Internet Research Task Force (IRTF)                           J. Seedorf
Request for Comments: 8884     HFT Stuttgart - Univ. of Applied Sciences
Category: Informational                                  M. Arumaithurai
ISSN: 2070-1721                                  University of Göttingen
                                                               A. Tagami
                                                      KDDI Research Inc.
                                                         K. Ramakrishnan
                                                University of California
                                                      N. Blefari Melazzi
                                                  University Tor Vergata
                                                            October 2020

Research Directions for Using Information-Centric Networking (ICN) in Disaster Scenarios




Information-Centric Networking (ICN) is a new paradigm where the network provides users with named content instead of communication channels between hosts. This document outlines some research directions for ICN with respect to applying ICN approaches for coping with natural or human-generated, large-scale disasters. This document is a product of the Information-Centric Networking Research Group (ICNRG).

Information-Centric Networking(ICN)は、ネットワークがホスト間の通信チャネルではなく名前付きコンテンツをユーザーに提供する新しいパラダイムです。この文書は、自然または人類生成の大規模な災害への対処のためのICNアプローチの適用に関して、ICNの研究方向についてのいくつかの研究方向を概説しています。この文書は、情報中心のネットワーキング研究グループ(ICNRG)の製品です。

Status of This Memo


This document is not an Internet Standards Track specification; it is published for informational purposes.


This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the results of Internet-related research and development activities. These results might not be suitable for deployment. This RFC represents the consensus of the Information-Centric Networking Research Group of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are not a candidate for any level of Internet Standard; see Section 2 of RFC 7841.

この文書は、インターネットリサーチタスクフォース(IRTF)の製品です。IRTFはインターネット関連の研究開発活動の結果を発行しています。これらの結果は展開には適していない可能性があります。このRFCは、インターネット研究タスクフォース(IRTF)の情報中心のネットワーキング研究グループの合意を表しています。IRSGによる出版承認の文書は、インターネット規格のレベルの候補者ではありません。RFC 7841のセクション2を参照してください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Copyright(C)2020 IETFの信頼と文書著者として識別された人。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

この文書は、この文書の公開日に有効なIETF文書(に関するBCP 78とIETF信頼の法的規定を受けています。この文書に関してあなたの権利と制限を説明するので、これらの文書を慎重に見直してください。

Table of Contents


   1.  Introduction
   2.  Disaster Scenarios
   3.  Research Challenges and Benefits of ICN
     3.1.  High-Level Research Challenges
     3.2.  How ICN Can be Beneficial
     3.3.  ICN as Starting Point vs. Existing DTN Solutions
   4.  Use Cases and Requirements
   5.  ICN-Based Research Approaches and Open Research Challenges
     5.1.  Suggested ICN-Based Research Approaches
     5.2.  Open Research Challenges
   6.  Security Considerations
   7.  Conclusion
   8.  IANA Considerations
   9.  References
     9.1.  Normative References
     9.2.  Informative References
   Authors' Addresses
1. Introduction
1. はじめに

This document summarizes some research challenges for coping with natural or human-generated, large-scale disasters. In particular, the document discusses potential research directions for applying Information-Centric Networking (ICN) to address these challenges.


Research and standardization approaches exist (for instance, see the work and discussions in the concluded IRTF DTN Research Group [dtnrg] and in the IETF DTN Working Group [dtnwg]). In addition, a published Experimental RFC in the IRTF Stream [RFC5050] discusses Delay-Tolerant Networking (DTN), which is a key necessity for communicating in the disaster scenarios we are considering in this document. 'Disconnection tolerance' can thus be achieved with these existing DTN approaches. However, while these approaches can provide independence from an existing communication infrastructure (which indeed may not work anymore after a disaster has happened), ICN offers key concepts, such as new naming schemes and innovative multicast communication, which together enable many essential (publish/subscribe-based) use cases for communication after a disaster (e.g., message prioritization, one-to-many delivery of messages, group communication among rescue teams, and the use cases discussed in Section 4). One could add such features to existing DTN protocols and solutions; however, in this document, we explore the use of ICN as a starting point for building a communication architecture that supports (somewhat limited) communication capabilities after a disaster. We discuss the relationship between the ICN approaches (for enabling communication after a disaster) discussed in this document with existing work from the DTN community in more depth in Section 3.3.

研究と標準化のアプローチが存在します(たとえば、締結されたIRTF DTN研究グループ[DTNRG]およびIETF DTNワーキンググループ[DTNWG])の作業と議論を参照してください。さらに、IRTFストリームの公開実験的RFC [RFC5050]は、この文書で検討している災害シナリオで通信するための鍵の必要性である遅延耐性ネットワーキング(DTN)について説明します。したがって、これらの既存のDTNアプローチで「切断許容範囲」を達成することができる。しかし、これらのアプローチは既存のコミュニケーションインフラから独立を提供することができますが、災害が発生した後にもはや機能しない可能性があるかもしれませんが、ICNは新しい命名方式や革新的なマルチキャストコミュニケーションなどの主要な概念を提供します。購読ベース)災害後の通信のためのユースケース(例えば、メッセージの優先順位付け、メッセージの1対多数のメッセージ、レスキューチーム間のグループ通信、およびセクション4で説明した使用例)。既存のDTNプロトコルと解決策にそのような機能を追加することができます。ただし、この文書では、災害後の通信アーキテクチャを構築するための開始点としてのICNの使用を調査する。この文書で説明したICNアプローチ(災害後のコミュニケーションを可能にするための)については、DTNコミュニティからの既存の作業が3.3節で既存の作業を議論します。

'Emergency Support and Disaster Recovery' is also listed among the ICN Baseline Scenarios in [RFC7476] as a potential scenario that 'can be used as a base for the evaluation of different ICN approaches so that they can be tested and compared against each other while showcasing their own advantages' [RFC7476] . In this regard, this document complements [RFC7476] by investigating the use of ICN approaches for 'Emergency Support and Disaster Recovery' in depth and discussing the relationship to existing work in the DTN community.


This document focuses on ICN-based approaches that can enable communication after a disaster. These approaches reside mostly on the network layer. Other solutions for 'Emergency Support and Disaster Recovery' (e.g., on the application layer) may complement the ICN-based networking approaches discussed in this document and expand the solution space for enabling communications among users after a disaster. In fact, addressing the use cases explored in this document would require corresponding applications that would exploit the discussed ICN benefits on the network layer for users. However, the discussion of applications or solutions outside of the network layer are outside the scope of this document.


This document represents the consensus of the Information-Centric Networking Research Group (ICNRG); it is not an IETF product and it does not define a standard. It has been reviewed extensively by the ICN Research Group (RG) members active in the specific areas of work covered by the document.

この文書は、情報中心のネットワーキング研究グループ(ICNRG)の合意を表しています。IETF製品ではなく、標準を定義していません。文書でカバーされている作業の特定の分野で活躍するICN Research Group(RG)のメンバーによって広く検討されています。

Section 2 gives some examples of what can be considered a large-scale disaster and what the effects of such disasters on communication networks are. Section 3 outlines why ICN can be beneficial in such scenarios and provides a high-level overview on corresponding research challenges. Section 4 describes some concrete use cases and requirements for disaster scenarios. In Section 5, some concrete ICN-based solutions approaches are outlined.


2. Disaster Scenarios
2. 災害シナリオ

An enormous earthquake hit Northeastern Japan (Tohoku areas) on March 11, 2011 and caused extensive damages, including blackouts, fires, tsunamis, and a nuclear crisis. The lack of information and means of communication caused the isolation of several Japanese cities. This impacted the safety and well-being of residents and affected rescue work, evacuation activities, and the supply chain for food and other essential items. Even in the Tokyo area, which is 300 km away from the Tohoku area, more than 100,000 people became 'returner refugees' who could not reach their homes because they had no means of public transportation (the Japanese government has estimated that more than 6.5 million people would become returner refugees if such a catastrophic disaster were to hit the Tokyo area).

2011年3月11日に北東部日本(東北地区)に巨大な地震が発生し、停電、火災、津波、核危機など、広範囲にわたる損害を与えました。情報の欠如とコミュニケーションの手段がいくつかの日本の都市の孤立を引き起こしました。これは、住民の安全性と幸福に影響を与え、食料やその他の不可欠な項目のための救助作業、避難活動、およびサプライチェーンに影響を与えました。東北地方から300 kmの東京エリアでも、公共交通機関(日本政府は650万人以上と推定しています)そのような壊滅的な災害が東京エリアにぶつかるのならば、人々は帰宅難民になるでしょう)。

That earthquake in Japan also showed that the current network is vulnerable to disasters. Mobile phones have become the lifelines for communication, including safety confirmation. Besides (emergency) phone calls, services in mobile networks commonly being used after a disaster include network disaster SMS notifications (or SMS 'Cell Broadcast' [cellbroadcast]), available in most cellular networks. The aftermath of a disaster puts a high strain on available resources due to the need for communication by everyone. Authorities, such as the president or prime minister, local authorities, police, fire brigades, and rescue and medical personnel, would like to inform the citizens of possible shelters, food, or even of impending danger. Relatives would like to communicate with each other and be informed about their well-being. Affected citizens would like to make inquiries about food distribution centers and shelters or report trapped and missing people to the authorities. Moreover, damage to communication equipment, in addition to the already existing heavy demand for communication, highlights the issue of fault tolerance and energy efficiency.

日本の地震はまた、現在のネットワークが災害に対して脆弱であることを示した。携帯電話は、安全確認を含む通信のためのライフラインになりました。 (緊急)電話の電話、災害後に一般的に使用されているモバイルネットワークにおけるサービスは、ほとんどのセルラーネットワークで利用可能なネットワーク災害SMS通知(またはSMSのセルブロードキャスト] [CellBroadcast])を含みます。災害の余波は、すべての人によるコミュニケーションの必要性のために利用可能なリソースに高い株を占めています。大統領または首相、地方自治体、警察、消防隊、救助や医療従事者などの当局は、可能な避難所、食品、または差し迫った危険のために市民に知らせたいと思います。親戚は互いに通信し、彼らの幸福について知らされることを望みます。影響を受ける市民は、食料配給センターと避難所や捕獲された人々との問い合わせを当局に閉じ込めて報告したいと思います。さらに、通信機器の損傷は、既存のコミュニケーションの重大な需要に加えて、耐摩耗性とエネルギー効率の問題を強調しています。

Additionally, disasters caused by humans (i.e., disasters that are caused deliberately and willfully and have the element of human intent such as a terrorist attack) may need to be considered. In such cases, the perpetrators could be actively harming the network by launching a denial-of-service attack or by monitoring the network passively to obtain information exchanged, even after the main disaster itself has taken place. Unlike some natural disasters that are predictable to a small extent using weather forecasting technologies, may have a slower onset, and occur in known geographical regions and seasons, terrorist attacks almost always occur suddenly without any advance warning. Nevertheless, there exist many commonalities between natural and human-induced disasters, particularly relating to response and recovery, communication, search and rescue, and coordination of volunteers.


The timely dissemination of information generated and requested by all the affected parties during and in the immediate aftermath of a disaster is difficult to provide within the current context of global information aggregators (such as Google, Yahoo, Bing, etc.) that need to index the vast amounts of specialized information related to the disaster. Specialized coverage of the situation and timely dissemination are key to successfully managing disaster situations. We believe that network infrastructure capabilities provided by Information-Centric Networks can be suitable, in conjunction with application and middleware assistance.


3. Research Challenges and Benefits of ICN
3. ICNの研究の課題と利点
3.1. High-Level Research Challenges
3.1. 高レベルの研究の課題

Given a disaster scenario as described in Section 2, on a high level, one can derive the following (incomplete) list of corresponding technical challenges:


Enabling usage of functional parts of the infrastructure, even when these are disconnected from the rest of the network: Assuming that parts of the network infrastructure (i.e., cables/ links, routers, mobile bases stations, etc.) are functional after a disaster has taken place, it is desirable to be able to continue using such components for communication as much as possible. This is challenging when these components are disconnected from the backhaul, thus forming fragmented networks. This is especially true for today's mobile networks, which are comprised of a centralized architecture, mandating connectivity to central entities (which are located in the core of the mobile network) for communication. But also in fixed networks, access to a name resolution service is often necessary to access some given content.


Decentralized authentication, content integrity, and trust: In mobile networks, users are authenticated via central entities. While special services important in a disaster scenario exist and may work without authentication (such as SMS 'Cell Broadcast' [cellbroadcast] or emergency calls), user-to-user (or user-to-authorities) communication is normally not possible without being authenticated via a central entity in the network. In order to communicate in fragmented or disconnected parts of a mobile network, the challenge of decentralizing user authentication arises. Independently of the network being fixed or mobile, data origin authentication and verifying the correctness of content retrieved from the network may be challenging when being 'offline' (e.g., potentially disconnected from content publishers as well as from servers of a security infrastructure, which can provide missing certificates in a certificate chain or up-to-date information on revoked keys/certificates). As the network suddenly becomes fragmented or partitioned, trust models may shift accordingly to the change in authentication infrastructure being used (e.g., one may switch from a PKI to a web-of-trust model, such as Pretty Good Privacy (PGP)). Note that blockchain-based approaches are, in most cases, likely not suitable for the disaster scenarios considered in this document, as the communication capabilities needed to find consensus for a new block as well as for retrieving blocks at nodes will presumably not be available (or too excessive for the remaining infrastructure) after a disaster.


Delivering/obtaining information and traffic prioritization in congested networks: Due to broken cables, failed routers, etc., it is likely that the communication network has much less overall capacity for handling traffic in a disaster scenario. Thus, significant congestion can be expected in parts of the infrastructure. It is therefore a challenge to guarantee message delivery in such a scenario. This is even more important because, in the case of a disaster aftermath, it may be crucial to deliver certain information to recipients (e.g., warnings to citizens) with higher priority than other content.


Delay/disruption-tolerant approach: Fragmented networks make it difficult to support direct end-to-end communication with small or no delay. However, communication in general and especially during a disaster can often tolerate some form of delay. For example, in order to know if someone's relatives are safe or not, a corresponding emergency message need not necessarily be supported in an end-to-end manner but would also be helpful to the human recipient if it can be transported in a hop-by-hop fashion with some delay. For these kinds of use cases, it is sufficient to improve communication resilience in order to deliver such important messages.


Energy efficiency: Long-lasting power outages may lead to batteries of communication devices running out, so designing energy-efficient solutions is very important in order to maintain a usable communication infrastructure.


Contextuality: Like any communication in general, disaster scenarios are inherently contextual. Aspects of geography, the people affected, the rescue communities involved, the languages being used, and many other contextual aspects are highly relevant for an efficient realization of any rescue effort and, with it, the realization of the required communication.


3.2. How ICN Can be Beneficial
3.2. ICNがどのように有益になるか

Several aspects of ICN make related approaches attractive candidates for addressing the challenges described in Section 3.1. Below is an (incomplete) list of considerations why ICN approaches can be beneficial to address these challenges:


Routing-by-name: ICN protocols natively route by named data objects and can identify objects by names, effectively moving the process of name resolution from the application layer to the network layer. This functionality is very handy in a fragmented network where reference to location-based, fixed addresses may not work as a consequence of disruptions. For instance, name resolution with ICN does not necessarily rely on the reachability of application-layer servers (e.g., DNS resolvers). In highly decentralized scenarios (e.g., in infrastructureless, opportunistic environments), the ICN routing-by-name paradigm effectively may lead to a 'replication-by-name' approach, where content is replicated depending on its name.


Integrity and authentication of named data objects: ICN is built around the concept of named data objects. Several proposals exist for integrating the concept of 'self-certifying data' into a naming scheme (e.g., see [RFC6920]). With such approaches, object integrity of data retrieved from the network can be verified without relying on a trusted third party or PKI. In addition, given that the correct object name is known, such schemes can also provide data origin authentication (for instance, see the usage example in Section 8.3 of [RFC6920]).


Content-based access control: ICN promotes a data-centric communication model that naturally supports content-based security (e.g., allowing access to content only to a specific user or class of users). In fact, in ICN, it is the content itself that is secured (encrypted), if desired, rather than the communication channel. This functionality could facilitate trusted communications among peer users in isolated areas of the network where a direct communication channel may not always or continuously exist.


Caching: Caching content along a delivery path is an inherent concept in ICN. Caching helps in handling huge amounts of traffic and can help to avoid congestion in the network (e.g., congestion in backhaul links can be avoided by delivering content from caches at access nodes).


Sessionless: ICN does not require full end-to-end connectivity. This feature facilitates a seamless aggregation between a normal network and a fragmented network, which needs DTN-like message forwarding.


Potential to run traditional IP-based services (IP-over-ICN): While ICN and DTN promote the development of novel applications that fully utilize the new capabilities of the ICN/DTN network, work in [Trossen2015] has shown that an ICN-enabled network can transport IP-based services, either directly at IP or even at HTTP level. With this, IP- and ICN/DTN-based services can coexist, providing the necessary support of legacy applications to affected users while reaping any benefits from the native support for ICN in future applications.

伝統的なIPベースのサービスを実行する可能性(IP-over-ICN):ICNとDTNは、ICN / DTNネットワークの新しい機能を完全に利用する新しいアプリケーションの開発を促進しますが、[Trossen2015]での作業がICN-有効ネットワークは、IPベースのサービスを直接IPまたはHTTPレベルでも転送できます。これにより、IPおよびICN / DTNベースのサービスは共存することができ、将来のアプリケーションでICNのネイティブサポートからの利益を享受しながら、影響を受けるユーザーに従来のアプリケーションの必要なサポートを提供することができます。

Opportunities for traffic engineering and traffic prioritization: ICN provides the possibility to perform traffic engineering based on the name of desired content. This enables priority-based replication depending on the scope of a given message [Psaras2014]. In addition, as [Trossen2015], among others, have pointed out, the realization of ICN services and particularly of IP-based services on top of ICN provide further traffic engineering opportunities. The latter not only relate to the utilization of cached content, as outlined before, but to the ability to flexibly adapt to route changes (important in unreliable infrastructure, such as in disaster scenarios), mobility support without anchor points (again, important when parts of the infrastructure are likely to fail), and the inherent support for multicast and multihoming delivery.


3.3. ICN as Starting Point vs. Existing DTN Solutions
3.3. 開始点としてのICNと既存のDTNソリューション

There has been quite some work in the DTN (Delay-Tolerant Networking) community on disaster communication (for instance, see the work and discussions in the concluded IRTF DTN Research Group [dtnrg] and in the IETF DTN Working Group [dtnwg]). However, most DTN work lacks important features, such as publish/subscribe (pub/sub) capabilities, caching, multicast delivery, and message prioritization based on content types, which are needed in the disaster scenarios we consider. One could add such features to existing DTN protocols and solutions, and indeed individual proposals for adding such features to DTN protocols have been made (e.g., [Greifenberg2008] and [Yoneki2007] propose the use of a pub/sub-based multicast distribution infrastructure for DTN-based opportunistic networking environments).

DTN(IRTF DTN研究グループ[DTNRG]およびIETF DTNワーキンググループ[DTNWG]の作業や議論を参照)のDTN(遅延耐性ネットワーキング)コミュニティにはかなりの作業がありました。ただし、ほとんどのDTNワークは、発行/購読(PUB / SUB)機能、キャッシング、マルチキャスト配信、および検討されている災害シナリオに必要なコンテンツタイプに基づくメッセージ優先順位付けなど、重要な機能を欠いています。そのような機能を既存のDTNプロトコルおよびソリューションに追加することができ、実際にはDTNプロトコルにそのような機能を追加するための個々の提案が行われてきた(例えば、[Greifenberg2008]および[yoneki2007]は、PUB /サブベースのマルチキャスト分布インフラストラクチャの使用を提案する。DTNベースの日和見ネットワーキング環境)。

However, arguably ICN -- having these intrinsic properties (as also outlined above) -- makes a better starting point for building a communication architecture that works well before and after a disaster. For a disaster-enhanced ICN system, this would imply the following advantages: a) ICN data mules would have built-in caches and can thus return content for interests straight on, b) requests do not necessarily need to be routed to a source (as with existing DTN protocols), instead any data mule or end user can in principle respond to an interest, c) built-in multicast delivery implies energy-efficient, large-scale spreading of important information that is crucial in disaster scenarios, and d) pub/sub extension for popular ICN implementations exist [COPSS2011], which are very suitable for efficient group communication in disasters and provide better reliability, timeliness, and scalability, as compared to existing pub/sub approaches in DTN [Greifenberg2008] [Yoneki2007] .

しかしながら、間違いなくICN - これらの固有特性を有する(上で概説されているように) - 災害の前後にうまく機能する通信アーキテクチャを構築するためのより良い出発点を作ります。災害強化されたICNシステムの場合、これは以下の利点を意味するであろう:a)ICNデータのMULEは内蔵キャッシュを持ち、したがってB)要求は必ずしもソースにルーティングされる必要はありません(既存のDTNプロトコルと同様に、代わりに、原則として任意のデータ・ラバまたはエンド・ユーザーが利益に応答することができます。普及したICN実装のためのパブ/サブ拡張存在[COPSS2011]は、災害における効率的なグループコミュニケーションに非常に適しており、DTNの既存のパブ/サブアプローチと比較してより良い信頼性、タイムレベル、およびスケーラビリティを提供する[Greifenberg2007] [yoneki2007]。

Finally, most DTN routing algorithms have been solely designed for particular DTN scenarios. By extending ICN approaches for DTN-like scenarios, one ensures that a solution works in regular (i.e., well-connected) settings just as well (which can be important in reality, where a routing algorithm should work before and after a disaster). It is thus reasonable to start with existing ICN approaches and extend them with the necessary features needed in disaster scenarios. In any case, solutions for disaster scenarios need a combination of ICN-features and DTN-capabilities.


4. Use Cases and Requirements
4. ユースケースと要件

This section describes some use cases for the aforementioned disaster scenario (as outlined in Section 2) and discusses the corresponding technical requirements for enabling these use cases.


Delivering Messages to Relatives/Friends: After a disaster strikes, citizens want to confirm to each other that they are safe. For instance, shortly after a large disaster (e.g., an earthquake or a tornado), people have moved to different refugee shelters. The mobile network is not fully recovered and is fragmented, but some base stations are functional. This use case imposes the following high-level requirements: a) people must be able to communicate with others in the same network fragment and b) people must be able to communicate with others that are located in different fragmented parts of the overall network. More concretely, the following requirements are needed to enable the use case: a) a mechanism for a scalable message forwarding scheme that dynamically adapts to changing conditions in disconnected networks, b) DTN-like mechanisms for getting information from one disconnected island to another disconnected island, c) source authentication and content integrity so that users can confirm that the messages they receive are indeed from their relatives or friends and have not been tampered with, and d) the support for contextual caching in order to provide the right information to the right set of affected people in the most efficient manner.


Spreading Crucial Information to Citizens: State authorities want to be able to convey important information (e.g., warnings or information on where to go or how to behave) to citizens. These kinds of information shall reach as many citizens as possible, i.e., crucial content from legal authorities shall potentially reach all users in time. The technical requirements that can be derived from this use case are a) source authentication and content integrity, such that citizens can confirm the correctness and authenticity of messages sent by authorities, b) mechanisms that guarantee the timeliness and loss-free delivery of such information, which may include techniques for prioritizing certain messages in the network depending on who sent them, and c) DTN-like mechanisms for getting information from disconnected island to another disconnected island.


It can be observed that different key use cases for disaster scenarios imply overlapping and similar technical requirements for fulfilling them. As discussed in Section 3.2, ICN approaches are envisioned to be very suitable for addressing these requirements with actual technical solutions. In [Robitzsch2015], a more elaborate set of requirements is provided that addresses, among disaster scenarios, a communication infrastructure for communities facing several geographic, economic, and political challenges.


5. ICN-Based Research Approaches and Open Research Challenges
5. ICNベースの研究アプローチと開放研究の課題

This section outlines some ICN-based research approaches that aim at fulfilling the previously mentioned use cases and requirements (Section 5.1). Most of these works provide proof-of-concept type solutions, addressing singular challenges. Thus, several open issues remain, which are summarized in Section 5.2.


5.1. Suggested ICN-Based Research Approaches
5.1. 推奨ICNベースの研究アプローチ

The research community has investigated ICN-based solutions to address the aforementioned challenges in disaster scenarios. Overall, the focus is on delivery of messages and not real-time communication. While most users would probably like to conduct real-time voice/video calls after a disaster, in the extreme scenario we consider (with users being scattered over different fragmented networks as can be the case in the scenarios described in Section 2), somewhat delayed message delivery appears to be inevitable, and full-duplex real-time communication seems infeasible to achieve (unless users are in close proximity). Thus, the assumption is that -- for a certain amount of time at least (i.e., the initial period until the regular communication infrastructure has been repaired) -- users would need to live with message delivery and publish/subscribe services but without real-time communication. Note, however, that a) in principle, ICN can support Voice over IP (VoIP) calls; thus, if users are in close proximity, (duplex) voice communication via ICN is possible [Gusev2015], and b) delayed message delivery can very well include (recorded) voice messages.

研究コミュニティは、災害シナリオにおける前述の課題に対処するためのICNベースのソリューションを調査しました。全体として、焦点は、リアルタイム通信ではなくメッセージの配信にあります。ほとんどのユーザーはおそらく災害後、災害後のリアルタイムの声/ビデオ通話を行うのが好きですが、私たちが考える(セクション2で説明されているシナリオの場合と同じように異なる断片化されたネットワーク上で散らばっている)、やや遅れたメッセージ配信は避けられないように見え、全二重のリアルタイム通信は達成できないように思われる(ユーザーが近接していない限り)。したがって、この仮定は、少なくとも一定時間(すなわち、通常の通信インフラストラクチャが修復されるまでの初期期間) - ユーザはメッセージ配信と公開/購読サービスと共に生きる必要があるが、実際には時間通信ただし、A)原則として、ICNは音声over IP(VoIP)呼び出しをサポートできます。したがって、ユーザが近接している場合、ICN経由で(二重)音声通信が可能である[GUSEV2015]、およびB)遅延メッセージ配信は、音声メッセージを非常によく含むことができる。

ICN 'data mules': To facilitate the exchange of messages between different network fragments, mobile entities can act as ICN 'data mules', which are equipped with storage space and move around the disaster-stricken area gathering information to be disseminated. As the mules move around, they deliver messages to other individuals or points of attachment to different fragments of the network. These 'data mules' could have a predetermined path (an ambulance going to and from a hospital), a fixed path (drone/robot assigned specifically to do so), or a completely random path (doctors moving from one camp to another). An example of a many-to-many communication service for fragmented networks based on ICN data mules has been proposed in [Tagami2016].

ICN 'Data Mules':さまざまなネットワークフラグメント間のメッセージの交換を容易にするために、モバイルエンティティはICN 'Data Mules'として機能することができ、これはストレージスペースを搭載し、障害があるように災害被災地収集情報を移動させることができます。マウルが動いているように、それらは他の個人またはネットワークの異なる断片に添付のポイントにメッセージを提供します。これらの「データマール」は、所定の経路(病院への救急車と、特にそうすることが具体的に割り当てられたドローン/ロボット)、または完全にランダムな経路を有することができる。[Tagami2016]では、ICNデータのMULEに基づく断片化されたネットワークのための多対多通信サービスの例が提案されている。

Priority-dependent or popularity-dependent, name-based replication: By allowing spatial and temporal scoping of named messages, priority-based replication depending on the scope of a given message is possible. Clearly, spreading information in disaster cases involves space and time factors that have to be taken into account as messages spread. A concrete approach for such scope-based prioritization of ICN messages in disasters, called 'NREP', has been proposed [Psaras2014], where ICN messages have attributes, such as user-defined priority, space, and temporal validity. These attributes are then taken into account when prioritizing messages. In [Psaras2014], evaluations show how this approach can be applied to the use case 'Delivering Messages to Relatives/Friends' described in Section 4. In [Seedorf2016], a scheme is presented that enables estimating the popularity of ICN interest messages in a completely decentralized manner among data mules in a scenario with random, unpredictable movements of ICN data mules. The approach exploits the use of nonces associated with end user requests, common in most ICN architectures. It enables for a given ICN data mule to estimate the overall popularity (among end users) of a given ICN interest message. This enables data mules to optimize content dissemination with limited caching capabilities by prioritizing interests based on their popularity.

優先順位に依存している、または人気度に依存している名前ベースのレプリケーション:指定されたメッセージの空間的および時間的スコープを可能にすることによって、与えられたメッセージの範囲に応じて優先ベースの複製が可能です。明らかに、災害事件における拡散情報には、メッセージが広がるにつれて考慮されなければならないスペースと時間の要因が含まれます。 「NREP」と呼ばれる災害におけるそのような範囲ベースのICNメッセージの優先順位付けのための具体的なアプローチが提案されており、ICNメッセージはユーザ定義の優先度、空間、および時間的妥当性などの属性を有する。これらの属性は、メッセージを優先するときに考慮されます。 [PSARAS2014]で、評価は、セクション4で説明されているユースケース「親戚/友人へのメッセージの配信」にどのように適用できるかを示しています。 CULDのランダムで予測不可能なICNデータ・マルベルの動きを備えたシナリオ内のデータ・マューレの間で完全に分散しています。このアプローチは、ほとんどのICNアーキテクチャで一般的なエンドユーザー要求に関連するノンスの使用を利用しています。与えられたICNデータ・マレだけが、与えられたICNの関心のあるメッセージの全体的な人気(エンドユーザー)を推定することを可能にします。これにより、データ・マュールは、その人気に基づいて利益を優先することによって、制限されたキャッシュ機能とのコンテンツ普及を最適化することができます。

Information resilience through decentralized forwarding: In a dynamic or disruptive environment, such as the aftermath of a disaster, both users and content servers may dynamically join and leave the network (due to mobility or network fragmentation). Thus, users might attach to the network and request content when the network is fragmented and the corresponding content origin is not reachable. In order to increase information resilience, content cached both in in-network caches and in end-user devices should be exploited. A concrete approach for the exploitation of content cached in user devices is presented in [Sourlas2015] . The proposal in [Sourlas2015] includes enhancements to the Named Data Networking (NDN) router design, as well as an alternative Interest-forwarding scheme that enables users to retrieve cached content when the network is fragmented and the content origin is not reachable. Evaluations show that this approach is a valid tool for the retrieval of cached content in disruptive cases and can be applied to tackle the challenges presented in Section 3.1 .

分散転送による情報の回復力:災害の後の動的または破壊的な環境では、ユーザーとコンテンツサーバーの両方が動的に結合してネットワークを残します(モビリティまたはネットワークの断片化のため)。したがって、ユーザーはネットワークに接続し、ネットワークが断片化されているときにコンテンツを要求し、対応するコンテンツの原点が到達できません。情報回復力を高めるために、ネットワーク内キャッシュとエンドユーザーデバイスの両方でキャッシュされたコンテンツを利用する必要があります。ユーザーデバイスにキャッシュされたコンテンツの利用のための具体的なアプローチは[SourlAS2015]に提示されています。 [SOURLAS2015]の提案には、名前付きデータネットワーキング(NDN)ルータ設計、およびネットワークが断片化されてコンテンツの原点が到達できないときにキャッシュされたコンテンツを検索できるようにする代替の利息転送方式の機能強化が含まれています。評価は、このアプローチが破壊的な症例でキャッシュされたコンテンツの検索の有効なツールであり、セクション3.1で示された課題に取り組むために適用することができることを示しています。

Energy efficiency: A large-scale disaster can cause a large-scale blackout; thus, a number of base stations (BSs) will be operated by their batteries. Capacities of such batteries are not large enough to provide cellular communication for several days after the disaster. In order to prolong the batteries' life from one day to several days, different techniques need to be explored, including priority control, cell zooming, and collaborative upload. Cell zooming switches off some of the BSs because switching off is the only way to reduce power consumed at the idle time. In cell zooming, areas covered by such inactive BSs are covered by the active BSs. Collaborative communication is complementary to cell zooming and reduces power proportional to a load of a BS. The load represents cellular frequency resources. In collaborative communication, end devices delegate sending and receiving messages to and from a BS to a representative end device of which radio propagation quality is better. The design of an ICN-based publish/subscribe protocol that incorporates collaborative upload is ongoing work. In particular, the integration of collaborative upload techniques into the COPSS (Content Oriented Publish/Subscribe System) framework is envisioned [COPSS2011].

エネルギー効率:大規模な災害は大規模な停電を引き起こす可能性があります。したがって、多くの基地局(BSS)がそれらの電池によって運転されるであろう。そのような電池の容量は、災害後数日間セルラコミュニケーションを提供するのに十分な大きさではありません。電池の寿命を1日から数日まで延ばすために、優先制御、セルズーム、および共同アップロードなど、さまざまなテクニックを調べる必要があります。セルズームは、オフの切り替えがアイドル時間で消費される電力を減らす唯一の方法であるため、BSSのいくつかをオフにします。セルズームでは、そのような非アクティブBSSによってカバーされている領域はアクティブBSSによって覆われています。共同通信は、セルズームに相補的であり、BSの負荷に比例した電力を削減します。負荷はセルラー周波数リソースを表します。コラボレーション通信では、エンドデバイスは、BSとの間でメッセージを送信および受信し、その結果のANDから、その周波数伝播品質が優れている代表的なエンドデバイスに委任されます。共同アップロードを組み込んだICNベースの公開/サブスクライブプロトコルの設計は進行中の作業です。特に、共同アップロード技術のCOPS(Content Oriented Publish / Subscribe System)フレームワークへの統合が想定されています[COPSS2011]。

Data-centric confidentiality and access control: In ICN, the requested content is no longer associated to a trusted server or an endpoint location, but it can be retrieved from any network cache or a replica server. This calls for 'data-centric' security, where security relies on information exclusively contained in the message itself, or if extra information provided by trusted entities is needed, this should be gathered through offline, asynchronous, and noninteractive communication, rather than from an explicit online interactive handshake with trusted servers. The ability to guarantee security without any online entities is particularly important in disaster scenarios with fragmented networks. One concrete cryptographic technique is 'Ciphertext-Policy Attribute Based Encryption (CP-ABE)', allowing a party to encrypt a content specifying a policy that consists in a Boolean expression over attributes that must be satisfied by those who want to decrypt such content. Such encryption schemes tie confidentiality and access control to the transferred data, which can also be transmitted in an unsecured channel. These schemes enable the source to specify the set of nodes allowed to later on decrypt the content during the encryption process.

データ中心の機密性とアクセス制御:ICNでは、要求されたコンテンツは、信頼できるサーバーまたはエンドポイントの場所にも関連付けられなくなりますが、ネットワークキャッシュまたはレプリカサーバーから取得できます。これは、セキュリティがメッセージ自体に含まれている情報に依存している「データ中心」セキュリティを要求します。または、信頼できるエンティティによって提供された追加情報が必要である場合、これはオフライン、非同期、非対照的な通信を通じて収集されるべきです。信頼できるサーバーを持つ明示的なオンラインインタラクティブハンドシェイク。オンラインエンティティなしでセキュリティを保証する能力は、断片化されたネットワークを持つ災害シナリオで特に重要です。 1つの具体的な暗号化技術は「暗号文ポリシー属性ベースの暗号化」であり、そのようなコンテンツを復号化したい属性によって満足されなければならない属性を介してブール式で構成されるポリシーを指定するコンテンツを暗号化することを可能にする。そのような暗号化方式は、転送されたデータに機密性とアクセス制御を結ぶ。これは、無担保チャネルで送信することができる。これらの方式では、暗号化プロセス中にコンテンツを復号化するために、後で許可されているノードのセットを指定できます。

Decentralized authentication of messages: Self-certifying names provide the property that any entity in a distributed system can verify the binding between a corresponding public key and the self-certifying name without relying on a trusted third party. Self-certifying names thus provide a decentralized form of data origin authentication. However, self-certifying names lack a binding with a corresponding real-world identity. Given the decentralized nature of a disaster scenario, a PKI-based approach for binding self-certifying names with real-world identities is not feasible. Instead, a Web of Trust can be used to provide this binding. Not only are the cryptographic signatures used within a Web of Trust independent of any central authority, but there are also technical means for making the inherent trust relationships of a Web of Trust available to network entities in a decentralized, 'offline' fashion, such that information received can be assessed based on these trust relationships. A concrete scheme for such an approach has been published in [Seedorf2014], in which concrete examples for fulfilling the use case 'Delivering Messages to Relatives/Friends' with this approach are also given.


5.2. Open Research Challenges
5.2. 開放研究の課題

The proposed solutions in Section 5.1 investigate how ICN approaches can, in principle, address some of the outlined challenges. However, several research challenges remain open and still need to be addressed. The following (incomplete) list summarizes some unanswered research questions and items that are being investigated by researchers:


* Evaluating the proposed mechanisms (and their scalability) in realistic, large-scale testbeds with actual, mature implementations (compared to simulations or emulations).

* 実際の成熟した実装(シミュレーションやエミュレーションと比較して)現実的で大規模なテストベッドで提案されたメカニズム(およびそのスケーラビリティ)を評価する。

* To specify, for each mechanism suggested, what would be the user equipment required or necessary before and after a disaster and to what extent ICN should be deployed in the network.

* 推奨される各メカニズムについて、災害の前後に必要なユーザー機器、およびICNをネットワーク内にどの程度展開する必要があるのかを指定する。

* How can DTN and ICN approaches be best used for an optimal overall combination of techniques?

* DTNおよびICNのアプローチは、テクニックの最適な全体的な組み合わせにどのように使用されるのでしょうか。

* How do data-centric encryption schemes scale and perform in large-scale, realistic evaluations?

* データ中心の暗号化方式のスケールと大規模で現実的な評価でどのようになりますか。

* Building and testing real (i.e., not early-stage prototypes) ICN data mules by means of implementation and integration with lower-layer hardware; conducting evaluations of decentralized forwarding schemes in real environments with these actual ICN data mules.

* 実装と低層ハードウェアとの実装と統合による実数(すなわち、早期のプロトタイプではない)ICNデータのMULE。実際の環境における分散転送方式の評価をこれらの実際のICNデータ・マルベルとの評価

* How to derive concrete, name-based policies allowing prioritized spreading of information.

* 情報の優先順位が優先される具体的な名前ベースのポリシーを導き出す方法。

* Further investigating, developing, and verifying of mechanisms that address energy efficiency requirements for communication after a disaster.

* 災害後の通信のためのエネルギー効率要件に対処するメカニズムのさらなる調査、開発、検証。

* How to properly disseminate authenticated object names to nodes (for decentralized integrity verification and authentication) before a disaster or how to retrieve new authenticated object names by nodes during a disaster.

* 災害時に認証されたオブジェクト名をノード(分散化された整合性検証と認証の場合)に適切に統合する方法、または災害時にノードで新しい認証されたオブジェクト名を取得する方法。

6. Security Considerations
6. セキュリティに関する考慮事項

This document does not define a new protocol (or protocol extension) or a particular mechanism; therefore, it introduces no specific new security considerations. General security considerations for ICN, which also apply when using ICN techniques to communicate after a disaster, are discussed in [RFC7945].


The after-disaster communication scenario, which is the focus of this document, raises particular attention to decentralized authentication, content integrity, and trust as key research challenges (as outlined in Section 3.1). The corresponding use cases and ICN-based research approaches discussed in this document thus imply certain security requirements. In particular, data origin authentication, data integrity, and access control are key requirements for many use cases in the aftermath of a disaster (see Section 4).


In principle, the kinds of disasters discussed in this document can happen as a result of a natural disaster, accident, or human error. However, intentional actions can also cause such a disaster (e.g., a terrorist attack, as mentioned in Section 2). In this case (i.e., intentionally caused disasters by attackers), special attention needs to be paid when re-enabling communications as temporary, somewhat unreliable communications with potential limited security features may be anticipated and abused by attackers (e.g., to circulate false messages to cause further intentional chaos among the human population, to leverage this less secure infrastructure to refine targeting, or to track the responses of security/police forces). Potential solutions on how to cope with intentionally caused disasters by attackers and on how to enable a secure communications infrastructure after an intentionally caused disaster are out of scope of this document.


The use of data-centric security schemes, such as 'Ciphertext-Policy Attribute Based Encryption' (as mentioned in Section 5.1), which encrypt the data itself (and not the communication channel), in principle, allows for the transmission of such encrypted data over an unsecured channel. However, metadata about the encrypted data being retrieved still arises. Such metadata may disclose sensitive information to a network-based attacker, even if such an attacker cannot decrypt the content itself.


This document has summarized research directions for addressing these challenges and requirements, such as efforts in data-centric confidentiality and access control, as well as recent works for decentralized authentication of messages in a disaster-struck networking infrastructure with nonfunctional routing links and limited communication capabilities (see Section 5).

この文書では、データ中心の機密保持やアクセス管理の取り組みなど、これらの課題や要件に対処するための研究指示と、不備的なルーティングリンクと限られた通信機能を備えた災害 - ストラックネットワーキングインフラストラクチャのメッセージの分散認証のための最近の作業(5を参照)。

7. Conclusion
7. 結論

This document has outlined some research directions for ICN with respect to applying ICN approaches for coping with natural or human-generated, large-scale disasters. The document has described high-level research challenges for enabling communication after a disaster has happened, as well as a general rationale why ICN approaches could be beneficial to address these challenges. Further, concrete use cases have been described and how these can be addressed with ICN-based approaches has been discussed.


Finally, this document provides an overview of examples of existing ICN-based solutions that address the previously outlined research challenges. These concrete solutions demonstrate that indeed the communication challenges in the aftermath of a disaster can be addressed with techniques that have ICN paradigms at their base, validating our overall reasoning. However, further, more-detailed challenges exist, and more research is necessary in all areas discussed: efficient content distribution and routing in fragmented networks, traffic prioritization, security, and energy efficiency. An incomplete, high-level list of such open research challenges has concluded the document.


In order to deploy ICN-based solutions for disaster-aftermath communication in actual mobile networks, standardized ICN baseline protocols are a must. It is unlikely to expect all user equipment in a large-scale mobile network to be from the same vendor. In this respect, the work being done in the IRTF ICNRG is very useful as it works toward standards for concrete ICN protocols that enable interoperability among solutions from different vendors. These protocols -- currently being developed in the IRTF ICNRG as Experimental specifications in the IRTF Stream -- provide a good foundation for deploying ICN-based, disaster-aftermath communication and thereby address key use cases that arise in such situations (as outlined in this document).

実際のモバイルネットワークでの災害後のAfterMath通信にICNベースのソリューションを展開するためには、標準化されたICNベースラインプロトコルが必須です。大規模なモバイルネットワークのすべてのユーザー機器が同じベンダーからなることを期待することはほとんどありません。この点で、IRTF ICNRGで行われている作業は、異なるベンダーからの解決策の間の相互運用性を可能にする具体的なICNプロトコルの標準に向けて機能するため、非常に役立ちます。IRTFストリームの実験仕様としてIRTF ICNRGで開発されているこれらのプロトコルは、ICNベースの災害後のAfdermath通信を展開するための良い基盤を提供し、それによってそのような状況で発生する鍵ユースケースに対処するための良い基盤を提供します(これで概説されているように)。資料)。

8. IANA Considerations
8. IANAの考慮事項

This document has no IANA actions.


9. References
9. 参考文献
9.1. Normative References
9.1. 引用文献

[RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol Specification", RFC 5050, DOI 10.17487/RFC5050, November 2007, <>.

[RFC5050] Scott、K.およびS.バーレイ、「バンドルプロトコル仕様」、RFC 5050、DOI 10.17487 / RFC5050、2007年11月、<>。

[RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B., Keranen, A., and P. Hallam-Baker, "Naming Things with Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013, <>.

[RFC6920] Farrell、S.、Kutscher、D.、Dannewitz、C.、Ohlman、B.、Keranen、A.、およびP.Hallam-Baker、「ハッシュ付きのもの」、RFC 6920、DOI 10.17487 / RFC6920、2013年4月、<>。

[RFC7476] Pentikousis, K., Ed., Ohlman, B., Corujo, D., Boggia, G., Tyson, G., Davies, E., Molinaro, A., and S. Eum, "Information-Centric Networking: Baseline Scenarios", RFC 7476, DOI 10.17487/RFC7476, March 2015, <>.

[RFC7476] Pentikousis、K。、ED。、Ohlman、B.、Corujo、D.、Boggia、G.、Tyson、G.、Davies、E.、Molinaro、A.、S. EUM、「情報中心」ネットワーキング:ベースラインシナリオ、RFC 7476、DOI 10.17487 / RFC7476、2015年3月、<>。

[RFC7945] Pentikousis, K., Ed., Ohlman, B., Davies, E., Spirou, S., and G. Boggia, "Information-Centric Networking: Evaluation and Security Considerations", RFC 7945, DOI 10.17487/RFC7945, September 2016, <>.

[RFC7945] Pentikousis、K。、ED。、Ohlman、B.、Davies、E.、Spirou、S.、およびG. Boggia、「情報中心のネットワーキング:評価とセキュリティ上の考慮事項」、RFC 7945、DOI 10.17487 / RFC79452016年9月、<>。

9.2. Informative References
9.2. 参考引用

[cellbroadcast] Wikipedia, "Cell Broadcast", August 2020, < index.php?title=Cell_Broadcast&oldid=972614007>.

[CellBroadcast] Wikipedia、 "Cell Broadcast"、2020年8月、< index.php?title = cell_broadcast&oldid = 972614007>。

[COPSS2011] Chen, J., Arumaithurai, M., Jiao, L., Fu, X., and K. Ramakrishnan, "COPSS: An Efficient Content Oriented Publish/Subscribe System", Seventh ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), DOI 10.1109/ANCS.2011.27, October 2011, <>.

[COPSS2011] Chen、J.、Arumaithurai、M.、Jiao、L.、FU、X.、およびK.Ramakrishnan、「警官:効率的なコンテンツ指向発行/購読システム」、ネットワーキングのためのアーキテクチャ上のACM / IEEEシンポジウムそして通信システム(ANCS)、DOI 10.1109 / ANCS.2011.27、2011年10月、<>。

[dtnrg] IRTF, "Delay-Tolerant Networking Research Group (DTNRG)", <>.

[DTNRG] IRTF、「遅延耐性ネットワーキング研究グループ(DTNRG)」、<>。

[dtnwg] IETF, "Delay/Disruption Tolerant Networking (dtn)", <>.

[DTNWG] IETF、「遅延/中断許容ネットワーキング(DTN)」、<>。

[Greifenberg2008] Greifenberg, J. and D. Kutscher, "Efficient Publish/ Subscribe-Based Multicast for Opportunistic Networking with Self-Organized Resource Utilization", Advanced Information Networking and Applications - Workshops, DOI 10.1109/WAINA.2008.255, March 2008, <>.

[Greifenberg2008] Greifenberg、J.およびD.Kutscher、「自己組織化されたリソース利用による日和見的ネットワーキングのための効率的な出版/購読/購読ベースのマルチキャスト」、高度な情報ネットワーキングおよびアプリケーション - ワークショップ、DOI 10.1109 / Waina 2008.255、2008年3月、<>。

[Gusev2015] Gusev, P. and J. Burke, "NDN-RTC: Real-Time Videoconferencing over Named Data Networking", 2nd ACM Conference on Information-Centric Networking (ICN), DOI 10.1145/2810156.2810176, September 2015, <>.

[GUSEV2015] GUSEV、P.およびJ.Burke、「NDN-RTC:名前付きデータネットワーキング上のリアルタイムビデオ会議」、2015年9月、2015年9月、<>。

[Psaras2014] Psaras, I., Saino, L., Arumaithurai, M., Ramakrishnan, K., and G. Pavlou, "Name-based replication priorities in disaster cases", IEEE Conference on Computer Communications Workshops, DOI 10.1109/INFCOMW.2014.6849271, April 2014, <>.

[PSARAS2014] PSARAS、I。、SAINO、L.、ARUMAITHURAI、M。、Ramakrishnan、K.、およびG. Pavlou、「災害時の名前ベースの複製優先事項」、IEEE Computer Communicationsワークショップ、DOI 10.1109 / INFCOMW2014年4月、<> .2014.6849271。

[Robitzsch2015] Robitzsch, S., Trossen, D., Theodorou, C., Barker, T., and A. Sathiaseel, "D2.1: Usage Scenarios and Requirements", H2020 project RIFE, public deliverable.

[RobitzSSCH2015] Robitzsch、S.、Trossen、D.、Theodorou、C.、Barker、T.、およびA.Shathiaseel、「D2.1:使用シナリオおよび要件」、H2020プロジェクトのRife、Public Delfaceable。

[Seedorf2014] Seedorf, J., Kutscher, D., and F. Schneider, "Decentralised binding of self-certifying names to real-world identities for assessment of third-party messages in fragmented mobile networks", IEEE Conference on Computer Communications Workshops, DOI 10.1109/INFCOMW.2014.6849268, April 2014, <>.

[Seedorf2014] Seedorf、J.、Kutscher、D.、およびF.Schneider、「断片化されたモバイルネットワークにおけるサードパーティのメッセージの評価の実世界のアイデンティティへの分散的なバインド」、コンピュータ通信ワークショップに関するIEEE会議、DOI 10.1109 / infcomw.2014.6849268、<>。

[Seedorf2016] Seedorf, J., Kutscher, D., and B. Gill, "Decentralised Interest Counter Aggregation for ICN in Disaster Scenarios", IEEE Globecom Workshops, DOI 10.1109/GLOCOMW.2016.7848869, December 2016, <>.

[Seedorf2016] Seedorf、J.、Kutscher、D.、およびB. Gill、「災害シナリオにおけるICNの分散利子」、IEEE Globecomワークショップ、DOI 10.1109 / GLOCOMW.7848869、2016年12月、<https:// / 10.1109 / glocomw.2016.7848869>。

[Sourlas2015] Sourlas, V., Tassiulas, L., Psaras, I., and G. Pavlou, "Information resilience through user-assisted caching in disruptive Content-Centric Networks", IFIP Networking Conference, DOI 10.1109/IFIPNetworking.2015.7145301, May 2015, <>.

[Sourlas2015] Sourlas、V.、Tassiulas、L.、Psaras、I.、およびG. Pavlou、「破壊的なコンテンツ中心のネットワークにおけるユーザー支援キャッシュによる情報回復力」、IFIPネットワーキング会議、DOI 10.1109 / ifipnetwork.2015.7145301、2015年5月、<>。

[Tagami2016] Tagami, A., Yagyu, T., Sugiyama, K., Arumaithurai, M., Nakamura, K., Hasegawa, T., Asami, T., and K. Ramakrishnan, "Name-based push/pull message dissemination for disaster message board", IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), DOI 10.1109/LANMAN.2016.7548855, June 2016, <>.

[Tagami2016]タガミ、A.、Yagyu、T.、杉山、K.、Arumaithurai、M.、Nakamura、K.、Hasegawa、T.、Asami、T.、K.Ramakrishnan、 "名前ベースのプッシュ/プル災害掲示板のためのメッセージ普及「Lanman)、Doi 10.1109 / Lanman.2016.7548855、<>。

[Trossen2015] Trossen, D., Reed, M., Riihijärvi, J., Georgiades, M., Fotiou, N., and G. Xylomenos, "IP over ICN - The better IP?", 2European Conference on Networks and Communications (EuCNC), DOI 10.1109/EuCNC.2015.7194109, June 2015, <>.

[TROSSEN2015]トロッセ、D.、Reed、M.、Riihijärvi、J.、Georgiades、M.、Fotiou、N.、およびG. Xylomenos、「IP over ICN - より良いIP?」、ネットワークおよびコミュニケーションに関する2 European会議(EUCNC)、DOI 10.1109 / EUCNC.2015.7194109、2015年6月、<>。

[Yoneki2007] Yoneki, E., Hui, P., Chan, S., and J. Crowcroft, "A socio-aware overlay for publish/subscribe communication in delay tolerant networks", Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, DOI 10.1145/1298126.1298166, October 2007, <>.

[YONEKI2007] YONEKI、E.、HUI、P.、CHAN、S、およびJ.Crowcroft、「遅延耐性ネットワークにおける発行/購読コミュニケーションのための社会認識オーバーレイ」、モデリング、分析に関する第10回ACMシンポジウムの手続きそして、無線およびモバイルシステムのシミュレーション、DOI 10.1145 / 1298126.1298166、<>。



The authors would like to thank Ioannis Psaras for useful comments. Also, the authors are grateful to Christopher Wood and Daniel Corujo for valuable feedback and suggestions on concrete text for improving the document. Further, the authors would like to thank Joerg Ott and Dirk Trossen for valuable comments and input, in particular, regarding existing work from the DTN community that is highly related to the ICN approaches suggested in this document. Also, Akbar Rahman provided useful comments and suggestions, in particular, regarding existing disaster warning mechanisms in today's mobile phone networks.

著者らは便利なコメントのためにIoannis Psarasに感謝したいと思います。また、文書を改良するための具体的なテキストに関する貴重なフィードバックと提案のために、著者の木やダニエルCorujoに感謝しています。さらに、著者らは、特にこの文書で示唆されているICNアプローチに非常に関連しているDTNコミュニティからの既存の作業に関して、貴重なコメントや入力のためにJoerg OTTとDirk Trossenに感謝します。また、Akbar Rahmanは、特に、今日の携帯電話ネットワークにおける既存の災害警告メカニズムに関して有用なコメントや提案を提供しました。

This document has been supported by the GreenICN project (GreenICN: Architecture and Applications of Green Information-Centric Networking), a research project supported jointly by the European Commission under its 7th Framework Program (contract no. 608518) and the National Institute of Information and Communications Technology (NICT) in Japan (contract no. 167). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the GreenICN project, the European Commission, or the NICT. More information is available at the project website:

この文書はGreenicnプロジェクト(Greenicn:Green Informature Networkingのアプリケーション)によってサポートされており、第7回のフレームワークプログラム(契約番号608518)および国立情報研究所の欧州委員会によって共同で支援された研究プロジェクト。日本の通信技術(NICT)(契約番号167)。本明細書に含まれる見解および結論は、著者のものであり、環境政策または承認、欧州委員会、欧州委員会、またはNICTのいずれかの公式政策または支持を表すと解釈されるべきではない。プロジェクトのウェブサイト:で詳細情報があります。

This document has also been supported by the Coordination Support Action entitled 'Supporting European Experts Presence in International Standardisation Activities in ICT' ( ( funded by the European Commission under the Horizon 2020 Programme with Grant Agreement no. 780439. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the European Commission.

この文書はまた、欧州委員会によって欧州委員会によって資金提供されている「ICT '(の「ヨーロッパの専門家の存在の存在を支援する」と題された調整支援行動によってサポートされています。付与契約番号。780439.ここに含まれる見解と結論は著者のものであり、欧州委員会の表明または黙示のいずれかの公式政策または支持を表すと解釈されるべきではありません。

Authors' Addresses


Jan Seedorf HFT Stuttgart - Univ. of Applied Sciences Schellingstrasse 24 70174 Stuttgart Germany

Jan Seidorf HFT Stuttgart - 大学。Schellingstrasse 24 70174 Stuttgartドイツの応用科学

   Phone: +49 711 8926 2801

Mayutan Arumaithurai University of Göttingen Goldschmidt Str. 7 37077 Göttingen Germany

マユータンアルマチュリ氏Goldschmidt str。7 37077Göttingenドイツ

   Phone: +49 551 39 172046

Atsushi Tagami KDDI Research Inc. 2-1-15 Ohara, Fujimino, Saitama 356-85025 Japan


   Phone: +81 49 278 73651

K. K. Ramakrishnan University of California Riverside, CA United States of America

K. K. Ramakrishnan大学カリフォルニア大学リバーサイド、アメリカ合衆国


Nicola Blefari Melazzi University Tor Vergata Via del Politecnico, 1 00133 Roma Italy

Nicola Blefari Melazzi University Tor Vergata Via del Politecnico、1 00133ローマイタリア

   Phone: +39 06 7259 7501