[要約] RFC 8676は、IPv4-in-IPv6アドレスプラスポート(A+P)ソフトワイヤのためのYANGモジュールに関する規格です。このRFCの目的は、A+Pソフトワイヤの設定と管理を容易にするためのYANGデータモデルを提供することです。
Internet Engineering Task Force (IETF) I. Farrer, Ed. Request for Comments: 8676 Deutsche Telekom AG Category: Standards Track M. Boucadair, Ed. ISSN: 2070-1721 Orange November 2019
YANG Modules for IPv4-in-IPv6 Address plus Port (A+P) Softwires
IPv4-in-IPv6アドレスおよびポート(A + P)ソフトワイヤー用のYANGモジュール
Abstract
概要
This document defines YANG modules for the configuration and operation of IPv4-in-IPv6 softwire Border Relays and Customer Premises Equipment for the Lightweight 4over6, Mapping of Address and Port with Encapsulation (MAP-E), and Mapping of Address and Port using Translation (MAP-T) softwire mechanisms.
このドキュメントでは、軽量4over6のIPv4-in-IPv6ソフトワイヤーボーダーリレーと顧客宅内機器の構成と操作のためのYANGモジュール、カプセル化によるアドレスとポートのマッピング(MAP-E)、および変換を使用したアドレスとポートのマッピング( MAP-T)ソフトワイヤー機構。
Status of This Memo
本文書の状態
This is an Internet Standards Track document.
これはInternet Standards Trackドキュメントです。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。インターネット標準の詳細については、RFC 7841のセクション2をご覧ください。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8676.
このドキュメントの現在のステータス、正誤表、およびフィードバックの提供方法に関する情報は、https://www.rfc-editor.org/info/rfc8676で入手できます。
Copyright Notice
著作権表示
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
Copyright(c)2019 IETF Trustおよびドキュメントの作成者として識別された人物。全著作権所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
この文書は、BCP 78およびIETF文書に関するIETFトラストの法的規定(https://trustee.ietf.org/license-info)の対象であり、この文書の発行日に有効です。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。
Table of Contents
目次
1. Introduction 2. Terminology 3. Overview of the Modules 3.1. Overall Structure 3.2. Configuration for Additional Components 4. Softwire CE YANG Tree Diagram 4.1. CE Tree Diagram 4.2. Softwire CE Tree Diagram Description 5. Softwire BR YANG Tree Diagram 5.1. BR Tree Diagram 5.2. Softwire BR Tree Diagram Description 6. Softwire CE YANG Module 7. BR Softwire YANG Module 8. Common Softwire Element Groups YANG Module 9. Security Considerations 10. IANA Considerations 11. References 11.1. Normative References 11.2. Informative References Appendix A. Configuration Examples A.1. Configuration Example for a lw4o6 BR Binding-Table A.2. Configuration Example for a MAP-E BR A.3. lw4o6 CE Configuration Example Acknowledgements Contributors Authors' Addresses
The IETF Softwire Working Group has developed several IPv4-in-IPv6 softwire mechanisms to address various deployment contexts and constraints. As a companion to the architectural specification documents, this document focuses on the provisioning of Address plus Port (A+P) softwire functional elements: Border Routers (BRs) and Customer Edge (CE) (called "Customer Premises Equipment (CPE)" in [RFC7596]). The softwire mechanisms covered in this document are Lightweight 4over6 (lw4o6) [RFC7596], Mapping of Address and Port with Encapsulation (MAP-E) [RFC7597], and Mapping of Address and Port using Translation (MAP-T) [RFC7599].
IETF Softwireワーキンググループは、さまざまな展開コンテキストと制約に対処するために、IPv4-in-IPv6ソフトワイヤーメカニズムをいくつか開発しました。このドキュメントは、アーキテクチャ仕様ドキュメントとの関連で、アドレスとポート(A + P)のソフトワイヤー機能要素のプロビジョニングに重点を置いています。ボーダールーター(BR)およびカスタマーエッジ(CE)(「顧客宅内機器(CPE)」と呼ばれます) [RFC7596])。このドキュメントで説明するソフトワイヤーメカニズムは、Lightweight 4over6(lw4o6)[RFC7596]、カプセル化を使用したアドレスとポートのマッピング(MAP-E)[RFC7597]、および変換を使用したアドレスとポートのマッピング(MAP-T)[RFC7599]です。
This document focuses on A+P mechanisms [RFC6346]; the reader can refer to [RFC8513] for a YANG module for Dual-Stack Lite (DS-Lite) [RFC6333].
このドキュメントは、A + Pメカニズム[RFC6346]に焦点を当てています。読者は、Dual-Stack Lite(DS-Lite)[RFC6333]のYANGモジュールについて[RFC8513]を参照できます。
This document defines YANG modules [RFC7950] that can be used to configure and manage A+P softwire elements using the NETCONF [RFC6241] or RESTCONF [RFC8040] protocols for:
このドキュメントは、NETCONF [RFC6241]またはRESTCONF [RFC8040]プロトコルを使用してA + Pソフトワイヤー要素を構成および管理するために使用できるYANGモジュール[RFC7950]を定義します。
* Configuration
* 構成
* Operational State
* 運用状態
* Notifications
* お知らせ
The reader should be familiar with the concepts and terms defined in [RFC7596], [RFC7597], [RFC7599], and the YANG data modeling language defined in [RFC7950].
読者は、[RFC7596]、[RFC7597]、[RFC7599]で定義されている概念と用語、および[RFC7950]で定義されているYANGデータモデリング言語に精通している必要があります。
The YANG modules in this document adopt the Network Management Datastore Architecture (NMDA) [RFC8342]. The meanings of the symbols used in tree diagrams are defined in [RFC8340].
このドキュメントのYANGモジュールは、ネットワーク管理データストアアーキテクチャ(NMDA)[RFC8342]を採用しています。ツリー図で使用される記号の意味は、[RFC8340]で定義されています。
The document uses the abbreviation 'BR' as a general term for softwire tunnel concentrators, including both MAP Border Routers [RFC7597] and Lightweight 4over6 lwAFTRs [RFC7596].
このドキュメントでは、MAPボーダールータ[RFC7597]とLightweight 4over6 lwAFTRs [RFC7596]の両方を含む、ソフトワイヤートンネルコンセントレーターの一般用語として略語「BR」を使用しています。
For brevity, "algorithm" is used to refer to the "mapping algorithm" defined in [RFC7597].
簡潔にするために、「アルゴリズム」は、[RFC7597]で定義されている「マッピングアルゴリズム」を指すために使用されます。
A network element may support one or multiple instances of a softwire mechanism; each of these instances (i.e., binding instances, MAP-E instances, or MAP-T instances) may have its own configuration and parameters. The term 'algo-instance' is used to denote both MAP-E and MAP-T instances.
ネットワーク要素は、ソフトワイヤーメカニズムの1つまたは複数のインスタンスをサポートします。これらの各インスタンス(つまり、バインディングインスタンス、MAP-Eインスタンス、またはMAP-Tインスタンス)は、独自の構成とパラメーターを持つことができます。 「algo-instance」という用語は、MAP-EとMAP-Tの両方のインスタンスを表すために使用されます。
The document defines the following two YANG modules for the configuration and monitoring of softwire functional elements:
このドキュメントでは、ソフトワイヤー機能要素の構成と監視のために、次の2つのYANGモジュールを定義しています。
ietf-softwire-ce Provides configuration and monitoring for softwire CE element. This module is defined as augments to the interface YANG module [RFC8343].
ietf-softwire-ce softwire CE要素の構成と監視を提供します。このモジュールは、インターフェースYANGモジュール[RFC8343]の拡張として定義されています。
ietf-softwire-br Provides configuration and monitoring for softwire BR element.
ietf-softwire-br softwire BRエレメントの構成と監視を提供します。
In addition, the following module is defined:
さらに、次のモジュールが定義されています。
ietf-softwire-common Contains groups of common functions that are imported into the CE and BR modules.
ietf-softwire-common CEおよびBRモジュールにインポートされる共通機能のグループが含まれています。
This approach has been taken so that the various modules can be easily extended to support additional softwire mechanisms, if required.
このアプローチは、さまざまなモジュールを簡単に拡張して、必要に応じて追加のソフトワイヤーメカニズムをサポートできるようにするために採用されました。
Within the BR and CE modules, the YANG "feature" statement is used to distinguish which of the different softwire mechanism(s) is relevant for a specific element's configuration. For each module, a choice statement 'ce-type' is included for either 'binding' or 'algorithm'. 'Binding' is used for configuring Lightweight 4over6, whereas 'algorithm' is used for configuring MAP-T or MAP-E.
BRおよびCEモジュール内では、YANGの「機能」ステートメントを使用して、特定の要素の構成に関連するさまざまなソフトワイヤーメカニズムを区別します。モジュールごとに、選択ステートメント「ce-type」が「バインディング」または「アルゴリズム」のいずれかに含まれています。 「バインディング」はLightweight 4over6の構成に使用され、「アルゴリズム」はMAP-TまたはMAP-Eの構成に使用されます。
In the 'algo-instances' container, a choice statement 'data-plane' is included to specify MAP-E (encapsulation) or MAP-T (translation). Table 1 shows how these choices are used to indicate the desired softwire mechanism:
'algo-instances'コンテナーには、MAP-E(カプセル化)またはMAP-T(変換)を指定するための選択ステートメント 'data-plane'が含まれています。表1は、これらの選択を使用して目的のソフトワイヤーメカニズムを示す方法を示しています。
+--------------------+-----------+---------------+ | S46 Mechanism | ce-type? | data-plane? | +====================+===========+===============+ | Lightweight 4over6 | binding | n/a | +--------------------+-----------+---------------+ | MAP-E | algorithm | encapsulation | +--------------------+-----------+---------------+ | MAP-T | algorithm | translation | +--------------------+-----------+---------------+
Table 1: Softwire Mechanism Choice Statement Enumeration
表1:Softwireメカニズムの選択ステートメントの列挙
NETCONF notifications are also included.
NETCONF通知も含まれています。
| Earlier draft versions of this specification combined the | softwire mechanisms by their associated technologies rather | than their function in the architecture. As the document was | revised, it became apparent that dividing the modules by their | role in the architecture (CE or BR) was a better approach as | this follows the intended function and existing implementation | approaches more closely.
The softwire modules only aim to provide configuration relevant for softwires. In order to fully provision a CE element, the following may also be necessary:
ソフトワイヤーモジュールは、ソフトワイヤーに関連する構成を提供することのみを目的としています。 CE要素を完全にプロビジョニングするには、以下も必要になる場合があります。
* IPv6 forwarding and routing configuration, to enable the CE to obtain one or more IPv6 prefixes for softwire usage. A YANG module for routing management is described in [RFC8349].
* IPv6転送およびルーティング構成。CEがソフトワイヤー用に1つ以上のIPv6プレフィックスを取得できるようにします。ルーティング管理のためのYANGモジュールは[RFC8349]で説明されています。
* IPv4 routing configuration, to add one or more IPv4 destination prefix(es) reachable via the configured softwire. A YANG module for routing management is described in [RFC8349].
* IPv4ルーティング構成。構成されたソフトワイヤーを介して到達可能な1つ以上のIPv4宛先プレフィックスを追加します。ルーティング管理のためのYANGモジュールは[RFC8349]で説明されています。
* Stateful NAT44/NAPT management, to optionally specify a port set (Port Set Identifier (PSID)) along with its length. A YANG module for NAT management is described in [RFC8512].
* ステートフルNAT44 / NAPT管理。オプションで、ポートセット(ポートセット識別子(PSID))とその長さを指定します。 NAT管理用のYANGモジュールは[RFC8512]で説明されています。
* Stateless NAT46 management, which is required by softwire-translation-based mechanisms (i.e., the assignment of a Network-Specific Prefix to use for IPv4/IPv6 translation). A YANG module for NAT management is described in [RFC8512].
* ステートレスNAT46管理。これは、softwire変換ベースのメカニズム(つまり、IPv4 / IPv6変換に使用するネットワーク固有のプレフィックスの割り当て)に必要です。 NAT管理用のYANGモジュールは[RFC8512]で説明されています。
As YANG modules for the above functions are already defined in other documents, their functionality is not duplicated here and they should be referred to, as needed. Appendix A.3 provides XML examples of how these modules can be used together.
上記の機能のYANGモジュールは他のドキュメントですでに定義されているため、それらの機能はここでは複製されておらず、必要に応じて参照する必要があります。付録A.3に、これらのモジュールを一緒に使用する方法のXMLの例を示します。
The CE must already have minimal IPv6 configuration in place so it is reachable by the NETCONF client to obtain softwire configuration. If additional IPv6-specific configuration is necessary, the YANG modules defined in [RFC8344] and [RFC8349] may be used.
CEは、最低限のIPv6構成をすでに備えている必要があります。これにより、NETCONFクライアントから到達可能になり、ソフトワイヤー構成を取得できます。追加のIPv6固有の構成が必要な場合は、[RFC8344]および[RFC8349]で定義されているYANGモジュールを使用できます。
The CE module provides configuration and monitoring for all of the softwire mechanisms covered in this document (i.e., Lightweight 4over6, MAP-E, and MAP-T).
CEモジュールは、このドキュメントで説明されているすべてのソフトワイヤーメカニズム(Lightweight 4over6、MAP-E、MAP-Tなど)の構成と監視を提供します。
This module augments "ietf-interfaces", defined in [RFC8343] with an entry for the softwire. This entry can be referenced to configure IPv4 forwarding features for the element. This entry is added only if tunnel type (Section 10) is set to 'aplusp'.
このモジュールは、[RFC8343]で定義されている「ietf-interfaces」を、ソフトワイヤーのエントリで拡張します。このエントリを参照して、要素のIPv4転送機能を設定できます。このエントリは、トンネルタイプ(セクション10)が「aplusp」に設定されている場合にのみ追加されます。
Figure 1 shows the tree structure of the softwire CE YANG module:
図1は、softwire CE YANGモジュールのツリー構造を示しています。
module: ietf-softwire-ce augment /if:interfaces/if:interface: +--rw softwire-payload-mtu? uint16 +--rw softwire-path-mru? uint16 +--rw (ce-type)? +--:(binding) {binding-mode}? | +--rw binding-ipv6info? union | +--rw br-ipv6-addr inet:ipv6-address +--:(algo) {map-e or map-t}? +--rw algo-instances +--rw algo-instance* [name] +--rw name string +--rw enable? boolean +--rw algo-versioning | +--rw version? uint64 | +--rw date? yang:date-and-time +--rw (data-plane)? | +--:(encapsulation) {map-e}? | | +--rw br-ipv6-addr inet:ipv6-address | +--:(translation) {map-t}? | +--rw dmr-ipv6-prefix? inet:ipv6-prefix +--rw ea-len uint8 +--rw rule-ipv6-prefix inet:ipv6-prefix +--rw rule-ipv4-prefix inet:ipv4-prefix +--rw forwarding boolean augment /if:interfaces/if:interface/if:statistics: +--ro sent-ipv4-packets? | yang:zero-based-counter64 +--ro sent-ipv4-bytes? | yang:zero-based-counter64 +--ro sent-ipv6-packets? | yang:zero-based-counter64 +--ro sent-ipv6-bytes? | yang:zero-based-counter64 +--ro rcvd-ipv4-packets? | yang:zero-based-counter64 +--ro rcvd-ipv4-bytes? | yang:zero-based-counter64 +--ro rcvd-ipv6-packets? | yang:zero-based-counter64 +--ro rcvd-ipv6-bytes? | yang:zero-based-counter64 +--ro dropped-ipv4-packets? | yang:zero-based-counter64 +--ro dropped-ipv4-bytes? | yang:zero-based-counter64 +--ro dropped-ipv6-packets? | yang:zero-based-counter64 +--ro dropped-ipv6-bytes? | yang:zero-based-counter64 +--ro dropped-ipv4-fragments? | yang:zero-based-counter64 +--ro dropped-ipv4-fragment-bytes? | yang:zero-based-counter64 +--ro ipv6-fragments-reassembled? | yang:zero-based-counter64 +--ro ipv6-fragments-bytes-reassembled? | yang:zero-based-counter64 +--ro out-icmpv4-error-packets? | yang:zero-based-counter64 +--ro out-icmpv4-error-bytes? | yang:zero-based-counter64 +--ro out-icmpv6-error-packets? | yang:zero-based-counter64 +--ro out-icmpv6-error-bytes? yang:zero-based-counter64
notifications: +---n softwire-ce-event {binding-mode}? +--ro ce-binding-ipv6-addr-change inet:ipv6-address
Figure 1: Softwire CE YANG Tree Diagram
図1:Softwire CE YANGツリー図
Additional information related to the operation of a CE element is provided below:
CEエレメントの操作に関連する追加情報を以下に示します。
softwire-payload-mtu: optionally used to set the IPv4 Maximum Transmission Unit (MTU) for the softwire. Needed if the softwire implementation is unable to correctly calculate the correct IPv4 MTU size automatically.
softwire-payload-mtu:オプションで、ソフトワイヤーのIPv4最大伝送ユニット(MTU)を設定するために使用されます。ソフトワイヤー実装が正しいIPv4 MTUサイズを自動的に正しく計算できない場合に必要です。
softwire-path-mru: optionally used to set the maximum IPv6 softwire packet size that can be received, including the encapsulation/translation overhead. Needed if the softwire implementation is unable to correctly calculate the correct IPv4 payload Maximum Receive Unit (MRU) size automatically (see Section 3.2 of [RFC4213]).
softwire-path-mru:オプションで、カプセル化/変換オーバーヘッドを含む、受信可能な最大IPv6ソフトワイヤーパケットサイズを設定するために使用されます。ソフトワイヤー実装が正しいIPv4ペイロードの最大受信ユニット(MRU)サイズを自動的に正しく計算できない場合に必要です([RFC4213]のセクション3.2を参照)。
ce-type: provides a choice statement allowing the binding or algorithmic softwire mechanisms to be selected.
ce-type:バインディングまたはアルゴリズムのソフトワイヤーメカニズムを選択できる選択ステートメントを提供します。
Further details relevant to binding softwire elements are as follows:
ソフトワイヤー要素のバインドに関連する詳細は次のとおりです。
binding-ipv6info: used to set the IPv6 binding prefix type to identify which IPv6 address to use as the tunnel source. It can be 'ipv6-prefix' or 'ipv6-address'.
binding-ipv6info:トンネルソースとして使用するIPv6アドレスを識別するためにIPv6バインディングプレフィックスタイプを設定するために使用されます。 「ipv6-prefix」または「ipv6-address」にすることができます。
br-ipv6-addr: sets the IPv6 address of the remote BR.
br-ipv6-addr:リモートBRのIPv6アドレスを設定します。
Additional details relevant to some of the important algorithmic elements are provided below:
重要なアルゴリズム要素のいくつかに関連する追加の詳細を以下に示します。
algo-versioning: optionally used to associate a version number and/or timestamp to the algorithm. This can be used for logging/data retention purposes [RFC7422]. The version number is selected to uniquely identify the algorithm configuration and a new value written whenever a change is made to the algorithm or a new algo-instance is created.
algo-versioning:オプションで、バージョン番号やタイムスタンプをアルゴリズムに関連付けるために使用されます。これは、ロギング/データ保持の目的で使用できます[RFC7422]。バージョン番号は、アルゴリズム構成を一意に識別するために選択され、アルゴリズムに変更が加えられるか、新しいアルゴインスタンスが作成されるたびに新しい値が書き込まれます。
forwarding: specifies whether the rule can be used as a Forwarding Mapping Rule (FMR). If not set, this rule is a Basic Mapping Rule (BMR) only and must not be used for forwarding. Refer to Section 4.1 of [RFC7598].
転送:ルールを転送マッピングルール(FMR)として使用できるかどうかを指定します。設定しない場合、このルールは基本マッピングルール(BMR)のみであり、転送には使用できません。 [RFC7598]のセクション4.1を参照してください。
ea-len: used to set the length of the Embedded-Address (EA), which is defined in the mapping rule for a MAP domain.
ea-len:MAPドメインのマッピングルールで定義されているEmbedded-Address(EA)の長さを設定するために使用されます。
data-plane: provides a choice statement for either encapsulation (MAP-E) or translation (MAP-T).
data-plane:カプセル化(MAP-E)または変換(MAP-T)のいずれかの選択ステートメントを提供します。
br-ipv6-addr: defines the IPv6 address of the BR. This information is valid for MAP-E.
br-ipv6-addr:BRのIPv6アドレスを定義します。この情報はMAP-Eに有効です。
dmr-ipv6-prefix: defines the Default Mapping Rule (DMR) IPv6 prefix of the BR. This information is valid for MAP-T.
dmr-ipv6-prefix:BRのデフォルトマッピングルール(DMR)IPv6プレフィックスを定義します。この情報はMAP-Tに有効です。
Additional information on the notification node is listed below:
通知ノードに関する追加情報を以下に示します。
ce-binding-ipv6-addr-change: if the CE's binding IPv6 address changes for any reason, the NETCONF client will be notified.
ce-binding-ipv6-addr-change:何らかの理由でCEのバインディングIPv6アドレスが変更された場合、NETCONFクライアントに通知されます。
The BR YANG module provides configuration and monitoring for all of the softwire mechanisms covered in this document (i.e., Lightweight 4over6, MAP-E, and MAP-T).
BR YANGモジュールは、このドキュメントで説明されているすべてのソフトワイヤーメカニズム(つまり、Lightweight 4over6、MAP-E、およびMAP-T)の構成と監視を提供します。
Figure 2 provides the tree structure of this module:
図2は、このモジュールのツリー構造を示しています。
module: ietf-softwire-br +--rw br-instances +--rw (br-type)? +--:(binding) {binding-mode}? | +--rw binding | +--rw bind-instance* [name] | +--rw name string | +--rw binding-table-versioning | | +--rw version? uint64 | | +--rw date? yang:date-and-time | +--rw softwire-num-max uint32 | +--rw softwire-payload-mtu uint16 | +--rw softwire-path-mru uint16 | +--rw enable-hairpinning? boolean | +--rw binding-table | | +--rw binding-entry* [binding-ipv6info] | | +--rw binding-ipv6info union | | +--rw binding-ipv4-addr? | | | inet:ipv4-address | | +--rw port-set | | | +--rw psid-offset? uint8 | | | +--rw psid-len uint8 | | | +--rw psid uint16 | | +--rw br-ipv6-addr? | | inet:ipv6-address | +--rw icmp-policy | | +--rw icmpv4-errors | | | +--rw allow-incoming-icmpv4? boolean | | | +--rw icmpv4-rate? uint32 | | | +--rw generate-icmpv4-errors? boolean | | +--rw icmpv6-errors | | +--rw generate-icmpv6-errors? boolean | | +--rw icmpv6-rate? uint32 | +--ro traffic-stat | +--ro discontinuity-time yang:date-and-time | +--ro sent-ipv4-packets? | | yang:zero-based-counter64 | +--ro sent-ipv4-bytes? | | yang:zero-based-counter64 | +--ro sent-ipv6-packets? | | yang:zero-based-counter64 | +--ro sent-ipv6-bytes? | | yang:zero-based-counter64 | +--ro rcvd-ipv4-packets? | | yang:zero-based-counter64 | +--ro rcvd-ipv4-bytes? | | yang:zero-based-counter64 | +--ro rcvd-ipv6-packets? | | yang:zero-based-counter64 | +--ro rcvd-ipv6-bytes? | | yang:zero-based-counter64 | +--ro dropped-ipv4-packets? | | yang:zero-based-counter64 | +--ro dropped-ipv4-bytes? | | yang:zero-based-counter64 | +--ro dropped-ipv6-packets? | | yang:zero-based-counter64 | +--ro dropped-ipv6-bytes? | | yang:zero-based-counter64 | +--ro dropped-ipv4-fragments? | | yang:zero-based-counter64 | +--ro dropped-ipv4-fragment-bytes? | | yang:zero-based-counter64 | +--ro ipv6-fragments-reassembled? | | yang:zero-based-counter64 | +--ro ipv6-fragments-bytes-reassembled? | | yang:zero-based-counter64 | +--ro out-icmpv4-error-packets? | | yang:zero-based-counter64 | +--ro out-icmpv4-error-bytes? | | yang:zero-based-counter64 | +--ro out-icmpv6-error-packets? | | yang:zero-based-counter64 | +--ro out-icmpv6-error-bytes? | | yang:zero-based-counter64 | +--ro dropped-icmpv4-packets? | | yang:zero-based-counter64 | +--ro dropped-icmpv4-bytes? | | yang:zero-based-counter64 | +--ro hairpin-ipv4-packets? | | yang:zero-based-counter64 | +--ro hairpin-ipv4-bytes? | | yang:zero-based-counter64 | +--ro active-softwire-num? | uint32 +--:(algo) {map-e or map-t}? +--rw algorithm +--rw algo-instance* [name] +--rw name string +--rw enable? boolean +--rw algo-versioning | +--rw version? uint64 | +--rw date? yang:date-and-time +--rw (data-plane)? | +--:(encapsulation) {map-e}? | | +--rw br-ipv6-addr inet:ipv6-address | +--:(translation) {map-t}? | +--rw dmr-ipv6-prefix? inet:ipv6-prefix +--rw ea-len uint8 +--rw rule-ipv6-prefix inet:ipv6-prefix +--rw rule-ipv4-prefix inet:ipv4-prefix +--rw forwarding boolean +--rw port-set | +--rw psid-offset? uint8 | +--rw psid-len uint8 | +--rw psid uint16 +--ro traffic-stat +--ro discontinuity-time yang:date-and-time +--ro sent-ipv4-packets? | yang:zero-based-counter64 +--ro sent-ipv4-bytes? | yang:zero-based-counter64 +--ro sent-ipv6-packets? | yang:zero-based-counter64 +--ro sent-ipv6-bytes? | yang:zero-based-counter64 +--ro rcvd-ipv4-packets? | yang:zero-based-counter64 +--ro rcvd-ipv4-bytes? | yang:zero-based-counter64 +--ro rcvd-ipv6-packets? | yang:zero-based-counter64 +--ro rcvd-ipv6-bytes? | yang:zero-based-counter64 +--ro dropped-ipv4-packets? | yang:zero-based-counter64 +--ro dropped-ipv4-bytes? | yang:zero-based-counter64 +--ro dropped-ipv6-packets? | yang:zero-based-counter64 +--ro dropped-ipv6-bytes? | yang:zero-based-counter64 +--ro dropped-ipv4-fragments? | yang:zero-based-counter64 +--ro dropped-ipv4-fragment-bytes? | yang:zero-based-counter64 +--ro ipv6-fragments-reassembled? | yang:zero-based-counter64 +--ro ipv6-fragments-bytes-reassembled? | yang:zero-based-counter64 +--ro out-icmpv4-error-packets? | yang:zero-based-counter64 +--ro out-icmpv4-error-bytes? | yang:zero-based-counter64 +--ro out-icmpv6-error-packets? | yang:zero-based-counter64 +--ro out-icmpv6-error-bytes? yang:zero-based-counter64
notifications: +---n softwire-binding-instance-event {binding-mode}? | +--ro bind-name? | | -> /br-instances/binding/bind-instance/name | +--ro invalid-entry* leafref | +--ro added-entry* inet:ipv6-address | +--ro modified-entry* leafref +---n softwire-algorithm-instance-event {map-e, map-t}? +--ro algo-name | -> /br-instances/algorithm/algo-instance/name +--ro invalid-entry-id* | -> /br-instances/algorithm/algo-instance/name +--ro added-entry* | -> /br-instances/algorithm/algo-instance/name +--ro modified-entry* -> /br-instances/algorithm/algo-instance/name
Figure 2: Softwire BR YANG Tree
図2:Softwire BR YANGツリー
The descriptions for leaves that are common with the CE module are provided in Section 4.2. Descriptions for additional elements are provided below:
CEモジュールと共通のリーフの説明は、セクション4.2に記載されています。追加要素の説明を以下に示します。
binding-table-versioning: optionally used to associate a version number and/or timestamp to the binding table. This can be used for logging or data retention purposes [RFC7422]. The version number is selected to uniquely identify the binding table configuration and a new timestamp value written whenever a change is made to the contents of the binding table or a new binding table list is created.
binding-table-versioning:オプションで、バージョン番号またはタイムスタンプ、あるいはその両方をバインディングテーブルに関連付けるために使用されます。これは、ロギングまたはデータ保持の目的で使用できます[RFC7422]。バージョン番号は、バインディングテーブルの構成を一意に識別するために選択され、バインディングテーブルの内容が変更されるか、新しいバインディングテーブルリストが作成されるたびに、新しいタイムスタンプ値が書き込まれます。
binding-entry: used to define the binding relationship between 3-tuples {lwB4's IPv6 address/prefix, the allocated IPv4 address, restricted port-set}. For detailed information, please refer to [RFC7596].
binding-entry:3タプル{lwB4のIPv6アドレス/プレフィックス、割り当てられたIPv4アドレス、制限されたポートセット}間のバインディング関係を定義するために使用されます。詳細については、[RFC7596]を参照してください。
softwire-num-max: used to set the maximum number of softwire binding rules that can be created on the lw4o6 element simultaneously. This parameter must not be set to zero because this is equivalent to disabling the BR instance.
softwire-num-max:lw4o6要素で同時に作成できるソフトワイヤーバインディングルールの最大数を設定するために使用されます。これはBRインスタンスを無効にすることと同じであるため、このパラメーターをゼロに設定しないでください。
active-softwire-num: holds the number of softwires currently provisioned on the BR element.
active-softwire-num:BRエレメントで現在プロビジョニングされているソフトワイヤーの数を保持します。
Additional information on some of the important notification nodes is listed below:
重要な通知ノードのいくつかに関する追加情報を以下に示します。
invalid-entry, added-entry, modified-entry: used to notify the NETCONF client that a specific binding entry or MAP rule has expired, been invalidated, added, or modified.
invalid-entry、added-entry、modified-entry:特定のバインディングエントリまたはMAPルールが期限切れ、無効化、追加、または変更されたことをNETCONFクライアントに通知するために使用されます。
This module imports the modules defined in [RFC6991], [RFC8343], and [RFC7224]. It also imports the 'ietf-softwire-common' and 'iana-tunnel-type' modules [RFC8675].
このモジュールは、[RFC6991]、[RFC8343]、および[RFC7224]で定義されたモジュールをインポートします。また、「ietf-softwire-common」および「iana-tunnel-type」モジュールもインポートします[RFC8675]。
<CODE BEGINS> file "ietf-softwire-ce@2019-11-16.yang" module ietf-softwire-ce { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-softwire-ce"; prefix softwire-ce;
import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types, Section 4"; } import ietf-interfaces { prefix if; reference "RFC 8343: A YANG Data Model for Interface Management"; } import ietf-softwire-common { prefix softwire-common; reference "RFC 8676: YANG Modules for IPv4-in-IPv6 Address plus Port Softwires"; } import iana-tunnel-type { prefix iana-tunnel-type; reference "RFC 8675: A YANG Data Model for Tunnel Interface Types"; }
organization "IETF Softwire Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/softwire/> WG List: <mailto:softwire@ietf.org>
Author: Qi Sun <mailto:sunqi.ietf@gmail.com>
Author: Linhui Sun <mailto:lh.sunlinh@gmail.com>
Author: Yong Cui <mailto:yong@csnet1.cs.tsinghua.edu.cn>
Editor: Ian Farrer <mailto:ian.farrer@telekom.de>
Author: Sladjana Zoric <mailto:sladjana.zoric@telekom.de>
Editor: Mohamed Boucadair <mailto:mohamed.boucadair@orange.com>
Author: Rajiv Asati <mailto:rajiva@cisco.com>"; description "This document defines a YANG module for the configuration and management of A+P Softwire Customer Premises Equipment (CEs). It covers Lightweight 4over6, MAP-E, and MAP-T mechanisms.
作成者:Rajiv Asati <mailto:rajiva@cisco.com> ";説明"このドキュメントでは、A + P Softwire Customer Premises Equipment(CE)の構成と管理のためのYANGモジュールを定義しています。軽量4over6、MAP-E、およびMAP-Tメカニズムをカバーしています。
Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.
Copyright(c)2019 IETF Trustおよびコードの作成者として識別された人物。全著作権所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).
ソースおよびバイナリ形式での再配布および使用は、変更の有無にかかわらず、IETF文書に関連するIETFトラストの法的規定のセクション4.cに記載されているSimplified BSD Licenseに従い、それに含まれるライセンス条項に従って許可されます( http://trustee.ietf.org/license-info)。
This version of this YANG module is part of RFC 8676; see the RFC itself for full legal notices.";
このYANGモジュールのこのバージョンはRFC 8676の一部です。完全な法的通知については、RFC自体を参照してください。 ";
revision 2019-11-16 { description "Initial revision."; reference "RFC 8676: YANG Modules for IPv4-in-IPv6 Address plus Port (A+P) Softwires"; }
/* * Features */
feature binding-mode { description "Binding is used for configuring the Lightweight 4over6 mechanism.
feature binding-mode {description "バインディングは、Lightweight 4over6メカニズムの構成に使用されます。
Binding-based softwire mechanisms are IPv4-over-IPv6 tunneling transition mechanisms specifically intended for complete independence between the IPv6 subnet prefix (and IPv6 address) and IPv4 address, with or without IPv4 address sharing.
バインディングベースのソフトワイヤーメカニズムは、IPv4アドレス共有の有無にかかわらず、IPv6サブネットプレフィックス(およびIPv6アドレス)とIPv4アドレスの間の完全な独立を特に意図したIPv4-over-IPv6トンネリング移行メカニズムです。
This is accomplished by maintaining state for each softwire (per-subscriber state) in the central Border Relay (BR) and using a hub-and-spoke forwarding architecture. In order to delegate the NAPT function and achieve IPv4 address sharing, port-restricted IPv4 addresses needs to be allocated to CEs.
これは、中央ボーダーリレー(BR)の各ソフトワイヤーの状態(サブスクライバーごとの状態)を維持し、ハブアンドスポーク転送アーキテクチャを使用することで実現されます。 NAPT機能を委任してIPv4アドレス共有を実現するには、ポート制限されたIPv4アドレスをCEに割り当てる必要があります。
This feature indicates that the network element can function as one or more binding-based softwire instances."; reference "RFC 7596: Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture RFC 7597: Mapping of Address and Port with Encapsulation (MAP-E) RFC 7599: Mapping of Address and Port using Translation (MAP-T)"; }
feature map-e { description "MAP-E is an IPv6 transition mechanism for transporting IPv4 packets across an IPv6 network using IP encapsulation. MAP-E allows for a reduction of the amount of centralized state using rules to express IPv4/IPv6 address mappings. This introduces an algorithmic relationship between the IPv6 subnet and IPv4 address.
feature map-e {説明「MAP-Eは、IPカプセル化を使用してIPv6ネットワーク全体でIPv4パケットを転送するためのIPv6移行メカニズムです。MAP-Eでは、ルールを使用してIPv4 / IPv6アドレスマッピングを表現する集中状態の量を削減できます。これにより、IPv6サブネットとIPv4アドレスの間にアルゴリズム的な関係が導入されます。
This feature indicates that the network element can function as one or more MAP-E softwire instances."; reference "RFC 7597: Mapping of Address and Port with Encapsulation (MAP-E)"; }
feature map-t { description "MAP-T is an IPv6 transition mechanism for transporting IPv4 packets across an IPv6 network using IP translation. It leverages a double stateless NAT64-based solution as well as the stateless algorithmic address and transport layer port mapping algorithm defined for MAP-E.
機能map-t {説明 "MAP-Tは、IP変換を使用してIPv6ネットワーク全体でIPv4パケットを転送するためのIPv6移行メカニズムです。これは、ステートレスアルゴリズムアドレスとトランスポートレイヤーのポートマッピングアルゴリズムを定義したダブルステートレスNAT64ベースのソリューションを利用します。 MAP-Eの場合。
This feature indicates that the network element can function as one or more MAP-T softwire instances."; reference "RFC 7599: Mapping of Address and Port using Translation (MAP-T)"; }
// Binding Entry
//バインディングエントリ
grouping binding-entry { description "The binding BR (Border Relay) maintains an address binding table that contains the binding between the CE's IPv6 address, the allocated IPv4 address, and the restricted port-set."; leaf binding-ipv6info { type union { type inet:ipv6-address; type inet:ipv6-prefix; } description "The IPv6 information for a binding entry.
When the IPv6 prefix type is used, the IPv6 source address of the CE is constructed according to the description in RFC 7596.
IPv6プレフィックスタイプが使用される場合、CEのIPv6送信元アドレスはRFC 7596の説明に従って構築されます。
If the IPv6 address type is used, the CE can use any valid /128 address from a prefix assigned to the CE."; reference "RFC 7596: Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture, Section 5.1"; } leaf br-ipv6-addr { type inet:ipv6-address; mandatory true; description "The IPv6 address of the binding BR."; } }
// configuration and stateful parameters for softwire CE interface
// Softwire CEインターフェイスの構成とステートフルパラメータ
augment "/if:interfaces/if:interface" { when "derived-from(if:type, 'iana-tunnel-type:aplusp')"; description "Softwire CE interface configuration"; leaf softwire-payload-mtu { type uint16; units "bytes"; description "The payload IPv4 MTU for the softwire tunnel."; } leaf softwire-path-mru { type uint16; units "bytes"; description "The path MRU for the softwire (payload + encapsulation overhead)."; reference "RFC 4213: Basic Transition Mechanisms for IPv6 Hosts and Routers"; } choice ce-type { description "Sets the softwire CE mechanism"; case binding { if-feature "binding-mode"; description "CE binding configuration"; uses binding-entry; } case algo { if-feature "map-e or map-t"; description "CE algorithm configuration"; container algo-instances { description "Collection of MAP-E/MAP-T parameters"; list algo-instance { key "name"; description "MAP forwarding rule instance for MAP-E/MAP-T"; leaf name { type string; mandatory true; description "The name is used to uniquely identify an algorithm instance.
This name can be automatically assigned or explicitly configured."; } uses softwire-common:algorithm-instance; } } } } } augment "/if:interfaces/if:interface/if:statistics" { when "derived-from(../if:type, 'iana-tunnel-type:aplusp')"; description "Softwire CE interface statistics."; uses softwire-common:traffic-stat; }
/* * Notifications */
notification softwire-ce-event { if-feature "binding-mode"; description "CE notification"; leaf ce-binding-ipv6-addr-change { type inet:ipv6-address; mandatory true; description "This notification is generated whenever the CE's binding IPv6 address changes for any reason."; } } } <CODE ENDS>
This module imports typedefs from [RFC6991]. It also imports the 'ietf-softwire-common' module.
このモジュールは、[RFC6991]からtypedefをインポートします。また、「ietf-softwire-common」モジュールもインポートします。
<CODE BEGINS> file "ietf-softwire-br@2019-11-16.yang" module ietf-softwire-br { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-softwire-br"; prefix softwire-br;
import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types, Section 4"; } import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types, Section 3"; } import ietf-softwire-common { prefix softwire-common; reference "RFC 8676: YANG Modules for IPv4-in-IPv6 Address plus Port (A+P) Softwires"; }
organization "IETF Softwire Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/softwire/> WG List: <mailto:softwire@ietf.org>
Author: Qi Sun <mailto:sunqi.ietf@gmail.com>
Author: Linhui Sun <mailto:lh.sunlinh@gmail.com>
Author: Yong Cui <mailto:yong@csnet1.cs.tsinghua.edu.cn>
Editor: Ian Farrer <mailto:ian.farrer@telekom.de>
Author: Sladjana Zoric <mailto:sladjana.zoric@telekom.de>
Editor: Mohamed Boucadair <mailto:mohamed.boucadair@orange.com>
Author: Rajiv Asati <mailto:rajiva@cisco.com>";
description "This document defines a YANG module for the configuration and management of A+P Softwire Border Routers. It covers Lightweight 4over6, MAP-E, and MAP-T mechanisms.
説明「このドキュメントでは、A + P Softwireボーダールーターの構成と管理のためのYANGモジュールを定義しています。Lightweight4over6、MAP-E、およびMAP-Tメカニズムについて説明しています。
Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.
Copyright(c)2019 IETF Trustおよびコードの作成者として識別された人物。全著作権所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).
ソースおよびバイナリ形式での再配布および使用は、変更の有無にかかわらず、IETF文書に関連するIETFトラストの法的規定のセクション4.cに記載されているSimplified BSD Licenseに従い、それに含まれるライセンス条項に従って許可されます( http://trustee.ietf.org/license-info)。
This version of this YANG module is part of RFC 8676; see the RFC itself for full legal notices.";
このYANGモジュールのこのバージョンはRFC 8676の一部です。完全な法的通知については、RFC自体を参照してください。 ";
revision 2019-11-16 { description "Initial revision."; reference "RFC 8676: YANG Modules for IPv4-in-IPv6 Address plus Port (A+P) Softwires"; }
/* * Groupings */
grouping port-set { description "Describes a set of Layer 4 port numbers.
grouping port-set {description "一連のレイヤ4ポート番号を記述します。
This may be a simple port range, or use the Port Set Identifier (PSID) algorithm to represent a range of transport layer ports that will be used by a NAPT."; leaf psid-offset { type uint8 { range "0..16"; } description "The number of offset bits. In Lightweight 4over6, the default value is 0 for assigning one contiguous port range. In MAP-E/T, the default value is 6, which means the system ports (0-1023) are excluded by default and the assigned port ranges are distributed across the entire port space, depending on either psid-len or the number of contiguous ports."; } leaf psid-len { type uint8 { range "0..15"; } mandatory true; description "The length of PSID, representing the sharing ratio for an IPv4 address. This, along with ea-len, can be used to calculate the number of contiguous ports per port range"; } leaf psid { type uint16; mandatory true; description "Port Set Identifier (PSID) value, which identifies a set of ports algorithmically."; } }
grouping binding-entry { description "The binding BR maintains an address binding table that contains the binding between the CE's IPv6 address, the allocated IPv4 address and restricted port-set."; leaf binding-ipv6info { type union { type inet:ipv6-address; type inet:ipv6-prefix; } description "The IPv6 information for a CE binding entry. When the IPv6 prefix type is used, the IPv6 source address of the CE is constructed according to the description in RFC 7596; if the IPv6 address type is used, the CE can use any valid /128 address from a prefix assigned to the CE."; reference "RFC 7596: Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture"; } leaf binding-ipv4-addr { type inet:ipv4-address; description "The IPv4 address assigned to the binding CE, which is used as the IPv4 external address for binding CE local NAPT44."; } container port-set { description "For Lightweight 4over6, the default value for offset should be 0, to configure one contiguous port range."; uses port-set { refine "psid-offset" { default "0"; } } } leaf br-ipv6-addr { type inet:ipv6-address; description "The IPv6 address for binding BR."; } }
/* * Features */
feature binding-mode { description "Binding is used for configuring the Lightweight 4over6 mechanism.
feature binding-mode {description "バインディングは、Lightweight 4over6メカニズムの構成に使用されます。
Binding-based softwire mechanisms are IPv4-over-IPv6 tunneling transition mechanisms specifically intended for complete independence between the IPv6 subnet prefix (and IPv6 address) and IPv4 address, with or without IPv4 address sharing.
バインディングベースのソフトワイヤーメカニズムは、IPv4アドレス共有の有無にかかわらず、IPv6サブネットプレフィックス(およびIPv6アドレス)とIPv4アドレスの間の完全な独立を特に意図したIPv4-over-IPv6トンネリング移行メカニズムです。
This is accomplished by maintaining state for each softwire (per-subscriber state) in the central Border Relay (BR) and using a hub-and-spoke forwarding architecture. In order to delegate the NAPT function and achieve IPv4 address sharing, port-restricted IPv4 addresses needs to be allocated to CEs.
これは、中央ボーダーリレー(BR)の各ソフトワイヤーの状態(サブスクライバーごとの状態)を維持し、ハブアンドスポーク転送アーキテクチャを使用することで実現されます。 NAPT機能を委任してIPv4アドレス共有を実現するには、ポート制限されたIPv4アドレスをCEに割り当てる必要があります。
This feature indicates that the network element can function as one or more binding-based softwire instances."; reference "RFC 7596: Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture RFC 7597: Mapping of Address and Port with Encapsulation (MAP-E) RFC 7599: Mapping of Address and Port using Translation (MAP-T)"; }
feature map-e { description "MAP-E is an IPv6 transition mechanism for transporting IPv4 packets across an IPv6 network using IP encapsulation. MAP-E allows for a reduction of the amount of centralized state using rules to express IPv4/IPv6 address mappings. This introduces an algorithmic relationship between the IPv6 subnet and IPv4 address.
feature map-e {説明「MAP-Eは、IPカプセル化を使用してIPv6ネットワーク全体でIPv4パケットを転送するためのIPv6移行メカニズムです。MAP-Eでは、ルールを使用してIPv4 / IPv6アドレスマッピングを表現する集中状態の量を削減できます。これにより、IPv6サブネットとIPv4アドレスの間にアルゴリズム的な関係が導入されます。
This feature indicates that the network element can function as one or more MAP-E softwire instances."; reference "RFC 7597: Mapping of Address and Port with Encapsulation (MAP-E)"; }
feature map-t { description "MAP-T is an IPv6 transition mechanism for transporting IPv4 packets across an IPv6 network using IP translation. It leverages a double stateless NAT64-based solution as well as the stateless algorithmic address and transport layer port mapping algorithm defined for MAP-E.
機能map-t {説明 "MAP-Tは、IP変換を使用してIPv6ネットワーク全体でIPv4パケットを転送するためのIPv6移行メカニズムです。これは、ステートレスアルゴリズムアドレスとトランスポートレイヤーのポートマッピングアルゴリズムを定義したダブルステートレスNAT64ベースのソリューションを利用します。 MAP-Eの場合。
This feature indicates that the network element can function as one or more MAP-T softwire instances."; reference "RFC 7599: Mapping of Address and Port using Translation (MAP-T)"; }
container br-instances { description "BR instances enabled in a network element."; choice br-type { description "Select binding or algorithmic BR functionality."; case binding { if-feature "binding-mode"; container binding { description "binding mechanism (binding table) configuration."; list bind-instance { key "name"; description "A set of binding instances to be configured."; leaf name { type string; mandatory true; description "The name for the binding BR. It is used to uniquely distinguish a binding instance by its name."; } container binding-table-versioning { description "binding table's version"; leaf version { type uint64; description "Version number for this binding table."; } leaf date { type yang:date-and-time; description "Timestamp when the binding table was activated.
A binding instance may be provided with binding entries that may change in time (e.g., increase the size of the port set). When a party who is the victim of abuse presents an external IP address/port, the version of the binding table is important because, depending on the version, a distinct customer may be identified.
バインディングインスタンスには、時間の経過に伴って変化する可能性のあるバインディングエントリが提供される場合があります(ポートセットのサイズを増やすなど)。虐待の被害者である当事者が外部IPアドレス/ポートを提示する場合、バージョンによっては明確な顧客が識別される可能性があるため、バインディングテーブルのバージョンは重要です。
The timestamp is used as a key to find the appropriate binding table that was put into effect when an abuse occurred."; reference "RFC 7422: Deterministic Address Mapping to Reduce Logging in Carrier-Grade NAT Deployments"; } } leaf softwire-num-max { type uint32 { range "1..max"; } mandatory true; description "The maximum number of softwires that can be created on the binding BR."; } leaf softwire-payload-mtu { type uint16; units "bytes"; mandatory true; description "The payload IPv4 MTU for binding softwire."; } leaf softwire-path-mru { type uint16; units "bytes"; mandatory true; description "The path MRU for binding softwire"; reference "RFC 4213: Basic Transition Mechanisms for IPv6 Hosts and Routers"; } leaf enable-hairpinning { type boolean; default "true"; description "Enables/disables support for locally forwarding (hairpinning) traffic between two CEs"; reference "RFC 7596: Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture, Section 6.2"; } container binding-table { description "binding table"; list binding-entry { key "binding-ipv6info"; description "binding entry"; uses binding-entry; } } container icmp-policy { description "The binding BR can be configured to process or drop incoming ICMP messages and to generate outgoing ICMP error messages."; container icmpv4-errors { description "ICMPv4 error processing configuration"; leaf allow-incoming-icmpv4 { type boolean; default "true"; description "Enables the processing of incoming ICMPv4 packets."; reference "RFC 7596: Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture"; } leaf icmpv4-rate { type uint32; description "Rate limit threshold in messages per second for processing incoming ICMPv4 errors messages"; } leaf generate-icmpv4-errors { type boolean; default "true"; description "Enables the generation of outgoing ICMPv4 error messages on receipt of an inbound IPv4 packet with no matching binding table entry."; reference "RFC 7596: Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture, Section 5.2"; } } container icmpv6-errors { description "ICMPv6 error processing configuration"; leaf generate-icmpv6-errors { type boolean; default "true"; description "Enables the generation of ICMPv6 error messages if no matching binding table entry is found for a received packet."; reference "RFC 7596: Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture, Section 6.2"; } leaf icmpv6-rate { type uint32; description "Rate limit threshold in messages per second for sending ICMPv6 errors messages"; reference "RFC 7596: Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture, Section 9"; } } } container traffic-stat { config false; description "Traffic statistics information for the BR."; leaf discontinuity-time { type yang:date-and-time; mandatory true; description "The time of the most recent occasion on which the BR instance suffered a discontinuity. This must be initialized when the BR instance is configured or rebooted."; } uses softwire-common:traffic-stat; leaf dropped-icmpv4-packets { type yang:zero-based-counter64; description "ICMPv4 packets that are dropped as a result of the ICMP policy. Typically, this can be any incoming ICMPv4 packets if ICMPv4 processing is disabled or incoming ICMPv4 packets that exceed the ICMPv4 rate-limit threshold.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf dropped-icmpv4-bytes { type yang:zero-based-counter64; description "ICMPv4 messages, in bytes, that are dropped as a result of the ICMP policy. Typically, it can be any incoming ICMPv4 packets if ICMPv4 processing is disabled or incoming ICMPv4 packets that exceed the ICMPv4 rate-limit threshold.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf hairpin-ipv4-packets { type yang:zero-based-counter64; description "IPv4 packets locally routed between two CEs (hairpinned).
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf hairpin-ipv4-bytes { type yang:zero-based-counter64; description "IPv4 bytes locally routed between two CEs (hairpinned).
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf active-softwire-num { type uint32; config false; description "The number of currently active softwires on the binding instance.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } } } } } case algo { if-feature "map-e or map-t"; container algorithm { description "A set of parameters used for MAP-E/MAP-T"; list algo-instance { key "name"; description "Instances of algorithm"; leaf name { type string; mandatory true; description "The name is used to uniquely identify an algorithm instance.
This name can be automatically assigned or explicitly configured."; } uses softwire-common:algorithm-instance; container port-set { description "Indicates a set of ports."; uses port-set; } container traffic-stat { config false; description "Traffic statistics information for the BR."; leaf discontinuity-time { type yang:date-and-time; mandatory true; description "The time of the most recent occasion on which the BR instance suffered a discontinuity. This must be reset to the current date-and-time when the BR instance is configured or rebooted."; } uses softwire-common:traffic-stat; } } } } } }
/* * Notifications */
notification softwire-binding-instance-event { if-feature "binding-mode"; description "Notifications for the binding instance when an entry is added, modified, or is not valid anymore."; leaf bind-name { type leafref { path "/br-instances/binding/bind-instance/name"; } description "The name of the binding-instance that generated the notification."; } leaf-list invalid-entry { type leafref { path "/br-instances/binding/" + "bind-instance[name=current()/../bind-name]/" + "binding-table/binding-entry/binding-ipv6info"; } description "Notify the client that a specific binding entry has expired or is invalid. The binding-ipv6info identifies an entry."; } leaf-list added-entry { type inet:ipv6-address; description "Notify the client that a binding entry has been added. The IPv6 address of that entry is the index. The client gets other information from the binding BR about the entry indexed by that ipv6 address."; } leaf-list modified-entry { type leafref { path "/br-instances/binding/" + "bind-instance[name=current()/../bind-name]/" + "binding-table/binding-entry/binding-ipv6info"; } description "The binding table entry that has been modified."; } } notification softwire-algorithm-instance-event { if-feature "map-e or map-t"; description "Notifications for an algorithm instance when an entry is added, modified, or is not valid anymore."; leaf algo-name { type leafref { path "/br-instances/algorithm/algo-instance/name"; } mandatory true; description "Algorithmic instance event."; } leaf-list invalid-entry { type leafref { path "/br-instances/algorithm/algo-instance/name"; } description "Invalid entry."; } leaf-list added-entry { type leafref { path "/br-instances/algorithm/algo-instance/name"; } description "Added entry."; } leaf-list modified-entry { type leafref { path "/br-instances/algorithm/algo-instance/name"; } description "Modified entry."; } } } <CODE ENDS>
This module imports typedefs from [RFC6991].
このモジュールは、[RFC6991]からtypedefをインポートします。
The following YANG module contains definitions that are used by both the softwire CE and softwire BR YANG modules.
次のYANGモジュールには、softwire CEモジュールとsoftwire BR YANGモジュールの両方で使用される定義が含まれています。
<CODE BEGINS> file "ietf-softwire-common@2019-11-16.yang" module ietf-softwire-common { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-softwire-common"; prefix softwire-common;
import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types, Section 4"; } import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types, Section 3"; }
organization "IETF Softwire Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/softwire/> WG List: <mailto:softwire@ietf.org>
Author: Qi Sun <mailto:sunqi.ietf@gmail.com>
Author: Linhui Sun <mailto:lh.sunlinh@gmail.com>
Author: Yong Cui <mailto:yong@csnet1.cs.tsinghua.edu.cn>
Editor: Ian Farrer <mailto:ian.farrer@telekom.de>
Author: Sladjana Zoric <mailto:sladjana.zoric@telekom.de>
Editor: Mohamed Boucadair <mailto:mohamed.boucadair@orange.com>
Author: Rajiv Asati <mailto:rajiva@cisco.com>"; description "This document defines a YANG module defining types common to all A+P modules.
著者:Rajiv Asati <mailto:rajiva@cisco.com> ";説明"このドキュメントでは、すべてのA + Pモジュールに共通のタイプを定義するYANGモジュールを定義しています。
Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.
Copyright(c)2019 IETF Trustおよびコードの作成者として識別された人物。全著作権所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).
ソースおよびバイナリ形式での再配布および使用は、変更の有無にかかわらず、IETF文書に関連するIETFトラストの法的規定のセクション4.cに記載されているSimplified BSD Licenseに従い、それに含まれるライセンス条項に従って許可されます( http://trustee.ietf.org/license-info)。
This version of this YANG module is part of RFC 8676; see the RFC itself for full legal notices.";
このYANGモジュールのこのバージョンはRFC 8676の一部です。完全な法的通知については、RFC自体を参照してください。 ";
revision 2019-11-16 { description "Initial revision."; reference "RFC 8676: YANG Modules for IPv4-in-IPv6 Address plus Port (A+P) Softwires"; }
feature map-e { description "MAP-E is an IPv6 transition mechanism for transporting IPv4 packets across an IPv6 network using IP encapsulation. MAP-E allows for a reduction of the amount of centralized state using rules to express IPv4/IPv6 address mappings. This introduces an algorithmic relationship between the IPv6 subnet and IPv4 address.
feature map-e {説明「MAP-Eは、IPカプセル化を使用してIPv6ネットワーク全体でIPv4パケットを転送するためのIPv6移行メカニズムです。MAP-Eでは、ルールを使用してIPv4 / IPv6アドレスマッピングを表現する集中状態の量を削減できます。これにより、IPv6サブネットとIPv4アドレスの間にアルゴリズム的な関係が導入されます。
This feature indicates that the network element can function as one or more MAP-E softwire instances."; reference "RFC 7597: Mapping of Address and Port with Encapsulation (MAP-E)"; }
feature map-t { description "MAP-T is an IPv6 transition mechanism for transporting IPv4 packets across an IPv6 network using IP translation. It leverages a double stateless NAT64-based solution as well as the stateless algorithmic address and transport layer port mapping algorithm defined for MAP-E.
機能map-t {説明 "MAP-Tは、IP変換を使用してIPv6ネットワーク全体でIPv4パケットを転送するためのIPv6移行メカニズムです。これは、ステートレスアルゴリズムアドレスとトランスポートレイヤーのポートマッピングアルゴリズムを定義したダブルステートレスNAT64ベースのソリューションを利用します。 MAP-Eの場合。
This feature indicates that the network element can function as one or more MAP-T softwire instances."; reference "RFC 7599: Mapping of Address and Port using Translation (MAP-T)"; }
/* * Groupings */
grouping algorithm-instance { description "A collection of parameters that is used for MAP-E/MAP-T."; leaf enable { type boolean; description "Enable/disable an individual MAP-E or MAP-T rule."; } container algo-versioning { description "Version number for this algorithm instance"; leaf version { type uint64; description "A version number for the mapping algorithm rules provided to the algorithm instance"; } leaf date { type yang:date-and-time; description "Timestamp when the algorithm instance was activated.
An algorithm instance may be provided with mapping rules that may change in time (for example, increase the size of the port set). When a party who is the victim of abuse presents an external IP address/port, the version of the algorithm is important because depending on the version, a distinct customer may be identified.
アルゴリズムインスタンスには、時間の経過に伴って変化する可能性のあるマッピングルールが提供される場合があります(たとえば、ポートセットのサイズを増やす)。虐待の被害者である当事者が外部IPアドレス/ポートを提示する場合、バージョンによっては、明確な顧客が識別される可能性があるため、アルゴリズムのバージョンは重要です。
The timestamp is used as a key to find the appropriate algorithm that was put into effect when an abuse occurred."; reference "RFC 7422: Deterministic Address Mapping to Reduce Logging in Carrier-Grade NAT Deployments"; } } choice data-plane { description "Selects MAP-E (encapsulation) or MAP-T (translation)"; case encapsulation { if-feature "map-e"; description "encapsulation for MAP-E"; leaf br-ipv6-addr { type inet:ipv6-address; mandatory true; description "The IPv6 address of the MAP-E BR."; } } case translation { if-feature "map-t"; description "translation for MAP-T"; leaf dmr-ipv6-prefix { type inet:ipv6-prefix; description "The IPv6 prefix of the MAP-T BR."; } } } leaf ea-len { type uint8; mandatory true; description "Embedded Address (EA) bits are the IPv4 EA-bits in the IPv6 address identifying an IPv4 prefix/address (or part thereof) or a shared IPv4 address (or part thereof) and a port-set identifier. The length of the EA-bits is defined as part of a MAP rule for a MAP domain."; } leaf rule-ipv6-prefix { type inet:ipv6-prefix; mandatory true; description "The Rule IPv6 prefix defined in the mapping rule."; } leaf rule-ipv4-prefix { type inet:ipv4-prefix; mandatory true; description "The Rule IPv4 prefix defined in the mapping rule."; } leaf forwarding { type boolean; mandatory true; description "This parameter specifies whether the rule may be used for forwarding; if set, this rule is used as a Forwarding Mapping Rule (FMR); if not set, this rule is a Basic Mapping Rule (BMR) only and must not be used for forwarding."; } }
grouping traffic-stat { description "Traffic statistics"; leaf sent-ipv4-packets { type yang:zero-based-counter64; description "Number of decapsulated and forwarded IPv4 packets.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf sent-ipv4-bytes { type yang:zero-based-counter64; description "Decapsulated/translated IPv4 traffic sent, in bytes.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf sent-ipv6-packets { type yang:zero-based-counter64; description "Number of encapsulated IPv6 packets sent.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf sent-ipv6-bytes { type yang:zero-based-counter64; description "Encapsulated IPv6 traffic sent, in bytes.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf rcvd-ipv4-packets { type yang:zero-based-counter64; description "Number of IPv4 packets received.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf rcvd-ipv4-bytes { type yang:zero-based-counter64; description "IPv4 traffic received, in bytes.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf rcvd-ipv6-packets { type yang:zero-based-counter64; description "Number of IPv4-in-IPv6 packets received.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf rcvd-ipv6-bytes { type yang:zero-based-counter64; description "IPv4-in-IPv6 traffic received, in bytes.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf dropped-ipv4-packets { type yang:zero-based-counter64; description "Number of IPv4 packets dropped at the Internet-facing interface.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf dropped-ipv4-bytes { type yang:zero-based-counter64; description "IPv4 traffic dropped at the Internet-facing interface, in bytes.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf dropped-ipv6-packets { type yang:zero-based-counter64; description "Number of IPv4-in-IPv6 packets dropped.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf dropped-ipv6-bytes { type yang:zero-based-counter64; description "IPv4-in-IPv6 traffic dropped, in bytes.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf dropped-ipv4-fragments { type yang:zero-based-counter64; description "Number of fragmented IPv4 packets dropped.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf dropped-ipv4-fragment-bytes { type yang:zero-based-counter64; description "Fragmented IPv4 traffic dropped, in bytes.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf ipv6-fragments-reassembled { type yang:zero-based-counter64; description "Number of IPv6 fragments successfully reassembled.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf ipv6-fragments-bytes-reassembled { type yang:zero-based-counter64; description "IPv6 fragments successfully reassembled, in bytes.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf out-icmpv4-error-packets { type yang:zero-based-counter64; description "Internally generated ICMPv4 error packets.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf out-icmpv4-error-bytes { type yang:zero-based-counter64; description "Internally generated ICMPv4 error messages, in bytes.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf out-icmpv6-error-packets { type yang:zero-based-counter64; description "Internally generated ICMPv6 error packets.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } leaf out-icmpv6-error-bytes { type yang:zero-based-counter64; description "Internally generated ICMPv6 error messages, in bytes.
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'."; } } } <CODE ENDS>
The YANG modules defined in this document are designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].
このドキュメントで定義されているYANGモジュールは、NETCONF [RFC6241]やRESTCONF [RFC8040]などのネットワーク管理プロトコルを介してアクセスできるように設計されています。最下層のNETCONF層はセキュアなトランスポート層であり、実装に必須のセキュアなトランスポートはセキュアシェル(SSH)[RFC6242]です。最下位のRESTCONFレイヤーはHTTPSであり、実装に必須のセキュアなトランスポートはTLS [RFC8446]です。
The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.
ネットワーク構成アクセス制御モデル(NACM)[RFC8341]は、特定のNETCONFまたはRESTCONFユーザーのアクセスを、利用可能なすべてのNETCONFまたはRESTCONFプロトコル操作およびコンテンツの事前構成されたサブセットに制限する手段を提供します。
All data nodes defined in the YANG modules which can be created, modified, and deleted (i.e., config true, which is the default) are considered sensitive. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. An attacker who is able to access the BR can undertake various attacks, such as:
作成、変更、削除できるYANGモジュールで定義されたすべてのデータノード(つまり、デフォルトであるconfig true)は機密と見なされます。適切な保護なしにこれらのデータノードに書き込み操作(edit-configなど)を行うと、ネットワーク操作に悪影響を与える可能性があります。 BRにアクセスできる攻撃者は、次のようなさまざまな攻撃を行うことができます。
* Setting the value of 'br-ipv6-addr' on the CE to point to an illegitimate BR so that it can intercept all the traffic sent by a CE. Illegitimately intercepting users' traffic is an attack with severe implications on privacy.
* CEで送信されたすべてのトラフィックを傍受できるように、不正なBRを指すようにCEの「br-ipv6-addr」の値を設定する。ユーザーのトラフィックを不正に傍受することは、プライバシーに重大な影響を与える攻撃です。
* Setting the MTU to a low value, which may increase the number of fragments ('softwire-payload-mtu').
* MTUを低い値に設定すると、フラグメントの数が増える可能性があります( 'softwire-payload-mtu')。
* Disabling hairpinning (i.e., setting 'enable-hairpinning' to 'false') to prevent communications between CEs.
* CE間の通信を防ぐためにヘアピニングを無効にする(つまり、「enable-hairpinning」を「false」に設定する)。
* Setting 'softwire-num-max' to an arbitrary high value, which may be exploited by a misbehaving user to perform a DoS on the binding BR by mounting a massive number of softwires.
* 「softwire-num-max」を任意の高い値に設定します。これは、不正な動作をしているユーザーが、大量のソフトワイヤーをマウントしてバインディングBRでDoSを実行するために悪用される可能性があります。
* Setting 'icmpv4-rate' or 'icmpv6-rate' to a low value, which may lead to the deactivation of ICMP messages handling.
* 「icmpv4-rate」または「icmpv6-rate」を低い値に設定すると、ICMPメッセージ処理の非アクティブ化につながる可能性があります。
* Instructing the BR to install entries, which, in turn, will induce a DDoS attack by means of the notifications generated by the BR. This DDoS can be softened by defining a notification interval, but given that this interval parameter can be disabled or set to a low value by the misbehaving entity, the same problem will be observed.
* BRにエントリをインストールするように指示すると、BRによって生成された通知を使用してDDoS攻撃が誘発されます。このDDoSは通知間隔を定義することで緩和できますが、この間隔パラメーターを無効にしたり、誤動作しているエンティティによって低い値に設定したりすると、同じ問題が発生します。
Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These subtrees and data nodes can be misused to track the activity of a host:
このYANGモジュールの一部の読み取り可能なデータノードは、一部のネットワーク環境では機密または脆弱であると見なされる場合があります。したがって、これらのデータノードへの読み取りアクセスを制御することが重要です(たとえば、get、get-config、または通知を介して)。これらのサブツリーとデータノードは、ホストのアクティビティを追跡するために誤用される可能性があります。
* the binding Table (/br-instances/binding/bind-instance/binding-table)
* バインディングテーブル(/ br-instances / binding / bind-instance / binding-table)
* the algorithm configuration (/br-instances/algorithm/algo-instance/)
* アルゴリズム構成(/ br-instances / algorithm / algo-instance /)
Security considerations related to lw4o6, MAP-T, and MAP-E are discussed in [RFC7596], [RFC7597], and [RFC7599] respectively.
lw4o6、MAP-T、およびMAP-Eに関連するセキュリティの考慮事項は、それぞれ[RFC7596]、[RFC7597]、および[RFC7599]で説明されています。
Security considerations given in [RFC7950] are also applicable here.
[RFC7950]で提供されているセキュリティの考慮事項もここで適用されます。
IANA has assigned the following new tunnel type under the tunnelType subregistry of the "ifType Definitions" registry maintained in the SMI Numbers registry [TUNNELTYPE-IANA-REGISTRY]:
IANAは、SMI番号レジストリ[TUNNELTYPE-IANA-REGISTRY]で管理されている「ifType Definitions」レジストリのtunnelTypeサブレジストリの下に、次の新しいトンネルタイプを割り当てました。
Decimal: 18 Name: aplusp Description: A+P encapsulation Reference: [RFC6346]
10進数:18名前:aplusp説明:A + Pカプセル化参照:[RFC6346]
IANA has registered the following in the "ns" subregistry within the "IETF XML Registry" [RFC3688]:
IANAは、「IETF XMLレジストリ」[RFC3688]内の「ns」サブレジストリに以下を登録しています。
URI: urn:ietf:params:xml:ns:yang:ietf-softwire-ce Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
URI:urn:ietf:params:xml:ns:yang:ietf-softwire-ce登録者の連絡先:IESG。 XML:なし。要求されたURIはXML名前空間です。
URI: urn:ietf:params:xml:ns:yang:ietf-softwire-br Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
URI:urn:ietf:params:xml:ns:yang:ietf-softwire-br登録者の連絡先:IESG。 XML:なし。要求されたURIはXML名前空間です。
URI: urn:ietf:params:xml:ns:yang:ietf-softwire-common Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
URI:urn:ietf:params:xml:ns:yang:ietf-softwire-common登録者の連絡先:IESG。 XML:なし。要求されたURIはXML名前空間です。
IANA has registered the following YANG modules in the "YANG Module Names" subregistry [RFC6020] within the "YANG Parameters" registry.
IANAは、「YANGパラメータ」レジストリ内の「YANGモジュール名」サブレジストリ[RFC6020]に次のYANGモジュールを登録しました。
name: ietf-softwire-ce namespace: urn:ietf:params:xml:ns:yang:ietf-softwire-ce prefix: softwire-ce reference: RFC 8676
name: ietf-softwire-br namespace: urn:ietf:params:xml:ns:yang:ietf-softwire-br prefix: softwire-br reference: RFC 8676
name: ietf-softwire-common namespace: urn:ietf:params:xml:ns:yang:ietf-softwire-common prefix: softwire-common reference: RFC 8676
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>.
[RFC3688] Mealling、M。、「The IETF XML Registry」、BCP 81、RFC 3688、DOI 10.17487 / RFC3688、2004年1月、<https://www.rfc-editor.org/info/rfc3688>。
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>.
[RFC6020] Bjorklund、M。、編、「YANG-ネットワーク構成プロトコル(NETCONF)のデータモデリング言語」、RFC 6020、DOI 10.17487 / RFC6020、2010年10月、<https://www.rfc-editor。 org / info / rfc6020>。
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.
[RFC6241] Enns、R。、編、Bjorklund、M。、編、Schoenwaelder、J。、編、A。Bierman、編、「Network Configuration Protocol(NETCONF)」、RFC 6241、DOI 10.17487 / RFC6241、2011年6月、<https://www.rfc-editor.org/info/rfc6241>。
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/info/rfc6242>.
[RFC6242] Wasserman、M。、「Using the NETCONF Protocol over Secure Shell(SSH)」、RFC 6242、DOI 10.17487 / RFC6242、2011年6月、<https://www.rfc-editor.org/info/rfc6242>。
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.
[RFC6991] Schoenwaelder、J。、編、「Common YANG Data Types」、RFC 6991、DOI 10.17487 / RFC6991、2013年7月、<https://www.rfc-editor.org/info/rfc6991>。
[RFC7224] Bjorklund, M., "IANA Interface Type YANG Module", RFC 7224, DOI 10.17487/RFC7224, May 2014, <https://www.rfc-editor.org/info/rfc7224>.
[RFC7224] Bjorklund、M。、「IANA Interface Type YANG Module」、RFC 7224、DOI 10.17487 / RFC7224、2014年5月、<https://www.rfc-editor.org/info/rfc7224>。
[RFC7596] Cui, Y., Sun, Q., Boucadair, M., Tsou, T., Lee, Y., and I. Farrer, "Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture", RFC 7596, DOI 10.17487/RFC7596, July 2015, <https://www.rfc-editor.org/info/rfc7596>.
[RFC7596] Cui、Y.、Sun、Q.、Boucadair、M.、Tsou、T.、Lee、Y.、I。Farrer、「Lightweight 4over6:An Extension to the Dual-Stack Lite Architecture」、RFC 7596 、DOI 10.17487 / RFC7596、2015年7月、<https://www.rfc-editor.org/info/rfc7596>。
[RFC7597] Troan, O., Ed., Dec, W., Li, X., Bao, C., Matsushima, S., Murakami, T., and T. Taylor, Ed., "Mapping of Address and Port with Encapsulation (MAP-E)", RFC 7597, DOI 10.17487/RFC7597, July 2015, <https://www.rfc-editor.org/info/rfc7597>.
[RFC7597] Troan、O.、Ed。、Dec、W.、Li、X.、Bao、C.、Matsushima、S.、Murakami、T.、and T. Taylor、Ed。、 "Mapping of Address and Port。カプセル化あり(MAP-E)」、RFC 7597、DOI 10.17487 / RFC7597、2015年7月、<https://www.rfc-editor.org/info/rfc7597>。
[RFC7598] Mrugalski, T., Troan, O., Farrer, I., Perreault, S., Dec, W., Bao, C., Yeh, L., and X. Deng, "DHCPv6 Options for Configuration of Softwire Address and Port-Mapped Clients", RFC 7598, DOI 10.17487/RFC7598, July 2015, <https://www.rfc-editor.org/info/rfc7598>.
[RFC7598] Mrugalski、T.、Troan、O.、Farrer、I.、Perreault、S.、Dec、W.、Bao、C.、Yeh、L。、およびX. Deng、「Softwireの構成のためのDHCPv6オプションAddress and Port-Mapped Clients」、RFC 7598、DOI 10.17487 / RFC7598、2015年7月、<https://www.rfc-editor.org/info/rfc7598>。
[RFC7599] Li, X., Bao, C., Dec, W., Ed., Troan, O., Matsushima, S., and T. Murakami, "Mapping of Address and Port using Translation (MAP-T)", RFC 7599, DOI 10.17487/RFC7599, July 2015, <https://www.rfc-editor.org/info/rfc7599>.
[RFC7599] Li、X.、Bao、C.、Dec、W.、Ed。、Troan、O.、Matsushima、S。、およびT. Murakami、「変換を使用したアドレスとポートのマッピング(MAP-T)」 、RFC 7599、DOI 10.17487 / RFC7599、2015年7月、<https://www.rfc-editor.org/info/rfc7599>。
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.
[RFC7950] Bjorklund、M。、編、「The YANG 1.1 Data Modeling Language」、RFC 7950、DOI 10.17487 / RFC7950、2016年8月、<https://www.rfc-editor.org/info/rfc7950>。
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.
[RFC8040] Bierman、A.、Bjorklund、M。、およびK. Watsen、「RESTCONFプロトコル」、RFC 8040、DOI 10.17487 / RFC8040、2017年1月、<https://www.rfc-editor.org/info/rfc8040 >。
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>.
[RFC8341] Bierman、A。およびM. Bjorklund、「Network Configuration Access Control Model」、STD 91、RFC 8341、DOI 10.17487 / RFC8341、2018年3月、<https://www.rfc-editor.org/info/rfc8341 >。
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>.
[RFC8343] Bjorklund、M。、「A YANG Data Model for Interface Management」、RFC 8343、DOI 10.17487 / RFC8343、March 2018、<https://www.rfc-editor.org/info/rfc8343>。
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.
[RFC8446] Rescorla、E。、「The Transport Layer Security(TLS)Protocol Version 1.3」、RFC 8446、DOI 10.17487 / RFC8446、2018年8月、<https://www.rfc-editor.org/info/rfc8446>。
[RFC8675] Boucadair, M., Farrer, I., and R. Asati, "A YANG Data Model for Tunnel Interface Types", RFC 8675, DOI 10.17487/RFC8675, November 2019, <https://www.rfc-editor.org/info/rfc8675>.
[RFC8675] Boucadair、M.、Farrer、I。、およびR. Asati、「トンネルインターフェースタイプのYANGデータモデル」、RFC 8675、DOI 10.17487 / RFC8675、2019年11月、<https://www.rfc-editor .org / info / rfc8675>。
[TUNNELTYPE-IANA-REGISTRY] IANA, "Structure of Management Information (SMI) Numbers (MIB Module Registrations)", <https://www.iana.org/assignments/smi-numbers>.
[TUNNELTYPE-IANA-REGISTRY] IANA、「Structure of Management Information(SMI)Numbers(MIB Module Registrations)」、<https://www.iana.org/assignments/smi-numbers>。
[RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms for IPv6 Hosts and Routers", RFC 4213, DOI 10.17487/RFC4213, October 2005, <https://www.rfc-editor.org/info/rfc4213>.
[RFC4213] Nordmark、E。およびR. Gilligan、「IPv6ホストおよびルーターの基本的な移行メカニズム」、RFC 4213、DOI 10.17487 / RFC4213、2005年10月、<https://www.rfc-editor.org/info/rfc4213 >。
[RFC6333] Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion", RFC 6333, DOI 10.17487/RFC6333, August 2011, <https://www.rfc-editor.org/info/rfc6333>.
[RFC6333] Durand、A.、Droms、R.、Woodyatt、J。、およびY. Lee、「IPv4の枯渇に続くデュアルスタックLiteブロードバンドの展開」、RFC 6333、DOI 10.17487 / RFC6333、2011年8月、<https:/ /www.rfc-editor.org/info/rfc6333>。
[RFC6346] Bush, R., Ed., "The Address plus Port (A+P) Approach to the IPv4 Address Shortage", RFC 6346, DOI 10.17487/RFC6346, August 2011, <https://www.rfc-editor.org/info/rfc6346>.
[RFC6346]ブッシュ、R。、編、「IPv4アドレス不足に対するアドレスとポート(A + P)のアプローチ」、RFC 6346、DOI 10.17487 / RFC6346、2011年8月、<https://www.rfc-editor .org / info / rfc6346>。
[RFC7422] Donley, C., Grundemann, C., Sarawat, V., Sundaresan, K., and O. Vautrin, "Deterministic Address Mapping to Reduce Logging in Carrier-Grade NAT Deployments", RFC 7422, DOI 10.17487/RFC7422, December 2014, <https://www.rfc-editor.org/info/rfc7422>.
[RFC7422] Donley、C.、Grundemann、C.、Sarawat、V.、Sundaresan、K。、およびO. Vautrin、「Deterministic Address Mapping to Reduce Logging in Carrier-Grade NAT Deployments」、RFC 7422、DOI 10.17487 / RFC7422 、2014年12月、<https://www.rfc-editor.org/info/rfc7422>。
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>.
[RFC8340] Bjorklund、M。およびL. Berger、編、「YANGツリー図」、BCP 215、RFC 8340、DOI 10.17487 / RFC8340、2018年3月、<https://www.rfc-editor.org/info/ rfc8340>。
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, <https://www.rfc-editor.org/info/rfc8342>.
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, <https://www.rfc-editor.org/info/rfc8342>.
[RFC8344] Bjorklund, M., "A YANG Data Model for IP Management", RFC 8344, DOI 10.17487/RFC8344, March 2018, <https://www.rfc-editor.org/info/rfc8344>.
[RFC8344] Bjorklund、M。、「IP管理用のYANGデータモデル」、RFC 8344、DOI 10.17487 / RFC8344、2018年3月、<https://www.rfc-editor.org/info/rfc8344>。
[RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for Routing Management (NMDA Version)", RFC 8349, DOI 10.17487/RFC8349, March 2018, <https://www.rfc-editor.org/info/rfc8349>.
[RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for Routing Management (NMDA Version)", RFC 8349, DOI 10.17487/RFC8349, March 2018, <https://www.rfc-editor.org/info/rfc8349>.
[RFC8512] Boucadair, M., Ed., Sivakumar, S., Jacquenet, C., Vinapamula, S., and Q. Wu, "A YANG Module for Network Address Translation (NAT) and Network Prefix Translation (NPT)", RFC 8512, DOI 10.17487/RFC8512, January 2019, <https://www.rfc-editor.org/info/rfc8512>.
[RFC8512] Boucadair、M.、Ed。、Sivakumar、S.、Jacquenet、C.、Vinapamula、S.、and Q. Wu、 "A YANG Module for Network Address Translation(NAT)and Network Prefix Translation(NPT)" 、RFC 8512、DOI 10.17487 / RFC8512、2019年1月、<https://www.rfc-editor.org/info/rfc8512>。
[RFC8513] Boucadair, M., Jacquenet, C., and S. Sivakumar, "A YANG Data Model for Dual-Stack Lite (DS-Lite)", RFC 8513, DOI 10.17487/RFC8513, January 2019, <https://www.rfc-editor.org/info/rfc8513>.
[RFC8513] Boucadair、M.、Jacquenet、C。、およびS. Sivakumar、「A-YANG Data Model for Dual-Stack Lite(DS-Lite)」、RFC 8513、DOI 10.17487 / RFC8513、2019年1月、<https:/ /www.rfc-editor.org/info/rfc8513>。
The following sections provide examples of how the softwire YANG modules can be used for configuring softwire elements.
以下のセクションでは、softwire YANGモジュールを使用してsoftwireエレメントを構成する方法の例を示します。
The lwAFTR maintains an address binding table that contains the following 3-tuples:
lwAFTRは、次の3タプルを含むアドレスバインディングテーブルを維持します。
* IPv6 Address for a single lwB4
* 単一のlwB4のIPv6アドレス
* Public IPv4 Address
* パブリックIPv4アドレス
* Restricted port-set
* 制限付きポートセット
The entry has two functions: the IPv6 encapsulation of inbound IPv4 packets destined to the lwB4 and the validation of outbound IPv4-in-IPv6 packets received from the lwB4 for decapsulation.
The entry has two functions: the IPv6 encapsulation of inbound IPv4 packets destined to the lwB4 and the validation of outbound IPv4-in-IPv6 packets received from the lwB4 for decapsulation.
Consider an example for the following lw4o6 binding table entry:
Consider an example for the following lw4o6 binding table entry:
lwB4 Binding IPv6 Address: 2001:db8::1
lwB4 Binding IPv4 Address: 192.0.2.1
lwB4バインディングIPv4アドレス:192.0.2.1
lwB4 PSID: 0x34
lwB4 PSID:0x34
lwB4 PSID Length 8
lwB4 PSID長さ8
BR IPv6 Address: 2001:db8:1::2
<br-instances> <binding> <bind-instance> <name>mybinding-instance</name> <binding-table> <binding-entry> <binding-ipv6info>2001:db8::1</binding-ipv6info> <binding-ipv4-addr>192.0.2.1</binding-ipv4-addr> <port-set> <psid>52</psid> <psid-len>8</psid-len> </port-set> <br-ipv6-addr>2001:db8:1::2</br-ipv6-addr> </binding-entry> </binding-table> <softwire-num-max>1024</softwire-num-max> <softwire-path-mru>1540</softwire-path-mru> <softwire-payload-mtu>1500</softwire-payload-mtu> </bind-instance> </binding> </br-instances>
Figure 3: lw4o6 Binding Table Configuration XML
図3:lw4o6バインディングテーブルの構成XML
A MAP-E BR is configured with forward mapping rules for the CEs it is serving. In this example (taken from [RFC7597], Appendix A, Example 2), the following parameters are required:
A MAP-E BR is configured with forward mapping rules for the CEs it is serving. In this example (taken from [RFC7597], Appendix A, Example 2), the following parameters are required:
* Rule IPv6 Prefix
* ルールIPv6プレフィックス
* Rule IPv4 Prefix
* ルールIPv4プレフィックス
* Rule EA-bit bit length
* Rule EA-bit bit length
* IPv6 Address of MAP-BR
* MAP-BRのIPv6アドレス
The mapping rule has two functions: identifying the destination CE IPv6 address for encapsulating inbound IPv4 packets and the validation of outbound IPv4-in-IPv6 packets received from the CE for de-capsulation.
マッピングルールには2つの機能があります。受信IPv4パケットをカプセル化するための宛先CE IPv6アドレスの識別と、カプセル化解除のためにCEから受信した送信IPv4-in-IPv6パケットの検証です。
The transport type for the data plane also needs to be configured for encapsulation to enable MAP-E and forwarding needs to be enabled.
The transport type for the data plane also needs to be configured for encapsulation to enable MAP-E and forwarding needs to be enabled.
Consider an example for the following MAP-E Forwarding Mapping Rule:
次のMAP-E転送マッピングルールの例を考えます。
Data plane: encapsulation
データプレーン:カプセル化
Rule IPv6 Prefix: 2001:db8::/40
Rule IPv4 Prefix: 192.0.2.0/24
Rule IPv4 Prefix: 192.0.2.0/24
Rule EA-bit Length: 16
ルールEAビット長:16
BR IPv6 Address: 2001:db8:ffff::1
Figure 4 provides the example MAP-E BR configuration xml.
図4に、MAP-E BR構成XMLの例を示します。
<br-instances> <algorithm> <algo-instance> <name>myalgo-instance</name> <encapsulation> <br-ipv6-addr>2001:db8:ffff::1</br-ipv6-addr> </encapsulation> <ea-len>16</ea-len> <rule-ipv4-prefix>192.0.2.0/24</rule-ipv4-prefix> <rule-ipv6-prefix>2001:db8::/40</rule-ipv6-prefix> <forwarding>true</forwarding> <port-set> <psid-offset>6</psid-offset> <psid-len>8</psid-len> </port-set> </algo-instance> </algorithm> </br-instances>
Figure 4: MAP-E FMR Configuration XML
図4:MAP-E FMR構成XML
This section provides XML examples for configuring a lw4o6 CE. Examples for routing and NAT44 are also provided for convenience.
このセクションでは、lw4o6 CEを構成するためのXMLの例を示します。便宜上、ルーティングとNAT44の例も示します。
Consider an example for the following lw4o6 CE configuration:
次のlw4o6 CE構成の例を考えます。
lwB4 Binding IPv6 Address: 2001:db8::1
lwB4 Binding IPv4 Address: 192.0.2.1
lwB4バインディングIPv4アドレス:192.0.2.1
lwB4 PSID: 0x34
lwB4 PSID:0x34
lwB4 PSID Length 8
lwB4 PSID長さ8
BR IPv6 Address: 2001:db8:1::2
<config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"> <interface> <name>lw4o6-wan</name> <type>iana-tunnel-type:aplusp</type> <br-ipv6-addr xmlns="urn:ietf:params:xml:ns:yang:ietf-softwire-ce"> 2001:db8:1::2 </br-ipv6-addr> <binding-ipv6info xmlns="urn:ietf:params:xml:ns:yang:ietf-softwire-ce"> 2001:db8::1 </binding-ipv6info> </interface> </interfaces> </config>
Figure 5: lw4o6 CE Configuration XML
図5:lw4o6 CE構成XML
In the example depicted in Figure 5, the interface name is defined for the softwire tunnel. This name is then referenced by the routing configuration for the IPv4 route. Figure 6 provides an example configuration for the CE's IPv4 routing using the YANG module described in [RFC8349].
図5に示す例では、インターフェース名がソフトワイヤートンネルに定義されています。この名前は、IPv4ルートのルーティング構成によって参照されます。図6は、[RFC8349]で説明されているYANGモジュールを使用したCEのIPv4ルーティングの構成例を示しています。
<config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <routing xmlns="urn:ietf:params:xml:ns:yang:ietf-routing"> <control-plane-protocols> <control-plane-protocol> <type>static</type> <name>v4</name> <static-routes> <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ipv4-unicas\ t-routing"> <route> <destination-prefix>0.0.0.0/0</destination-prefix> <next-hop> <outgoing-interface>lw4o6-wan</outgoing-interface> </next-hop> </route> </ipv4> </static-routes> </control-plane-protocol> </control-plane-protocols> </routing> </config>
Figure 6: lw4o6 CE Routing Configuration XML
図6:lw4o6 CEルーティング構成XML
Figure 7 provides an example configuration for the CE's NAPT44 function using the YANG module described in [RFC8512].
図7は、[RFC8512]で説明されているYANGモジュールを使用したCEのNAPT44機能の設定例を示しています。
<config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <nat xmlns="urn:ietf:params:xml:ns:yang:ietf-nat"> <instances> <instance> <id>1</id> <policy> <policy-id>1</policy-id> <external-ip-address-pool> <pool-id>1</pool-id> <external-ip-pool>192.0.2.1</external-ip-pool> </external-ip-address-pool> <port-set-restrict> <port-set-algo> <psid-offset>6</psid-offset> <psid-len>8</psid-len> <psid>52</psid> </port-set-algo> </port-set-restrict> <notify-pool-usage> <pool-id>1</pool-id> <high-threshold>80</high-threshold> </notify-pool-usage> </policy> <mapping-limits> <limit-per-protocol> <protocol-id>1</protocol-id> <limit>8</limit> </limit-per-protocol> <limit-per-protocol> <protocol-id>6</protocol-id> <limit>32</limit> </limit-per-protocol> <limit-per-protocol> <protocol-id>17</protocol-id> <limit>16</limit> </limit-per-protocol> </mapping-limits> <mapping-table> <mapping-entry> <index>1</index> <external-src-address> 192.0.2.1/32 </external-src-address> <internal-src-address> 192.168.1.0/24 </internal-src-address> <transport-protocol>6</transport-protocol> </mapping-entry> <mapping-entry> <index>2</index> <external-src-address> 192.0.2.1/32 </external-src-address> <internal-src-address> 192.168.1.0/24 </internal-src-address> <transport-protocol>17</transport-protocol> </mapping-entry> <mapping-entry> <index>3</index> <external-src-address> 192.0.2.1/32 </external-src-address> <internal-src-address> 192.168.1.0/24 </internal-src-address> <transport-protocol>1</transport-protocol> </mapping-entry> </mapping-table> </instance> </instances> </nat> </config>
Figure 7: lw4o6 NAT Configuration XML
図7:lw4o6 NAT構成XML
Acknowledgements
謝辞
The authors would like to thank Lishan Li, Bert Wijnen, Giles Heron, Ole Troan, Andy Wingo, and Leo Tietz for their contributions to this work.
The authors would like to thank Lishan Li, Bert Wijnen, Giles Heron, Ole Troan, Andy Wingo, and Leo Tietz for their contributions to this work.
Thanks to Sheng Jiang for the review.
Thanks to Sheng Jiang for the review.
Special thanks to Tom Petch and Martin Bjorklund for the detailed review and suggestions.
Special thanks to Tom Petch and Martin Bjorklund for the detailed review and suggestions.
Contributors
貢献者
The following individuals are co-authors:
The following individuals are co-authors:
Yong Cui Tsinghua University China Phone: +86-10-6260-3059 Email: cuiyong@tsinghua.edu.cn
Yong Cu ITS inghuauniversity China電話:+ 86-10-6260-3059メール:崔勇@他四年计划。金額。才能
Qi Sun Tsinghua University China Phone: +86-10-6278-5822 Email: sunqi.ietf@gmail.com
Qi Sun Tsinghua University China電話:+ 86-10-6278-5822メール:sunqi.ietf@gmail.com
Linhui Sun Tsinghua University China Phone: +86-10-6278-5822 Email: lh.sunlinh@gmail.com
Linhui Sun Tsinghua University China電話:+ 86-10-6278-5822メール:lh.sunlinh@gmail.com
Sladjana Zechlin Deutsche Telekom AG Germany Email: sladjana.zechlin@telekom.de
Sladjana Zechlin Deutsche Telekom AGドイツメール:sladjana.zechlin@telekom.de
Rajiv Asati Cisco Systems, Inc. United States of America Email: Rajiva@cisco.com
Rajiv Asati Cisco Systems, Inc. United States of America Email: Rajiva@cisco.com
Hao Wang Tsinghua University China Phone: +86-10-6278-5822 Email: wangh13@mails.tsinghua.edu.cn
Hao Wang Tsinghua University China Phone: +86-10-6278-5822 Email: wangh13@mails.tsinghua.edu.cn
Authors' Addresses
Authors' Addresses
Ian Farrer (editor) Deutsche Telekom AG CTO-ATI, Landgrabenweg 151 53227 Bonn Germany
Ian Farrer(editor)Deutsche Telekom AG CTO-ATI、Landgrabenweg 151 53227 Bonn Germany
Email: ian.farrer@telekom.de
Mohamed Boucadair (editor) Orange 35000 Rennes France
Mohamed Boucadair(editor)Orange 35000 Rennes France
Email: mohamed.boucadair@orange.com