is achieved via critical control/data streams (Figure 11).

PLCはM2M通信の「主体」です。 PLC間、およびPLCと監視PLC(S-PLC)間の通信は、重要な制御/データストリームを介して行われます(図11)。

              S (Sensor)
               \                                  +-----+
         PLC__  \.--.                   .--.   ---| MES |
              \_(    `.               _(    `./   +-----+
       A------( Local  )-------------(  L2    )
             (      Net )           (      Net )    +-------+
             /`--(___.-'             `--(___.-' ----| S-PLC |
          S_/     /       PLC   .--. /              +-------+
               A_/           \_(    `.
            (Actuator)       (  Local )
                            (       Net )
                            /       \    A
                           S         A

Figure 11: Current Generic Industrial M2M Network Architecture


This use case focuses on PLC-related communications; communication to Manufacturing Execution Systems (MESs) are not addressed.

この使用例では、PLC関連の通信に焦点を当てています。 Manufacturing Execution Systems(MES)への通信は扱われません。

This use case covers only critical control/data streams; non-critical traffic between industrial automation applications (such as communication of state, configuration, setup, and database communication) is adequately served by prioritizing techniques available at the time of this writing. Such traffic can use up to 80% of the total bandwidth required. There is also a subset of non-time-critical traffic that must be reliable even though it is not time sensitive.


In this use case, deterministic networking is primarily needed to provide end-to-end delivery of M2M messages within specific timing constraints -- for example, in closed-loop automation control. Today, this level of determinism is provided by proprietary networking technologies. In addition, standard networking technologies are used to connect the local network to remote industrial automation sites, e.g., over an enterprise or metro network that also carries other types of traffic. Therefore, flows that should be forwarded with deterministic guarantees need to be sustained, regardless of the amount of other flows in those networks.


7.2. Industrial M2M Communications Today
7.2. 今日の産業用M2M通信

Today, proprietary networks fulfill the needed timing and availability for M2M networks.


The network topologies used today by industrial automation are similar to those used by telecom networks: daisy chain, ring, hub-and-spoke, and "comb" (a subset of daisy chain).


PLC-related control/data streams are transmitted periodically and carry either a preconfigured payload or a payload configured during runtime.


Some industrial applications require time synchronization at the end nodes. For such time-coordinated PLCs, accuracy of 1 us is required. Even in the case of "non-time-coordinated" PLCs, time synchronization may be needed, e.g., for timestamping of sensor data.

一部の産業用アプリケーションでは、エンドノードでの時刻同期が必要です。このような時間調整されたPLCには、1 usの精度が必要です。 「非時間調整」PLCの場合でも、たとえばセンサーデータのタイムスタンプのために時間同期が必要になる場合があります。

Industrial-network scenarios require advanced security solutions. At the time of this writing, many industrial production networks are physically separated. Filtering policies that are typically enforced in firewalls are used to prevent critical flows from being leaked outside a domain.


7.2.1. Transport Parameters
7.2.1. 輸送パラメータ

The cycle time defines the frequency of message(s) between industrial actors. The cycle time is application dependent, in the range of 1-100 ms for critical control/data streams.

サイクルタイムは、産業関係者間のメッセージの頻度を定義します。サイクルタイムはアプリケーションに依存し、重要な制御/データストリームの場合は1〜100 msの範囲です。

Because industrial applications assume that deterministic transport will be used for critical control-data-stream parameters (instead of having to define latency and delay-variation parameters), it is sufficient to fulfill requirements regarding the upper bound of latency (maximum latency). The underlying networking infrastructure must ensure a maximum end-to-end message delivery time in the range of 100 us to 50 ms, depending on the control-loop application.


The bandwidth requirements of control/data streams are usually calculated directly from the bytes-per-cycle parameter of the control loop. For PLC-to-PLC communication, one can expect 2-32 streams with packet sizes in the range of 100-700 bytes. For S-PLC-to-PLC communication, the number of streams is higher -- up to 256 streams. Usually, no more than 20% of available bandwidth is used for critical control/data streams. In today's networks, 1 Gbps links are commonly used.

制御/データストリームの帯域幅要件は、通常、制御ループのサイクルあたりのバイト数パラメーターから直接計算されます。 PLC間通信の場合、100〜700バイトの範囲のパケットサイズの2〜32ストリームが期待できます。 S-PLC-to-PLC通信の場合、ストリーム数はさらに多く、最大256ストリームです。通常、重要な制御/データストリームに使用される帯域幅の20%以下です。今日のネットワークでは、1 Gbpsリンクが一般的に使用されています。

Most PLC control loops are rather tolerant of packet loss; however, critical control/data streams accept a loss of no more than one packet per consecutive communication cycle (i.e., if a packet gets lost in cycle "n", then the next cycle ("n+1") must be lossless). After the loss of two or more consecutive packets, the network may be considered to be "down" by the application.

ほとんどのPLC制御ループは、パケット損失を許容します。ただし、重要な制御/データストリームは、連続する通信サイクルごとに1パケット以下の損失を受け入れます(つまり、パケットがサイクル「n」で失われた場合、次のサイクル(「n + 1」)はロスレスでなければなりません)。 2つ以上の連続したパケットが失われた後、ネットワークはアプリケーションによって「ダウン」していると見なされます。

As network downtime may impact the whole production system, the required network availability is rather high (99.999%).


Based on the above parameters, some form of redundancy will be required for M2M communications; however, any individual solution depends on several parameters, including cycle time and delivery time.


7.2.2. Stream Creation and Destruction
7.2.2. ストリームの作成と破棄

In an industrial environment, critical control/data streams are created rather infrequently, on the order of ~10 times per day/week/month. Most of these critical control/data streams get created at machine startup; however, flexibility is also needed during runtime -- for example, when adding or removing a machine. As production systems become more flexible going forward, there will be a significant increase in the rate at which streams are created, changed, and destroyed.


7.3. Industrial M2M in the Future
7.3. 将来の産業用M2M

We foresee a converged IP-standards-based network with deterministic properties that can satisfy the timing, security, and reliability constraints described above. Today's proprietary networks could then be interfaced to such a network via gateways; alternatively, in the case of new installations, devices could be connected directly to the converged network.


For this use case, time-synchronization accuracy on the order of 1 us is expected.

この使用例では、1 usオーダーの時間同期精度が期待されます。

7.4. Industrial M2M Requests to the IETF
7.4. IETFへの産業M2M要求

o Converged IP-based network

o 統合IPベースのネットワーク

o Deterministic behavior (bounded latency and jitter)

o 確定的な動作(制限されたレイテンシとジッター)

o High availability (presumably through redundancy) (99.999%)

o 高可用性(おそらく冗長性による)(99.999%)

o Low message delivery time (100 us to 50 ms) o Low packet loss (with a bounded number of consecutive lost packets)

oメッセージ配信時間が短い(100 us〜50 ms)oパケット損失が少ない(連続した失われたパケットの数に制限がある)

o Security (e.g., preventing critical flows from being leaked between physically separated networks)

o セキュリティ(例:物理的に分離されたネットワーク間での重要なフローの漏洩を防止)

8. Mining Industry
8. 鉱業
8.1. Use Case Description
8.1. ユースケースの説明

The mining industry is highly dependent on networks to monitor and control their systems, in both open-pit and underground extraction as well as in transport and refining processes. In order to reduce risks and increase operational efficiency in mining operations, the location of operators has been relocated (as much as possible) from the extraction site to remote control and monitoring sites.


In the case of open-pit mining, autonomous trucks are used to transport the raw materials from the open pit to the refining factory where the final product (e.g., copper) is obtained. Although the operation is autonomous, the tracks are remotely monitored from a central facility.


In pit mines, the monitoring of the tailings or mine dumps is critical in order to minimize environmental pollution. In the past, monitoring was conducted through manual inspection of preinstalled dataloggers. Cabling is not typically used in such scenarios, due to its high cost and complex deployment requirements. At the time of this writing, wireless technologies are being employed to monitor these cases permanently. Slopes are also monitored in order to anticipate possible mine collapse. Due to the unstable terrain, cable maintenance is costly and complex; hence, wireless technologies are employed.


In the case of underground monitoring, autonomous vehicles with extraction tools travel independently through the tunnels, but their operational tasks (such as excavation, stone-breaking, and transport) are controlled remotely from a central facility. This generates upstream video and feedback traffic plus downstream actuator-control traffic.


8.2. Mining Industry Today
8.2. 今日の鉱業

At the time of this writing, the mining industry uses a packet-switched architecture supported by high-speed Ethernet. However, in order to comply with requirements regarding delay and packet loss, the network bandwidth is overestimated. This results in very low efficiency in terms of resource usage.


QoS is implemented at the routers to separate video, management, monitoring, and process-control traffic for each stream.


Since mobility is involved in this process, the connections between the backbone and the mobile devices (e.g., trucks, trains, and excavators) are implemented using a wireless link. These links are based on IEEE 802.11 [IEEE-80211] for open-pit mining and "leaky feeder" communications for underground mining. (A "leaky feeder" communication system consists of a coaxial cable, run along tunnels, that emits and receives radio waves, functioning as an extended antenna. The cable is "leaky" in that it has gaps or slots in its outer conductor to allow the radio signal to leak into or out of the cable along its entire length.)

このプロセスにはモビリティが含まれるため、バックボーンとモバイルデバイス(トラック、電車、掘削機など)との間の接続は、ワイヤレスリンクを使用して実装されます。これらのリンクは、露天掘りのIEEE 802.11 [IEEE-80211]と地下鉱山の「リーキーフィーダー」通信に基づいています。 (「漏れやすいフィーダー」通信システムは、トンネルに沿って伸びる同軸ケーブルで構成され、電波を送受信し、拡張アンテナとして機能します。ケーブルは、外部導体にギャップまたはスロットがあり、無線信号がケーブル全体に漏れる、またはケーブル全体から漏れる。)

Lately, in pit mines the use of Low-Power WAN (LPWAN) technologies has been extended: tailings, slopes, and mine dumps are monitored by battery-powered dataloggers that make use of robust long-range radio technologies. Reliability is usually ensured through retransmissions at Layer 2. Gateways or concentrators act as bridges, forwarding the data to the backbone Ethernet network. Deterministic requirements are biased towards reliability rather than latency, as events are triggered slowly or can be anticipated in advance.


At the mineral-processing stage, conveyor belts and refining processes are controlled by a SCADA system that provides an in-factory delay-constrained networking environment.


At the time of this writing, voice communications are served by a redundant trunking infrastructure, independent from data networks.


8.3. Mining Industry in the Future
8.3. 未来の鉱業

Mining operations and management are converging towards a combination of autonomous operation and teleoperation of transport and extraction machines. This means that video, audio, monitoring, and process-control traffic will increase dramatically. Ideally, all activities at the mine will rely on network infrastructure.


Wireless for open-pit mining is already a reality with LPWAN technologies; it is expected to evolve to more-advanced LPWAN technologies, such as those based on LTE, to increase last-hop reliability or novel LPWAN flavors with deterministic access.

露天掘りのためのワイヤレスは、LPWANテクノロジーですでに現実のものとなっています。 LTEベースのテクノロジーなど、より高度なLPWANテクノロジーへと進化し、ラストホップの信頼性や確定的アクセスを備えた新しいLPWANフレーバーを向上させることが期待されています。

One area in which DetNet can improve this use case is in the wired networks that make up the "backbone network" of the system. These networks connect many wireless Access Points (APs) together. The mobile machines (which are connected to the network via wireless) transition from one AP to the next as they move about. A deterministic, reliable, low-latency backbone can enable these transitions to be more reliable.


Connections that extend all the way from the base stations to the machinery via a mix of wired and wireless hops would also be beneficial -- for example, to improve the responsiveness of digging machines to remote control. However, to guarantee deterministic performance of a DetNet, the end-to-end underlying network must be deterministic. Thus, for this use case, if a deterministic wireless transport is integrated with a wire-based DetNet network, it could create the desired wired plus wireless end-to-end deterministic network.


8.4. Mining Industry Requests to the IETF
8.4. IETFへの鉱業業界の要求

o Improved bandwidth efficiency

o 帯域幅効率の向上

o Very low delay, to enable machine teleoperation

o 機械の遠隔操作を可能にする非常に低い遅延

o Dedicated bandwidth usage for high-resolution video streams

o 高解像度ビデオストリーム専用の帯域幅使用

o Predictable delay, to enable real-time monitoring

o リアルタイムの監視を可能にする予測可能な遅延

o Potential for constructing a unified DetNet network over a combination of wired and deterministic wireless links

o 有線と確定的なワイヤレスリンクの組み合わせで統一されたDetNetネットワークを構築する可能性

9. Private Blockchain
9. プライベートブロックチェーン
9.1. Use Case Description
9.1. ユースケースの説明

Blockchain was created with Bitcoin as a "public" blockchain on the open Internet; however, blockchain has also spread far beyond its original host into various industries, such as smart manufacturing, logistics, security, legal rights, and others. In these industries, blockchain runs in designated and carefully managed networks in which deterministic networking requirements could be addressed by DetNet. Such implementations are referred to as "private" blockchain.


The sole distinction between public and private blockchain is defined by who is allowed to participate in the network, execute the consensus protocol, and maintain the shared ledger.


Today's networks manage the traffic from blockchain on a best-effort basis, but blockchain operation could be made much more efficient if deterministic networking services were available to minimize latency and packet loss in the network.


9.1.1. Blockchain Operation
9.1.1. ブロックチェーン操作

A "block" runs as a container of a batch of primary items (e.g., transactions, property records). The blocks are chained in such a way that the hash of the previous block works as the pointer to the header of the new block. Confirmation of each block requires a consensus mechanism. When an item arrives at a blockchain node, the latter broadcasts this item to the rest of the nodes, which receive it, verify it, and put it in the ongoing block. The block confirmation process begins as the number of items reaches the predefined block capacity, at which time the node broadcasts its proved block to the rest of the nodes, to be verified and chained. The result is that block N+1 of each chain transitively vouches for blocks N and previous of that chain.

「ブロック」は、主要アイテム(トランザクション、プロパティレコードなど)のバッチのコンテナーとして実行されます。ブロックは、前のブロックのハッシュが新しいブロックのヘッダーへのポインターとして機能するようにチェーン化されています。各ブロックの確認には、合意メカニズムが必要です。アイテムがブロックチェーンノードに到着すると、後者はこのアイテムを残りのノードにブロードキャストします。ノードはそれを受信し、検証して、進行中のブロックに入れます。アイテムの数が事前定義されたブロック容量に達すると、ブロック確認プロセスが開始します。その時点で、ノードは検証済みのブロックを残りのノードにブロードキャストし、検証およびチェーンします。その結果、各チェーンのブロックN + 1は、そのチェーンのブロックN以前を推移的に保証します。

9.1.2. Blockchain Network Architecture
9.1.2. ブロックチェーンネットワークアーキテクチャ

Blockchain node communication and coordination are achieved mainly through frequent point-to-multipoint communication; however, persistent point-to-point connections are used to transport both the items and the blocks to the other nodes. For example, consider the following implementation.


When a node is initiated, it first requests the other nodes' addresses from a specific entity, such as DNS. The node then creates persistent connections with each of the other nodes. If a node confirms an item, it sends the item to the other nodes via these persistent connections.


As a new block in a node is completed and is proven by the surrounding nodes, it propagates towards its neighbor nodes. When node A receives a block, it verifies it and then sends an invite message to its neighbor B. Neighbor B checks to see if the designated block is available and responds to A if it is unavailable; A then sends the complete block to B. B repeats the process (as was done by A) to start the next round of block propagation.


The challenge of blockchain network operation is not overall data rates, since the volume from both the block and the item stays between hundreds of bytes and a couple of megabytes per second; rather, the challenge is in transporting the blocks with minimum latency to maximize the efficiency of the blockchain consensus process. The efficiency of differing implementations of the consensus process may be affected to a differing degree by the latency (and variation of latency) of the network.


9.1.3. Blockchain Security Considerations
9.1.3. ブロックチェーンのセキュリティに関する考慮事項

Security is crucial to blockchain applications; at the time of this writing, blockchain systems address security issues mainly at the application level, where cryptography as well as hash-based consensus play a leading role in preventing both double-spending and malicious service attacks. However, there is concern that in the proposed use case for a private blockchain network that is dependent on deterministic properties the network could be vulnerable to delays and other specific attacks against determinism, as these delays and attacks could interrupt service.


9.2. Private Blockchain Today
9.2. 今日のプライベートブロックチェーン

Today, private blockchain runs in Layer 2 or Layer 3 VPNs, generally without guaranteed determinism. The industry players are starting to realize that improving determinism in their blockchain networks could improve the performance of their service, but at present these goals are not being met.


9.3. Private Blockchain in the Future
9.3. 将来のプライベートブロックチェーン

Blockchain system performance can be greatly improved through deterministic networking services, primarily because low latency would accelerate the consensus process. It would be valuable to be able to design a private blockchain network with the following properties:


o Transport of point-to-multipoint traffic in a coordinated network architecture rather than at the application layer (which typically uses point-to-point connections)

o アプリケーションレイヤー(通常、ポイントツーポイント接続を使用)ではなく、調整されたネットワークアーキテクチャでのポイントツーマルチポイントトラフィックのトランスポート

o Guaranteed transport latency

o 保証されたトランスポート遅延

o Reduced packet loss (to the point where delay incurred by packet retransmissions would be negligible)

o パケット損失の減少(パケットの再送信によって発生する遅延が無視できる程度まで)

9.4. Private Blockchain Requests to the IETF
9.4. IETFへのプライベートブロックチェーンリクエスト

o Layer 2 and Layer 3 multicast of blockchain traffic

o ブロックチェーントラフィックのレイヤー2およびレイヤー3マルチキャスト

o Item and block delivery with bounded, low latency and negligible packet loss

o 制限のある低レイテンシでパケット損失がほとんどないアイテムとブロックの配信

o Coexistence of blockchain and IT traffic in a single network

o 単一ネットワークでのブロックチェーンとITトラフィックの共存

o Ability to scale the network by distributing the centralized control of the network across multiple control entities

o ネットワークの集中管理を複数の制御エンティティに分散することにより、ネットワークを拡張する機能

10. Network Slicing
10. ネットワークスライシング
10.1. Use Case Description
10.1. ユースケースの説明

Network slicing divides one physical network infrastructure into multiple logical networks. Each slice, which corresponds to a logical network, uses resources and network functions independently from each other. Network slicing provides flexibility of resource allocation and service quality customization.


Future services will demand network performance with a wide variety of characteristics such as high data rate, low latency, low loss rate, security, and many other parameters. Ideally, every service would have its own physical network satisfying its particular performance requirements; however, that would be prohibitively expensive. Network slicing can provide a customized slice for a single service, and multiple slices can share the same physical network. This method can optimize performance for the service at lower cost, and the flexibility of setting up and releasing the slices also allows the user to allocate network resources dynamically.


Unlike the other use cases presented here, network slicing is not a specific application that depends on specific deterministic properties; rather, it is introduced as an area of networking to which DetNet might be applicable.


10.2. DetNet Applied to Network Slicing
10.2. DetNetをネットワークスライスに適用
10.2.1. Resource Isolation across Slices
10.2.1. スライス間のリソース分離

One of the requirements discussed for network slicing is the "hard" separation of various users' deterministic performance. That is, it should be impossible for activity, lack of activity, or changes in activity of one or more users to have any appreciable effect on the deterministic performance parameters of any other slices. Typical techniques used today, which share a physical network among users, do not offer this level of isolation. DetNet can supply point-to-point or point-to-multipoint paths that offer a user bandwidth and latency guarantees that cannot be affected by other users' data traffic. Thus, DetNet is a powerful tool when reliability and low latency are required in network slicing.

ネットワークスライスについて説明されている要件の1つは、さまざまなユーザーの確定的なパフォーマンスの「ハード」な分離です。つまり、1人以上のユーザーのアクティビティ、アクティビティの欠如、またはアクティビティの変化が、他のスライスの確定的なパフォーマンスパラメータにかなりの影響を与えることは不可能であるべきです。ユーザー間で物理ネットワークを共有する現在使用されている一般的な手法では、このレベルの分離は提供されていません。 DetNetは、他のユーザーのデータトラフィックの影響を受けないユーザー帯域幅とレイテンシ保証を提供するポイントツーポイントまたはポイントツーマルチポイントパスを提供できます。したがって、DetNetは、ネットワークスライスで信頼性と低遅延が必要な場合に強力なツールです。

10.2.2. Deterministic Services within Slices
10.2.2. スライス内の確定的サービス

Slices may need to provide services with DetNet-type performance guarantees; note, however, that a system can be implemented to provide such services in more than one way. For example, the slice itself might be implemented using DetNet, and thus the slice can provide service guarantees and isolation to its users without any particular DetNet awareness on the part of the users' applications. Alternatively, a "non-DetNet-aware" slice may host an application that itself implements DetNet services and thus can enjoy similar service guarantees.


10.3. A Network Slicing Use Case Example - 5G Bearer Network
10.3. ネットワークスライスの使用例-5Gベアラーネットワーク

Network slicing is a core feature of 5G as defined in 3GPP. The system architecture for 5G is under development at the time of this writing [TS23501]. A network slice in a mobile network is a complete logical network, including RANs and Core Networks (CNs). It provides telecommunications services and network capabilities, which may vary from slice to slice. A 5G bearer network is a typical use case for network slicing; for example, consider three 5G service scenarios: eMBB, URLLC, and mMTC.

ネットワークスライスは、3GPPで定義されている5Gのコア機能です。 5Gのシステムアーキテクチャは、この記事の執筆時点で開発中です[TS23501]。モバイルネットワークのネットワークスライスは、RANおよびコアネットワーク(CN)を含む完全な論理ネットワークです。通信サービスとネットワーク機能を提供し、スライスごとに異なる場合があります。 5Gベアラネットワークは、ネットワークスライスの一般的な使用例です。たとえば、3つの5Gサービスシナリオ、eMBB、URLLC、およびmMTCについて考えます。

o eMBB (Enhanced Mobile Broadband) focuses on services characterized by high data rates, such as high-definition video, Virtual Reality (VR), augmented reality, and fixed mobile convergence.

o eMBB(Enhanced Mobile Broadband)は、高解像度ビデオ、バーチャルリアリティ(VR)、拡張現実、固定モバイルコンバージェンスなど、高いデータレートを特徴とするサービスに焦点を当てています。

o URLLC (Ultra-Reliable and Low Latency Communications) focuses on latency-sensitive services, such as self-driving vehicles, remote surgery, or drone control.

o URLLC(Ultra-Reliable and Low Latency Communications)は、自動運転車、遠隔手術、ドローン制御など、遅延の影響を受けやすいサービスに焦点を当てています。

o mMTC (massive Machine Type Communications) focuses on services that have high connection-density requirements, such as those typically used in smart-city and smart-agriculture scenarios.

o mMTC(大規模マシンタイプコミュニケーション)は、スマートシティやスマート農業のシナリオで通常使用されるような、接続密度の要件が高いサービスに焦点を当てています。

A 5G bearer network could use DetNet to provide hard resource isolation across slices and within a given slice. For example, consider Slice-A and Slice-B, with DetNet used to transit services URLLC-A and URLLC-B over them. Without DetNet, URLLC-A and URLLC-B would compete for bandwidth resources, and latency and reliability requirements would not be guaranteed. With DetNet, URLLC-A and URLLC-B have separate bandwidth reservations; there is no resource conflict between them, as though they were in different physical networks.

5Gベアラネットワークでは、DetNetを使用して、スライス間および特定のスライス内でハードリソースを分離できます。たとえば、Slice-AとSlice-Bについて考えてみましょう。DetNetは、それらを介してサービスURLLC-AとURLLC-Bを中継するために使用されます。 DetNetがなければ、URLLC-AとURLLC-Bは帯域幅リソースをめぐって競合し、待ち時間と信頼性の要件は保証されません。 DetNetでは、URLLC-AとURLLC-Bは別々の帯域幅予約を持っています。それらが異なる物理ネットワークにあるかのように、それらの間にリソースの競合はありません。

10.4. Non-5G Applications of Network Slicing
10.4. ネットワークスライシングの非5Gアプリケーション

Although the operation of services not related to 5G is not part of the 5G network slicing definition and scope, network slicing is likely to become a preferred approach for providing various services across a shared physical infrastructure. Examples include providing services for electrical utilities and pro audio via slices. Use cases like these could become more common once the work for the 5G CN evolves to include wired as well as wireless access.

5Gに関連しないサービスの操作は5Gネットワ​​ークスライスの定義とスコープの一部ではありませんが、ネットワークスライスは、共有の物理インフラストラクチャ全体にさまざまなサービスを提供するための推奨アプローチになる可能性があります。例としては、電気ユーティリティおよびスライスを介したプロオーディオのサービスの提供が含まれます。 5G CNの作業が進化して有線アクセスと無線アクセスが含まれるようになると、このような使用例がより一般的になる可能性があります。

10.5. Limitations of DetNet in Network Slicing
10.5. ネットワークスライスにおけるDetNetの制限

DetNet cannot cover every network slicing use case. One issue is that DetNet is a point-to-point or point-to-multipoint technology; however, network slicing ultimately needs multipoint-to-multipoint guarantees. Another issue is that the number of flows that can be carried by DetNet is limited by DetNet scalability; flow aggregation and queuing management modification may help address this issue. Additional work and discussion are needed to address these topics.

DetNetは、すべてのネットワークスライスの使用例をカバーできるわけではありません。 1つの問題は、DetNetがポイントツーポイントまたはポイントツーマルチポイントテクノロジーであることです。ただし、ネットワークスライスには、最終的にマルチポイントツーマルチポイントの保証が必要です。もう1つの問題は、DetNetで伝送できるフローの数が、DetNetのスケーラビリティによって制限されることです。フローの集約とキューイング管理の変更は、この問題の解決に役立つ場合があります。これらのトピックに対処するには、追加の作業と議論が必要です。

10.6. Network Slicing Today and in the Future
10.6. 現在および将来のネットワークスライス

Network slicing has promise in terms of satisfying many requirements of future network deployment scenarios, but it is still a collection of ideas and analyses without a specific technical solution. DetNet is one of various technologies that could potentially be used in network slicing, along with, for example, Flex-E and segment routing. For more information, please see the IETF 99 Network Slicing BoF session agenda and materials as provided in [IETF99-netslicing-BoF].

ネットワークスライシングは、将来のネットワーク展開シナリオの多くの要件を満たすという点で約束されていますが、それでも特定の技術的なソリューションがなければアイデアと分析の集まりです。 DetNetは、Flex-Eやセグメントルーティングなどとともに、ネットワークスライシングで使用される可能性のあるさまざまなテクノロジーの1つです。詳細については、[IETF99-netslicing-BoF]で提供されるIETF 99ネットワークスライシングBoFセッションの議題と資料を参照してください。

10.7. Network Slicing Requests to the IETF
10.7. IETFへのネットワークスライス要求

o Isolation from other flows through queuing management

o キューイング管理による他のフローからの分離

o Service quality customization and guarantees

o サービス品質のカスタマイズと保証

o Security

o 安全保障

11. Use Case Common Themes
11. ユースケースの共通テーマ

This section summarizes the expected properties of a DetNet network, based on the use cases as described in this document.


11.1. Unified, Standards-Based Networks
11.1. 統一された標準ベースのネットワーク
11.1.1. Extensions to Ethernet
11.1.1. イーサネットの拡張

A DetNet network is not "a new kind of network" -- it is based on extensions to existing Ethernet standards, including elements of IEEE 802.1 TSN and related standards. Presumably, it will be possible to run DetNet over other underlying transports besides Ethernet, but Ethernet is explicitly supported.

DetNetネットワークは「新しい種類のネットワーク」ではなく、IEEE 802.1 TSNの要素や関連する標準を含む、既存のイーサネット標準への拡張に基づいています。おそらく、イーサネット以外の基盤となるトランスポートを介してDetNetを実行することは可能ですが、イーサネットは明示的にサポートされています。

11.1.2. Centrally Administered Networks
11.1.2. 一元管理されたネットワーク

In general, a DetNet network is not expected to be "plug and play"; rather, some type of centralized network configuration and control system is expected. Such a system may be in a single central location, or it may be distributed across multiple control entities that function together as a unified control system for the network. However, the ability to "hot swap" components (e.g., due to malfunction) is similar enough to "plug and play" that this kind of behavior may be expected in DetNet networks, depending on the implementation.


11.1.3. Standardized Data-Flow Information Models
11.1.3. 標準化されたデータフロー情報モデル

Data-flow information models to be used with DetNet networks are to be specified by DetNet.


11.1.4. Layer 2 and Layer 3 Integration
11.1.4. レイヤー2とレイヤー3の統合

A DetNet network is intended to integrate between Layer 2 (bridged) network(s) (e.g., an AVB/TSN LAN) and Layer 3 (routed) network(s) (e.g., using IP-based protocols). One example of this is making AVB/TSN-type deterministic performance available from Layer 3 applications, e.g., using RTP. Another example is connecting two AVB/TSN LANs ("islands") together through a standard router.

DetNetネットワークは、レイヤー2(ブリッジ)ネットワーク(AVB / TSN LANなど)とレイヤー3(ルーテッド)ネットワーク(IPベースのプロトコルを使用するなど)の間の統合を目的としています。これの1つの例は、AVB / TSNタイプの確定的なパフォーマンスを、たとえばRTPを使用してレイヤー3アプリケーションから利用できるようにすることです。別の例は、標準ルーターを介して2つのAVB / TSN LAN(「アイランド」)を接続することです。

11.1.5. IPv4 Considerations
11.1.5. IPv4に関する考慮事項

This document explicitly does not specify any particular implementation or protocol; however, it has been observed that various use cases (and their associated industries) described herein are explicitly based on IPv4 (as opposed to IPv6), and it is not considered practical to expect such implementations to migrate to IPv6 in order to use DetNet. Thus, the expectation is that even if not every feature of DetNet is available in an IPv4 context, at least some of the significant benefits (such as guaranteed end-to-end delivery and low latency) will be available.


11.1.6. Guaranteed End-to-End Delivery
11.1.6. エンドツーエンドの配信を保証

Packets in a DetNet flow are guaranteed not to be dropped by the network due to congestion. However, the network may drop packets for intended reasons, e.g., per security measures. Similarly, best-effort traffic on a DetNet is subject to being dropped (as on a non-DetNet IP network). Also note that this guarantee applies to actions taken by DetNet protocol software and does not provide any guarantee against lower-level errors such as media errors or checksum errors.


11.1.7. Replacement for Multiple Proprietary Deterministic Networks
11.1.7. 複数の独自の確定的ネットワークの置き換え

There are many proprietary non-interoperable deterministic Ethernet-based networks available; DetNet is intended to provide an open-standards-based alternative to such networks.

相互運用できない確定的なイーサネットベースの独自のネットワークが多数利用可能です。 DetNetは、このようなネットワークのオープン標準ベースの代替手段を提供することを目的としています。

11.1.8. Mix of Deterministic and Best-Effort Traffic
11.1.8. 確定的トラフィ​​ックとベストエフォートトラフィックの混合

DetNet is intended to support the coexistence of time-sensitive operational (OT) traffic and informational (IT) traffic on the same ("unified") network.


11.1.9. Unused Reserved Bandwidth to Be Available to Best-Effort Traffic

11.1.9. ベストエフォートトラフィックで使用できる未使用の予約済み帯域幅

If bandwidth reservations are made for a stream but the associated bandwidth is not used at any point in time, that bandwidth is made available on the network for best-effort traffic. If the owner of the reserved stream then starts transmitting again, the bandwidth is no longer available for best-effort traffic; this occurs on a moment-to-moment basis. Note that such "temporarily available" bandwidth is not available for time-sensitive traffic, which must have its own reservation.


11.1.10. Lower-Cost, Multi-Vendor Solutions
11.1.10. 低コストのマルチベンダーソリューション

The DetNet network specifications are intended to enable an ecosystem in which multiple vendors can create interoperable products, thus promoting device diversity and potentially higher numbers of each device manufactured, promoting cost reduction and cost competition among vendors. In other words, vendors should be able to create DetNet networks at lower cost and with greater diversity of available devices than existing proprietary networks.


11.2. Scalable Size
11.2. 拡張可能なサイズ

DetNet networks range in size from very small (e.g., inside a single industrial machine) to very large (e.g., a utility-grid network spanning a whole country and involving many "hops" over various kinds of links -- for example, radio repeaters, microwave links, or fiber optic links). However, recall that the scope of DetNet is confined to networks that are centrally administered and thereby explicitly excludes unbounded decentralized networks such as the Internet.

DetNetネットワークのサイズは、非常に小さい(たとえば、単一の産業機械内)から非常に大きい(たとえば、全国にまたがるユーティリティグリッドネットワークで、無線リピータなど、さまざまな種類のリンク上の多くの「ホップ」が関与している)に及びます。 、マイクロ波リンク、または光ファイバーリンク)。ただし、DetNetの範囲は集中管理されているネットワークに限定されているため、インターネットなどの境界のない分散ネットワークを明示的に除外していることを思い出してください。

11.2.1. Scalable Number of Flows
11.2.1. スケーラブルなフロー数

The number of flows in a given network application can potentially be large and can potentially grow faster than the number of nodes and hops, so the network should provide a sufficient (perhaps configurable) maximum number of flows for any given application.


11.3. Scalable Timing Parameters and Accuracy
11.3. スケーラブルなタイミングパラメータと精度
11.3.1. Bounded Latency
11.3.1. 制限付きレイテンシ

DetNet data-flow information models are expected to provide means to configure the network that include parameters for querying network path latency, requesting bounded latency for a given stream, requesting worst-case maximum and/or minimum latency for a given path or stream, and so on. It is expected that the network may not be able to provide a given requested service level; if this is indeed the case, the network control system should reply that the requested services are not available (as opposed to accepting the parameter but then not delivering the desired behavior).


11.3.2. Low Latency
11.3.2. 低遅延

Various applications may state that they require "extremely low latency"; however, depending on the application, "extremely low" may imply very different latency bounds. For example, "low latency" across a utility-grid network is a different order of magnitude of latency values compared to "low latency" in a motor control loop in a small machine. It is intended that the mechanisms for specifying desired latency include wide ranges and that architecturally there is nothing to prevent arbitrarily low latencies from being implemented in a given network.


11.3.3. Bounded Jitter (Latency Variation)
11.3.3. 制限付きジッター(遅延変動)

As with the other latency-related elements noted above, parameters that can determine or request permitted variations in latency should be available.


11.3.4. Symmetrical Path Delays
11.3.4. 対称パス遅延

Some applications would like to specify that the transit delay time values be equal for both the transmit path and the return path.


11.4. High Reliability and Availability
11.4. 高い信頼性と可用性

Reliability is of critical importance to many DetNet applications, because the consequences of failure can be extraordinarily high in terms of cost and even human life. DetNet-based systems are expected to be implemented with essentially arbitrarily high availability -- for example, 99.9999% uptime (where 99.9999 means "six nines") or even 12 nines. DetNet designs should not make any assumptions about the level of reliability and availability that may be required of a given system and should define parameters for communicating these kinds of metrics within the network.

多くのDetNetアプリケーションにとって、信頼性は非常に重要です。これは、障害の結果が、コストや人間の生活の面でも非常に高くなる可能性があるためです。 DetNetベースのシステムは、本質的に任意の高可用性で実装されることが期待されています。たとえば、99.9999%のアップタイム(99.9999は「シックスナイン」を意味します)や12ナインなどです。 DetNet設計では、特定のシステムに必要となる可能性のある信頼性と可用性のレベルについて何も想定してはならず、ネットワーク内でこれらの種類のメトリックを通信するためのパラメーターを定義する必要があります。

A strategy used by DetNet for providing such extraordinarily high levels of reliability is to provide redundant paths so that a system can seamlessly switch between the paths while maintaining its required level of performance.


11.5. Security
11.5. 安全保障

Security is of critical importance to many DetNet applications. A DetNet network must have the ability to be made secure against device failures, attackers, misbehaving devices, and so on. In a DetNet network, the data traffic is expected to be time sensitive; thus, in addition to arriving with the data content as intended, the data must also arrive at the expected time. This may present "new" security challenges to implementers and must be addressed accordingly. There are other security implications, including (but not limited to) the change in attack surface presented by PRE.

セキュリティは、多くのDetNetアプリケーションにとって非常に重要です。 DetNetネットワークは、デバイスの障害、攻撃者、デバイスの誤動作などから保護する機能を備えている必要があります。 DetNetネットワークでは、データトラフィックは時間に敏感であると予想されます。したがって、データコンテンツが意図したとおりに到着するだけでなく、データも予想される時間に到着する必要があります。これは、「新しい」セキュリティの課題を実装者に提示する可能性があり、それに応じて対処する必要があります。 PREによって提示される攻撃対象領域の変更を含む(ただしこれらに限定されない)他のセキュリティ上の影響があります。

11.6. Deterministic Flows
11.6. 確定的フロー

Reserved-bandwidth data flows must be isolated from each other and from best-effort traffic, so that even if the network is saturated with best-effort (and/or reserved-bandwidth) traffic, the configured flows are not adversely affected.


12. Security Considerations
12. セキュリティに関する考慮事項

This document covers a number of representative applications and network scenarios that are expected to make use of DetNet technologies. Each of the potential DetNet use cases will have security considerations from both the use-specific perspective and the DetNet technology perspective. While some use-specific security considerations are discussed above, a more comprehensive discussion of such considerations is captured in [DetNet-Security] ("Deterministic Networking (DetNet) Security Considerations"). Readers are encouraged to review [DetNet-Security] to gain a more complete understanding of DetNet-related security considerations.


13. IANA Considerations
13. IANAに関する考慮事項

This document has no IANA actions.


14. Informative References
14. 参考引用

[Ahm14] Ahmed, M. and R. Kim, "Communication Network Architectures for Smart-Wind Power Farms", Energies 2014, pp. 3900-3921, DOI 10.3390/en7063900, June 2014.

[Ahm14] Ahmed、M。、およびR. Kim、「Smart-Wind Power Farmsの通信ネットワークアーキテクチャ」、Energies 2014、pp。3900-3921、DOI 10.3390 / en7063900、2014年6月。

[Arch-for-6TiSCH] Thubert, P., Ed., "An Architecture for IPv6 over the TSCH mode of IEEE 802.15.4", Work in Progress, draft-ietf-6tisch-architecture-20, March 2019.

[Arch-for-6TiSCH] Thubert、P。、編、「IEEE 802.15.4のTSCHモードでのIPv6のアーキテクチャ」、作業中、draft-ietf-6tisch-architecture-20、2019年3月。

[BACnet-IP] ASHRAE, "Annex J to ANSI/ASHRAE 135-1995 - BACnet/IP", January 1999, < Add-1995-135a.pdf>.

[BACnet-IP] ASHRAE、「Annex J to ANSI / ASHRAE 135-1995-BACnet / IP」、1999年1月、< Add-1995-135a.pdf>。

[BAS-DetNet] Kaneko, Y. and S. Das, "Building Automation Use Cases and Requirements for Deterministic Networking", Work in Progress, draft-bas-usecase-detnet-00, October 2015.


[CoAP-6TiSCH] Sudhaakar, R., Ed. and P. Zand, "6TiSCH Resource Management and Interaction using CoAP", Work in Progress, draft-ietf-6tisch-coap-03, March 2015.

[CoAP-6TiSCH] Sudhaakar、R.、Ed。およびP. Zand、「6TiSCH Resource Management and Interaction using CoAP」、Work in Progress、draft-ietf-6tisch-coap-03、2015年3月。

[CoMP] NGMN Alliance, "RAN EVOLUTION PROJECT COMP EVALUATION AND ENHANCEMENT", VERSION 2.0, NGMN Alliance, March 2015, < NGMN_RANEV_D3_CoMP_Evaluation_and_Enhancement_v2.0.pdf>.

[CoMP] NGMNアライアンス、「RAN EVOLUTION PROJECT COMP EVALUATION AND ENHANCEMENT」、VERSION 2.0、NGMN Alliance、2015年3月、< NGMN_RANEV_D3_CoMP_Evaluation_and_Enhancement_v2.0.pdf>。

[Content_Protection] Olsen, D., "1722a Content Protection", April 2012, < avtp_dolsen_1722a_content_protection.pdf>.

[Content_Protection] Olsen、D。、「1722a Content Protection」、2012年4月、< avtp_dolsen_1722a_content_protection.pdf>。

[CPRI] CPRI Cooperation, "Common Public Radio Interface (CPRI); Interface Specification", CPRI Specification V6.1, July 2014, < CPRI_v_6_1_2014-07-01.pdf>.

[CPRI] CPRI Cooperation、「Common Public Radio Interface(CPRI); Interface Specification」、CPRI Specification V6.1、2014年7月、< CPRI_v_6_1_2014-07-01.pdf>。

[DCI] Digital Cinema Initiatives, LLC, "DCI Specification, Version 1.3", June 2018, <>.

[DCI] Digital Cinema Initiatives、LLC、「DCI仕様、バージョン1.3」、2018年6月、<>。

[Det-Fwd-PHB] Shah, S. and P. Thubert, "Deterministic Forwarding PHB", Work in Progress, draft-svshah-tsvwg-deterministic-forwarding-04, August 2015.

[Det-Fwd-PHB] Shah、S。およびP. Thubert、「確定的転送PHB」、作業中、draft-svshah-tsvwg-deterministic-forwarding-04、2015年8月。

[DetNet-6TiSCH] Thubert, P., Ed., "6TiSCH requirements for DetNet", Work in Progress, draft-thubert-6tisch-4detnet-01, June 2015.

[DetNet-6TiSCH] Thubert、P。、編、「DetNetの6TiSCH要件」、Work in Progress、draft-thubert-6tisch-4detnet-01、2015年6月。

[DetNet-Arch] Finn, N., Thubert, P., Varga, B., and J. Farkas, "Deterministic Networking Architecture", Work in Progress, draft-ietf-detnet-architecture-13, May 2019.

[DetNet-Arch] Finn、N.、Thubert、P.、Varga、B。、およびJ. Farkas、「Deterministic Networking Architecture」、Work in Progress、draft-ietf-detnet-architecture-13、2019年5月。

[DetNet-Audio-Reqs] Gunther, C., Ed. and E. Grossman, Ed., "Deterministic Networking Professional Audio Requirements", Work in Progress, draft-gunther-detnet-proaudio-req-01, March 2015.

[DetNet-Audio-Reqs] Gunther、C.、Ed。 E. Grossman編、「確定的ネットワーキングプロフェッショナルオーディオ要件」、Work in Progress、draft-gunther-detnet-proaudio-req-01、2015年3月。

[DetNet-Mobile] Zha, Y., "Deterministic Networking Use Case in Mobile Network", Work in Progress, draft-zha-detnet-use-case-00, July 2015.

[DetNet-Mobile] Zha、Y。、「モバイルネットワークにおける確定的ネットワーキングの使用例」、作業中、draft-zha-detnet-use-case-00、2015年7月。

[DetNet-RAN] Korhonen, J., "Deterministic networking for radio access networks", Work in Progress, draft-korhonen-detnet-telreq-00, May 2015.

[DetNet-RAN] Korhonen、J.、「無線アクセスネットワークの確定的ネットワーキング」、Work in Progress、draft-korhonen-detnet-telreq-00、2015年5月。

[DetNet-Security] Mizrahi, T., Grossman, E., Ed., Hacker, A., Das, S., Dowdell, J., Austad, H., Stanton, K., and N. Finn, "Deterministic Networking (DetNet) Security Considerations", Work in Progress, draft-ietf-detnet-security-04, March 2019.

[DetNet-Security] Mizrahi、T.、Grossman、E.、Ed。、Hacker、A.、Das、S.、Dowdell、J.、Austad、H.、Stanton、K.、and N. Finn、 "Deterministicネットワーキング(DetNet)のセキュリティに関する考慮事項」、作業中、draft-ietf-detnet-security-04、2019年3月。

[DetNet-Util-Reqs] Wetterwald, P. and J. Raymond, "Deterministic Networking Uitilities requirements", Work in Progress, draft-wetterwald-detnet-utilities-reqs-02, June 2015.

[DetNet-Util-Reqs] Wetterwald、P。およびJ. Raymond、「確定的ネットワークユーティリティの要件」、Work in Progress、draft-wetterwald-detnet-utilities-reqs-02、2015年6月。

[eCPRI] IEEE Standards Association, "Common Public Radio Interface: eCPRI Interface Specification V1.2", June 2018, <>.

[eCPRI] IEEE Standards Association、「Common Public Radio Interface:eCPRI Interface Specification V1.2」、2018年6月、<>。

[ESPN_DC2] Daley, D., "ESPN's DC2 Scales AVB Large", SVG News, June 2014, < espns-dc2-scales-avb-large>.

[ESPN_DC2] Daley、D。、「ESPNのDC2スケールAVBラージ」、SVGニュース、2014年6月、< espns-dc2-scales-avb-large>。

[EtherCAT] "EtherCAT Technology Group", <>.

[EtherCAT] "EtherCAT Technology Group"、<>。

[FL-net] Japan Electrical Manufacturers Association, "JEMA 1479 - English Edition", September 2012, < JEM_1479e(20120927).pdf>.

[FL-net]日本電機工業会、「JEMA 1479-英語版」、2012年9月、< JEM_1479e(20120927).pdf >。

[Fronthaul] Chen, D. and T. Mustala, "Ethernet Fronthaul Considerations", IEEE 1904.3, February 2015, < tf3_1502_chen_1.pdf>.

[フロントホール]チェン、D.、T。ムスタラ、「イーサネットフロントホールに関する考慮事項」、IEEE 1904.3、2015年2月、< tf3_1502_chen_1.pdf>。

[IEC-60834] International Electrotechnical Commission, "Teleprotection equipment of power systems - Performance and testing", IEC 60834, October 1999.

[IEC-60834] International Electrotechnical Commission、 "Teleprotection equipment of power systems-Performance and Testing"、IEC 60834、1999年10月。

[IEC-60870-5-104] International Electrotechnical Commission, "Telecontrol equipment and systems - Part 5-104: Transmission protocols - Network access for IEC 60870-5-101 using standard transport profiles", IEC 60870-5-104, June 2006.

[IEC-60870-5-104] International Electrotechnical Commission、 "Telecontrol equipment and systems-Part 5-104:Transmission protocol-Network access for IEC 60870-5-101 using standard transport profiles"、IEC 60870-5-104、June 2006年

[IEC-61400-25] International Electrotechnical Commission, "Communications for monitoring and control of wind power plants", IEC 61400-25, June 2013.

[IEC-61400-25]国際電気標準会議、「風力発電所の監視と制御のための通信」、IEC 61400-25、2013年6月。

[IEC-61850-5:2013] International Electrotechnical Commission, "Communication networks and systems for power utility automation - Part 5: Communication requirements for functions and device models", IEC 61850-5, January 2013.

[IEC-61850-5:2013] International Electrotechnical Commission、 "Communication network and systems for power utility Automation-Part 5:Communication requirements for functions and device models"、IEC 61850-5、2013年1月。

[IEC-61850-9-2:2011] International Electrotechnical Commission, "Communication networks and systems for power utility automation - Part 9-2: Specific communication service mapping (SCSM) - Sampled values over ISO/IEC 8802-3", IEC 61850-9-2, September 2011.

[IEC-61850-9-2:2011] International Electrotechnical Commission、 "Communication network and systems for power utility Automation-Part 9-2:Specific Communication Service Mapping(SCSM)-Sampled values over ISO / IEC 8802-3"、IEC 61850-9-2、2011年9月。

[IEC-61850-90-12:2015] International Electrotechnical Commission, "Communication networks and systems for power utility automation - Part 90-12: Wide area network engineering guidelines", IEC TR 61850-90-12, July 2015.

[IEC-61850-90-12:2015] International Electrotechnical Commission、「Communication networks and systems for power utility Automation-Part 90-12:Wide area networkengineering Guidelines」、IEC TR 61850-90-12、2015年7月。

[IEC-62357-200:2015] International Electrotechnical Commission, "Power systems management and associated information exchange - Part 200: Guidelines for migration from Internet Protocol version 4 (IPv4) to Internet Protocol version 6 (IPv6)", IEC 62357-200:2015, July 2015.

[IEC-62357-200:2015] International Electrotechnical Commission、 "Power systems management and related information exchange-Part 200:migration for migration from Internet Protocol version 4(IPv4)to Internet Protocol version 6(IPv6)"、IEC 62357-200 :2015年、2015年7月。

[IEC-62439-3:2016] International Electrotechnical Commission, "Industrial communication networks - High availability automation networks - Part 3: Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR)", March 2016.


[IEC-IEEE-61850-9-3:2016] International Electrotechnical Commission, "Communication networks and systems for power utility automation - Part 9-3: Precision time protocol profile for power utility automation", IEC 61850-9-3, May 2016.

[IEC-IEEE-61850-9-3:2016] International Electrotechnical Commission、 "Communication network and systems for power utility Automation-Part 9-3:Precision time protocol profile for power utility Automation"、IEC 61850-9-3、May 2016。

[IEEE-1588] IEEE, "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems", IEEE Standard 1588, < standard/1588-2008.html>.

[IEEE-1588] IEEE、「ネットワーク化された測定および制御システムの高精度クロック同期プロトコルのIEEE標準」、IEEE標準1588、<>。

[IEEE-1646] IEEE, "IEEE Standard Communication Delivery Time Performance Requirements for Electric Power Substation Automation", IEEE Standard 1646, <>.

[IEEE-1646] IEEE、「IEEE Standard Communication Delivery Time Performance Requirements for Electric Power Substation Automation」、IEEE Standard 1646、<>。

[IEEE-1722] IEEE, "IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks", IEEE Standard 1722, < standard/1722-2016.html>.

[IEEE-1722] IEEE、「ブリッジローカルエリアネットワークにおける時間依存アプリケーションのトランスポートプロトコルのIEEE標準」、IEEE標準1722、< >。

[IEEE-1815] IEEE Standards Association, "IEEE Standard for Electric Power Systems Communications-Distributed Network Protocol (DNP3)", IEEE Standard 1815, < servlet/opac?punumber=6327576>.

[IEEE-1815] IEEE Standards Association、「IEEE Standard for Electric Power Systems Communications-Distributed Network Protocol(DNP3)」、IEEE Standard 1815、< servlet / opac?punumber = 6327576>。

[IEEE-19143] IEEE Standards Association, "IEEE Standard for Radio over Ethernet Encapsulations and Mappings", IEEE 1914.3, <>.

[IEEE-19143] IEEE Standards Association、「IEEE Standard for Radio over Ethernet Encapsulations and Mappings」、IEEE 1914.3、<>。

[IEEE-80211] IEEE Standard for Information technology, "IEEE Std. 802.11, Telecommunications and information exchange between systems--Local and metropolitan area networks-- Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", <>.

[IEEE-80211]情報技術に関するIEEE標準、「IEEE Std.802.11、システム間のテレコミュニケーションおよび情報交換-ローカルおよびメトロポリタンエリアネットワーク-特定の要件-パート11:ワイヤレスLANメディアアクセスコントロール(MAC)および物理層( PHY)仕様」、<>。

[IEEE-802154] IEEE Standard for Information technology, "IEEE Std. 802.15.4, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs)", <>.

[IEEE-802154]情報技術に関するIEEE標準、「IEEE Std.802.15.4、パート15.4:低レートワイヤレスパーソナルエリアネットワーク(WPAN)のワイヤレスメディアアクセス制御(MAC)および物理層(PHY)仕様」、<https ://>。

[IEEE-8021AS] IEEE, "IEEE Standard for Local and Metropolitan Area Networks - Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks", IEEE 802.1AS, <>.

[IEEE-8021AS] IEEE、「IEEE Standard for Local and Metropolitan Area Networks-Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks」、IEEE 802.1AS、< /802.1as.html>。

[IEEE-8021CM] "IEEE Standard for Local and metropolitan area networks - Time-Sensitive Networking for Fronthaul", IEEE Standard 802.1CM, <>.


[IEEE-8021TSNTG] IEEE Standards Association, "IEEE 802.1 Time-Sensitive Networking Task Group", <>.

[IEEE-8021TSNTG] IEEE Standards Association、「IEEE 802.1 Time-Sensitive Networking Task Group」、<>。

[IETF99-netslicing-BoF] "Network Slicing (netslicing) BoF", IETF 99, Prague, July 2017, < materials/slides-99-netslicing-chairs-netslicing-bof-04>.

[IETF99-netslicing-BoF]「Network Slicing(netslicing)BoF」、IETF 99、プラハ、2017年7月、< -bof-04>。

[Interface-6TiSCH-6top] Wang, Q., Ed. and X. Vilajosana, "6TiSCH Operation Sublayer (6top) Interface", Work in Progress, draft-ietf-6tisch-6top-interface-04, July 2015.

[Interface-6TiSCH-6top] Wang、Q.、Ed。 X. Vilajosana、「6TiSCH Operation Sublayer(6top)Interface」、Work in Progress、draft-ietf-6tisch-6top-interface-04、2015年7月。

[ISA100] ISA/ANSI, "ISA100, Wireless Systems for Automation", <>.

[ISA100] ISA / ANSI、「ISA100、自動化のためのワイヤレスシステム」、<>。

[KNX] KNX Association, "ISO/IEC 14543-3 - KNX", November 2006.

[KNX] KNX協会、「ISO / IEC 14543-3-KNX」、2006年11月。

[LonTalk] Echelon Corp., "LonTalk(R) Protocol Specification Version 3.0", 1994, < Lontalk%20Protocol%20Spec.pdf>.

[LonTalk] Echelon Corp。、「LonTalk(R)Protocol Specification Version 3.0」、1994、< Lontalk%20Protocol%20Spec.pdf>。

[MailingList-6TiSCH] IETF, "6TiSCH Mailing List", <>.

[MailingList-6TiSCH] IETF、「6TiSCHメーリングリスト」、<>。

[MEF22.1.1] Metro Ethernet Forum, "Mobile Backhaul Phase 2 Amendment 1 -- Small Cells", MEF 22.1.1, July 2014, < MEF_22.1.1.pdf>.

[MEF22.1.1] Metro Ethernet Forum、「Mobile Backhaul Phase 2 Amendment 1-Small Cells」、MEF 22.1.1、2014年7月、< MEF_22.1.1 .pdf>。

[MEF8] Metro Ethernet Forum, "Implementation Agreement for the Emulation of PDH Circuits over Metro Ethernet Networks", MEF 8, October 2004, < Assets/Technical_Specifications/PDF/MEF_8.pdf>.

[MEF8]メトロイーサネットフォーラム、「メトロイーサネットネットワーク上のPDH回路のエミュレーションの実装契約」、MEF 8、2004年10月、<>。

[METIS] METIS, "Scenarios, requirements and KPIs for 5G mobile and wireless system", Document Number ICT-317669-METIS/D1.1, April 2013, < uploads/deliverables/METIS_D1.1_v1.pdf>.

[METIS] METIS、「5Gモバイルおよびワイヤレスシステムのシナリオ、要件、およびKPI」、ドキュメント番号ICT-317669-METIS / D1.1、2013年4月、< /METIS_D1.1_v1.pdf>。

[MODBUS] Modbus Organization, Inc., "MODBUS Application Protocol Specification", April 2012, <>.

[MODBUS] Modbus Organization、Inc。、「MODBUS Application Protocol Specification」、2012年4月、<>。

[NGMN] NGMN Alliance, "5G White Paper", NGMN 5G White Paper v1.0, February 2015, < content/downloads/Technical/2015/ NGMN_5G_White_Paper_V1_0.pdf>.

[NGMN] NGMNアライアンス、「5Gホワイトペーパー」、NGMN 5Gホワイトペーパーv1.0、2015年2月、< content / downloads / Technical / 2015 / NGMN_5G_White_Paper_V1_0.pdf> 。

[NGMN-Fronth] NGMN Alliance, "Fronthaul Requirements for C-RAN", March 2015, < NGMN_RANEV_D1_C-RAN_Fronthaul_Requirements_v1.0.pdf>.

[NGMN-Fronth] NGMN Alliance、「C-RANのフロントホール要件」、2015年3月、< NGMN_RANEV_D1_C-RAN_Fronthaul_Requirements_v1.0.pdf>。

[OPCXML] OPC Foundation, "OPC Data Access (OPC DA) Specification", <>.

[OPCXML] OPC Foundation、「OPC Data Access(OPC DA)Specification」、<>。

[PCE] IETF, "Path Computation Element", <>.

[PCE] IETF、「パス計算要素」、<>。

[PROFIBUS] IEC, "PROFIBUS Standard - DP Specification (IEC 61158 Type 3)", <>.

[PROFIBUS] IEC、「PROFIBUS標準-DP仕様(IEC 61158タイプ3)」、<>。

[PROFINET] "PROFINET Technology", <>.


[RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol Label Switching Architecture", RFC 3031, DOI 10.17487/RFC3031, January 2001, <>.

[RFC3031]ローゼン、E。、ヴィスワナサン、A。、およびR.キャロン、「Multiprotocol Label Switching Architecture」、RFC 3031、DOI 10.17487 / RFC3031、2001年1月、< / rfc3031>。

[RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks", STD 62, RFC 3411, DOI 10.17487/RFC3411, December 2002, <>.

[RFC3411] Harrington、D.、Presuhn、R。、およびB. Wijnen、「単純なネットワーク管理プロトコル(SNMP)管理フレームワークを記述するためのアーキテクチャ」、STD 62、RFC 3411、DOI 10.17487 / RFC3411、2002年12月、<https ://>。

[RFC3985] Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation Edge-to-Edge (PWE3) Architecture", RFC 3985, DOI 10.17487/RFC3985, March 2005, <>.

[RFC3985]ブライアント、S。、エド。およびP. Pate、編、「疑似ワイヤーエミュレーションエッジツーエッジ(PWE3)アーキテクチャ」、RFC 3985、DOI 10.17487 / RFC3985、2005年3月、< >。

[RFC4553] Vainshtein, A., Ed. and YJ. Stein, Ed., "Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)", RFC 4553, DOI 10.17487/RFC4553, June 2006, <>.

[RFC4553] Vainshtein、A.、Ed。とYJ。スタイン編、「構造にとらわれない時分割多重(TDM)over Packet(SAToP)」、RFC 4553、DOI 10.17487 / RFC4553、2006年6月、<> 。

[RFC5086] Vainshtein, A., Ed., Sasson, I., Metz, E., Frost, T., and P. Pate, "Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN)", RFC 5086, DOI 10.17487/RFC5086, December 2007, <>.

[RFC5086] Vainshtein、A.、Ed。、Sasson、I.、Metz、E.、Frost、T.、and P. Pate、 "Structure-Aware Time Division Multiplexed(TDM)Circuit Emulation Service over Packet Switched Network(CESoPSN ) "、RFC 5086、DOI 10.17487 / RFC5086、2007年12月、<>。

[RFC5087] Stein, Y(J)., Shashoua, R., Insler, R., and M. Anavi, "Time Division Multiplexing over IP (TDMoIP)", RFC 5087, DOI 10.17487/RFC5087, December 2007, <>.

[RFC5087]スタイン、Y(J)、シャショーア、R。、インスラー、R。、およびM.アナビ、「IPを介した時分割多重化(TDMoIP)」、RFC 5087、DOI 10.17487 / RFC5087、2007年12月、<https ://>。

[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, "Network Time Protocol Version 4: Protocol and Algorithms Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010, <>.

[RFC5905] Mills、D.、Martin、J.、Ed。、Burbank、J。、およびW. Kasch、「Network Time Protocol Version 4:Protocol and Algorithms Specification」、RFC 5905、DOI 10.17487 / RFC5905、2010年6月、 <>。

[RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, JP., and R. Alexander, "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks", RFC 6550, DOI 10.17487/RFC6550, March 2012, <>.

[RFC6550]冬、T。、編、Thubert、P。、編、Brandt、A。、ホイ、J。、ケルシー、R。、リーバイス、P。、ピスター、K。、ストルーク、R。、ヴァッサー、JP。、およびR.アレクサンダー、「RPL:低電力および損失の多いネットワーク用のIPv6ルーティングプロトコル」、RFC 6550、DOI 10.17487 / RFC6550、2012年3月、< rfc6550>。

[RFC6551] Vasseur, JP., Ed., Kim, M., Ed., Pister, K., Dejean, N., and D. Barthel, "Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks", RFC 6551, DOI 10.17487/RFC6551, March 2012, <>.

[RFC6551] Vasseur、JP。、Ed。、Kim、M.、Ed。、Pister、K.、Dejean、N.、and D. Barthel、 "Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks"、 RFC 6551、DOI 10.17487 / RFC6551、2012年3月、<>。

[RFC7554] Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement", RFC 7554, DOI 10.17487/RFC7554, May 2015, <>.

[RFC7554] Watteyne、T。、編、Palattella、M。、およびL. Grieco、「モノのインターネット(IoT)でのIEEE 802.15.4eタイムスロットチャネルホッピング(TSCH)の使用:問題ステートメント」、RFC 7554 、DOI 10.17487 / RFC7554、2015年5月、<>。

[RFC8169] Mirsky, G., Ruffini, S., Gray, E., Drake, J., Bryant, S., and A. Vainshtein, "Residence Time Measurement in MPLS Networks", RFC 8169, DOI 10.17487/RFC8169, May 2017, <>.

[RFC8169] Mirsky、G.、Ruffini、S.、Gray、E.、Drake、J.、Bryant、S。、およびA. Vainshtein、「MPLSネットワークでの滞在時間測定」、RFC 8169、DOI 10.17487 / RFC8169、 2017年5月、<>。

[Spe09] Barbosa, R., Sadre, R., and A. Pras, "A First Look into SCADA Network Traffic", IP Network Operations and Management Symposium, DOI 10.1109/NOMS.2012.6211945, June 2012, <>.

[Spe09] Barbosa、R.、Sadre、R。、およびA. Pras、 "A First Look into SCADA Network Traffic"、IP Network Operations and Management Symposium、DOI 10.1109 / NOMS.2012.6211945、June 2012、<https://>。

[SR-IP-RAN-Use-Case] Khasnabish, B., Hu, F., and L. Contreras, "Segment Routing in IP RAN use case", Work in Progress, draft-kh-spring-ip-ran-use-case-02, November 2014.

[SR-IP-RAN-Use-Case] Khasnabish、B.、Hu、F。、およびL. Contreras、「IP RANユースケースでのセグメントルーティング」、作業中、draft-kh-spring-ip-ran- use-case-02、2014年11月。

[SRP_LATENCY] Gunther, C., "Specifying SRP Acceptable Latency", March 2014, < docs2014/cc-cgunther-acceptable-latency-0314-v01.pdf>.

[SRP_LATENCY] Gunther、C。、「Specifying SRP Acceptable Latency」、2014年3月、< docs2014 / cc-cgunther-acceptable-latency-0314-v01.pdf >。

[Sublayer-6TiSCH-6top] Wang, Q., Ed. and X. Vilajosana, "6TiSCH Operation Sublayer (6top)", Work in Progress, draft-wang-6tisch-6top-sublayer-04, November 2015.

[Sublayer-6TiSCH-6top] Wang、Q.、Ed。 X. Vilajosana、「6TiSCH Operation Sublayer(6top)」、Work in Progress、draft-wang-6tisch-6top-sublayer-04、2015年11月。

[syncE] International Telecommunication Union, "Timing and synchronization aspects in packet networks", ITU-T Recommendation G.8261, August 2013, <>.


[Timing-over-MPLS] Davari, S., Oren, A., Bhatia, M., Roberts, P., and L. Montini, "Transporting Timing messages over MPLS Networks", Work in Progress, draft-ietf-tictoc-1588overmpls-07, October 2015.

[Timing-over-MPLS] Davari、S.、Oren、A.、Bhatia、M.、Roberts、P。、およびL. Montini、「MPLSネットワークを介したタイミングメッセージの転送」、Work in Progress、draft-ietf-tictoc -1588overmpls-07、2015年10月。

[TR38801] 3GPP, "Study on new radio access technology: Radio access architecture and interfaces (Release 14)", 3GPP TR 38.801, April 2017, < SpecificationDetails.aspx?specificationId=3056>.

[TR38801] 3GPP、「新しい無線アクセス技術に関する研究:無線アクセスアーキテクチャとインターフェース(リリース14)」、3GPP TR 38.801、2017年4月、< specificationId = 3056>。

[TS23401] 3GPP, "General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 16)", 3GPP TS 23.401, March 2019, < desktopmodules/ Specifications/ SpecificationDetails.aspx?specificationId=849>.

[TS23401] 3GPP、「進化したユニバーサル地上無線アクセスネットワーク(E-UTRAN)アクセスの一般的なパケットラジオサービス(GPRS)の拡張(リリース16)」、3GPP TS 23.401、2019年3月、< / desktopmodules / Specifications / SpecificationDetails.aspx?specificationId = 849>。

[TS23501] 3GPP, "System architecture for the 5G System (5GS) (Release 15)", 3GPP TS 23.501, March 2019, < SpecificationDetails.aspx?specificationId=3144>.

[TS23501] 3GPP、「5Gシステムのシステムアーキテクチャ(5GS)(リリース15)」、3GPP TS 23.501、2019年3月、< >。

[TS25104] 3GPP, "Base Station (BS) radio transmission and reception (FDD) (Release 16)", 3GPP TS 25.104, January 2019, < SpecificationDetails.aspx?specificationId=1154>.

[TS25104] 3GPP、「基地局(BS)無線送受信(FDD)(リリース16)」、3GPP TS 25.104、2019年1月、< specificationId = 1154>。

[TS36104] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 16)", 3GPP TS 36.104, January 2019, < SpecificationDetails.aspx?specificationId=2412>.

[TS36104] 3GPP、「進化したユニバーサル地上無線アクセス(E-UTRA);基地局(BS)無線送受信(リリース16)」、3GPP TS 36.104、2019年1月、< desktopmodules / Specifications / SpecificationDetails.aspx?specificationId = 2412>。

[TS36133] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management (Release 16)", 3GPP TS 36.133, January 2019, < SpecificationDetails.aspx?specificationId=2420>.

[TS36133] 3GPP、「Evolved Universal Terrestrial Radio Access(E-UTRA); Requirements for support for radio resource management(Release 16)」、3GPP TS 36.133、2019年1月、<仕様/ SpecificationDetails.aspx?specificationId = 2420>。

[TS36211] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 15)", 3GPP TS 36.211, January 2019, < SpecificationDetails.aspx?specificationId=2425>.

[TS36211] 3GPP、「進化したユニバーサル地上無線アクセス(E-UTRA);物理チャネルと変調(リリース15)」、3GPP TS 36.211、2019年1月、< SpecificationDetails .aspx?specificationId = 2425>。

[TS36300] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 15)", 3GPP TS 36.300, January 2019, < SpecificationDetails.aspx?specificationId=2430>.

[TS36300] 3GPP、「Evolved Universal Terrestrial Radio Access(E-UTRA)and Evolved Universal Terrestrial Radio Access Network(E-UTRAN); General Description; Stage 2(Release 15)」、3GPP TS 36.300、2019年1月、<https: //>。

[WirelessHART] International Electrotechnical Commission, "Industrial networks - Wireless communication network and communication profiles - WirelessHART(TM)", IEC 62591:2016, March 2016.

[WirelessHART] International Electrotechnical Commission、 "Industrial networks-Wireless communication network and communication profiles-WirelessHART(TM)"、IEC 62591:2016、March 2016。

Appendix A. Use Cases Explicitly Out of Scope for DetNet
付録A. DetNetの明示的に範囲外のユースケース

This appendix contains text regarding use cases that have been determined to be outside the scope of the present DetNet work.


A.1. DetNet Scope Limitations
A.1. DetNetスコープの制限

The scope of DetNet is deliberately limited to specific use cases that are consistent with the WG charter, subject to the interpretation of the WG. At the time that the DetNet use cases were solicited and provided by the authors, the scope of DetNet was not clearly defined. As the scope has been clarified, certain use cases have been determined to be outside the scope of the present DetNet work. Text regarding these use cases was moved to this appendix to clarify that they will not be supported by the DetNet work.

DetNetの範囲は、WGの解釈に従い、WG憲章と一致する特定のユースケースに意図的に制限されています。 DetNetのユースケースが作成者によって要請および提供された時点では、DetNetの範囲は明確に定義されていませんでした。範囲が明確になっているため、特定のユースケースは現在のDetNet作業の範囲外であると判断されています。これらの使用例に関するテキストは、DetNetの作業ではサポートされないことを明確にするために、この付録に移動されました。

The text was moved to this appendix based on the following "exclusion" principles. Please note that as an alternative to moving all such text to this appendix some text has been modified in situ to reflect these same principles.


The following principles have been established to clarify the scope of the present DetNet work.


o The scope of networks addressed by DetNet is limited to networks that can be centrally controlled, i.e., an "enterprise" (aka "corporate") network. This explicitly excludes "the open Internet".

o DetNetによってアドレス指定されるネットワークの範囲は、集中管理できるネットワーク、つまり「エンタープライズ」(別名「企業」)ネットワークに限定されます。これは明示的に「オープンなインターネット」を除外します。

o Maintaining time synchronization across a DetNet network is crucial to its operation; however, DetNet assumes that time is to be maintained using other means. One example would be PTP [IEEE-1588]. A use case may state the accuracy and reliability that it expects from the DetNet network as part of a whole system; however, it is understood that such timing properties are not guaranteed by DetNet itself. At the time of this writing, two open questions remain: (1) whether DetNet protocols will include a way for an application to communicate expectations regarding such timing properties to the network and (2) if so, whether those properties would likely have a material effect on network performance as a result.

o DetNetネットワーク全体で時間同期を維持することは、DetNetネットワークの運用に不可欠です。ただし、DetNetは、他の手段を使用して時間を維持することを想定しています。 1つの例は、PTP [IEEE-1588]です。ユースケースは、システム全体の一部としてDetNetネットワークに期待する正確さと信頼性を述べる場合があります。しかしながら、そのようなタイミング特性はDetNet自体によって保証されないことが理解されます。この記事の執筆時点では、2つの未解決の問題が残っています。(1)DetNetプロトコルに、アプリケーションがそのようなタイミングプロパティに関する期待をネットワークに伝達する方法を含めるかどうか、(2)ある場合、それらのプロパティに重要性があるかどうか結果としてネットワークのパフォーマンスに影響を与えます。

A.2. Internet-Based Applications
A.2. インターネットベースのアプリケーション

There are many applications that communicate over the open Internet that could benefit from guaranteed delivery and bounded latency. However, as noted above, all such applications, when run over the open Internet, are out of scope for DetNet. These same applications may be in scope when run in constrained environments, i.e., within a centrally controlled DetNet network. The following are some examples of such applications.


A.2.1. Use Case Description
A.2.1. ユースケースの説明
A.2.1.1. Media Content Delivery
A.2.1.1. メディアコンテンツ配信

Media content delivery continues to be an important use of the Internet, yet users often experience poor-quality audio and video due to the delay and jitter inherent in today's Internet.


A.2.1.2. Online Gaming
A.2.1.2. オンラインゲーム

Online gaming is a significant part of the gaming market; however, latency can degrade the end user's experience. For example, "First Person Shooter" (FPS) games are highly delay sensitive.

オンラインゲームはゲーム市場の重要な部分です。ただし、レイテンシはエンドユーザーのエクスペリエンスを低下させる可能性があります。たとえば、「First Person Shooter」(FPS)ゲームは遅延に非常に敏感です。

A.2.1.3. Virtual Reality
A.2.1.3. バーチャルリアリティ

VR has many commercial applications, including real estate presentations, remote medical procedures, and so on. Low latency is critical to interacting with the virtual world, because perceptual delays can cause motion sickness.


A.2.2. Internet-Based Applications Today
A.2.2. 今日のインターネットベースのアプリケーション

Internet service today is by definition "best effort", with no guarantees regarding delivery or bandwidth.


A.2.3. Internet-Based Applications in the Future
A.2.3. 将来のインターネットベースのアプリケーション

One should be able to play Internet videos without glitches and play Internet games without lag.


For online gaming, the desired maximum allowance for round-trip delay is typically 100 ms. However, it may be less for specific types of games; for example, for FPS games, the maximum delay should be 50 ms. Transport delay is the dominant part, with a budget of 5-20 ms.

オンラインゲームの場合、往復遅延の最大許容値は通常100ミリ秒です。ただし、特定の種類のゲームの場合は少ない場合があります。たとえば、FPSゲームの場合、最大遅延は50ミリ秒です。 5〜20ミリ秒の予算で、トランスポート遅延が支配的な部分です。

For VR, a maximum delay of 1-10 ms is needed; if doing remote VR, the total network delay budget is 1-5 ms.

VRの場合、最大1〜10 msの遅延が必要です。リモートVRを行う場合、ネットワーク遅延バジェットの合計は1〜5ミリ秒です。

Flow identification can be used for gaming and VR, i.e., it can recognize a critical flow and provide appropriate latency bounds.


A.2.4. Internet-Based Applications Requests to the IETF
A.2.4. IETFへのインターネットベースのアプリケーションの要求

o Unified control and management protocols that handle time-critical data flows

o タイムクリティカルなデータフローを処理する統合制御および管理プロトコル

o An application-aware flow-filtering mechanism that recognizes time-critical flows without doing 5-tuple matching

o 5タプルマッチングを実行せずにタイムクリティカルなフローを認識するアプリケーション認識フローフィルタリングメカニズム

o A unified control plane that provides low-latency service on Layer 3 without changing the data plane

o データプレーンを変更せずにレイヤ3で低遅延サービスを提供する統合コントロールプレーン

o An OAM system and protocols that can help provide service provisioning that is sensitive to end-to-end delays

o エンドツーエンドの遅延に敏感なサービスプロビジョニングの提供に役立つOAMシステムとプロトコル

A.3. Pro Audio and Video - Digital Rights Management (DRM)
A.3. プロオーディオとビデオ-デジタル著作権管理(DRM)

The following text was moved to this appendix because this information is considered a link-layer topic for which DetNet is not directly responsible.


Digital Rights Management (DRM) is very important to the audio and video industries. Whenever protected content is introduced into a network, there are DRM concerns that must be taken into account (see [Content_Protection]). Many aspects of DRM are outside the scope of network technology; however, there are cases when a secure link supporting authentication and encryption is required by content owners to carry their audio or video content when it is outside their own secure environment (for example, see [DCI]).

デジタル著作権管理(DRM)は、オーディオおよびビデオ業界にとって非常に重要です。保護されたコンテンツがネットワークに導入されるときはいつでも、考慮しなければならないDRMの懸念があります([Content_Protection]を参照)。 DRMの多くの側面はネットワーク技術の範囲外です。ただし、コンテンツ所有者が独自の安全な環境の外にあるときに、オーディオまたはビデオコンテンツを運ぶために認証と暗号化をサポートする安全なリンクが必要な場合があります(たとえば、[DCI]を参照)。

As an example, two such techniques are Digital Transmission Content Protection (DTCP) and High-bandwidth Digital Content Protection (HDCP). HDCP content is not approved for retransmission within any other type of DRM, while DTCP content may be retransmitted under HDCP. Therefore, if the source of a stream is outside of the network and it uses HDCP, it is only allowed to be placed on the network with that same type of protection (i.e., HDCP).

例として、このような2つの技術は、デジタル伝送コンテンツ保護(DTCP)と高帯域幅デジタルコンテンツ保護(HDCP)です。 HDCPコンテンツは、他のタイプのDRM内での再送信は承認されませんが、DTCPコンテンツはHDCPで再送信できます。したがって、ストリームのソースがネットワークの外部にあり、HDCPを使用している場合、同じタイプの保護(HDCP)を使用してネットワークに配置することのみが許可されます。

A.4. Pro Audio and Video - Link Aggregation
A.4. プロのオーディオとビデオ-リンク集約

Note: The term "link aggregation" is used here as defined by the text in the following paragraph, i.e., not following a more common network-industry definition.


For transmitting streams that require more bandwidth than a single link in the target network can support, link aggregation is a technique for combining (aggregating) the bandwidth available on multiple physical links to create a single logical link that provides the required bandwidth. However, if aggregation is to be used, the network controller (or equivalent) must be able to determine the maximum latency of any path through the aggregate link.


A.5. Pro Audio and Video - Deterministic Time to Establish Streaming
A.5. プロのオーディオとビデオ-ストリーミングを確立する確定的な時間

The DetNet WG decided that guidelines for establishing a deterministic time to establish stream startup are not within the scope of DetNet. If the bounded timing for establishing or re-establishing streams is required in a given use case, it is up to the application/system to achieve it.

DetNet WGは、ストリームの起動を確立するための確定的な時間を確立するためのガイドラインは、DetNetの範囲外であると決定しました。特定のユースケースでストリームを確立または再確立するための制限されたタイミングが必要な場合、それを達成するのはアプリケーション/システム次第です。



Pro audio (Section 2)


As also acknowledged in [DetNet-Audio-Reqs], the editor would like to acknowledge the help of the following individuals and the companies they represent.


Jeff Koftinoff, Meyer Sound Jouni Korhonen, Associate Technical Director, Broadcom Pascal Thubert, CTAO, Cisco Kieran Tyrrell, Sienda New Media Technologies GmbH

Jeff Koftinoff、Meyer Sound Jouni Korhonen、Associate Technical Director、Broadcom Pascal Thubert、CTAO、Cisco Kieran Tyrrell、Sienda New Media Technologies GmbH

Utility telecom (Section 3)


Information regarding utility telecom was derived from [DetNet-Util-Reqs]. As in that document, the following individuals are acknowledged here.


Faramarz Maghsoodlou, Ph.D., IoT Connected Industries and Energy Practice, Cisco Pascal Thubert, CTAO, Cisco

Faramarz Maghsoodlou、Ph.D.、IoT Connected Industries and Energy Practice、Cisco Pascal Thubert、CTAO、Cisco

The wind power generation use case has been extracted from the study of wind parks conducted within the 5GPPP VirtuWind Project. The project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 671648 (VirtuWind).

風力発電のユースケースは、5GPPP VirtuWindプロジェクト内で実施されたウィンドパークの研究から抽出されました。このプロジェクトは、EUのHorizo​​n 2020研究およびイノベーションプログラムによって資金提供され、助成金契約番号671648(VirtuWind)に基づいています。

Building automation systems (Section 4)


Please see [BAS-DetNet].


Wireless for industrial applications (Section 5)


See [DetNet-6TiSCH].


[DetNet-6TiSCH] derives from the 6TiSCH architecture, which is the result of multiple interactions -- in particular, during the 6TiSCH (bi)weekly interim call, relayed through the 6TiSCH mailing list at the IETF [MailingList-6TiSCH].


As also acknowledged in [DetNet-6TiSCH], the editor wishes to thank Kris Pister, Thomas Watteyne, Xavier Vilajosana, Qin Wang, Tom Phinney, Robert Assimiti, Michael Richardson, Zhuo Chen, Malisa Vucinic, Alfredo Grieco, Martin Turon, Dominique Barthel, Elvis Vogli, Guillaume Gaillard, Herman Storey, Maria Rita Palattella, Nicola Accettura, Patrick Wetterwald, Pouria Zand, Raghuram Sudhaakar, and Shitanshu Shah for their participation and various contributions.

[DetNet-6TiSCH]でも認められているように、編集者はKris Pister、Thomas Watteyne、Xavier Vilajosana、Qin Wang、Tom Phinney、Robert Assimiti、Michael Richardson、Zhuo Chen、Malisa Vucinic、Alfredo Grieco、Martin Turon、Dominique Barthelに感謝します、Elvis Vogli、Guillaume Gaillard、Herman Storey、Maria Rita Palattella、Nicola Accettura、Patrick Wetterwald、Pouria Zand、Raghuram Sudhaakar、およびShitanshu Shahの参加とさまざまな貢献。

Cellular radio (Section 6)


See [DetNet-RAN].


Internet applications and CoMP (Section 6)


As also acknowledged in [DetNet-Mobile], authored by Yiyong Zha, the editor would like to thank the following people for their reviews, suggestions, comments, and proposed text: Jing Huang, Junru Lin, Lehong Niu, and Oliver Huang.

Yiyong Zhaが執筆した[DetNet-Mobile]でも認められているように、編集者は、レビュー、提案、コメント、提案されたテキストに対して、Jing Huang、Junru Lin、Lehong Niu、Oliver Huangに感謝します。

Industrial Machine to Machine (M2M) (Section 7)


The editor would like to thank Feng Chen and Marcel Kiessling for their comments and suggestions.

編集者は、Feng ChenとMarcel Kiesslingのコメントと提案に感謝します。

Mining industry (Section 8)


This text was written by Diego Dujovne, who worked in conjunction with Xavier Vilajosana.

このテキストは、Xavier Vilajosanaと共同で作業したDiego Dujovneによって書かれました。

Private blockchain (Section 9)


This text was written by Daniel Huang.

このテキストはDaniel Huangによって書かれました。

Network slicing (Section 10)


This text was written by Xuesong Geng, who would like to acknowledge Norm Finn and Mach Chen for their useful comments.

このテキストは、有用なコメントについてNorm FinnとMach Chenに感謝したいXuesong Gengによって書かれました。



RFC 7322 ("RFC Style Guide") generally limits the number of authors listed on the front page of a document to five individuals -- far fewer than the 19 individuals listed below, who also made important contributions to this document. The editor wishes to thank and acknowledge each of the following authors for contributing text to this document. See also the Acknowledgments section.

RFC 7322(「RFCスタイルガイド」)は通常、ドキュメントのフロントページに記載されている著者の数を5人に制限しています。これは、このドキュメントに重要な貢献をした下記の19人よりもはるかに少ない人数です。編集者は、このドキュメントにテキストを提供してくれた以下の各作者に感謝し、感謝します。謝辞のセクションも参照してください。

Craig Gunther (Harman International) 10653 South River Front Parkway South Jordan, UT 84095 United States of America Phone: +1 801 568 7675 Email:

クレイグガンサー(ハーマンインターナショナル)10653サウスリバーフロントパークウェイサウスジョーダン、ユタ州84095アメリカ合衆国電話:+1 801 568 7675メール

Pascal Thubert (Cisco Systems, Inc.) Building D, 45 Allee des Ormes - BP1200 Mougins - Sophia Antipolis 06254 France Phone: +33 4 97 23 26 34 Email:

Pascal Thubert(Cisco Systems、Inc.)Building D、45 Allee des Ormes-BP1200 Mougins-Sophia Antipolis 06254 France電話:+33 4 97 23 26 34メール

Patrick Wetterwald (Cisco Systems) 45 Allee des Ormes Mougins 06250 France Phone: +33 4 97 23 26 36 Email:

Patrick Wetterwald(Cisco Systems)45 Allee des Ormes Mougins 06250 France電話:+33 4 97 23 26 36メール

Jean Raymond (Hydro-Quebec) 1500 University Montreal, Quebec H3A 3S7 Canada Phone: +1 514 840 3000 Email:

Jean Raymond(Hydro-Quebec)1500 University Montreal、Quebec H3A 3S7 Canada電話:+1 514 840 3000メール

Jouni Korhonen (Broadcom Corporation) 3151 Zanker Road San Jose, CA 95134 United States of America Email:

Jouni Korhonen(Broadcom Corporation)3151 Zanker Road San Jose、CA 95134アメリカ合衆国メール

Yu Kaneko (Toshiba) 1 Komukai-Toshiba-cho Saiwai-ku, Kasasaki-shi, Kanagawa Japan Email: Subir Das (Vencore Labs) 150 Mount Airy Road Basking Ridge, NJ 07920 United States of America Email:

Yu Kaneko (Toshiba) 1 Komukai-Toshiba-cho Saiwai-ku, Kasasaki-shi, Kanagawa Japan Email: Subir Das (Vencore Labs) 150 Mount Airy Road Basking Ridge, NJ 07920 United States of America Email:

Balazs Varga (Ericsson) Konyves Kalman krt. 11/B Budapest 1097 Hungary Email:

Balazs Varga(エリクソン)Konyves Kalman krt。 11 / Bブダペスト1097ハンガリーメール

Janos Farkas (Ericsson) Konyves Kalman krt. 11/B Budapest 1097 Hungary Email:

Janos Farkas(エリクソン)Konyves Kalman krt。 11 / Bブダペスト1097ハンガリーメール

Franz-Josef Goetz (Siemens) Gleiwitzerstr. 555 Nurnberg 90475 Germany Email:

Franz-Josef Goetz(Siemens)Gleiwitzerstr。 555 Nurnberg 90475ドイツメール

Juergen Schmitt (Siemens) Gleiwitzerstr. 555 Nurnberg 90475 Germany Email:

ユルゲンシュミット(シーメンス)Gleiwitzerstr。 555ニュールンベルク90475ドイツメール

Xavier Vilajosana (Worldsensing) 483 Arago Barcelona, Catalonia 08013 Spain Email:

Xavier Vilajosana(Worldsensing)483 Arago Barcelona、Catalonia 08013 Spainメール

Toktam Mahmoodi (King's College London) Strand, London WC2R 2LS United Kingdom Email:

Toktam Mahmoodi(キングスカレッジロンドン)ストランド、ロンドンWC2R 2LSイギリスEメール

Spiros Spirou (Intracom Telecom) 19.7 km Markopoulou Ave. Peania, Attiki 19002 Greece Email: Petra Vizarreta (Technical University of Munich) Maxvorstadt, Arcisstrasse 21 Munich 80333 Germany Email:

Spiros Spirou(Intracom Telecom)19.7 km Markopoulou Ave. Peania、Attiki 19002 Greeceメール Petra Vizarreta(ミュンヘン工科大学)Maxvorstadt、Arcisstrasse 21 Munich 80333 Germanyメール

Daniel Huang (ZTE Corporation, Inc.) No. 50 Software Avenue Nanjing, Jiangsu 210012 China Email:

Daniel Huang(ZTE Corporation、Inc.)No. 50 Software Avenue Nanjing、Jiangsu 210012 Chinaメール

Xuesong Geng (Huawei Technologies) Email:

X UEがG Eng(hu Aはテクノロジー)のメールを送信:Geng

Diego Dujovne (Universidad Diego Portales) Email:

Diego Dujovne(Diego Portales University)メール

Maik Seewald (Cisco Systems) Email:

Maik Seewald(シスコシステムズ)メール

Author's Address


Ethan Grossman (editor) Dolby Laboratories, Inc. 1275 Market Street San Francisco, CA 94103 United States of America


   Phone: +1 415 645 4726