[要約] RFC 8695は、ルーティング情報プロトコル(RIP)のためのYANGデータモデルを提供しています。このRFCの目的は、RIPの設定と状態情報を標準化し、ネットワーク管理者がRIPを効果的に管理できるようにすることです。
Internet Engineering Task Force (IETF) X. Liu Request for Comments: 8695 Volta Networks Category: Standards Track P. Sarda ISSN: 2070-1721 Ericsson V. Choudhary Individual February 2020
A YANG Data Model for the Routing Information Protocol (RIP)
ルーティング情報プロトコル(RIP)のYANGデータモデル
Abstract
概要
This document describes a data model for the management of the Routing Information Protocol (RIP). Both RIP version 2 and RIPng are covered. The data model includes definitions for configuration, operational state, and Remote Procedure Calls (RPCs).
このドキュメントでは、ルーティング情報プロトコル(RIP)を管理するためのデータモデルについて説明します。 RIPバージョン2とRIPngの両方がカバーされています。データモデルには、構成、動作状態、およびリモートプロシージャコール(RPC)の定義が含まれています。
The YANG data model in this document conforms to the Network Management Datastore Architecture (NMDA).
このドキュメントのYANGデータモデルは、ネットワーク管理データストアアーキテクチャ(NMDA)に準拠しています。
Status of This Memo
本文書の状態
This is an Internet Standards Track document.
これはInternet Standards Trackドキュメントです。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
このドキュメントは、IETF(Internet Engineering Task Force)の製品です。これは、IETFコミュニティのコンセンサスを表しています。公開レビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による公開が承認されました。インターネット標準の詳細については、RFC 7841のセクション2をご覧ください。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8695.
このドキュメントの現在のステータス、エラッタ、およびフィードバックの提供方法に関する情報は、https://www.rfc-editor.org/info/rfc8695で入手できます。
Copyright Notice
著作権表示
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.
著作権(c)2020 IETFトラストおよびドキュメントの作成者として識別された人物。全著作権所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
この文書は、BCP 78およびIETF文書に関するIETFトラストの法的規定(https://trustee.ietf.org/license-info)の対象であり、この文書の発行日に有効です。これらのドキュメントは、このドキュメントに関するあなたの権利と制限を説明しているため、注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、Trust Legal Provisionsのセクション4.eに記載されているSimplified BSD Licenseテキストが含まれている必要があり、Simplified BSD Licenseに記載されているように保証なしで提供されます。
Table of Contents
目次
1. Introduction 1.1. Terminology 1.2. Tree Diagrams 1.3. Prefixes in Data Node Names 2. Design of the Data Model 2.1. Scope of the Data Model 2.2. Relation to the Core Routing Framework 2.3. Protocol Configuration 2.4. Protocol States 2.5. RPC Operations 2.6. Notifications 2.7. Optional Features 3. Tree Structure 4. YANG Module 5. IANA Considerations 6. Security Considerations 7. References 7.1. Normative References 7.2. Informative References Appendix A. Data Tree Example Authors' Addresses
This document introduces a YANG [RFC7950] data model for the Routing Information Protocol (RIP) [RFC2453][RFC2080]. RIP was designed to work as an Interior Gateway Protocol (IGP) in moderate-size Autonomous Systems (AS).
このドキュメントでは、ルーティング情報プロトコル(RIP)[RFC2453] [RFC2080]のYANG [RFC7950]データモデルを紹介します。 RIPは、中規模の自律システム(AS)でInterior Gateway Protocol(IGP)として機能するように設計されています。
This YANG data model supports both RIP version 2 and RIPng. RIP version 2 (defined in [RFC2453]) supports IPv4. RIPng (defined in [RFC2080]) supports IPv6.
このYANGデータモデルは、RIPバージョン2とRIPngの両方をサポートしています。 RIPバージョン2([RFC2453]で定義)はIPv4をサポートしています。 RIPng([RFC2080]で定義)はIPv6をサポートしています。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
キーワード「MUST」、「MUST NOT」、「REQUIRED」、「SHALL」、「SHALL NOT」、「SHOULD」、「SHOULD NOT」、「RECOMMENDED」、「NOT RECOMMENDED」、「MAY」、「OPTIONALこのドキュメントの「」は、BCP 14 [RFC2119] [RFC8174]で説明されているように解釈されます。
The following terms are defined in [RFC7950] and are not redefined here:
以下の用語は[RFC7950]で定義されており、ここでは再定義されません。
* augment
* 増強
* data model
* データ・モデル
* data node
* データノード
A simplified graphical representation of the data model is used in this document. The meaning of the symbols in these diagrams is defined in [RFC8340].
このドキュメントでは、データモデルの簡略化されたグラフィカル表現を使用しています。これらの図の記号の意味は、[RFC8340]で定義されています。
In this document, names of data nodes, actions, and other data model objects are often used without a prefix, as long as it is clear from the context in which YANG module each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1.
このドキュメントでは、データノード、アクション、およびその他のデータモデルオブジェクトの名前は、YANGモジュールの各名前が定義されているコンテキストから明らかである限り、プレフィックスなしで使用されることがよくあります。それ以外の場合、表1に示すように、対応するYANGモジュールに関連付けられた標準の接頭辞を使用して名前に接頭辞が付けられます。
+-----------+-----------------+-------------+ | Prefix | YANG module | Reference | +===========+=================+=============+ | yang | ietf-yang-types | [RFC6991] | +-----------+-----------------+-------------+ | inet | ietf-inet-types | [RFC6991] | +-----------+-----------------+-------------+ | if | ietf-interfaces | [RFC8343] | +-----------+-----------------+-------------+ | ip | ietf-ip | [RFC8344] | +-----------+-----------------+-------------+ | rt | ietf-routing | [RFC8349] | +-----------+-----------------+-------------+ | bfd-types | ietf-bfd-types | [YANG-BFD] | +-----------+-----------------+-------------+ | isis | ietf-isis | [YANG-ISIS] | +-----------+-----------------+-------------+ | key-chain | ietf-key-chain | [RFC8177] | +-----------+-----------------+-------------+ | ospf | ietf-ospf | [YANG-OSPF] | +-----------+-----------------+-------------+
Table 1: Prefixes and Corresponding YANG Modules
表1:接頭辞と対応するYANGモジュール
The data model covers RIP version 2 [RFC2453] and RIPng [RFC2080] protocols. The model is designed to be implemented on a device where RIP version 2 or RIPng is implemented, and can be used to:
データモデルは、RIPバージョン2 [RFC2453]およびRIPng [RFC2080]プロトコルをカバーしています。このモデルは、RIPバージョン2またはRIPngが実装されているデバイスに実装されるように設計されており、次の目的で使用できます。
* Configure the RIP version 2 or RIPng protocol.
* RIPバージョン2またはRIPngプロトコルを構成します。
* Manage the protocol operational behaviors.
* プロトコルの動作動作を管理します。
* Retrieve the protocol operational status.
* プロトコルの動作ステータスを取得します。
The capabilities described in [RFC1724] are covered.
[RFC1724]で説明されている機能がカバーされています。
This data model augments the core routing data model "ietf-routing" specified in [RFC8349].
このデータモデルは、[RFC8349]で指定されているコアルーティングデータモデル「ietf-routing」を補強します。
+--rw routing +--rw router-id? +--rw control-plane-protocols | +--rw control-plane-protocol* [type name] | +--rw type | +--rw name | +--rw rip <= Augmented by this Model ...
The "rip" container instantiates a RIP entity that supports RIP version 2 or RIPng. Depending on the implementation of "ietf-routing", a RIP instance MAY belong to a logical router or network instance.
「rip」コンテナは、RIPバージョン2またはRIPngをサポートするRIPエンティティをインスタンス化します。 「ietf-routing」の実装に応じて、RIPインスタンスは論理ルーターまたはネットワークインスタンスに属してもよい(MAY)。
The data model structure for the protocol configuration is as shown below:
プロトコル構成のデータモデル構造は次のとおりです。
augment /rt:routing/rt:control-plane-protocols/ rt:control-plane-protocol: +--rw rip +--rw <per instance configuration> +--rw interface* [interface] +--rw interface if:interface-ref +--rw <per interface configuration> +--rw neighbors {explicit-neighbors}? | +--rw neighbor* [address] | +--rw address inet:ip-address | +--rw <per neighbor configuration>
The data model allows the configuration of the following protocol entities:
データモデルでは、次のプロトコルエンティティを構成できます。
* Protocol instance (RIP version 2 or RIPng)
* プロトコルインスタンス(RIPバージョン2またはRIPng)
* Interface
* インターフェース
* Neighbor
* 隣人
The data model structure for the protocol states is as shown below:
プロトコル状態のデータモデル構造は次のとおりです。
augment /rt:routing/rt:control-plane-protocols/ rt:control-plane-protocol: +--rw rip +--ro <per instance operational states> +--rw interface* [interface] | +--rw interface if:interface-ref | +--ro <per instance operational states> | +--ro statistics {interface-statistics}? | +--ro <per instance statistics> +--ro ipv4 | +--ro neighbors | | +--ro neighbor* [ipv4-address] | | +--ro <per neighbor IPv4 operational states> | +--ro routes | +--ro route* [ipv4-prefix] | +--ro <IPv4 RIP route states> +--ro ipv6 | +--ro neighbors | | +--ro neighbor* [ipv6-address] | | +--ro <per neighbor IPv6 operational states> | +--ro routes | +--ro route* [ipv6-prefix] | +--ro ipv6-prefix inet:ipv6-prefix | +--ro <IPv4 RIP route states> +--ro statistics {global-statistics}? +--ro <per instance statistics>
This model conforms to the Network Management Datastore Architecture (NMDA) [RFC8342]. The operational state data is combined with the associated configuration data in the same hierarchy [RFC8407]. When protocol states are retrieved from the NMDA operational state datastore, the returned states cover all "config true" (rw) and "config false" (ro) nodes defined in the schema.
このモデルは、ネットワーク管理データストアアーキテクチャ(NMDA)[RFC8342]に準拠しています。動作状態データは、同じ階層で関連する構成データと結合されます[RFC8407]。プロトコル状態がNMDA動作状態データストアから取得される場合、返される状態は、スキーマで定義されているすべての「config true」(rw)および「config false」(ro)ノードをカバーします。
The model allows the retrieval of protocol states at the following levels:
このモデルでは、次のレベルでプロトコルの状態を取得できます。
* Protocol instance (RIP version 2 or RIPng)
* プロトコルインスタンス(RIPバージョン2またはRIPng)
* Interface
* インターフェース
* Neighbor
* 隣人
* Route
* ルート
This model defines one RPC "clear-rip-route" that can be used to clear RIP routes from the routing table.
このモデルは、ルーティングテーブルからRIPルートをクリアするために使用できる1つのRPC "clear-rip-route"を定義します。
This model does not define RIP-specific notifications. To enable notifications, the mechanisms defined in [RFC8639] and [RFC8641] can be used. This mechanism currently allows the user to do the following:
このモデルでは、RIP固有の通知は定義されていません。通知を有効にするには、[RFC8639]と[RFC8641]で定義されているメカニズムを使用できます。このメカニズムでは現在、ユーザーは次のことを実行できます。
* Subscribe to notifications on a per-client basis.
* クライアントごとに通知をサブスクライブします。
* Specify subtree filters or XML Path Language (XPath) filters so that only interested contents will be sent.
* 関係のあるコンテンツのみが送信されるように、サブツリーフィルターまたはXMLパス言語(XPath)フィルターを指定します。
* Specify either periodic or on-demand notifications.
* 定期的またはオンデマンドの通知を指定します。
This model defines several features that are beyond the basic RIP configuration, and it is the responsibility of each vendor to decide whether to support a given feature on a device.
このモデルは、基本的なRIP構成を超えるいくつかの機能を定義します。デバイスで特定の機能をサポートするかどうかを決定するのは、各ベンダーの責任です。
This document defines the YANG module "ietf-rip", which has the following tree structure:
このドキュメントでは、次のツリー構造を持つYANGモジュール「ietf-rip」を定義しています。
module: ietf-rip augment /rt:routing/rt:control-plane-protocols /rt:control-plane-protocol: +--rw rip +--rw originate-default-route | +--rw enabled? boolean | +--rw route-policy? route-policy-ref +--rw default-metric? uint8 +--rw distance? uint8 +--rw triggered-update-threshold? uint8 +--rw maximum-paths? uint8 +--rw output-delay? uint8 +--rw distribute-list* [prefix-set-name direction] | +--rw prefix-set-name prefix-set-ref | +--rw direction enumeration | +--rw if-name? if:interface-ref +--rw redistribute | +--rw bgp* [asn] | | +--rw asn inet:as-number | | +--rw metric? uint8 | | +--rw route-policy? route-policy-ref | +--rw cg-nat! | | +--rw metric? uint8 | | +--rw route-policy? route-policy-ref | +--rw connected! | | +--rw metric? uint8 | | +--rw route-policy? route-policy-ref | +--rw ipsec! | | +--rw metric? uint8 | | +--rw route-policy? route-policy-ref | +--rw isis* [instance] | | +--rw instance | | | -> ../../../../../rt:control-plane-protocol/name | | +--rw level? enumeration | | +--rw metric? uint8 | | +--rw route-policy? route-policy-ref | +--rw nat! | | +--rw metric? uint8 | | +--rw route-policy? route-policy-ref | +--rw ospfv2* [instance] | | +--rw instance | | | -> ../../../../../rt:control-plane-protocol/name | | +--rw route-type? ospf:route-type | | +--rw metric? uint8 | | +--rw route-policy? route-policy-ref | +--rw ospfv3* [instance] | | +--rw instance | | | -> ../../../../../rt:control-plane-protocol/name | | +--rw route-type? ospf:route-type | | +--rw metric? uint8 | | +--rw route-policy? route-policy-ref | +--rw ripv2* [instance] | | +--rw instance | | | -> ../../../../../rt:control-plane-protocol/name | | +--rw metric? uint8 | | +--rw route-policy? route-policy-ref | +--rw ripng* [instance] | | +--rw instance | | | -> ../../../../../rt:control-plane-protocol/name | | +--rw metric? uint8 | | +--rw route-policy? route-policy-ref | +--rw static! | +--rw metric? uint8 | +--rw route-policy? route-policy-ref +--rw timers | +--rw update-interval? uint16 | +--rw invalid-interval? uint16 | +--rw holddown-interval? uint16 | +--rw flush-interval? uint16 +--rw interfaces | +--rw interface* [interface] | +--rw interface if:interface-ref | +--rw authentication | | +--rw (auth-type-selection)? | | +--:(auth-key-chain) | | | +--rw key-chain? key-chain:key-chain-ref | | +--:(auth-key) | | +--rw key? string | | +--rw crypto-algorithm? identityref | +--rw bfd {bfd}? | | +--rw enable? boolean | | +--rw local-multiplier? multiplier | | +--rw (interval-config-type)? | | +--:(tx-rx-intervals) | | | +--rw desired-min-tx-interval? uint32 | | | +--rw required-min-rx-interval? uint32 | | +--:(single-interval) | | +--rw min-interval? uint32 | +--rw cost? uint8 | +--rw neighbors {explicit-neighbors}? | | +--rw neighbor* [address] | | +--rw address inet:ip-address | +--rw no-listen? empty | +--rw originate-default-route | | +--rw enabled? boolean | | +--rw route-policy? route-policy-ref | +--rw passive? empty | +--rw split-horizon? enumeration | +--rw summary-address | | +--rw address? inet:ip-prefix | | +--rw metric? uint8 | +--rw timers | | +--rw update-interval? uint16 | | +--rw invalid-interval? uint16 | | +--rw holddown-interval? uint16 | | +--rw flush-interval? uint16 | +--ro oper-status? enumeration | +--ro next-full-update? uint32 | +--ro valid-address? boolean | +--ro statistics {interface-statistics}? | +--ro discontinuity-time? yang:date-and-time | +--ro bad-packets-rcvd? yang:counter32 | +--ro bad-routes-rcvd? yang:counter32 | +--ro updates-sent? yang:counter32 +--ro next-triggered-update? uint32 +--ro num-of-routes? uint32 +--ro ipv4 | +--ro neighbors | | +--ro neighbor* [ipv4-address] | | +--ro ipv4-address inet:ipv4-address | | +--ro last-update? yang:date-and-time | | +--ro bad-packets-rcvd? yang:counter32 | | +--ro bad-routes-rcvd? yang:counter32 | +--ro routes | +--ro route* [ipv4-prefix] | +--ro ipv4-prefix inet:ipv4-prefix | +--ro next-hop? inet:ipv4-address | +--ro interface? if:interface-ref | +--ro redistributed? boolean | +--ro route-type? enumeration | +--ro metric? uint8 | +--ro expire-time? uint16 | +--ro deleted? boolean | +--ro holddown? boolean | +--ro need-triggered-update? boolean | +--ro inactive? boolean | +--ro flush-expire-before-holddown? boolean +--ro ipv6 | +--ro neighbors | | +--ro neighbor* [ipv6-address] | | +--ro ipv6-address inet:ipv6-address | | +--ro last-update? yang:date-and-time | | +--ro bad-packets-rcvd? yang:counter32 | | +--ro bad-routes-rcvd? yang:counter32 | +--ro routes | +--ro route* [ipv6-prefix] | +--ro ipv6-prefix inet:ipv6-prefix | +--ro next-hop? inet:ipv6-address | +--ro interface? if:interface-ref | +--ro redistributed? boolean | +--ro route-type? enumeration | +--ro metric? uint8 | +--ro expire-time? uint16 | +--ro deleted? boolean | +--ro holddown? boolean | +--ro need-triggered-update? boolean | +--ro inactive? boolean | +--ro flush-expire-before-holddown? boolean +--ro statistics {global-statistics}? +--ro discontinuity-time? yang:date-and-time +--ro requests-rcvd? yang:counter32 +--ro requests-sent? yang:counter32 +--ro responses-rcvd? yang:counter32 +--ro responses-sent? yang:counter32
rpcs: +---x clear-rip-route +---w input +---w rip-instance? leafref
<CODE BEGINS> file "ietf-rip@2020-02-20.yang" module ietf-rip { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-rip"; prefix rip;
import ietf-inet-types { prefix inet; } import ietf-yang-types { prefix yang; } import ietf-interfaces { prefix if; } import ietf-ip { prefix ip; } import ietf-routing { prefix rt; } import ietf-key-chain { prefix key-chain; } import ietf-bfd-types { prefix bfd-types; } import ietf-ospf { prefix ospf; } import ietf-isis { prefix isis; }
organization "IETF Routing Area Working Group (rtgwg)"; contact "WG Web: <https://datatracker.ietf.org/wg/rtgwg/> WG List: <mailto:rgtwg@ietf.org>
Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com>
Editor: Prateek Sarda <mailto:prateek.sarda@ericsson.com>
Editor: Vikram Choudhary <mailto:vikschw@gmail.com>"; description "This YANG module defines a model for managing Routing Information Protocol (RIP), including RIP version 2 and RIPng.
エディター:Vikram Choudhary <mailto:vikschw@gmail.com> ";説明"このYANGモジュールは、RIPバージョン2やRIPngなどのルーティング情報プロトコル(RIP)を管理するためのモデルを定義します。
Copyright (c) 2020 IETF Trust and the persons identified as authors of the code. All rights reserved.
Copyright(c)2020 IETF Trustおよびコードの作成者として識別された人物。全著作権所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).
ソースおよびバイナリ形式での再配布および使用は、変更の有無にかかわらず、IETF文書に関連するIETFトラストの法的規定のセクション4.cに記載されているSimplified BSD Licenseに従い、それに含まれるライセンス条項に従って許可されます( http://trustee.ietf.org/license-info)。
This version of this YANG module is part of RFC 8695; see the RFC itself for full legal notices.";
このYANGモジュールのこのバージョンはRFC 8695の一部です。完全な法的通知については、RFC自体を参照してください。 ";
revision 2020-02-20 { description "Initial revision."; reference "RFC 8695: A YANG Data Model for Routing Information Protocol (RIP). RFC 2453: RIP Version 2. RFC 2080: RIPng for IPv6. RFC 1724: RIP Version 2 MIB Extension."; }
/* * Features */
feature bfd { description "This feature indicates that the RIP implementation on the system supports BFD (Bidirectional Forwarding Detection)."; }
feature explicit-neighbors { description "This feature indicates that the system supports explicit neighbor configuration on a RIP interface."; }
feature global-statistics { description "This feature indicates that the system supports collecting global statistics data related to RIP."; }
feature interface-statistics { description "This feature indicates that the system supports collecting per-interface statistics data related to RIP."; }
/* * Typedefs */
typedef prefix-set-ref { type string; description "A type for a reference to a prefix set. The string value is the name identifier for uniquely identifying the referenced prefix set, which contains a list of prefixes that a routing policy can applied. The definition of such a prefix set is outside the scope of this document."; }
typedef route-policy-ref { type string; description "A type for a reference to a route policy. The string value is the name identifier for uniquely identifying the referenced routing policy, which contains one or more policy rules that can be used for a routing decision. The definition of such a routing policy is outside the scope of this document."; }
/* * Identities */
identity rip { base rt:routing-protocol; description "Identity for the Routing Information Protocol."; }
identity ripv2 { base rip:rip; description "Identity for RIPv2 (RIP version 2)."; }
identity ripng { base rip:rip; description "Identity for RIPng."; }
/* * Groupings */
grouping originate-default-route-container { description "Container for settings on whether to originate the default route in RIP routing instance."; container originate-default-route { description "Injects the default route into the RIP (RIPv2 or RIPng) routing instance."; leaf enabled { type boolean; default "false"; description "'true' if originating default route is enabled."; } leaf route-policy { type route-policy-ref; description "The conditions of the route policy are applied to the default route."; } } }
grouping redistribute-container { description "Container of redistribute attributes."; container redistribute { description "Redistributes routes learned from other routing protocols into the RIP routing instance."; list bgp { key "asn"; description "Redistributes routes from the specified BGP (Border Gateway Protocol) autonomous system (AS) into the RIP routing instance."; leaf asn { type inet:as-number; description "BGP autonomous system (AS) number."; } uses redistribute-route-policy-attributes; } container cg-nat { presence "Present if Carrier-Grade Network Address Translation (CGNAT) routes are redistributed."; description "Carrier-Grade Network Address Translation (CGNAT) routes."; uses redistribute-route-policy-attributes; } container connected { presence "Present if directly attached network routes are redistributed."; description "Redistributes directly attached networks into the RIP routing instance."; uses redistribute-route-policy-attributes; } container ipsec { presence "Present if IP security routing instance routes are redistributed."; description "Redistributes routes from the IP security routing instance into the RIP routing instance."; uses redistribute-route-policy-attributes; } list isis { key "instance"; description "Redistributes IS-IS routes."; leaf instance { type leafref { path "../../../../../rt:control-plane-protocol/rt:name"; } must "derived-from-or-self(" + "../../../../../rt:control-plane-protocol" + "[rt:name = current()]/rt:type, 'isis:isis')" { description "The type of the routing protocol must be 'isis'."; } description "Redistributes routes from the specified IS-IS routing instance into the RIP routing instance."; } leaf level { type enumeration { enum 1 { description "IS-IS level 1 routes."; } enum 2 { description "IS-IS level 2 routes."; } enum 1-2 { description "IS-IS level 1-2 routes."; } } description "IS-IS level."; } uses redistribute-route-policy-attributes; } container nat { presence "Present if Network Address Translation (NAT) routes are redistributed."; description "Redistributes Network Address Translation (NAT) routes into the RIP routing instance."; uses redistribute-route-policy-attributes; } list ospfv2 { when "derived-from-or-self(../../../rt:type, 'rip:ripv2')" { description "Applicable to RIPv2."; } key "instance"; description "Redistributes routes from the specified OSPFv2 routing instance into the RIPv2 routing instance."; leaf instance { type leafref { path "../../../../../rt:control-plane-protocol/rt:name"; } must "derived-from-or-self(" + "../../../../../rt:control-plane-protocol" + "[rt:name = current()]/rt:type, 'ospf:ospfv2')" { description "The type of the routing protocol must be 'ospfv2'."; } description "OSPFv2 instance ID. Redistributes routes from the specified OSPFv2 routing instance into the RIPv2 routing instance."; } leaf route-type { type ospf:route-type; description "Redistributes only those OSPFv2 routes matching the specified route type into the RIPv2 routing instance."; } uses redistribute-route-policy-attributes; } list ospfv3 { when "derived-from-or-self(../../../rt:type, 'rip:ripng')" { description "Applicable to RIPng."; } key "instance"; description "Redistributes routes from the specified OSPFv3 routing instance into the RIPng routing instance."; leaf instance { type leafref { path "../../../../../rt:control-plane-protocol/rt:name"; } must "derived-from-or-self(" + "../../../../../rt:control-plane-protocol" + "[rt:name = current()]/rt:type, 'ospf:ospfv3')" { description "The type of the routing protocol must be 'ospfv3'."; } description "OSPFv3 instance ID. Redistributes routes from the specified OSPFv3 routing instance into the RIPng routing instance."; } leaf route-type { type ospf:route-type; description "Redistributes only those OSPFv3 routes matching the specified route type into the RIPng routing instance."; } uses redistribute-route-policy-attributes; } list ripv2 { when "derived-from-or-self(../../../rt:type, 'rip:ripv2')" { description "Applicable to RIPv2."; } key "instance"; description "Redistributes routes from another RIPv2 routing instance into the current RIPv2 routing instance."; leaf instance { type leafref { path "../../../../../rt:control-plane-protocol/rt:name"; } must "derived-from-or-self(" + "../../../../../rt:control-plane-protocol" + "[rt:name = current()]/rt:type, 'rip:ripv2')" { description "The type of the routing protocol must be 'ripv2'."; } description "Redistributes routes from the specified RIPv2 routing instance into the RIPv2 routing instance."; } uses redistribute-route-policy-attributes; } list ripng { when "derived-from-or-self(../../../rt:type, 'rip:ripng')" { description "Applicable to RIPng."; } key "instance"; description "Redistributes routes from another RIPng routing instance into the current RIPng routing instance."; leaf instance { type leafref { path "../../../../../rt:control-plane-protocol/rt:name"; } must "derived-from-or-self(" + "../../../../../rt:control-plane-protocol" + "[rt:name = current()]/rt:type, 'rip:ripng')" { description "The type of the routing protocol must be 'ripng'."; } description "Redistributes routes from the specified RIPng routing instance into the RIPng routing instance."; } uses redistribute-route-policy-attributes; } container static { presence "Present if redistributing static routes."; description "Redistributes static routes into the RIP routing instance."; uses redistribute-route-policy-attributes; } } // redistribute } // redistribute-container
grouping redistribute-route-policy-attributes { description "Attributes for redistributing a route policy."; leaf metric { type uint8 { range "0..16"; } description "Metric used for the redistributed route. If a metric is not specified, the metric configured with the default-metric attribute in RIP router configuration is used. If the default-metric attribute has not been configured, the default metric for redistributed routes is 1."; } leaf route-policy { type route-policy-ref; description "Applies the conditions of the specified route policy to routes that are redistributed into the RIP routing instance."; } } // redistribute-route-policy-attributes
grouping timers-container { description "Container for settings of basic timers"; container timers { must 'invalid-interval >= (update-interval * 3)' { description "invalid-interval must be at least three times the value for the update-interval argument."; } must 'flush-interval > invalid-interval' { description "flush-interval must be larger than the value for the invalid-interval argument."; } description "Timers for the specified RIPv2 or RIPng instance or interface."; leaf update-interval { type uint16 { range "1..32767"; } units "seconds"; default "30"; description "Interval at which RIPv2 or RIPng updates are sent."; } leaf invalid-interval { type uint16 { range "1..32767"; } units "seconds"; default "180"; description "Interval before a route is declared invalid after no updates are received. This value is at least three times the value for the update-interval argument."; } leaf holddown-interval { type uint16 { range "1..32767"; } units "seconds"; default "180"; description "Interval before better routes are released."; } leaf flush-interval { type uint16 { range "1..32767"; } units "seconds"; default "240"; description "Interval before a route is flushed from the routing table. This value must be larger than the value for the invalid-interval argument."; } } // timers } // timers-container
grouping global-attributes { description "Global configuration and state attributes."; uses originate-default-route-container; leaf default-metric { type uint8 { range "0..16"; } default "1"; description "Set the default metric."; } leaf distance { type uint8 { range "1..255"; } default "120"; description "The administrative distance of the RIPv2 or RIPng for the current RIPv2 or RIPng instance."; } leaf triggered-update-threshold { type uint8 { range "1..30"; } units "seconds"; default "5"; description "This attribute is used to suppress triggered updates. When the arrival of a regularly scheduled update matches the number of seconds or is less than the number seconds configured with this attribute, the triggered update is suppressed."; } leaf maximum-paths { type uint8 { range "1..16"; } default "8"; description "The number of multiple equal-cost RIPv2 or RIPng routes that can be used as the best paths for balancing the load of outgoing traffic packets."; } leaf output-delay { type uint8 { range "1..50"; } units "milliseconds"; description "A delay time between packets sent in multipacket RIPv2 or RIPng updates."; } } // global-attributes
grouping distribute-lists { description "Grouping for distribute lists."; list distribute-list { key "prefix-set-name direction"; description "List of distribute-lists, which are used to filter incoming or outgoing routing updates."; leaf prefix-set-name { type prefix-set-ref; description "Reference to a prefix list to be applied to RIPv2 or RIPng packets."; } leaf direction { type enumeration { enum in { description "Apply the distribute-list to incoming routes."; } enum out { description "Apply the distribute-list to outgoing routes."; } } description "Direction of the routing updates."; } leaf if-name { type if:interface-ref; description "Reference to an interface to which the prefix list is applied."; } } // distribute-list } // distribute-lists
grouping route-attributes { description "Grouping for route attributes."; leaf redistributed { type boolean; description "Redistributed routes."; } leaf route-type { type enumeration { enum connected { description "Connected route."; } enum external { description "External route."; } enum external-backup { description "External backup route."; } enum rip { description "RIP route."; } } description "Route type."; } leaf metric { type uint8 { range "0..16"; } description "Route metric."; } leaf expire-time { type uint16; description "Expiration time."; } leaf deleted { type boolean; description "Deleted route."; } leaf holddown { type boolean; description "Holddown route."; } leaf need-triggered-update { type boolean; description "The route needs triggered update."; } leaf inactive { type boolean; description "The route is inactive."; } leaf flush-expire-before-holddown { type boolean; description "The flush timer expired before holddown time."; } } // route-attributes
/* * Configuration data and operational state data nodes */
augment "/rt:routing/rt:control-plane-protocols/" + "rt:control-plane-protocol" { when "derived-from(rt:type, 'rip:rip')" { description "This augment is only valid for a routing protocol instance of RIP (type 'ripv2' or 'ripng')."; } description "RIP augmentation."; container rip { description "RIP data."; uses global-attributes; uses distribute-lists; uses redistribute-container; uses timers-container; container interfaces { description "Containing a list of RIP interfaces."; list interface { key "interface"; description "List of RIP interfaces."; leaf interface { type if:interface-ref; must "(derived-from-or-self(" + "../../../../rt:type, 'rip:ripv2') and " + "/if:interfaces/if:interface[if:name=current()]/" + "ip:ipv4) or " + "(derived-from-or-self(" + "../../../../rt:type, 'rip:ripng') and " + "/if:interfaces/if:interface[if:name=current()]/" + "ip:ipv6)" { error-message "Invalid interface type."; description "RIPv2 can be enabled on IPv4 interface, and RIPng can be enabled on IPv6 interface."; } description "Enable RIP on this interface."; } container authentication { when "derived-from-or-self(" + "../../../../rt:type, 'rip:ripv2')" { description "Only applicable to RIPv2."; } description "Enables authentication and specifies the authentication scheme for the RIP interface."; choice auth-type-selection { description "Specify the authentication scheme."; reference "RFC8177: YANG Data Model for Key Chains."; case auth-key-chain { leaf key-chain { type key-chain:key-chain-ref; description "key-chain name."; } } case auth-key { leaf key { type string; description "Key string in ASCII format."; } leaf crypto-algorithm { type identityref { base key-chain:crypto-algorithm; } description "Cryptographic algorithm associated with the key."; } } } } container bfd { if-feature "bfd"; description "BFD configuration."; uses bfd-types:client-cfg-parms; } leaf cost { type uint8 { range "1..16"; } default "1"; description "Interface cost."; } container neighbors { if-feature "explicit-neighbors"; description "Specifies the RIP neighbors. Useful for a non-broadcast multiple access (NBMA) network."; list neighbor { key "address"; description "Specify a RIP neighbor on a non-broadcast network."; leaf address { type inet:ip-address; description "Neighbor IP address."; } } } leaf no-listen { type empty; description "Disables listening to, and processing of, RIPv2 or RIPng packets on the specified interface."; } uses originate-default-route-container; leaf passive { type empty; description "Disables sending of RIPv2 or RIPng packets on the specified interface."; } leaf split-horizon { type enumeration { enum disabled { description "Disables split-horizon processing."; } enum simple { description "Enables simple split-horizon processing."; } enum poison-reverse { description "Enables split-horizon processing with poison reverse."; } } default "simple"; description "Controls RIPv2 or RIPng split-horizon processing on the specified interface."; } container summary-address { description "Summarizes information about RIPv2 or RIPng routes sent over the specified interface in RIPv2 or RIPng update packets."; leaf address { type inet:ip-prefix; description "Specifies the IP address and the prefix length that identify the routes to be summarized. The IP address can be specified in either IPv4 or IPv6 format, as specified in RFC6991."; } leaf metric { type uint8 { range "0..16"; } description "Metric used for the route. If this attribute is not used, the value set through the default-metric attribute in RIPv2 or RIPng router configuration is used for the route."; } } uses timers-container;
/* Operational state */ leaf oper-status { type enumeration { enum up { description "RIPv2 or RIPng is operational on this interface."; } enum down { description "RIPv2 or RIPng is not operational on this interface."; } } config false; description "Operational state."; } leaf next-full-update { type uint32; config false; description "Next full update time."; } leaf valid-address { type boolean; config false; description "The interface has a valid address."; } container statistics { if-feature "interface-statistics"; config false; description "Interface statistics counters."; leaf discontinuity-time { type yang:date-and-time; description "The time on the most recent occasion at which any one or more of the statistics counters suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this node contains the time the local management subsystem re-initialized itself."; } leaf bad-packets-rcvd { type yang:counter32; description "The number of RIP invalid packets received by the RIP process that were subsequently discarded for any reason (e.g., a version 0 packet, or an unknown command type)."; } leaf bad-routes-rcvd { type yang:counter32; description "The number of routes, in valid RIP packets, which were ignored for any reason (e.g., unknown address family, or invalid metric)."; } leaf updates-sent { type yang:counter32; description "The number of triggered RIP updates actually sent on this interface. This explicitly does NOT include full updates sent containing new information."; } } } // interface } // interfaces
/* Operational state */ leaf next-triggered-update { type uint32; config false; description "Next triggered update."; } leaf num-of-routes { type uint32; config false; description "The number of routes."; } container ipv4 { when "derived-from-or-self(../../rt:type, 'rip:ripv2')" { description "IPv4 address family is supported by RIPv2."; } config false; description "IPv4 address family information."; container neighbors { description "IPv4 neighbor information."; list neighbor { key "ipv4-address"; description "A RIPv2 neighbor."; leaf ipv4-address { type inet:ipv4-address; description "IP address that a RIP neighbor is using as its source address."; } leaf last-update { type yang:date-and-time; description "The time when the most recent RIP update was received from this neighbor."; } leaf bad-packets-rcvd { type yang:counter32; description "The number of RIP invalid packets received from this neighbor that were subsequently discarded for any reason (e.g., a version 0 packet, or an unknown command type)."; } leaf bad-routes-rcvd { type yang:counter32; description "The number of routes received from this neighbor, in valid RIP packets that were ignored for any reason (e.g., unknown address family, or invalid metric)."; } } // neighbor } // neighbors
container routes { description "IPv4 route information."; list route { key "ipv4-prefix"; description "A RIPv2 IPv4 route."; leaf ipv4-prefix { type inet:ipv4-prefix; description "IPv4 address and prefix length, in the format specified in RFC6991."; } leaf next-hop { type inet:ipv4-address; description "Next hop IPv4 address."; } leaf interface { type if:interface-ref; description "The interface that the route uses."; } uses route-attributes; } // route } // routes } // ipv4
container ipv6 { when "derived-from-or-self(../../rt:type, 'rip:ripng')" { description "IPv6 address family is supported by RIPng."; } config false; description "IPv6 address family information."; container neighbors { description "IPv6 neighbor information."; list neighbor { key "ipv6-address"; description "A RIPng neighbor."; leaf ipv6-address { type inet:ipv6-address; description "IP address that a RIP neighbor is using as its source address."; } leaf last-update { type yang:date-and-time; description "The time when the most recent RIP update was received from this neighbor."; } leaf bad-packets-rcvd { type yang:counter32; description "The number of RIP invalid packets received from this neighbor that were subsequently discarded for any reason (e.g., a version 0 packet, or an unknown command type)."; } leaf bad-routes-rcvd { type yang:counter32; description "The number of routes received from this neighbor, in valid RIP packets that were ignored for any reason (e.g., unknown address family, or invalid metric)."; } } // neighbor } // neighbors
container routes { description "IPv6 route information."; list route { key "ipv6-prefix"; description "A RIPng IPv6 route."; leaf ipv6-prefix { type inet:ipv6-prefix; description "IPv6 address and prefix length, in the format specified in RFC6991."; } leaf next-hop { type inet:ipv6-address; description "Next hop IPv6 address."; } leaf interface { type if:interface-ref; description "The interface that the route uses."; } uses route-attributes; } // route } // routes } // ipv6
container statistics { if-feature "global-statistics"; config false; description "Global statistics counters."; leaf discontinuity-time { type yang:date-and-time; description "The time on the most recent occasion at which any one or more of the statistics counters suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this node contains the time the local management subsystem re-initialized itself."; } leaf requests-rcvd { type yang:counter32; description "The number of requests received by RIP."; } leaf requests-sent { type yang:counter32; description "The number of requests sent by RIP."; } leaf responses-rcvd { type yang:counter32; description "The number of responses received by RIP."; } leaf responses-sent { type yang:counter32; description "The number of responses sent by RIP."; } } // statistics } // rip }
/* * RPCs */
rpc clear-rip-route { description "Clears RIP routes from the IP routing table and routes redistributed into RIP for the specified RIP instance or for all RIP instances in the current context."; input { leaf rip-instance { type leafref { path "/rt:routing/rt:control-plane-protocols/" + "rt:control-plane-protocol/rt:name"; } description "Instance name identifying a specific RIP instance. This leaf is optional for the RPC. If it is specified, the RPC will clear all routes in the specified RIP instance; if it is not specified, the RPC will clear all routes in all RIP instances."; } } } // clear-rip-route
} <CODE ENDS>
} <コード終了>
This document registers the following namespace URIs in the "IETF XML Registry" [RFC3688]:
このドキュメントでは、「IETF XMLレジストリ」[RFC3688]に次の名前空間URIを登録しています。
URI: urn:ietf:params:xml:ns:yang:ietf-rip Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
URI:urn:ietf:params:xml:ns:yang:ietf-rip登録者の連絡先:IESG。 XML:なし。要求されたURIはXML名前空間です。
This document registers the following YANG modules in the "YANG Module Names" registry [RFC6020]:
このドキュメントでは、「YANGモジュール名」レジストリ[RFC6020]に次のYANGモジュールを登録しています。
Name: ietf-rip Namespace: urn:ietf:params:xml:ns:yang:ietf-rip Prefix: rip Reference: RFC 8695
The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].
このドキュメントで指定されているYANGモジュールは、NETCONF [RFC6241]やRESTCONF [RFC8040]などのネットワーク管理プロトコルを介してアクセスするように設計されたデータのスキーマを定義します。最下層のNETCONF層はセキュアなトランスポート層であり、実装に必須のセキュアなトランスポートはセキュアシェル(SSH)[RFC6242]です。最下位のRESTCONFレイヤーはHTTPSであり、実装に必須のセキュアなトランスポートはTLS [RFC8446]です。
The NETCONF Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.
NETCONFアクセス制御モデル(NACM)[RFC8341]は、特定のNETCONFまたはRESTCONFユーザーのアクセスを、利用可能なすべてのNETCONFまたはRESTCONFプロトコル操作およびコンテンツの事前構成済みサブセットに制限する手段を提供します。
There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:
このYANGモジュールには、書き込み/作成/削除が可能なデータノードがいくつか定義されています(つまり、config true、デフォルトです)。これらのデータノードは、一部のネットワーク環境では機密または脆弱であると見なされる場合があります。適切な保護なしにこれらのデータノードに書き込み操作(edit-configなど)を行うと、ネットワーク操作に悪影響を与える可能性があります。これらは、サブツリーとデータノード、およびそれらの機密性/脆弱性です。
/rt:routing/rt:control-plane-protocols/rt:control-plane-protocol/ rip:rip
Unauthorized access to any data node of these subtrees can adversely affect the routing subsystem of both the local device and the network. This may lead to network malfunctions, delivery of packets to inappropriate destinations, and other problems.
これらのサブツリーのデータノードへの不正アクセスは、ローカルデバイスとネットワークの両方のルーティングサブシステムに悪影響を及ぼす可能性があります。これにより、ネットワークの誤動作、不適切な宛先へのパケットの配信、その他の問題が発生する可能性があります。
Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:
このYANGモジュールの一部の読み取り可能なデータノードは、一部のネットワーク環境では機密または脆弱であると見なされる場合があります。したがって、これらのデータノードへの読み取りアクセスを制御することが重要です(たとえば、get、get-config、または通知を介して)。これらは、サブツリーとデータノード、およびそれらの機密性/脆弱性です。
/rt:routing/rt:control-plane-protocols/rt:control-plane-protocol/ rip:rip
Unauthorized access to any data node of these subtrees can disclose the operational state information of RIP on this device.
これらのサブツリーのデータノードへの不正アクセスにより、このデバイス上のRIPの動作状態情報が開示される可能性があります。
Some of the RPC operations in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control access to these operations. These are the operations and their sensitivity/vulnerability:
このYANGモジュールの一部のRPC操作は、一部のネットワーク環境では機密または脆弱であると見なされる場合があります。したがって、これらの操作へのアクセスを制御することが重要です。これらは操作とその感度/脆弱性です:
RPC clear-rip-route:
RPCクリアリップルート:
Unauthorized access to the RPC above can adversely affect the routing subsystem of both the local device and the network. This may lead to network malfunctions, delivery of packets to inappropriate destinations, and other problems.
上記のRPCへの不正アクセスは、ローカルデバイスとネットワークの両方のルーティングサブシステムに悪影響を及ぼす可能性があります。これにより、ネットワークの誤動作、不適切な宛先へのパケットの配信、その他の問題が発生する可能性があります。
[RFC1724] Malkin, G. and F. Baker, "RIP Version 2 MIB Extension", RFC 1724, DOI 10.17487/RFC1724, November 1994, <https://www.rfc-editor.org/info/rfc1724>.
[RFC1724] Malkin、G。およびF. Baker、「RIPバージョン2 MIB拡張」、RFC 1724、DOI 10.17487 / RFC1724、1994年11月、<https://www.rfc-editor.org/info/rfc1724>。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2119] Bradner、S。、「要件レベルを示すためにRFCで使用するキーワード」、BCP 14、RFC 2119、DOI 10.17487 / RFC2119、1997年3月、<https://www.rfc-editor.org/info/ rfc2119>。
[RFC2453] Malkin, G., "RIP Version 2", STD 56, RFC 2453, DOI 10.17487/RFC2453, November 1998, <https://www.rfc-editor.org/info/rfc2453>.
[RFC2453] Malkin、G。、「RIPバージョン2」、STD 56、RFC 2453、DOI 10.17487 / RFC2453、1998年11月、<https://www.rfc-editor.org/info/rfc2453>。
[RFC2080] Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080, DOI 10.17487/RFC2080, January 1997, <https://www.rfc-editor.org/info/rfc2080>.
[RFC2080] Malkin、G。およびR. Minnear、「RIPng for IPv6」、RFC 2080、DOI 10.17487 / RFC2080、1997年1月、<https://www.rfc-editor.org/info/rfc2080>。
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>.
[RFC3688] Mealling、M。、「The IETF XML Registry」、BCP 81、RFC 3688、DOI 10.17487 / RFC3688、2004年1月、<https://www.rfc-editor.org/info/rfc3688>。
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>.
[RFC6020] Bjorklund、M。、編、「YANG-ネットワーク構成プロトコル(NETCONF)のデータモデリング言語」、RFC 6020、DOI 10.17487 / RFC6020、2010年10月、<https://www.rfc-editor。 org / info / rfc6020>。
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.
[RFC6241] Enns、R。、編、Bjorklund、M。、編、Schoenwaelder、J。、編、A。Bierman、編、「Network Configuration Protocol(NETCONF)」、RFC 6241、DOI 10.17487 / RFC6241、2011年6月、<https://www.rfc-editor.org/info/rfc6241>。
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/info/rfc6242>.
[RFC6242] Wasserman、M。、「Using the NETCONF Protocol over Secure Shell(SSH)」、RFC 6242、DOI 10.17487 / RFC6242、2011年6月、<https://www.rfc-editor.org/info/rfc6242>。
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.
[RFC6991] Schoenwaelder、J。、編、「Common YANG Data Types」、RFC 6991、DOI 10.17487 / RFC6991、2013年7月、<https://www.rfc-editor.org/info/rfc6991>。
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.
[RFC7950] Bjorklund、M。、編、「The YANG 1.1 Data Modeling Language」、RFC 7950、DOI 10.17487 / RFC7950、2016年8月、<https://www.rfc-editor.org/info/rfc7950>。
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.
[RFC8040] Bierman、A.、Bjorklund、M。、およびK. Watsen、「RESTCONFプロトコル」、RFC 8040、DOI 10.17487 / RFC8040、2017年1月、<https://www.rfc-editor.org/info/rfc8040 >。
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8174] Leiba、B。、「RFC 2119キーワードの大文字と小文字のあいまいさ」、BCP 14、RFC 8174、DOI 10.17487 / RFC8174、2017年5月、<https://www.rfc-editor.org/info/ rfc8174>。
[RFC8177] Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J. Zhang, "YANG Data Model for Key Chains", RFC 8177, DOI 10.17487/RFC8177, June 2017, <https://www.rfc-editor.org/info/rfc8177>.
[RFC8177] Lindem、A.、Ed。、Qu、Y.、Yeung、D.、Chen、I。、およびJ. Zhang、「キーチェーンのYANGデータモデル」、RFC 8177、DOI 10.17487 / RFC8177、2017年6月、<https://www.rfc-editor.org/info/rfc8177>。
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>.
[RFC8341] Bierman、A。およびM. Bjorklund、「Network Configuration Access Control Model」、STD 91、RFC 8341、DOI 10.17487 / RFC8341、2018年3月、<https://www.rfc-editor.org/info/rfc8341 >。
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, <https://www.rfc-editor.org/info/rfc8342>.
[RFC8342] Bjorklund、M.、Schoenwaelder、J.、Shafer、P.、Watsen、K。、およびR. Wilton、「Network Management Datastore Architecture(NMDA)」、RFC 8342、DOI 10.17487 / RFC8342、2018年3月、< https://www.rfc-editor.org/info/rfc8342>。
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>.
[RFC8343] Bjorklund、M。、「A YANG Data Model for Interface Management」、RFC 8343、DOI 10.17487 / RFC8343、March 2018、<https://www.rfc-editor.org/info/rfc8343>。
[RFC8344] Bjorklund, M., "A YANG Data Model for IP Management", RFC 8344, DOI 10.17487/RFC8344, March 2018, <https://www.rfc-editor.org/info/rfc8344>.
[RFC8344] Bjorklund、M。、「IP管理用のYANGデータモデル」、RFC 8344、DOI 10.17487 / RFC8344、2018年3月、<https://www.rfc-editor.org/info/rfc8344>。
[RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for Routing Management (NMDA Version)", RFC 8349, DOI 10.17487/RFC8349, March 2018, <https://www.rfc-editor.org/info/rfc8349>.
[RFC8349] Lhotka、L.、Lindem、A。、およびY. Qu、「ルーティング管理用のYANGデータモデル(NMDAバージョン)」、RFC 8349、DOI 10.17487 / RFC8349、2018年3月、<https:// www。 rfc-editor.org/info/rfc8349>。
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.
[RFC8446] Rescorla、E。、「The Transport Layer Security(TLS)Protocol Version 1.3」、RFC 8446、DOI 10.17487 / RFC8446、2018年8月、<https://www.rfc-editor.org/info/rfc8446>。
[RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG", RFC 7951, DOI 10.17487/RFC7951, August 2016, <https://www.rfc-editor.org/info/rfc7951>.
[RFC7951] Lhotka、L。、「YANGでモデル化されたデータのJSONエンコーディング」、RFC 7951、DOI 10.17487 / RFC7951、2016年8月、<https://www.rfc-editor.org/info/rfc7951>。
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>.
[RFC8340] Bjorklund、M。およびL. Berger、編、「YANGツリー図」、BCP 215、RFC 8340、DOI 10.17487 / RFC8340、2018年3月、<https://www.rfc-editor.org/info/ rfc8340>。
[RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of Documents Containing YANG Data Models", BCP 216, RFC 8407, DOI 10.17487/RFC8407, October 2018, <https://www.rfc-editor.org/info/rfc8407>.
[RFC8407] Bierman、A。、「YANGデータモデルを含むドキュメントの作成者とレビューアーのためのガイドライン」、BCP 216、RFC 8407、DOI 10.17487 / RFC8407、2018年10月、<https://www.rfc-editor.org/info / rfc8407>。
[RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard, E., and A. Tripathy, "Subscription to YANG Notifications", RFC 8639, DOI 10.17487/RFC8639, September 2019, <https://www.rfc-editor.org/info/rfc8639>.
[RFC8639] Voit、E.、Clemm、A.、Gonzalez Prieto、A.、Nilsen-Nygaard、E。、およびA. Tripathy、「Subscription to YANG Notifications」、RFC 8639、DOI 10.17487 / RFC8639、2019年9月、< https://www.rfc-editor.org/info/rfc8639>。
[RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641, September 2019, <https://www.rfc-editor.org/info/rfc8641>.
[RFC8641] Clemm、A。およびE. Voit、「データストア更新のためのYANG通知のサブスクリプション」、RFC 8641、DOI 10.17487 / RFC8641、2019年9月、<https://www.rfc-editor.org/info/rfc8641> 。
[YANG-BFD] Rahman, R., Zheng, L., Jethanandani, M., Pallagatti, S., and G. Mirsky, "YANG Data Model for Bidirectional Forwarding Detection (BFD)", Work in Progress, Internet-Draft, draft-ietf-bfd-yang-17, 2 August 2018, <https://tools.ietf.org/html/draft-ietf-bfd-yang-17>.
[YANG-BFD] Rahman、R.、Zheng、L.、Jethanandani、M.、Pallagatti、S.、and G. Mirsky、 "YANG Data Model for Bidirectional Forwarding Detection(BFD)"、Work in Progress、Internet-Draft 、draft-ietf-bfd-yang-17、2018年8月2日、<https://tools.ietf.org/html/draft-ietf-bfd-yang-17>。
[YANG-ISIS] Litkowski, S., Yeung, D., Lindem, A., Zhang, Z., and L. Lhotka, "YANG Data Model for IS-IS Protocol", Work in Progress, Internet-Draft, draft-ietf-isis-yang-isis-cfg-42, 15 October 2019, <https://tools.ietf.org/html/draft-ietf-isis-yang-isis-cfg-42>.
[YANG-ISIS] Litkowski、S.、Yeung、D.、Lindem、A.、Zhang、Z。、およびL. Lhotka、「IS-ISプロトコルのYANGデータモデル」、作業中、インターネットドラフト、ドラフト-ietf-isis-yang-isis-cfg-42、2019年10月15日、<https://tools.ietf.org/html/draft-ietf-isis-yang-isis-cfg-42>。
[YANG-OSPF] Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem, "YANG Data Model for OSPF Protocol", Work in Progress, Internet-Draft, draft-ietf-ospf-yang-29, 17 October 2019, <https://tools.ietf.org/html/draft-ietf-ospf-yang-29>.
[YANG-OSPF] Yeung、D.、Qu、Y.、Zhang、Z.、Chen、I。、およびA. Lindem、「OSPFプロトコル用のYANGデータモデル」、Work in Progress、Internet-Draft、draft-ietf -ospf-yang-29、2019年10月17日、<https://tools.ietf.org/html/draft-ietf-ospf-yang-29>。
This section contains an example of an instance data tree in the JSON encoding [RFC7951], containing both configuration and state data.
このセクションには、構成データと状態データの両方を含む、JSONエンコード[RFC7951]のインスタンスデータツリーの例が含まれています。
+---------------------+ | | | Router 203.0.113.1 | | | +----------+----------+ |eth1 |2001:db8:0:1::1/64 | | |2001:db8:0:1::2/64 +----------+----------+ | | | | Another Router +---------| 2001:db8:0:2::/64 | | | +---------------------+
Figure 1: RIPng Example
図1:RIPngの例
The configuration instance data tree for Router 203.0.113.1 in Figure 1 could be as follows:
図1のルーター203.0.113.1の構成インスタンスデータツリーは、次のようになります。
{ "ietf-interfaces:interfaces": { "interface": [ { "name": "eth1", "description": "An interface with RIPng enabled.", "type": "iana-if-type:ethernetCsmacd", "ietf-ip:ipv6": { "address": [ { "ip": "2001:db8:0:1::1", "prefix-length": 64 } ], "forwarding": true } } ] }, "ietf-routing:routing": { "router-id": "203.0.113.1", "control-plane-protocols": { "control-plane-protocol": [ { "type": "ietf-rip:ripng", "name": "ripng-1", "description": "RIPng instance ripng-1.", "ietf-rip:rip": { "redistribute": { "connected": { } }, "interfaces": { "interface": [ { "interface": "eth1", "split-horizon": "poison-reverse" } ] } } } ] } } }
The corresponding operational state data for Router 203.0.113.1 could be as follows:
ルータ203.0.113.1の対応する動作状態データは次のようになります。
{ "ietf-interfaces:interfaces": { "interface": [ { "name": "eth1", "description": "An interface with RIPng enabled.", "type": "iana-if-type:ethernetCsmacd", "phys-address": "00:00:5e:00:53:01", "oper-status": "up", "statistics": { "discontinuity-time": "2016-10-24T17:11:27+02:00" }, "ietf-ip:ipv6": { "forwarding": true, "mtu": 1500, "address": [ { "ip": "2001:db8:0:1::1", "prefix-length": 64, "origin": "static", "status": "preferred" }, { "ip": "fe80::200:5eff:fe00:5301", "prefix-length": 64, "origin": "link-layer", "status": "preferred" } ], "neighbor": [ { "ip": "2001:db8:0:1::2", "link-layer-address": "00:00:5e:00:53:02", "origin": "dynamic", "is-router": [null], "state": "reachable" }, { "ip": "fe80::200:5eff:fe00:5302", "link-layer-address": "00:00:5e:00:53:02", "origin": "dynamic", "is-router": [null], "state": "reachable" } ] } } ] }, "ietf-routing:routing": { "router-id": "203.0.113.1", "interfaces": { "interface": [ "eth1" ] }, "control-plane-protocols": { "control-plane-protocol": [ { "type": "ietf-rip:ripng", "name": "ripng-1", "description": "RIPng instance ripng-1.", "ietf-rip:rip": { "default-metric": 1, "next-triggered-update": 5, "interfaces": { "interface": [ { "interface": "eth1", "oper-status": "up", "cost": 1, "split-horizon": "poison-reverse", "valid-address": true } ] }, "ipv6": { "neighbors": { "neighbor": [ { "ipv6-address": "fe80::200:5eff:fe00:5302", "last-update": "2017-01-02T10:34:55+02:00" } ] }, "routes": { "route": [ { "ipv6-prefix": "2001:db8:0:1::/64", "interface": "eth1", "redistributed": true, "route-type": "connected", "metric": 1, "expire-time": 22 }, { "ipv6-prefix": "2001:db8:0:2::/64", "next-hop": "fe80::200:5eff:fe00:5302", "interface": "eth1", "redistributed": false, "route-type": "rip", "metric": 2, "expire-time": 82 } ] } }, "statistics": { "discontinuity-time": "2016-10-24T17:11:27+02:00", "requests-rcvd": 523, "requests-sent": 262, "responses-rcvd": 261, "responses-sent": 523 } } } ] } } }
Authors' Addresses
著者のアドレス
Xufeng Liu Volta Networks
X U Feng L IU Voltaネットワーク
Email: xufeng.liu.ietf@gmail.com
Prateek Sarda Ericsson Fern Icon, Survey No 28 and 36/5, Doddanakundi Village Bangalore 560037 Karnataka India
Symbol Sarada Ericsson Fern Icon、Survey No 26&36/5、Daddankundi Vallage Bangalore 560037 Karnataka India
Email: prateek.sarda@ericsson.com
Vikram Choudhary Individual Bangalore 560066 India
Vikram Choudhary個人バンガロール560066インド
Email: vikschw@gmail.com