[要約] RFC 9128は、プロトコル非依存マルチキャスト(PIM)のためのYANGデータモデルを定義しています。この文書の目的は、ネットワーク機器でPIM設定と状態情報を標準化された形式で管理するためのフレームワークを提供することです。利用場面としては、マルチキャスト通信をサポートするネットワークの設定、監視、管理に適用されます。
Internet Engineering Task Force (IETF) X. Liu Request for Comments: 9128 IBM Corporation Category: Standards Track P. McAllister ISSN: 2070-1721 Metaswitch Networks A. Peter Individual M. Sivakumar Juniper Networks Y. Liu China Mobile F. Hu Individual Contributor October 2022
YANG Data Model for Protocol Independent Multicast (PIM)
プロトコル独立マルチキャスト(PIM)のYangデータモデル
Abstract
概要
This document defines a YANG data model that can be used to configure and manage devices supporting Protocol Independent Multicast (PIM). The model covers the PIM protocol configuration, operational state, and event notifications data.
このドキュメントでは、プロトコル独立マルチキャスト(PIM)をサポートするデバイスの構成と管理に使用できるYangデータモデルを定義します。このモデルは、PIMプロトコル構成、運用状態、およびイベント通知データをカバーします。
Status of This Memo
本文書の位置付け
This is an Internet Standards Track document.
これは、インターネット標準トラックドキュメントです。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
このドキュメントは、インターネットエンジニアリングタスクフォース(IETF)の製品です。IETFコミュニティのコンセンサスを表しています。公開レビューを受けており、インターネットエンジニアリングステアリンググループ(IESG)からの出版が承認されています。インターネット標準の詳細については、RFC 7841のセクション2で入手できます。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9128.
このドキュメントの現在のステータス、任意のERRATA、およびそのフィードバックを提供する方法に関する情報は、https://www.rfc-editor.org/info/rfc9128で取得できます。
Copyright Notice
著作権表示
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
著作権(c)2022 IETF Trustおよび文書著者として特定された人。全著作権所有。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.
このドキュメントは、BCP 78およびIETFドキュメント(https://trustee.ietf.org/license-info)に関連するIETF Trustの法的規定の対象となります。この文書に関するあなたの権利と制限を説明するので、これらの文書を注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、セクション4.Eで説明されている法的規定のセクション4.Eで説明されており、修正されたBSDライセンスで説明されているように保証なしで提供される修正されたBSDライセンステキストを含める必要があります。
Table of Contents
目次
1. Introduction 1.1. Terminology 1.2. Tree Diagrams 1.3. Prefixes in Data Node Names 2. Design of Data Model 2.1. Scope of Model 2.2. Optional Capabilities 2.3. Datastore Applicability 2.4. Module and Hierarchy Organization 2.5. Position of Address Family in Hierarchy 3. Module Structure 3.1. PIM Base Module 3.1.1. High-Level Structure 3.1.2. Global Data 3.1.3. Per-Address-Family Data 3.1.4. PIM Interface Modeling 3.1.5. Neighbor Modeling 3.1.6. Notifications 3.2. PIM RP Module 3.2.1. Static RPs 3.2.2. BSRs 3.2.3. RP State Data 3.2.4. RP-to-Group Mappings 3.2.5. Notifications 3.3. PIM-SM Module 3.4. PIM-DM Module 3.5. BIDIR-PIM Module 4. Complete Tree Structure 4.1. PIM Base Module 4.2. PIM RP Module 4.3. PIM-SM Module 4.4. PIM-DM Module 4.5. BIDIR-PIM Module 5. Relationship to the PIM-STD-MIB 5.1. pimInterfaceTable 5.2. pimNeighborTable 5.3. pimStarGTable 5.4. pimSGTable 5.5. pimSGRptTable 5.6. pimBidirDFElectionTable 5.7. pimStaticRPTable 5.8. pimAnycastRPSetTable 5.9. pimGroupMappingTable 6. PIM YANG Modules 6.1. PIM Base Module 6.2. PIM RP Module 6.3. PIM-SM Module 6.4. PIM-DM Module 6.5. BIDIR-PIM Module 7. Security Considerations 8. IANA Considerations 9. References 9.1. Normative References 9.2. Informative References Appendix A. Data Tree Example Acknowledgments Authors' Addresses
YANG [RFC7950] is a data modeling language that was introduced to model the configuration and operational state of a device managed using network management protocols such as the Network Configuration Protocol (NETCONF) [RFC6241] or RESTCONF [RFC8040]. YANG is now also being used as a component of other management interfaces, such as command-line interfaces (CLIs).
Yang [RFC7950]は、ネットワーク構成プロトコル(NetConf)[RFC6241]やRestConf [RFC8040]などのネットワーク管理プロトコルを使用して管理されたデバイスの構成と動作状態をモデル化するために導入されたデータモデリング言語です。Yangは現在、コマンドラインインターフェイス(CLI)など、他の管理インターフェイスのコンポーネントとしても使用されています。
This document defines a YANG data model that can be used to configure and manage devices supporting Protocol Independent Multicast (PIM). This model supports the core PIM protocol, as well as many other features; see Section 2.1. Non-core features are defined as optional in the provided data model.
このドキュメントでは、プロトコル独立マルチキャスト(PIM)をサポートするデバイスの構成と管理に使用できるYangデータモデルを定義します。このモデルは、コアPIMプロトコルと他の多くの機能をサポートしています。セクション2.1を参照してください。非コア機能は、提供されたデータモデルでオプションとして定義されます。
The terminology for describing YANG data models is found in [RFC7950].
Yangデータモデルを記述するための用語は[RFC7950]にあります。
The following abbreviations are used in this document and the defined model:
次の略語は、このドキュメントと定義されたモデルで使用されています。
ASM: Any-Source Multicast service model [RFC3569] [RFC4607]
ASM:任意のソースマルチキャストサービスモデル[RFC3569] [RFC4607]
BFD: Bidirectional Forwarding Detection [RFC5880]
BFD:双方向転送検出[RFC5880]
BIDIR-PIM: Protocol Independent Multicast - Bidirectional Mode [RFC5015]
Bidir -PIM:プロトコル独立マルチキャスト - 双方向モード[RFC5015]
BSR: Bootstrap Router [RFC5059]
BSR:ブートストラップルーター[RFC5059]
DF: Designated Forwarder [RFC5015]
DF:指定されたフォワーダー[RFC5015]
DR: Designated Router [RFC7761]
DR:指定ルーター[RFC7761]
IGMP: Internet Group Management Protocol [RFC3376]
IGMP:インターネットグループ管理プロトコル[RFC3376]
MLD: Multicast Listener Discovery [RFC3810]
MLD:マルチキャストリスナーディスカバリー[RFC3810]
mLDP: Multipoint extensions for LDP [RFC6388]
MLDP:LDPのマルチポイントエクステンション[RFC6388]
MRIB: Multicast Routing Information Base [RFC3973] [RFC5015] [RFC7761]
MRIB:マルチキャストルーティング情報ベース[RFC3973] [RFC5015] [RFC7761]
MSDP: Multicast Source Discovery Protocol [RFC3618]
MSDP:マルチキャストソースディスカバリープロトコル[RFC3618]
mVPN: Multicast VPN
MVPN:マルチキャストVPN
PIM: Protocol Independent Multicast [RFC3973] [RFC5015] [RFC7761]
PIM:プロトコル独立マルチキャスト[RFC3973] [RFC5015] [RFC7761]
PIM-DM: Protocol Independent Multicast - Dense Mode [RFC3973]
PIM -DM:Protocol Independent Multicast -dense Mode [RFC3973]
PIM-SM: Protocol Independent Multicast - Sparse Mode [RFC7761]
PIM -SM:Protocol Independent Multicast -Sparse Mode [RFC7761]
RP: Rendezvous Point [RFC7761]
RP:Rendezvous Point [RFC7761]
RPA: Rendezvous Point Address [RFC5015]
RPA:ランデブーポイントアドレス[RFC5015]
RPF: Reverse Path Forwarding [RFC3973] [RFC5015] [RFC7761]
RPF:リバースパス転送[RFC3973] [RFC5015] [RFC7761]
RPT: Rendezvous Point Tree [RFC7761]
RPT:Rendezvous Point Tree [RFC7761]
SPT: Shortest Path Tree [RFC7761]
SPT:最短パスツリー[RFC7761]
SSM: Source-Specific Multicast service model [RFC3569] [RFC4607]
SSM:ソース固有のマルチキャストサービスモデル[RFC3569] [RFC4607]
VRF: Virtual Routing and Forwarding
VRF:仮想ルーティングと転送
Tree diagrams used in this document follow the notation defined in [RFC8340].
このドキュメントで使用されているツリー図は、[RFC8340]で定義されている表記に従います。
In addition, the following notation is used as a placeholder at the location of the name of a tree node, to represent a section of nodes:
さらに、次の表記は、ノードのセクションを表すために、ツリーノードの名前の場所でプレースホルダーとして使用されます。
<summary description of a section of nodes>
<ノードのセクションの要約説明>
In this document, names of data nodes, actions, and other data model objects are often used without a prefix, as long as the context clearly indicates the YANG module in which each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1.
このドキュメントでは、コンテキストが各名前が定義されているYangモジュールを明確に示している限り、データノード、アクション、およびその他のデータモデルオブジェクトの名前はプレフィックスなしでよく使用されます。それ以外の場合、表1に示すように、対応するYangモジュールに関連付けられた標準のプレフィックスを使用して名前が付けられます。
+===========+====================+===========+ | Prefix | YANG Module | Reference | +===========+====================+===========+ | yang | ietf-yang-types | [RFC6991] | +-----------+--------------------+-----------+ | inet | ietf-inet-types | [RFC6991] | +-----------+--------------------+-----------+ | if | ietf-interfaces | [RFC8343] | +-----------+--------------------+-----------+ | rt | ietf-routing | [RFC8349] | +-----------+--------------------+-----------+ | rt-types | ietf-routing-types | [RFC8294] | +-----------+--------------------+-----------+ | bfd-types | ietf-bfd-types | [RFC9314] | +-----------+--------------------+-----------+
Table 1: Prefixes and Corresponding YANG Modules
表1:プレフィックスと対応するヤンモジュール
The model covers PIM Sparse Mode [RFC7761] (including the Source-Specific subset [RFC3569] [RFC4607]), Dense Mode [RFC3973], and Bidirectional PIM [RFC5015].
このモデルは、PIMスパースモード[RFC7761](ソース固有のサブセット[RFC3569] [RFC4607]を含む)、密度モード[RFC3973]、および双方向PIM [RFC5015]をカバーしています。
The PIM extensions represented in the model include BSRs [RFC5059] and Anycast-RPs [RFC4610].
モデルに表されるPIM拡張機能には、BSRS [RFC5059]およびANYCAST-RPS [RFC4610]が含まれます。
The data model can be used to configure and manage these protocol features. The operational state data and statistics can be retrieved by this model. The protocol-specific notifications are also defined in the model.
データモデルを使用して、これらのプロトコル機能を構成および管理できます。このモデルでは、運用状態のデータと統計を取得できます。プロトコル固有の通知もモデルで定義されています。
This model does not cover other multicast protocols such as IGMP/MLD, MSDP, mVPN, or mLDP in-band signaling. It does not cover any configuration required to generate the MRIB. These will be specified in separate documents.
このモデルは、IGMP/MLD、MSDP、MVPN、またはMLDPインバンドシグナル伝達などの他のマルチキャストプロトコルをカバーしていません。MRIBを生成するために必要な構成をカバーしません。これらは別々のドキュメントで指定されます。
This model is designed to represent the capabilities of devices supporting PIM with various specifications, including some with basic subsets of the PIM protocol. The main design goals of this document are that any major currently existing implementation may be said to support the base model and that the configuration of all implementations meeting the specification is easy to express through some combination of the features in the base model and simple vendor augmentations.
このモデルは、PIMプロトコルの基本的なサブセットを含むさまざまな仕様でPIMをサポートするデバイスの機能を表すように設計されています。このドキュメントの主な設計目標は、現在既存の主要な実装が基本モデルをサポートすると言われている可能性があり、仕様を満たすすべての実装の構成は、ベースモデルの機能と単純なベンダーの増強の何らかの組み合わせを通じて簡単に表現できることです。。
There is also value in widely supported features being standardized, to save work for individual vendors, and so that mapping between different vendors' configurations is not needlessly complicated. Therefore, these modules declare a number of features representing capabilities that not all deployed devices support.
また、個々のベンダーの作業を節約するために、広くサポートされている機能には標準化されている機能にも価値があり、さまざまなベンダーの構成をマッピングすることは不必要に複雑ではありません。したがって、これらのモジュールは、すべての展開されたデバイスがサポートされていない機能を表す多くの機能を宣言します。
The extensive use of feature declarations should also substantially simplify the capability negotiation process for a vendor's PIM implementation.
機能宣言の広範な使用は、ベンダーのPIM実装の能力交渉プロセスを大幅に簡素化する必要があります。
On the other hand, operational state parameters are not so widely designated as features, as there are many cases where the defaulting of an operational state parameter would not cause any harm to the system, and it is much more likely that an implementation without intrinsic support for a piece of operational state would be able to derive a suitable value for a state variable that is not intrinsically supported.
一方、運用状態パラメーターは機能としてそれほど広く指定されていません。動作状態パラメーターのデフォルトがシステムに害を及ぼさない場合が多く、本質的なサポートなしの実装が可能性が高くなる可能性がはるかに高い運用状態の一部は、本質的にサポートされていない状態変数に適した値を導き出すことができます。
For the same reason, wide constant ranges (for example, timer maxima and minima) are used in the model. It is expected that vendors will augment the model with any specific extensions and restrictions needed to adapt it to their vendor-specific implementations.
同じ理由で、モデルでは広い定数(たとえば、タイマーの最大値と最小値など)が使用されています。ベンダーは、ベンダー固有の実装に適応するために必要な特定の拡張と制限でモデルを強化することが期待されます。
This model conforms to the Network Management Datastore Architecture (NMDA) [RFC8342]. The operational state data is combined with the associated configuration data in the same hierarchy [RFC8407].
このモデルは、ネットワーク管理データストアアーキテクチャ(NMDA)[RFC8342]に準拠しています。動作状態データは、同じ階層[RFC8407]の関連する構成データと組み合わされます。
This model defines several separate modules for modeling PIM configuration. Again, this separation makes it easier to express the specific capabilities of a PIM device. The module organization, along with the usage of the YANG extensible features such as identity, allows the model to be easily augmented for new capabilities.
このモデルは、PIM構成をモデリングするためのいくつかの個別のモジュールを定義します。繰り返しますが、この分離により、PIMデバイスの特定の機能を簡単に表現できます。モジュール組織は、アイデンティティなどのヤンの拡張可能な機能の使用とともに、新しい機能のためにモデルを簡単に増強できるようにします。
The hierarchy of PIM configuration is designed so that objects that are only relevant for one situation or feature are collected in a container for that feature. For example, a configuration for PIM-SM that is not relevant for an SSM-only implementation is collected in an ASM container.
PIM構成の階層は、1つの状況または機能にのみ関連するオブジェクトが、その機能のコンテナで収集されるように設計されています。たとえば、SSMのみの実装に関連しないPIM-SMの構成は、ASMコンテナで収集されます。
Where fields are not genuinely essential to protocol operation, they are marked as optional. Some fields are essential but have a default specified, so they need not be explicitly configured.
フィールドがプロトコル操作に本当に不可欠ではない場合、それらはオプションとしてマークされています。一部のフィールドは不可欠ですが、デフォルトが指定されているため、明示的に構成する必要はありません。
This module structure also applies, where applicable, to the operational state and notifications of the model.
このモジュール構造は、該当する場合、モデルの運用状態と通知にも適用されます。
This document contains "address-family" as a node in the hierarchy multiple times: under both the interface list and the PIM instance.
このドキュメントには、インターフェイスリストとPIMインスタンスの両方の下で、階層のノードとしての「アドレスファミリー」が含まれています。
The reasoning for this is to make it easier for implementations in which configuration options are not supported for specific address families.
この理由は、特定のアドレスファミリに対して構成オプションがサポートされていない実装を容易にすることです。
For these implementations, the restriction that interface configuration must be address-family independent may be expressed either (1) as a vendor augmentation of an address-family-independent parameter above the address-family level or (2) by a constraint on the base model objects of a form similar to the following:
これらの実装では、インターフェイス構成である必要があるという制限は、アドレスファミリーレベルを超える住所と家族に依存しないパラメーターのベンダー増強として、または(2)ベースの制約により(1)いずれかのいずれかを表すことができます。次のようなフォームのモデルオブジェクト:
deviation "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:interfaces/pim-base:interface/" + "pim-base:address-family" {
deviate add { must "(address-family = 'rt:ipv4' and dr-priority = " + "../address-family[address-family = 'rt:ipv6']/" + "dr-priority) or " + "(address-family = 'rt:ipv6' and dr-priority = " + "../address-family[address-family = 'rt:ipv4']/" + "dr-priority)" { error-message "Error: The IPv6 DR priority must match the " + "IPv4 DR priority."; error-app-tag "dr-priority-mismatch"; } } }
The PIM base module defines the base framework not specific to any PIM mode and is imported by the other modules. The base module by itself does not provide sufficient data for any PIM mode to operate. Other mode-specific and feature-specific modules need to be implemented in addition to this module, depending on the feature set required by the implementation.
PIMベースモジュールは、PIMモードに固有ではないベースフレームワークを定義し、他のモジュールによってインポートされます。ベースモジュール自体は、PIMモードが動作するのに十分なデータを提供しません。実装に必要な機能セットに応じて、このモジュールに加えて、他のモード固有および機能固有のモジュールを実装する必要があります。
This model augments the core routing data model "ietf-routing" specified in [RFC8349]. The PIM base model augments "/rt:routing/ rt:control-plane-protocols" as opposed to augmenting "/rt:routing/ rt:control-plane-protocols/rt:control-plane-protocol", as the latter would allow multiple protocol instances, while the PIM protocol is designed to be enabled or disabled as a single protocol instance on a network instance or a logical network element.
このモデルは、[RFC8349]で指定されたコアルーティングデータモデル「IETF-routing」を強化します。PIMベースモデルは、「/rt:ルーティング/RT:コントロールプレーンプロトコル」を増強するのではなく、「コントロールプレーンプロトコル」を増強します。PIMプロトコルは、ネットワークインスタンスまたは論理ネットワーク要素で単一のプロトコルインスタンスとして有効または無効になるように設計されている間、複数のプロトコルインスタンスを許可します。
The high-level structure of the model is shown below:
モデルの高レベル構造を以下に示します。
module: ietf-pim-base augment /rt:routing/rt:control-plane-protocols: +--rw pim! +--rw <global configuration> +--ro <global operational state> +--rw address-family* [address-family] | +--rw address-family identityref | +--rw <per-address-family configuration> | +--ro <per-address-family operational state> +--rw interfaces +--rw interface* [name] +--rw name if:interface-ref +--rw address-family* [address-family] +--rw address-family identityref +--rw <per interface configuration> +--ro <per interface operational state> +--ro neighbors +--ro ipv4-neighbor* [address] | +--ro address inet:ipv4-address | +--ro <IPv4 per-neighbor operational state> +--ro ipv6-neighbor* [address] +--ro address inet:ipv6-address +--ro <IPv4 per-neighbor operational state>
The presence of the top-level container "pim" enables the PIM protocols.
トップレベルのコンテナ「PIM」の存在により、PIMプロトコルが可能になります。
The global configuration data and operational state data cover support for graceful restart in the PIM base model. Additional features can be added by augmentation if required by an implementation.
グローバルな構成データと運用状態データは、PIMベースモデルの優雅な再起動のサポートをカバーしています。実装で要求されれば、増強によって追加機能を追加できます。
Support for per-address-family data is shown below:
アドレス農家ごとのデータのサポートを以下に示します。
+--rw pim! +--rw address-family* [address-family] | +--rw address-family identityref | +--rw graceful-restart ... | +--ro statistics | | +--ro discontinuity-time? yang:date-and-time | | +--ro error | | | +--ro assert? yang:counter32 ... | | +--ro queue | | | +--ro size? uint32 | | | +--ro overflow? yang:counter32 | | +--ro received | | | +--ro assert? yang:counter32 ... | | +--ro sent | | +--ro assert? yang:counter32 ... | +--ro topology-tree-info | | +--ro ipv4-route* [group source-address is-rpt] | | | +--ro group | | | | rt-types:ipv4-multicast-group-address | | | +--ro source-address | | | | rt-types:ipv4-multicast-source-address | | | +--ro is-rpt boolean | | +--ro ipv6-route* [group source-address is-rpt]
| | +--ro group | | | rt-types:ipv6-multicast-group-address | | +--ro source-address | | | rt-types:ipv6-multicast-source-address | | +--ro is-rpt boolean ... | | +--ro incoming-interface? if:interface-ref ... | | +--ro outgoing-interface* [name] | | +--ro name if:interface-ref | | +--ro expiration? rt-types:timer-value-seconds16 | | +--ro up-time? rt-types:timeticks64 | | +--ro jp-state? enumeration
This is the location that most of the PIM RP module (ietf-pim-rp) augments. Each of the mode-specific modules also augments this schema tree.
これは、PIM RPモジュール(IETF-PIM-RP)のほとんどが拡張する場所です。各モード固有のモジュールは、このスキーマツリーも拡張します。
The configuration data and operational state data of PIM interfaces are modeled as shown below:
PIMインターフェイスの構成データと動作状態データは、以下に示すようにモデル化されています。
+--rw pim! +--rw interfaces +--rw interface* [name] +--rw name if:interface-ref +--rw address-family* [address-family] +--rw address-family identityref +--rw bfd {bfd}? ... +--rw dr-priority? uint32 {intf-dr-priority}? +--rw hello-interval? rt-types:timer-value-seconds16 | {intf-hello-interval}? +--rw (hello-holdtime-or-multiplier)? | +--:(holdtime) {intf-hello-holdtime}? | | +--rw hello-holdtime? | | rt-types:timer-value-seconds16 | +--:(multiplier) {intf-hello-multiplier}? | +--rw hello-multiplier? | rt-types:timer-multiplier +--rw jp-interval? rt-types:timer-value-seconds16 | {intf-jp-interval}? +--rw (jp-holdtime-or-multiplier)? | +--:(holdtime) {intf-jp-holdtime}? | | +--rw jp-holdtime? | | rt-types:timer-value-seconds16 | +--:(multiplier) {intf-jp-multiplier}? | +--rw jp-multiplier? | rt-types:timer-multiplier +--rw override-interval? uint16 | {intf-override-interval}? +--rw propagation-delay? uint16 | {intf-propagation-delay}? +--ro oper-status? enumeration +--ro gen-id? uint32 +--ro hello-expiration? rt-types:timer-value-seconds16 +--ro ipv4 | +--ro address* inet:ipv4-address | +--ro dr-address? inet:ipv4-address +--ro ipv6 | +--ro address* inet:ipv6-address | +--ro dr-address? inet:ipv6-address
Support for BFD client configuration is achieved by using a grouping provided by an external module, "ietf-bfd-types", as defined in [RFC9314].
[RFC9314]で定義されているように、BFDクライアント構成のサポートは、外部モジュール「IETF-BFDタイプ」によって提供されるグループ化を使用して達成されます。
For each PIM interface, there can be a list of neighbors that contains operational state data for each neighbor. To model such data, the following structure is specified:
各PIMインターフェイスについて、各近隣の動作状態データを含む近隣のリストがあります。このようなデータをモデル化するには、次の構造が指定されています。
+--rw pim! +--rw interfaces +--rw interface* [name] +--rw address-family* [address-family] +--ro neighbors +--ro ipv4-neighbor* [address] | +--ro address inet:ipv4-address | +--ro bfd-status? enumeration | +--ro expiration? | | rt-types:timer-value-seconds16 | +--ro dr-priority? uint32 | +--ro gen-id? uint32 | +--ro lan-prune-delay | | +--ro present? boolean | | +--ro override-interval? uint16 | | +--ro propagation-delay? uint16 | | +--ro t-bit? boolean | +--ro up-time? rt-types:timeticks64 +--ro ipv6-neighbor* [address] +--ro address inet:ipv6-address +--ro bfd-status? enumeration +--ro expiration? | rt-types:timer-value-seconds16 +--ro dr-priority? uint32 +--ro gen-id? uint32 +--ro lan-prune-delay | +--ro present? boolean | +--ro override-interval? uint16 | +--ro propagation-delay? uint16 | +--ro t-bit? boolean +--ro up-time? rt-types:timeticks64
The PIM base module also defines the notifications for PIM interface and neighbor events, as shown below:
PIMベースモジュールは、以下に示すように、PIMインターフェイスと隣接イベントの通知も定義しています。
notifications: +---n pim-neighbor-event | +--ro event-type? neighbor-event-type | +--ro interface-ref? leafref | +--ro interface-af-ref? leafref | +--ro neighbor-ipv4-ref? leafref | +--ro neighbor-ipv6-ref? leafref | +--ro up-time? rt-types:timeticks64 +---n pim-interface-event +--ro event-type? interface-event-type +--ro interface-ref? leafref +--ro ipv4 | +--ro address* inet:ipv4-address | +--ro dr-address? inet:ipv4-address +--ro ipv6 +--ro address* inet:ipv6-address +--ro dr-address? inet:ipv6-address
The PIM RP module augments the PIM base module to define the configuration and operational state information scoped to RP-related features:
PIM RPモジュールは、PIMベースモジュールを拡張して、RP関連の機能にスコープされた構成と動作状態情報を定義します。
module: ietf-pim-rp augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family: +--rw rp +--rw static-rp ... +--rw bsr {bsr}? ... +--ro rp-list ... +--ro rp-mappings ...
This module is shared by PIM-SM and BIDIR-PIM mode but is not shared by PIM-DM. The PIM-SM module and the BIDIR-PIM module augment this module to cover mode-specific data.
このモジュールは、PIM-SMおよびBidir-PIMモードで共有されますが、PIM-DMで共有されていません。PIM-SMモジュールとBidir-PIMモジュールは、このモジュールを補強してモード固有のデータをカバーします。
The following sections describe the features and capabilities covered in this module.
次のセクションでは、このモジュールで説明されている機能と機能について説明します。
Static RPs can be configured by using the following portion of the module:
静的RPSは、モジュールの次の部分を使用して構成できます。
+--rw rp +--rw static-rp | +--rw ipv4-rp* [rp-address] | | +--rw rp-address inet:ipv4-address | +--rw ipv6-rp* [rp-address] | +--rw rp-address inet:ipv6-address
Support for BSRs includes both configuration data and operational state data, as shown below:
BSRのサポートには、以下に示すように、構成データと運用状態データの両方が含まれています。
+--rw rp +--rw bsr {bsr}? | +--rw bsr-candidate! | | +--rw (interface-or-address)? | | | +--:(interface) {candidate-interface}? | | | | +--rw interface if:interface-ref | | | +--:(ipv4-address) {candidate-ipv4}? | | | | +--rw ipv4-address inet:ipv4-address | | | +--:(ipv6-address) {candidate-ipv6}? | | | +--rw ipv6-address inet:ipv6-address | | +--rw hash-mask-length uint8 | | +--rw priority? uint8 | +--rw rp-candidate | | +--rw interface* [name] {candidate-interface}? | | | +--rw name if:interface-ref | | | +--rw policy-name? string | | | +--rw mode? identityref | | +--rw ipv4-address* [address] {candidate-ipv4}? | | | +--rw address inet:ipv4-address | | | +--rw policy-name? string | | | +--rw mode? identityref | | +--rw ipv6-address* [address] {candidate-ipv6}? | | +--rw address inet:ipv6-address | | +--rw policy-name? string | | +--rw mode? identityref | +--ro bsr | | +--ro address? inet:ip-address | | +--ro hash-mask-length? uint8 | | +--ro priority? uint8 | | +--ro up-time? rt-types:timeticks64 | +--ro (election-state)? {bsr-election-state}? | | +--:(candidate) | | | +--ro candidate-bsr-state? enumeration | | +--:(non-candidate) | | +--ro non-candidate-bsr-state? enumeration | +--ro bsr-next-bootstrap? uint16 | +--ro rp | | +--ro rp-address? inet:ip-address | | +--ro policy-name? string | | +--ro up-time? rt-types:timeticks64 | +--ro rp-candidate-next-advertisement? uint16
This portion of the model provides the operational state information for all RPs on the router, including the statically configured RPs and the BSR-elected RPs.
モデルのこの部分は、静的に構成されたRPSおよびBSR選択RPを含む、ルーター上のすべてのRPSの動作状態情報を提供します。
+--rw rp +--ro rp-list | +--ro ipv4-rp* [rp-address mode] | | +--ro rp-address inet:ipv4-address | | +--ro mode identityref | | +--ro info-source-address? inet:ipv4-address | | +--ro info-source-type? identityref | | +--ro up-time? rt-types:timeticks64 | | +--ro expiration? rt-types:timer-value-seconds16 | +--ro ipv6-rp* [rp-address mode] | +--ro rp-address inet:ipv6-address | +--ro mode identityref | +--ro info-source-address? inet:ipv6-address | +--ro info-source-type? identityref | +--ro up-time? rt-types:timeticks64 | +--ro expiration? rt-types:timer-value-seconds16
The operational state data of the mappings between RPs and multicast groups is modeled as follows:
RPSグループとマルチキャストグループ間のマッピングの運用状態データは、次のようにモデル化されています。
+--rw rp +--ro rp-mappings +--ro ipv4-rp* [group rp-address] | +--ro group inet:ipv4-prefix | +--ro rp-address inet:ipv4-address | +--ro up-time? rt-types:timeticks64 | +--ro expiration? rt-types:timer-value-seconds16 +--ro ipv6-rp* [group rp-address] +--ro group inet:ipv6-prefix +--ro rp-address inet:ipv6-address +--ro up-time? rt-types:timeticks64 +--ro expiration? rt-types:timer-value-seconds16
The PIM RP module also defines the notifications for RP-related events, as shown below:
PIM RPモジュールは、以下に示すように、RP関連イベントの通知も定義しています。
notifications: +---n pim-rp-event +--ro event-type? rp-event-type +--ro instance-af-ref? leafref +--ro group? rt-types:ip-multicast-group-address +--ro rp-address? inet:ip-address +--ro is-rpt? boolean +--ro mode? pim-base:pim-mode +--ro message-origin? inet:ip-address
The PIM-SM module covers Sparse Mode modeling, including PIM Any-Source Multicast (PIM-ASM) and PIM Source-Specific Multicast (PIM-SSM). This module has dependencies on the PIM base module and the PIM RP module, both of which are augmented by this module.
PIM-SMモジュールは、PIM Any-Sourceマルチキャスト(PIM-ASM)およびPIMソース固有のマルチキャスト(PIM-SSM)を含む、スパースモードモデリングをカバーしています。このモジュールには、PIMベースモジュールとPIM RPモジュールに依存関係があり、どちらもこのモジュールによって増強されます。
The augmentation to the "address-family" branch of the PIM base module is shown below:
PIMベースモジュールの「アドレスファミリー」ブランチへの増強を以下に示します。
module: ietf-pim-sm augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family: +--rw sm +--rw asm | +--rw anycast-rp! | | +--rw ipv4-anycast-rp* [anycast-address rp-address] | | | +--rw anycast-address inet:ipv4-address | | | +--rw rp-address inet:ipv4-address | | +--rw ipv6-anycast-rp* [anycast-address rp-address] | | +--rw anycast-address inet:ipv6-address | | +--rw rp-address inet:ipv6-address | +--rw spt-switch | +--rw infinity! {spt-switch-infinity}? | +--rw policy-name? string {spt-switch-policy}? +--rw ssm! +--rw range-policy? string
To support PIM-SM on an interface, this module augments the "interface" branch of the PIM base module, as follows:
インターフェイスでPIM-SMをサポートするために、このモジュールは、次のように、PIMベースモジュールの「インターフェイス」ブランチを補強します。
module: ietf-pim-sm augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:interfaces/pim-base:interface/pim-base:address-family: +--rw sm! +--rw passive? empty
This module also augments the PIM RP module to allow an RP to be configured in PIM-SM:
このモジュールは、PIM RPモジュールを拡張して、RPをPIM-SMで構成できるようにします。
module: ietf-pim-sm augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family/pim-rp:rp/pim-rp:static-rp/pim-rp:ipv4-rp: +--rw sm! +--rw policy-name? string +--rw override? boolean {static-rp-override}? augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family/pim-rp:rp/pim-rp:static-rp/pim-rp:ipv6-rp: +--rw sm! +--rw policy-name? string +--rw override? boolean {static-rp-override}?
The PIM-DM module covers Dense Mode modeling. This module augments the PIM base module, but it has no dependency on the PIM RP module.
PIM-DMモジュールは、密なモードモデリングをカバーしています。このモジュールはPIMベースモジュールを補強しますが、PIM RPモジュールに依存していません。
module: ietf-pim-dm augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family: +--rw dm! augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:interfaces/pim-base:interface /pim-base:address-family: +--rw dm!
The BIDIR-PIM module covers Bidirectional PIM modeling. Like PIM-SM, this module augments both the PIM base module and the PIM RP module.
Bidir-PIMモジュールは、双方向PIMモデリングをカバーしています。PIM-SMと同様に、このモジュールはPIMベースモジュールとPIM RPモジュールの両方を強化します。
The augmentations to the PIM base module, on the "address-family", "interface", and "neighbor" branches, are as follows:
「住所と家族」、「インターフェイス」、および「隣接」ブランチのPIMベースモジュールへの増強は、次のとおりです。
module: ietf-pim-bidir augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family: +--rw bidir!
augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:interfaces/pim-base:interface/pim-base:address-family: +--rw bidir! +--rw df-election {intf-df-election}? +--rw offer-interval? uint16 +--rw backoff-interval? uint16 +--rw offer-multiplier? uint8
augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:interfaces/pim-base:interface/pim-base:address-family /pim-base:neighbors/pim-base:ipv4-neighbor: +--ro bidir-capable? boolean
augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:interfaces/pim-base:interface/pim-base:address-family /pim-base:neighbors/pim-base:ipv6-neighbor: +--ro bidir-capable? boolean
This module also augments the PIM RP module to extend the capabilities of RPs for BIDIR-PIM mode:
このモジュールは、PIM RPモジュールを拡張して、Bidir-PIMモードのRPSの機能を拡張します。
module: ietf-pim-bidir augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family/pim-rp:rp/pim-rp:static-rp/pim-rp:ipv4-rp: +--rw bidir! +--rw policy-name? string +--rw override? boolean {static-rp-override}?
augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family/pim-rp:rp/pim-rp:static-rp/pim-rp:ipv6-rp: +--rw bidir! +--rw policy-name? string +--rw override? boolean {static-rp-override}?
augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family/pim-rp:rp: +--ro bidir +--ro df-election | +--ro ipv4-rp* [rp-address] | | +--ro rp-address inet:ipv4-address | +--ro ipv6-rp* [rp-address] | +--ro rp-address inet:ipv6-address +--ro interface-df-election +--ro ipv4-rp* [rp-address interface-name] | +--ro rp-address inet:ipv4-address | +--ro interface-name if:interface-ref | +--ro df-address? inet:ipv4-address | +--ro interface-state? identityref | +--ro up-time? rt-types:timeticks64 | +--ro winner-metric? uint32 | +--ro winner-metric-preference? uint32 +--ro ipv6-rp* [rp-address interface-name] +--ro rp-address inet:ipv6-address +--ro interface-name if:interface-ref +--ro df-address? inet:ipv6-address +--ro interface-state? identityref +--ro up-time? rt-types:timeticks64 +--ro winner-metric? uint32 +--ro winner-metric-preference? uint32
module: ietf-pim-base augment /rt:routing/rt:control-plane-protocols: +--rw pim! +--rw graceful-restart | +--rw enabled? boolean | +--rw duration? uint16 +--rw address-family* [address-family] | +--rw address-family identityref | +--rw graceful-restart | | +--rw enabled? boolean | | +--rw duration? uint16 | +--ro statistics | | +--ro discontinuity-time? yang:date-and-time | | +--ro error | | | +--ro assert? yang:counter64 | | | +--ro bsr? yang:counter64 | | | +--ro candidate-rp-advertisement? yang:counter64 | | | +--ro df-election? yang:counter64 | | | +--ro graft? yang:counter64 | | | +--ro graft-ack? yang:counter64 | | | +--ro hello? yang:counter64 | | | +--ro join-prune? yang:counter64 | | | +--ro register? yang:counter64 | | | +--ro register-stop? yang:counter64 | | | +--ro state-refresh? yang:counter64 | | | +--ro checksum? yang:counter64 | | | +--ro format? yang:counter64 | | +--ro queue | | | +--ro size? uint32 | | | +--ro overflow? yang:counter32 | | +--ro received | | | +--ro assert? yang:counter64 | | | +--ro bsr? yang:counter64 | | | +--ro candidate-rp-advertisement? yang:counter64 | | | +--ro df-election? yang:counter64 | | | +--ro graft? yang:counter64 | | | +--ro graft-ack? yang:counter64 | | | +--ro hello? yang:counter64 | | | +--ro join-prune? yang:counter64 | | | +--ro register? yang:counter64 | | | +--ro register-stop? yang:counter64 | | | +--ro state-refresh? yang:counter64 | | +--ro sent | | +--ro assert? yang:counter64 | | +--ro bsr? yang:counter64 | | +--ro candidate-rp-advertisement? yang:counter64 | | +--ro df-election? yang:counter64 | | +--ro graft? yang:counter64 | | +--ro graft-ack? yang:counter64 | | +--ro hello? yang:counter64 | | +--ro join-prune? yang:counter64 | | +--ro register? yang:counter64 | | +--ro register-stop? yang:counter64 | | +--ro state-refresh? yang:counter64 | +--ro topology-tree-info | +--ro ipv4-route* [group source-address is-rpt] | | +--ro group | | | rt-types:ipv4-multicast-group-address | | +--ro source-address | | | rt-types:ipv4-multicast-source-address | | +--ro is-rpt boolean | | +--ro expiration? | | | rt-types:timer-value-seconds16 | | +--ro incoming-interface? if:interface-ref | | +--ro is-spt? boolean | | +--ro mode? identityref | | +--ro msdp-learned? boolean | | +--ro rp-address? inet:ip-address | | +--ro rpf-neighbor? inet:ip-address | | +--ro up-time? rt-types:timeticks64 | | +--ro outgoing-interface* [name] | | +--ro name if:interface-ref | | +--ro expiration? rt-types:timer-value-seconds16 | | +--ro up-time? rt-types:timeticks64 | | +--ro jp-state? enumeration | +--ro ipv6-route* [group source-address is-rpt] | +--ro group | | rt-types:ipv6-multicast-group-address | +--ro source-address | | rt-types:ipv6-multicast-source-address | +--ro is-rpt boolean | +--ro expiration? | | rt-types:timer-value-seconds16 | +--ro incoming-interface? if:interface-ref | +--ro is-spt? boolean | +--ro mode? identityref | +--ro msdp-learned? boolean | +--ro rp-address? inet:ip-address | +--ro rpf-neighbor? inet:ip-address | +--ro up-time? rt-types:timeticks64 | +--ro outgoing-interface* [name] | +--ro name if:interface-ref | +--ro expiration? rt-types:timer-value-seconds16 | +--ro up-time? rt-types:timeticks64 | +--ro jp-state? enumeration +--rw interfaces +--rw interface* [name] +--rw name if:interface-ref +--rw address-family* [address-family] +--rw address-family identityref +--rw bfd {bfd}? | +--rw enabled? boolean | +--rw local-multiplier? multiplier | +--rw (interval-config-type)? | +--:(tx-rx-intervals) | | +--rw desired-min-tx-interval? uint32 | | +--rw required-min-rx-interval? uint32 | +--:(single-interval) | {single-minimum-interval}? | +--rw min-interval? uint32 +--rw dr-priority? uint32 | {intf-dr-priority}? +--rw hello-interval? | rt-types:timer-value-seconds16 | {intf-hello-interval}? +--rw (hello-holdtime-or-multiplier)? | +--:(holdtime) {intf-hello-holdtime}? | | +--rw hello-holdtime? | | rt-types:timer-value-seconds16 | +--:(multiplier) {intf-hello-multiplier}? | +--rw hello-multiplier? | rt-types:timer-multiplier +--rw jp-interval? | rt-types:timer-value-seconds16 | {intf-jp-interval}? +--rw (jp-holdtime-or-multiplier)? | +--:(holdtime) {intf-jp-holdtime}? | | +--rw jp-holdtime? | | rt-types:timer-value-seconds16 | +--:(multiplier) {intf-jp-multiplier}? | +--rw jp-multiplier? | rt-types:timer-multiplier +--rw override-interval? uint16 | {intf-override-interval}? +--rw propagation-delay? uint16 | {intf-propagation-delay}? +--ro oper-status? enumeration +--ro gen-id? uint32 +--ro hello-expiration? | rt-types:timer-value-seconds16 +--ro ipv4 | +--ro address* inet:ipv4-address | +--ro dr-address? inet:ipv4-address +--ro ipv6 | +--ro address* inet:ipv6-address | +--ro dr-address? inet:ipv6-address +--ro neighbors +--ro ipv4-neighbor* [address] | +--ro address inet:ipv4-address | +--ro bfd-state? bfd-types:state | +--ro expiration? | | rt-types:timer-value-seconds16 | +--ro dr-priority? uint32 | +--ro gen-id? uint32 | +--ro lan-prune-delay | | +--ro present? boolean | | +--ro override-interval? uint16 | | +--ro propagation-delay? uint16 | | +--ro t-bit? boolean | +--ro up-time? rt-types:timeticks64 +--ro ipv6-neighbor* [address] +--ro address inet:ipv6-address +--ro bfd-state? bfd-types:state +--ro expiration? | rt-types:timer-value-seconds16 +--ro dr-priority? uint32 +--ro gen-id? uint32 +--ro lan-prune-delay | +--ro present? boolean | +--ro override-interval? uint16 | +--ro propagation-delay? uint16 | +--ro t-bit? boolean +--ro up-time? rt-types:timeticks64
notifications: +---n pim-neighbor-event | +--ro event-type? neighbor-event-type | +--ro interface-ref? leafref | +--ro interface-af-ref? leafref | +--ro neighbor-ipv4-ref? leafref | +--ro neighbor-ipv6-ref? leafref | +--ro up-time? rt-types:timeticks64 +---n pim-interface-event +--ro event-type? interface-event-type +--ro interface-ref? leafref +--ro ipv4 | +--ro address* inet:ipv4-address | +--ro dr-address? inet:ipv4-address +--ro ipv6 +--ro address* inet:ipv6-address +--ro dr-address? inet:ipv6-address
module: ietf-pim-rp augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family: +--rw rp +--rw static-rp | +--rw ipv4-rp* [rp-address] | | +--rw rp-address inet:ipv4-address | +--rw ipv6-rp* [rp-address] | +--rw rp-address inet:ipv6-address +--rw bsr {bsr}? | +--rw bsr-candidate! | | +--rw (interface-or-address)? | | | +--:(interface) {candidate-interface}? | | | | +--rw interface if:interface-ref | | | +--:(ipv4-address) {candidate-ipv4}? | | | | +--rw ipv4-address inet:ipv4-address | | | +--:(ipv6-address) {candidate-ipv6}? | | | +--rw ipv6-address inet:ipv6-address | | +--rw hash-mask-length uint8 | | +--rw priority? uint8 | +--rw rp-candidate | | +--rw interface* [name] {candidate-interface}? | | | +--rw name if:interface-ref | | | +--rw policy-name? string | | | +--rw mode? identityref | | +--rw ipv4-address* [address] {candidate-ipv4}? | | | +--rw address inet:ipv4-address | | | +--rw policy-name? string | | | +--rw mode? identityref | | +--rw ipv6-address* [address] {candidate-ipv6}? | | +--rw address inet:ipv6-address | | +--rw policy-name? string | | +--rw mode? identityref | +--ro bsr | | +--ro address? inet:ip-address | | +--ro hash-mask-length? uint8 | | +--ro priority? uint8 | | +--ro up-time? rt-types:timeticks64 | +--ro (election-state)? {bsr-election-state}? | | +--:(candidate) | | | +--ro candidate-bsr-state? enumeration | | +--:(non-candidate) | | +--ro non-candidate-bsr-state? enumeration | +--ro bsr-next-bootstrap? uint16 | +--ro rp | | +--ro rp-address? inet:ip-address | | +--ro policy-name? string | | +--ro up-time? rt-types:timeticks64 | +--ro rp-candidate-next-advertisement? uint16 +--ro rp-list | +--ro ipv4-rp* [rp-address mode] | | +--ro rp-address inet:ipv4-address | | +--ro mode identityref | | +--ro info-source-address? inet:ipv4-address | | +--ro info-source-type? identityref | | +--ro up-time? rt-types:timeticks64 | | +--ro expiration? | | rt-types:timer-value-seconds16 | +--ro ipv6-rp* [rp-address mode] | +--ro rp-address inet:ipv6-address | +--ro mode identityref | +--ro info-source-address? inet:ipv6-address | +--ro info-source-type? identityref | +--ro up-time? rt-types:timeticks64 | +--ro expiration? | rt-types:timer-value-seconds16 +--ro rp-mappings +--ro ipv4-rp* [group-range rp-address] | +--ro group-range inet:ipv4-prefix | +--ro rp-address inet:ipv4-address | +--ro up-time? rt-types:timeticks64 | +--ro expiration? rt-types:timer-value-seconds16 +--ro ipv6-rp* [group-range rp-address] +--ro group-range inet:ipv6-prefix +--ro rp-address inet:ipv6-address +--ro up-time? rt-types:timeticks64 +--ro expiration? rt-types:timer-value-seconds16
notifications: +---n pim-rp-event +--ro event-type? rp-event-type +--ro instance-af-ref? leafref +--ro group? rt-types:ip-multicast-group-address +--ro rp-address? inet:ip-address +--ro is-rpt? boolean +--ro mode? identityref +--ro message-origin? inet:ip-address
module: ietf-pim-sm augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family: +--rw sm +--rw asm | +--rw anycast-rp! | | +--rw ipv4-anycast-rp* [anycast-address rp-address] | | | +--rw anycast-address inet:ipv4-address | | | +--rw rp-address inet:ipv4-address | | +--rw ipv6-anycast-rp* [anycast-address rp-address] | | +--rw anycast-address inet:ipv6-address | | +--rw rp-address inet:ipv6-address | +--rw spt-switch | +--rw infinity! {spt-switch-infinity}? | +--rw policy-name? string {spt-switch-policy}? +--rw ssm! +--rw range-policy? string augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:interfaces/pim-base:interface /pim-base:address-family: +--rw sm! +--rw passive? empty augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family/pim-rp:rp/pim-rp:static-rp /pim-rp:ipv4-rp: +--rw sm! +--rw policy-name? string +--rw override? boolean {static-rp-override}? augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family/pim-rp:rp/pim-rp:static-rp /pim-rp:ipv6-rp: +--rw sm! +--rw policy-name? string +--rw override? boolean {static-rp-override}?
module: ietf-pim-dm augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family: +--rw dm! augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:interfaces/pim-base:interface /pim-base:address-family: +--rw dm!
module: ietf-pim-bidir augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family: +--rw bidir! augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:interfaces/pim-base:interface /pim-base:address-family: +--rw bidir! +--rw df-election {intf-df-election}? +--rw offer-interval? uint16 +--rw backoff-interval? uint16 +--rw offer-multiplier? uint8 augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family/pim-rp:rp/pim-rp:static-rp /pim-rp:ipv4-rp: +--rw bidir! +--rw policy-name? string +--rw override? boolean {static-rp-override}? augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family/pim-rp:rp/pim-rp:static-rp /pim-rp:ipv6-rp: +--rw bidir! +--rw policy-name? string +--rw override? boolean {static-rp-override}? augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:address-family/pim-rp:rp: +--ro bidir +--ro df-election | +--ro ipv4-rp* [rp-address] | | +--ro rp-address inet:ipv4-address | +--ro ipv6-rp* [rp-address] | +--ro rp-address inet:ipv6-address +--ro interface-df-election +--ro ipv4-rp* [rp-address interface-name] | +--ro rp-address inet:ipv4-address | +--ro interface-name if:interface-ref | +--ro df-address? inet:ipv4-address | +--ro interface-state? identityref | +--ro up-time? rt-types:timeticks64 | +--ro winner-metric? uint32 | +--ro winner-metric-preference? uint32 +--ro ipv6-rp* [rp-address interface-name] +--ro rp-address inet:ipv6-address +--ro interface-name if:interface-ref +--ro df-address? inet:ipv6-address +--ro interface-state? identityref +--ro up-time? rt-types:timeticks64 +--ro winner-metric? uint32 +--ro winner-metric-preference? uint32 augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:interfaces/pim-base:interface /pim-base:address-family/pim-base:neighbors /pim-base:ipv4-neighbor: +--ro bidir-capable? boolean augment /rt:routing/rt:control-plane-protocols/pim-base:pim /pim-base:interfaces/pim-base:interface /pim-base:address-family/pim-base:neighbors /pim-base:ipv6-neighbor: +--ro bidir-capable? boolean
The following sections describe the mappings between the objects in the PIM-STD-MIB defined in [RFC5060] and the YANG data nodes defined in this document.
次のセクションでは、[RFC5060]で定義されているPIM-STD-MIBのオブジェクトと、このドキュメントで定義されているYangデータノードの間のマッピングについて説明します。
pimInterfaceTable is mapped to pim/interfaces/interface. The key of pimInterfaceTable is pimInterfaceIfIndex and pimInterfaceIPVersion, while the key of the "interface" list in YANG is the node "name". For each value of pimInterfaceIPVersion, the "interface" list contains a corresponding sublist whose key is the node "address-family".
PIMINTERFACETABLEは、PIM/インターフェイス/インターフェイスにマッピングされます。PiminterfacetableのキーはPiminterfaceFindexとPiminterfacePversionですが、Yangの「インターフェイス」リストのキーはノード「名前」です。PiminterfacePversionの各値について、「インターフェイス」リストには、キーがノード「アドレスファミリー」である対応するサブリストが含まれています。
Table 2 lists the YANG data nodes with corresponding objects of pimInterfaceTable in the PIM-STD-MIB.
表2に、PIM-STD-MIBのPIMINTERFACETABLEの対応するオブジェクトを持つYangデータノードを示します。
+========================+==================================+ | YANG Node | PIM-STD-MIB Object | +========================+==================================+ | address-family | pimInterfaceAddressType | +------------------------+----------------------------------+ | ipv4/address | pimInterfaceAddress | +------------------------+ | | ipv6/address | | +------------------------+----------------------------------+ | gen-id | pimInterfaceGenerationIDValue | +------------------------+----------------------------------+ | ipv4/dr-address | pimInterfaceDR | +------------------------+ | | ipv6/dr-address | | +------------------------+----------------------------------+ | dr-priority | pimInterfaceDRPriority | +------------------------+----------------------------------+ | hello-interval | pimInterfaceHelloInterval | +------------------------+----------------------------------+ | hello-holdtime | pimInterfaceHelloHoldtime | +------------------------+----------------------------------+ | jp-interval | pimInterfaceJoinPruneInterval | +------------------------+----------------------------------+ | jp-holdtime | pimInterfaceJoinPruneHoldtime | +------------------------+----------------------------------+ | bidir/offer-multiplier | pimInterfaceDFElectionRobustness | +------------------------+----------------------------------+ | propagation-delay | pimInterfacePropagationDelay | +------------------------+----------------------------------+ | override-interval | pimInterfaceOverrideInterval | +------------------------+----------------------------------+
Table 2: YANG Nodes and pimInterfaceTable Objects
表2:YangノードとPiminterfacetableオブジェクト
pimNeighborTable is mapped to pim/interfaces/interface/neighbors/ ipv4-neighbor and pim/interfaces/interface/neighbors/ipv6-neighbor.
Pimneighbortableは、PIM/インターフェイス/インターフェイス/Neighbors/IPv4-NeighborおよびPIM/Interfaces/Interface/Neighbors/IPv6-Neighborにマッピングされます。
Table 3 lists the YANG data nodes with corresponding objects of pimNeighborTable in the PIM-STD-MIB.
表3に、PIM-STD-MIBのPimneighBortableの対応するオブジェクトを持つYangデータノードを示します。
+==============================+=================================+ | YANG Node | PIM-STD-MIB Object | +==============================+=================================+ | ipv4-neighbor | pimNeighborAddressType | +------------------------------+ | | ipv6-neighbor | | +------------------------------+---------------------------------+ | address | pimNeighborAddress | +------------------------------+---------------------------------+ | gen-id | pimNeighborGenerationIDValue | +------------------------------+---------------------------------+ | up-time | pimNeighborUpTime | +------------------------------+---------------------------------+ | expiration | pimNeighborExpiryTime | +------------------------------+---------------------------------+ | dr-priority | pimNeighborDRPriority | +------------------------------+---------------------------------+ | lan-prune-delay/present | pimNeighborLanPruneDelayPresent | +------------------------------+---------------------------------+ | lan-prune-delay/t-bit | pimNeighborTBit | +------------------------------+---------------------------------+ | lan-prune-delay/propagation- | pimNeighborPropagationDelay | | delay | | +------------------------------+---------------------------------+ | lan-prune-delay/override- | pimNeighborOverrideInterval | | interval | | +------------------------------+---------------------------------+ | ietf-pim-bidir:bidir-capable | pimNeighborBidirCapable | +------------------------------+---------------------------------+
Table 3: YANG Nodes and pimNeighborTable Objects
表3:Yangノードとピンニービード可能なオブジェクト
pimStarGTable is mapped to pim/address-family/topology-tree-info/ ipv4-route and pim/address-family/topology-tree-info/ipv6-route, when the value of the "source-address" leaf is "ietf-routing-types:*" and the value of the "is-rpt" leaf is "false".
PIMSTARGTABLEは、PIM/アドレスファミリー/トポロジーツリーインフォ/IPv4-routeおよびPIM/アドレスファミリー/トポロジーツリーインフー/IPv6-routeにマッピングされます。-routing-types:*"および「is-rpt」葉の値は「false」です。
Table 4 lists the YANG data nodes with corresponding objects of pimStarGTable in the PIM-STD-MIB.
表4に、PIM-STD-MIBのPIMSTARGTABLEの対応するオブジェクトを持つYangデータノードを示します。
+====================+==============================+ | YANG Node | PIM-STD-MIB Object | +====================+==============================+ | ipv4-route | pimStarGAddressType | +--------------------+ | | ipv6-route | | +--------------------+------------------------------+ | group | pimStarGGrpAddress | +--------------------+------------------------------+ | up-time | pimStarGUpTime | +--------------------+------------------------------+ | mode | pimStarGPimMode | +--------------------+------------------------------+ | rp-address | pimStarGRPAddressType | | +------------------------------+ | | pimStarGRPAddress | +--------------------+------------------------------+ | rpf-neighbor | pimStarGUpstreamNeighborType | | +------------------------------+ | | pimStarGUpstreamNeighbor | +--------------------+------------------------------+ | incoming-interface | pimStarGRPFIfIndex | +--------------------+------------------------------+
Table 4: YANG Nodes and pimStarGTable Objects
表4:Yangノードとピムストーグテーブルオブジェクト
In addition, the object "pimStarGPimModeOrigin" in pimStarGTable is mapped to the node "rp/rp-list/ipv4-rp/info-source-type" or the node "rp/rp-list/ipv6-rp/info-source-type" in the YANG module "ietf-pim-rp".
さらに、pimstargtableのオブジェクト「pimstargpimmodeorigin」は、ノード "rp/rp-list/ipv4-rp/info-source-type"またはnode "rp/rp-list/ipv6-rp/info-source-にマッピングされます。「Yangモジュール」と入力します。IETF-PIM-RP "。
pimSGTable is mapped to pim/address-family/topology-tree-info/ ipv4-route and pim/address-family/topology-tree-info/ipv6-route, when the value of the "source-address" leaf is not "ietf-routing-types:*" and the value of the "is-rpt" leaf is "false".
PIMSGTABLEは、「ソースアドレス」葉の値がそうでない場合、PIM/Address-Family/Topology-Tree-INFO/IPv4-RouteおよびPIM/Address-Family/Topology-Tree-INFO/IPv6-Routeにマッピングされます。ietf-routing-types:*"および「is-rpt」葉の値は「false」です。
Table 5 lists the YANG data nodes with corresponding objects of pimSGTable in the PIM-STD-MIB.
表5に、PIM-STD-MIBのPIMSGTABLEの対応するオブジェクトを持つYangデータノードを示します。
+====================+==========================+ | YANG Node | PIM-STD-MIB Object | +====================+==========================+ | ipv4-route | pimSGAddressType | +--------------------+ | | ipv6-route | | +--------------------+--------------------------+ | group | pimSGGrpAddress | +--------------------+--------------------------+ | source-address | pimSGSrcAddress | +--------------------+--------------------------+ | up-time | pimSGUpTime | +--------------------+--------------------------+ | mode | pimSGPimMode | +--------------------+--------------------------+ | rpf-neighbor | pimStarGUpstreamNeighbor | +--------------------+--------------------------+ | incoming-interface | pimStarGRPFIfIndex | +--------------------+--------------------------+ | is-spt | pimSGSPTBit | +--------------------+--------------------------+ | expiration | pimSGKeepaliveTimer | +--------------------+--------------------------+
Table 5: YANG Nodes and pimSGTable Objects
表5:YangノードとPIMSGTABLEオブジェクト
pimSGRptTable is mapped to pim/address-family/topology-tree-info/ ipv4-route and pim/address-family/topology-tree-info/ipv6-route, when the value of the "is-rpt" leaf is "true".
PIMSGRPTTABLEは、PIM/アドレスファミリー/トポロジーツリーインフォ/IPv4-routeおよびPIM/アドレスファミリー/トポロジーインフェ/IPv6-routeにマッピングされます。"。
Table 6 lists the YANG data nodes with corresponding objects of pimSGRptTable in the PIM-STD-MIB.
表6に、PIM-STD-MIBのPIMSGRPTTABLEの対応するオブジェクトを持つYangデータノードを示します。
+================+=====================+ | YANG Node | PIM-STD-MIB Object | +================+=====================+ | ipv4-route | pimStarGAddressType | +----------------+ | | ipv6-route | | +----------------+---------------------+ | group | pimStarGGrpAddress | +----------------+---------------------+ | source-address | pimSGRptSrcAddress | +----------------+---------------------+ | up-time | pimSGRptUpTime | +----------------+---------------------+
Table 6: YANG Nodes and pimSGRptTable Objects
表6:YangノードとPimsgrpttableオブジェクト
pimBidirDFElectionTable is mapped to pim/address-family/rp/bidir/ interface-df-election/ipv4-rp and pim/address-family/rp/bidir/ interface-df-election/ipv6-rp. The key of pimBidirDFElectionTable includes pimBidirDFElectionIfIndex, whose type is InterfaceIndex, while the YANG lists use a node "name" with the type string instead.
PimbidirdFelectionTableは、PIM/Address-Family/RP/Bidir/Interface-DF-Election/IPv4-RPおよびPIM/Address-Family/RP/Bidir/Interface-DF-Election/IPv6-RPにマッピングされます。pimbidirdFelectionTableのキーには、interfaceindexであるpimbidirdfelectionifindexが含まれ、Yangは代わりに型文字列でノード「名前」を使用します。
Table 7 lists the YANG data nodes with corresponding objects of pimBidirDFElectionTable in the PIM-STD-MIB.
表7に、PIM-STD-MIBのPimbidirdFelectionTableの対応するオブジェクトを持つYangデータノードを示します。
+==========================+=====================================+ | YANG Node | PIM-STD-MIB Object | +==========================+=====================================+ | ipv4-rp | pimBidirDFElectionAddressType | +--------------------------+ | | ipv6-rp | | +--------------------------+-------------------------------------+ | rp-address | pimBidirDFElectionRPAddress | +--------------------------+-------------------------------------+ | df-address | pimBidirDFElectionWinnerAddressType | | +-------------------------------------+ | | pimBidirDFElectionWinnerAddress | +--------------------------+-------------------------------------+ | up-time | pimBidirDFElectionWinnerUpTime | +--------------------------+-------------------------------------+ | winner-metric-preference | pimBidirDFElectionWinnerMetricPref | | +-------------------------------------+ | | pimBidirDFElectionWinnerMetric | +--------------------------+-------------------------------------+ | interface-state | pimBidirDFElectionState | +--------------------------+-------------------------------------+
Table 7: YANG Nodes and pimBidirDFElectionTable Objects
表7:YangノードとPimbidirdFelectionTableオブジェクト
pimStaticRPTable is mapped to pim/address-family/rp/static-rp/ipv4-rp and pim/address-family/rp/static-rp/ipv6-rp.
PimstaticRptableは、PIM/Address-Family/RP/Static-RP/IPv4-RPおよびPIM/Address-Family/RP/Static-RP/IPv6-RPにマッピングされます。
Table 8 lists the YANG data nodes with corresponding objects of pimStaticRPTable in the PIM-STD-MIB.
表8に、PIM-STD-MIBでPIMSTATICRPTABLEの対応するオブジェクトを持つYangデータノードを示します。
+================+============================+ | YANG Node | PIM-STD-MIB Object | +================+============================+ | ipv4-rp | pimStaticRPAddressType | +----------------+ | | ipv6-rp | | +----------------+----------------------------+ | rp-address | pimStaticRPRPAddress | +----------------+----------------------------+ | bidir | pimStaticRPPimMode | +----------------+ | | sm | | +----------------+----------------------------+ | bidir/override | pimStaticRPOverrideDynamic | +----------------+ | | sm/override | | +----------------+----------------------------+
Table 8: YANG Nodes and pimStaticRPTable Objects
表8:YangノードとPimsticaticRptableオブジェクト
pimAnycastRPSetTable is mapped to pim/address-family/sm/asm/anycast-rp/ipv4-anycast-rp and pim/address-family/sm/asm/anycast-rp/ipv6- anycast-rp.
PimanyCastrpsettableは、PIM/Address-Family/SM/ASM/ANYCAST-RP/IPV4-ANYCAST-RPおよびPIM/ADDRESS-FAMILY/SM/ASM/ANYCAST-RP/IPV6- ANYCAST-RPにマッピングされます。
Table 9 lists the YANG data nodes with corresponding objects of pimAnycastRPSetTable in the PIM-STD-MIB.
表9に、PIM-STD-MIBでPIMANYCASTRESTTETTETALTの対応するオブジェクトを持つYangデータノードを示します。
+=================+===============================+ | YANG Node | PIM-STD-MIB Object | +=================+===============================+ | ipv4-anycast-rp | pimAnycastRPSetAddressType | +-----------------+ | | ipv6-anycast-rp | | +-----------------+-------------------------------+ | anycast-address | pimAnycastRPSetAnycastAddress | +-----------------+-------------------------------+ | rp-address | pimAnycastRPSetRouterAddress | +-----------------+-------------------------------+
Table 9: YANG Nodes and pimAnycastRPSetTable Objects
表9:Yangノードとピマニカストレット可能なオブジェクト
pimGroupMappingTable is mapped to pim/address-family/rp/rp-mappings/ ipv4-rp and pim/address-family/rp/rp-mappings/ipv6-rp.
PimgroupMappingTableは、PIM/アドレスファミリー/RP/RPマッピング/IPv4-RPおよびPIM/アドレスファミリー/RP/RPマッピング/IPv6-RPにマッピングされます。
Table 10 lists the YANG data nodes with corresponding objects of pimGroupMappingTable in the PIM-STD-MIB.
表10に、PIM-STD-MIBのPimGroupMappingTableの対応するオブジェクトを持つYangデータノードを示します。
+============+================================+ | YANG Node | PIM-STD-MIB Object | +============+================================+ | ipv4-rp | pimGroupMappingAddressType | +------------+ | | ipv6-rp | | +------------+--------------------------------+ | group | pimGroupMappingGrpAddress | | +--------------------------------+ | | pimGroupMappingGrpPrefixLength | +------------+--------------------------------+ | ipv4-rp | pimGroupMappingRPAddressType | +------------+ | | ipv6-rp | | +------------+--------------------------------+ | rp-address | pimGroupMappingRPAddress | | +--------------------------------+ | | pimGroupMappingPimMode | +------------+--------------------------------+
Table 10: YANG Nodes and pimGroupMappingTable Objects
表10:YangノードとPimgroupMappingTableオブジェクト
In addition, the object "pimGroupMappingPimMode" in pimGroupMappingTable is mapped to the node "rp/rp-list/ipv4-rp/mode" or the node "rp/rp-list/ipv6-rp/mode" in the YANG module "ietf-pim-rp".
さらに、PimgroupMappingTableのオブジェクト「PimgroupMappingPimmode」は、YangモジュールのIETFのノード「RP/RP-LIST/IPV4-RP/MODE」またはノード「RP/RP-LIST/IPV6-RP/MODE」にマッピングされます。-pim-rp "。
This module references [RFC3973], [RFC5015], [RFC5880], [RFC6991], [RFC7761], [RFC8294], [RFC8343], [RFC8349], [RFC8706], and [RFC9314].
このモジュールは、[RFC3973]、[RFC5015]、[RFC5880]、[RFC6991]、[RFC7761]、[RFC8294]、[RFC8294]、[RFC8349]、[RFC8349]、[RFC8706]、および[RFC9314]を参照しています。
<CODE BEGINS> file "ietf-pim-base@2022-10-19.yang" module ietf-pim-base { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-pim-base"; prefix pim-base;
import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types"; } import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types"; } import ietf-routing-types { prefix rt-types; reference "RFC 8294: Common YANG Data Types for the Routing Area"; } import ietf-interfaces { prefix if; reference "RFC 8343: A YANG Data Model for Interface Management"; } import ietf-routing { prefix rt; reference "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)"; } import ietf-bfd-types { prefix bfd-types; reference "RFC 9314: YANG Data Model for Bidirectional Forwarding Detection (BFD)"; }
organization "IETF PIM Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/pim/> WG List: <mailto:pim@ietf.org>
Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com>
Editor: Pete McAllister <mailto:pete.mcallister@metaswitch.com>
Editor: Anish Peter <mailto:anish.ietf@gmail.com>
Editor: Mahesh Sivakumar <mailto:sivakumar.mahesh@gmail.com>
Editor: Yisong Liu <mailto:liuyisong@chinamobile.com>
Editor: Fangwei Hu <mailto:hufwei@gmail.com>"; description "This module defines a collection of YANG definitions common for all PIM (Protocol Independent Multicast) modes.
編集者:fangwei hu <mailto:hufwei@gmail.com> ";説明"このモジュールは、すべてのPIM(プロトコル独立マルチキャスト)モードに共通するYang定義のコレクションを定義します。
Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.
Copyright(c)2022 IETF TrustおよびCodeの著者として特定された人。全著作権所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).
変更とバイナリ形式での再配布と使用は、変更の有無にかかわらず、IETF Trustの法的規定(IETFドキュメントに関する法的規定)のセクション4.Cに記載されている修正されたBSDライセンスに基づいて許可されており、ライセンス条件に従います。https://trustee.ietf.org/license-info)。
This version of this YANG module is part of RFC 9128; see the RFC itself for full legal notices.";
このYangモジュールのこのバージョンは、RFC 9128の一部です。完全な法的通知については、RFC自体を参照してください。」;
revision 2022-10-19 { description "Initial revision."; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; }
/* * Features */
feature bfd { description "Supports BFD (Bidirectional Forwarding Detection)."; reference "RFC 5880: Bidirectional Forwarding Detection (BFD)"; }
feature global-graceful-restart { description "Global configuration for graceful restart support as per RFC 8706."; reference "RFC 8706: Restart Signaling for IS-IS"; }
feature intf-dr-priority { description "Supports configuration of an interface DR (Designated Router) priority."; reference "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.3.2"; }
feature intf-hello-holdtime { description "Supports configuration of the interface Hello Holdtime."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.3.3 RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11"; }
feature intf-hello-interval { description "Supports configuration of the interface Hello interval."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8 RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11"; }
feature intf-hello-multiplier { description "Supports configuration of the interface Hello multiplier (the number by which the Hello interval is multiplied to obtain the Hello Holdtime)."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8 RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11"; }
feature intf-jp-interval { description "Supports configuration of the interface Join/Prune interval."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8 RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11"; }
feature intf-jp-holdtime { description "Supports configuration of the interface Join/Prune Holdtime."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8 RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11"; }
feature intf-jp-multiplier { description "Supports configuration of the interface Join/Prune multiplier (the number by which the Join/Prune interval is multiplied to obtain the Join/Prune Holdtime)."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8 RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11"; }
feature intf-propagation-delay { description "Supports configuration of interface propagation delay."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.3.5 RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.3.3"; }
feature intf-override-interval { description "Supports configuration of the interface override interval."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Sections 4.1.1 and 4.8 RFC 5015: Bidirectional Protocol Independent Multicast (BIDIR-PIM), Section 3.6 RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11"; }
feature per-af-graceful-restart { description "Per address family configuration for graceful restart support as per RFC 8706."; reference "RFC 8706: Restart Signaling for IS-IS"; }
/* * Typedefs */
typedef interface-event-type { type enumeration { enum up { description "Neighbor status changed to 'up'."; } enum down { description "Neighbor status changed to 'down'."; } enum new-dr { description "A new DR (Designated Router) was elected on the connected network."; } enum new-df { description "A new DF (Designated Forwarder) was elected on the connected network."; } } description "Operational status event type for notifications."; }
typedef neighbor-event-type { type enumeration { enum up { description "Neighbor status changed to 'up'."; } enum down { description "Neighbor status changed to 'down'."; } } description "Operational status event type for notifications."; }
/* * Identities */
identity pim-mode { description "The PIM mode in which a group is operating."; }
identity pim-none { base pim-mode; description "PIM is not operating."; }
identity pim-bidir { base pim-mode; description "PIM is operating in Bidirectional Mode."; }
identity pim-dm { base pim-mode; description "PIM is operating in Dense Mode (DM)."; }
identity pim-sm { base pim-mode; description "PIM is operating in Sparse Mode (SM)."; }
identity pim-asm { base pim-sm; description "PIM is operating in Sparse Mode with Any-Source Multicast (ASM)."; }
identity pim-ssm { base pim-sm; description "PIM is operating in Sparse Mode with Source-Specific Multicast (SSM)."; }
/* * Groupings */
grouping graceful-restart-container { description "A grouping defining a container of graceful restart attributes."; container graceful-restart { leaf enabled { type boolean; default "false"; description "Enables or disables graceful restart."; } leaf duration { type uint16; units "seconds"; default "60"; description "Maximum time for graceful restart to finish."; } description "Container of graceful restart attributes."; } } // graceful-restart-container
grouping multicast-route-attributes { description "A grouping defining multicast route attributes."; leaf expiration { type rt-types:timer-value-seconds16; description "When the route will expire."; } leaf incoming-interface { type if:interface-ref; description "Reference to an entry in the global interface list."; } leaf is-spt { type boolean; description "'true' if the SPTbit (Shortest Path Tree bit) is set to indicate that forwarding is taking place on the (S,G) SPT."; reference "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.1.3"; } leaf mode { type identityref { base pim-mode; } description "PIM mode."; } leaf msdp-learned { type boolean; description "'true' if the route is learned from MSDP (the Multicast Source Discovery Protocol)."; } leaf rp-address { type inet:ip-address; description "RP (Rendezvous Point) address."; } leaf rpf-neighbor { type inet:ip-address; description "RPF (Reverse Path Forwarding) neighbor address."; } leaf up-time { type rt-types:timeticks64; description "The number of time ticks (hundredths of a second) since the route last transitioned into the active state."; } list outgoing-interface { key "name"; description "A list of outgoing interfaces."; leaf name { type if:interface-ref; description "Interface name."; } leaf expiration { type rt-types:timer-value-seconds16; description "Expiration time."; } leaf up-time { type rt-types:timeticks64; description "The number of time ticks (hundredths of a second) since the 'oper-status' setting of the interface was last changed to 'up'."; } leaf jp-state { type enumeration { enum no-info { description "The interface has no (*,G) Join state and no timers running."; } enum join { description "The interface has Join state."; } enum prune-pending { description "The router has received a Prune on this interface from a downstream neighbor and is waiting to see whether the Prune will be overridden by another downstream router. For forwarding purposes, the Prune-Pending state functions exactly like the Join state."; } } description "Join/Prune state."; } } } // multicast-route-attributes
grouping neighbor-state-af-attributes { description "A grouping defining neighbor per address family attributes."; leaf bfd-state { type bfd-types:state; description "BFD (Bidirectional Forwarding Detection) status."; } leaf expiration { type rt-types:timer-value-seconds16; description "Neighbor expiration time."; } leaf dr-priority { type uint32; description "DR (Designated Router) priority as the preference in the DR election process."; } leaf gen-id { type uint32; description "The value of the Generation ID in the last Hello message from the neighbor."; } container lan-prune-delay { description "The information of the LAN Prune Delay option in the Hello message from the neighbor."; leaf present { type boolean; description "'true' if the LAN Prune Delay option is present in the last Hello message from the neighbor."; } leaf override-interval { when "../present = 'true'" { description "Available only when 'leaf present' is 'true'."; } type uint16; units "milliseconds"; description "The value of the Override_Interval field of the LAN Prune Delay option in the last Hello message from the neighbor. The neighbor uses this value to indicate a short period after a Join or Prune to allow other routers on the LAN to override the Join or Prune."; } leaf propagation-delay { when "../present = 'true'" { description "Available only when 'leaf present' is 'true'."; } type uint16; units "milliseconds"; description "The value of the Propagation_Delay field of the LAN Prune Delay option in the last Hello message from the neighbor. The value is the propagation delay over the local link expected by the neighbor."; } leaf t-bit { when "../present = 'true'" { description "Available only when 'leaf present' is 'true'."; } type boolean; description "'true' if the T bit is set in the LAN Prune Delay option in the last Hello message from the neighbor. This flag indicates the neighbor's ability to disable Join message suppression."; } } leaf up-time { type rt-types:timeticks64; description "The number of time ticks (hundredths of a second) since the neighbor relationship has been formed as reachable without being timed out."; } } // neighbor-state-af-attributes
grouping pim-instance-af-state-ref { description "An absolute reference to a PIM instance address family."; leaf instance-af-ref { type leafref { path "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:address-family/" + "pim-base:address-family"; } description "Reference to a PIM instance address family."; } } // pim-instance-af-state-ref
grouping pim-interface-state-ref { description "An absolute reference to a PIM interface state."; leaf interface-ref { type leafref { path "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:interfaces/pim-base:interface/" + "pim-base:name"; } description "Reference to a PIM interface."; } } // pim-interface-state-ref
grouping statistics-sent-received { description "A grouping defining sent and received statistics on PIM messages."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.7.1 RFC 5015: Bidirectional Protocol Independent Multicast (BIDIR-PIM), Section 3.7 RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.9"; leaf assert { type yang:counter64; description "The number of Assert messages, with the message Type of 5 (RFCs 3973 and 7761)."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised) RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)"; } leaf bsr { type yang:counter64; description "The number of Bootstrap messages, with the message Type of 4 (RFCs 3973 and 7761)."; } leaf candidate-rp-advertisement { type yang:counter64; description "The number of Candidate RP Advertisement messages, with the message Type of 8 (RFCs 3973 and 7761)."; } leaf df-election { type yang:counter64; description "The number of DF (Designated Forwarder) election messages, with the message Type of 10 (RFC 5015)."; reference "RFC 5015: Bidirectional Protocol Independent Multicast (BIDIR-PIM)"; } leaf graft { type yang:counter64; description "The number of Graft messages, with the message Type of 6 (RFCs 3973 and 7761)."; } leaf graft-ack { type yang:counter64; description "The number of Graft-Ack messages, with the message Type of 7 (RFCs 3973 and 7761)."; } leaf hello { type yang:counter64; description "The number of Hello messages, with the message Type of 0 (RFCs 3973 and 7761)."; } leaf join-prune { type yang:counter64; description "The number of Join/Prune messages, with the message Type of 3 (RFCs 3973 and 7761)."; } leaf register { type yang:counter64; description "The number of Register messages, with the message Type of 1 (RFCs 3973 and 7761)."; } leaf register-stop { type yang:counter64; description "The number of Register-Stop messages, with the message Type of 2 (RFCs 3973 and 7761)."; } leaf state-refresh { type yang:counter64; description "The number of State Refresh messages, with the message Type of 9 (RFC 3973)."; } } // statistics-sent-received
/* * Data nodes */
augment "/rt:routing/rt:control-plane-protocols" { description "PIM augmentation to the routing instance model."; container pim { presence "Enables the PIM protocol."; description "PIM configuration data and operational state data."; uses graceful-restart-container { if-feature "global-graceful-restart"; } list address-family { key "address-family"; description "Each list entry for one address family."; uses rt:address-family; uses graceful-restart-container { if-feature "per-af-graceful-restart"; } container statistics { config false; description "A container defining statistics attributes."; leaf discontinuity-time { type yang:date-and-time; description "The time of the most recent occasion at which any one or more of the statistics counters suffered a discontinuity. If no such discontinuities have occurred since the last reinitialization of the local management subsystem, then this node contains the time the local management subsystem reinitialized itself."; } container error { description "Contains error statistics."; uses statistics-sent-received { description "Statistics counters on the PIM messages per PIM message Type. Each leaf attribute counts the number of PIM messages that were of a particular Type (such as Hello) and contained errors preventing them from being processed by PIM.
Such messages are also counted by the corresponding counter of the same Type (such as Hello) in the 'received' container."; } leaf checksum { type yang:counter64; description "The number of PIM messages that were passed to PIM and contained checksum errors."; } leaf format { type yang:counter64; description "The number of PIM messages that passed checksum validation but contained format errors, including errors related to PIM Version, Type, and message length."; } } container queue { description "Contains queue statistics."; leaf size { type uint32; description "The size of the input queue."; } leaf overflow { type yang:counter32; description "The number of input queue overflows."; } } container received { description "Contains statistics of received messages."; uses statistics-sent-received; } container sent { description "Contains statistics of sent messages."; uses statistics-sent-received; } } container topology-tree-info { config false; description "Contains topology tree information."; list ipv4-route { when "../../address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } key "group source-address is-rpt"; description "A list of IPv4 routes."; leaf group { type rt-types:ipv4-multicast-group-address; description "Group address."; } leaf source-address { type rt-types:ipv4-multicast-source-address; description "Source address."; } leaf is-rpt { type boolean; description "'true' if the tree is an RPT (Rendezvous Point Tree)."; } uses multicast-route-attributes; } // ipv4-route list ipv6-route { when "../../address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } key "group source-address is-rpt"; description "A list of IPv6 routes."; leaf group { type rt-types:ipv6-multicast-group-address; description "Group address."; } leaf source-address { type rt-types:ipv6-multicast-source-address; description "Source address."; } leaf is-rpt { type boolean; description "'true' if the tree is an RPT."; } uses multicast-route-attributes; } // ipv6-route } // topology-tree-info } // address-family container interfaces { description "Contains a list of interfaces."; list interface { key "name"; description "List of PIM interfaces."; leaf name { type if:interface-ref; description "Reference to an entry in the global interface list."; } list address-family { key "address-family"; description "Each list entry for one address family."; uses rt:address-family; container bfd { if-feature "bfd"; description "BFD (Bidirectional Forwarding Detection) operation."; uses bfd-types:client-cfg-parms; } leaf dr-priority { if-feature "intf-dr-priority"; type uint32; default "1"; description "DR (Designated Router) priority as the preference in the DR election process."; } leaf hello-interval { if-feature "intf-hello-interval"; type rt-types:timer-value-seconds16; default "30"; description "Periodic interval for Hello messages. If 'infinity' or 'not-set' is used, no periodic Hello messages are sent."; reference "RFC 3973: Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised), Section 4.8 RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.11"; } choice hello-holdtime-or-multiplier { description "The Holdtime is the timer value to time out the neighbor state when the timer expires. The Holdtime value can be specified by either (1) the given Holdtime value or (2) the calculation of the Hello interval multiplied by the given value of the multiplier."; case holdtime { if-feature "intf-hello-holdtime"; leaf hello-holdtime { type rt-types:timer-value-seconds16; default "105"; description "The Hello Holdtime is the amount of time to keep the neighbor reachable until a new Hello message is received."; } } case multiplier { if-feature "intf-hello-multiplier"; leaf hello-multiplier { type rt-types:timer-multiplier; default "3"; description "The Hello multiplier is the number by which the Hello interval is multiplied to obtain the Hello Holdtime. The value of the Hello Holdtime is calculated as: hello-holdtime = (multiplier + 0.5) * (hello-interval)."; } } } leaf jp-interval { if-feature "intf-jp-interval"; type rt-types:timer-value-seconds16; default "60"; description "Periodic interval between Join/Prune messages. If 'infinity' or 'not-set' is used, no periodic Join/Prune messages are sent."; } choice jp-holdtime-or-multiplier { description "The Join/Prune Holdtime is the amount of time a receiver must keep the Join/Prune state alive. The Holdtime value can be specified by either (1) the given Holdtime value or (2) the calculation of 'jp-interval' multiplied by the given value of the multiplier."; case holdtime { if-feature "intf-jp-holdtime"; leaf jp-holdtime { type rt-types:timer-value-seconds16; default "210"; description "The Join/Prune Holdtime is the amount of time a receiver must keep the Join/Prune state alive."; } } case multiplier { if-feature "intf-jp-multiplier"; leaf jp-multiplier { type rt-types:timer-multiplier; default "3"; description "The Join/Prune multiplier is the number by which the Join/Prune interval is multiplied to obtain the Join/Prune Holdtime. The value of the Join/Prune Holdtime is calculated as: jp-holdtime = (multiplier + 0.5) * (jp-interval)."; } } } leaf override-interval { if-feature "intf-override-interval"; type uint16; units "milliseconds"; default "2500"; description "A short period after a Join or Prune to allow other routers on the LAN to override the Join or Prune."; } leaf propagation-delay { if-feature "intf-propagation-delay"; type uint16; units "milliseconds"; default "500"; description "Expected propagation delay over the local link."; } // Interface state attributes leaf oper-status { type enumeration { enum up { description "The interface is ready to pass PIM messages."; } enum down { description "The interface does not pass PIM messages."; } } config false; description "PIM operational status on the interface. This status is PIM specific and separate from the operational status of the underlying interface."; } leaf gen-id { type uint32; config false; description "The value of the Generation ID this router uses to insert into the PIM Hello message sent on this interface."; } leaf hello-expiration { type rt-types:timer-value-seconds16; config false; description "Hello interval expiration time."; } container ipv4 { when "../address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } config false; description "Interface state attributes for IPv4."; leaf-list address { type inet:ipv4-address; description "List of addresses on which PIM is operating."; } leaf dr-address { type inet:ipv4-address; description "DR (Designated Router) address."; } } container ipv6 { when "../address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } config false; description "Interface state attributes for IPv6."; leaf-list address { type inet:ipv6-address; description "List of addresses on which PIM is operating."; } leaf dr-address { type inet:ipv6-address; description "DR address."; } } container neighbors { config false; description "Information learned from neighbors through this interface."; list ipv4-neighbor { when "../../address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } key "address"; description "Neighbor state information."; leaf address { type inet:ipv4-address; description "Neighbor address."; } uses neighbor-state-af-attributes; } // list ipv4-neighbor list ipv6-neighbor { when "../../address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } key "address"; description "Neighbor state information."; leaf address { type inet:ipv6-address; description "Neighbor address."; } uses neighbor-state-af-attributes; } // list ipv6-neighbor } // neighbors } // address-family } // interface } // interfaces } // pim } // augment
/* * Notifications */
notification pim-neighbor-event { description "Notification event for a neighbor."; leaf event-type { type neighbor-event-type; description "Event type."; } uses pim-interface-state-ref; leaf interface-af-ref { type leafref { path "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:interfaces/pim-base:interface" + "[pim-base:name = current()/../interface-ref]/" + "pim-base:address-family/pim-base:address-family"; } description "Reference to a PIM interface address family."; } leaf neighbor-ipv4-ref { when "../interface-af-ref = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } type leafref { path "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:interfaces/pim-base:interface" + "[pim-base:name = current()/../interface-ref]/" + "pim-base:address-family" + "[pim-base:address-family = " + "current()/../interface-af-ref]/" + "pim-base:neighbors/pim-base:ipv4-neighbor/" + "pim-base:address"; } description "Reference to a PIM IPv4 neighbor."; } leaf neighbor-ipv6-ref { when "../interface-af-ref = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } type leafref { path "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:interfaces/pim-base:interface" + "[pim-base:name = current()/../interface-ref]/" + "pim-base:address-family" + "[pim-base:address-family = " + "current()/../interface-af-ref]/" + "pim-base:neighbors/pim-base:ipv6-neighbor/" + "pim-base:address"; } description "Reference to a PIM IPv6 neighbor."; } leaf up-time { type rt-types:timeticks64; description "The number of time ticks (hundredths of a second) since the neighbor relationship has been formed as reachable without being timed out."; } }
notification pim-interface-event { description "Notification event for an interface."; leaf event-type { type interface-event-type; description "Event type."; } uses pim-interface-state-ref; container ipv4 { description "Contains IPv4 information."; leaf-list address { type inet:ipv4-address; description "List of addresses."; } leaf dr-address { type inet:ipv4-address; description "DR (Designated Router) address."; } } container ipv6 { description "Contains IPv6 information."; leaf-list address { type inet:ipv6-address; description "List of addresses."; } leaf dr-address { type inet:ipv6-address; description "DR address."; } } } } <CODE ENDS>
This module references [RFC5059], [RFC6991], [RFC7761], [RFC8294], [RFC8343], and [RFC8349].
このモジュールは、[RFC5059]、[RFC6991]、[RFC7761]、[RFC8294]、[RFC8343]、および[RFC8349]を参照しています。
<CODE BEGINS> file "ietf-pim-rp@2022-10-19.yang" module ietf-pim-rp { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-pim-rp"; prefix pim-rp;
import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types"; } import ietf-routing-types { prefix rt-types; reference "RFC 8294: Common YANG Data Types for the Routing Area"; } import ietf-interfaces { prefix if; reference "RFC 8343: A YANG Data Model for Interface Management"; } import ietf-routing { prefix rt; reference "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)"; } import ietf-pim-base { prefix pim-base; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; }
organization "IETF PIM Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/pim/> WG List: <mailto:pim@ietf.org>
Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com>
Editor: Pete McAllister <mailto:pete.mcallister@metaswitch.com>
Editor: Anish Peter <mailto:anish.ietf@gmail.com>
Editor: Mahesh Sivakumar <mailto:sivakumar.mahesh@gmail.com>
Editor: Yisong Liu <mailto:liuyisong@chinamobile.com>
Editor: Fangwei Hu <mailto:hufwei@gmail.com>"; description "This YANG module defines a PIM (Protocol Independent Multicast) RP (Rendezvous Point) model.
編集者:fangwei hu <mailto:hufwei@gmail.com> ";説明"このYangモジュールは、PIM(プロトコル独立マルチキャスト)RP(rendezvous point)モデルを定義します。
Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.
Copyright(c)2022 IETF TrustおよびCodeの著者として特定された人。全著作権所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).
変更とバイナリ形式での再配布と使用は、変更の有無にかかわらず、IETF Trustの法的規定(IETFドキュメントに関する法的規定)のセクション4.Cに記載されている修正されたBSDライセンスに基づいて許可されており、ライセンス条件に従います。https://trustee.ietf.org/license-info)。
This version of this YANG module is part of RFC 9128; see the RFC itself for full legal notices.";
このYangモジュールのこのバージョンは、RFC 9128の一部です。完全な法的通知については、RFC自体を参照してください。」;
revision 2022-10-19 { description "Initial revision."; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; }
/* * Features */
feature bsr { description "This feature indicates that the system supports BSRs (Bootstrap Routers)."; reference "RFC 5059: Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM)"; }
feature bsr-election-state { if-feature "bsr"; description "This feature indicates that the system supports providing BSR election state."; reference "RFC 5059: Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM)"; }
feature static-rp-override { description "This feature indicates that the system supports configuration of the static RP (Rendezvous Point) that overrides the RP discoveries from other mechanisms."; reference "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 3.7"; }
feature candidate-interface { description "This feature indicates that the system supports using an interface to configure a BSR or RP candidate."; }
feature candidate-ipv4 { description "This feature indicates that the system supports using an IPv4 address to configure a BSR or RP candidate."; }
feature candidate-ipv6 { description "This feature indicates that the system supports using an IPv6 address to configure a BSR or RP candidate."; }
/* * Typedefs */
typedef rp-event-type { type enumeration { enum invalid-jp { description "An invalid Join/Prune message has been received."; } enum invalid-register { description "An invalid Register message has been received."; } enum mapping-created { description "A new mapping has been created."; } enum mapping-deleted { description "A mapping has been deleted."; } } description "Operational status event type for notifications."; }
/* * Identities */
identity rp-mode { description "The mode of an RP, which can be SM (Sparse Mode) or BIDIR (Bidirectional)."; }
identity rp-info-source-type { description "The information source of an RP."; }
identity static { base rp-info-source-type; description "The RP is statically configured."; }
identity bootstrap { base rp-info-source-type; description "The RP is learned from a Bootstrap."; }
/* * Groupings */
grouping rp-mapping-state-attributes { description "Grouping of RP mapping attributes."; leaf up-time { type rt-types:timeticks64; description "The number of time ticks (hundredths of a second) since the RP mapping or the RP became actively available."; } leaf expiration { type rt-types:timer-value-seconds16; description "Expiration time."; } } // rp-mapping-state-attributes
grouping rp-state-attributes { description "Grouping of RP state attributes."; leaf info-source-type { type identityref { base rp-info-source-type; } description "The information source of an RP."; } // info-source-type leaf up-time { type rt-types:timeticks64; description "The number of time ticks (hundredths of a second) since the RP became actively available."; } leaf expiration { type rt-types:timer-value-seconds16; description "Expiration time."; } } // rp-state-attributes
grouping static-rp-attributes { description "Grouping of static RP attributes, used in augmenting modules."; leaf policy-name { type string; description "The string value is the name to uniquely identify a policy that contains one or more policy rules used to determine which multicast group addresses are mapped to this statically configured RP address. If a policy is not specified, the entire multicast address space is mapped. The definition of such a policy is outside the scope of this document."; } leaf override { if-feature "static-rp-override"; type boolean; default "false"; description "When there is a conflict between static RPs and dynamic RPs, setting this attribute to 'true' will ask the system to use static RPs."; } } // static-rp-attributes
grouping rp-candidate-attributes { description "Grouping of RP candidate attributes."; leaf policy-name { type string; description "The string value is the name to uniquely identify a policy that contains one or more policy rules used to accept or reject certain multicast groups. If a policy is not specified, the entire multicast address space is accepted. The definition of such a policy is outside the scope of this document."; } leaf mode { type identityref { base rp-mode; } description "The mode of an RP, which can be SM (Sparse Mode) or BIDIR (Bidirectional). Each of these modes is defined in a separate YANG module. If a system supports an RP mode, the corresponding YANG module is implemented. When the value of this leaf is not specified, the default value is the supported mode if only one mode is implemented, or the default value is SM if both SM and BIDIR are implemented."; } } // rp-candidate-attributes
/* * Configuration data nodes */
augment "/rt:routing/rt:control-plane-protocols/pim-base:pim/" + "pim-base:address-family" { description "PIM RP augmentation."; container rp { description "PIM RP configuration data."; container static-rp { description "Contains static RP attributes."; list ipv4-rp { when "../../../pim-base:address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } key "rp-address"; description "A list of IPv4 RP addresses."; leaf rp-address { type inet:ipv4-address; description "Specifies a static RP address."; } } list ipv6-rp { when "../../../pim-base:address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } key "rp-address"; description "A list of IPv6 RP addresses."; leaf rp-address { type inet:ipv6-address; description "Specifies a static RP address."; } } } // static-rp container bsr { if-feature "bsr"; description "Contains BSR (Bootstrap Router) attributes."; container bsr-candidate { presence "Present to serve as a BSR candidate."; description "BSR candidate attributes."; choice interface-or-address { description "Use either an interface or an IP address."; case interface { if-feature "candidate-interface"; leaf interface { type if:interface-ref; mandatory true; description "Interface to be used by a BSR."; } } case ipv4-address { when "../../../pim-base:address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } if-feature "candidate-ipv4"; leaf ipv4-address { type inet:ipv4-address; mandatory true; description "IP address to be used by a BSR."; } } case ipv6-address { when "../../../pim-base:address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } if-feature "candidate-ipv6"; leaf ipv6-address { type inet:ipv6-address; mandatory true; description "IP address to be used by a BSR."; } } } leaf hash-mask-length { type uint8 { range "0..128"; } mandatory true; description "Value contained in BSR messages used by all routers to hash (map) to an RP."; } leaf priority { type uint8 { range "0..255"; } default "64"; description "BSR election priority among different candidate BSRs. A larger value has a higher priority over a smaller value."; } } // bsr-candidate container rp-candidate { description "Contains RP candidate attributes."; list interface { if-feature "candidate-interface"; key "name"; description "A list of RP candidates."; leaf name { type if:interface-ref; description "Interface that the RP candidate uses."; } uses rp-candidate-attributes; } list ipv4-address { when "../../../../pim-base:address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } if-feature "candidate-ipv4"; key "address"; description "A list of RP candidate addresses."; leaf address { type inet:ipv4-address; description "IPv4 address that the RP candidate uses."; } uses rp-candidate-attributes; } list ipv6-address { when "../../../../pim-base:address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } if-feature "candidate-ipv6"; key "address"; description "A list of RP candidate addresses."; leaf address { type inet:ipv6-address; description "IPv6 address that the RP candidate uses."; } uses rp-candidate-attributes; } } // BSR state attributes container bsr { config false; description "BSR information."; leaf address { type inet:ip-address; description "BSR address."; } leaf hash-mask-length { type uint8 { range "0..128"; } description "Hash mask length."; } leaf priority { type uint8 { range "0..255"; } description "Priority."; } leaf up-time { type rt-types:timeticks64; description "The number of time ticks (hundredths of a second) since the BSR came up."; } } choice election-state { if-feature "bsr-election-state"; config false; description "BSR election state."; case candidate { leaf candidate-bsr-state { type enumeration { enum candidate { description "The router is a candidate to be the BSR for the scope zone, but currently another router is the preferred BSR."; } enum pending { description "The router is a candidate to be the BSR for the scope zone. Currently, no other router is the preferred BSR, but this router is not yet the elected BSR. This is a temporary state that prevents rapid thrashing of the choice of BSR during BSR election."; } enum elected { description "The router is the elected BSR for the scope zone, and it must perform all of the BSR functions."; } } description "Candidate-BSR (C-BSR) state."; reference "RFC 5059: Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM), Section 3.1.1"; } } case non-candidate { leaf non-candidate-bsr-state { type enumeration { enum no-info { description "The router has no information about this scope zone."; } enum accept-any { description "The router does not know of an active BSR and will accept the first Bootstrap message it sees that provides the new BSR's identity and the RP-Set."; } enum accept { description "The router knows the identity of the current BSR and is using the RP-Set provided by that BSR. Only Bootstrap messages from that BSR or from a Candidate-BSR (C-BSR) with higher weight than the current BSR will be accepted."; } } description "Non-Candidate-BSR state."; reference "RFC 5059: Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM), Section 3.1.2"; } } } // election-state leaf bsr-next-bootstrap { type uint16; units "seconds"; config false; description "The remaining time interval in seconds until the next Bootstrap will be sent."; } container rp { config false; description "State information of the RP."; leaf rp-address { type inet:ip-address; description "RP address."; } leaf policy-name { type string; description "The string value is the name to uniquely identify a policy that contains one or more policy rules used to accept or reject certain multicast groups. If a policy is not specified, the entire multicast address space is accepted. The definition of such a policy is outside the scope of this document."; } leaf up-time { type rt-types:timeticks64; description "The number of time ticks (hundredths of a second) since the RP became actively available."; } } leaf rp-candidate-next-advertisement { type uint16; units "seconds"; config false; description "The remaining time interval in seconds until the next RP candidate advertisement will be sent."; } } // bsr container rp-list { config false; description "Contains a list of RPs."; list ipv4-rp { when "../../../pim-base:address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } key "rp-address mode"; description "A list of IPv4 RP addresses."; leaf rp-address { type inet:ipv4-address; description "RP address."; } leaf mode { type identityref { base rp-mode; } description "RP mode."; } leaf info-source-address { type inet:ipv4-address; description "The address where RP information is learned."; } uses rp-state-attributes; } list ipv6-rp { when "../../../pim-base:address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } key "rp-address mode"; description "A list of IPv6 RP addresses."; leaf rp-address { type inet:ipv6-address; description "RP address."; } leaf mode { type identityref { base rp-mode; } description "RP mode."; } leaf info-source-address { type inet:ipv6-address; description "The address where RP information is learned."; } uses rp-state-attributes; } } // rp-list container rp-mappings { config false; description "Contains a list of group-to-RP mappings."; list ipv4-rp { when "../../../pim-base:address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } key "group-range rp-address"; description "A list of group-to-RP mappings."; leaf group-range { type inet:ipv4-prefix; description "Group range presented in the format of a prefix."; } leaf rp-address { type inet:ipv4-address; description "RP address."; } uses rp-mapping-state-attributes; } list ipv6-rp { when "../../../pim-base:address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } key "group-range rp-address"; description "A list of IPv6 RP addresses."; leaf group-range { type inet:ipv6-prefix; description "Group range presented in the format of a prefix."; } leaf rp-address { type inet:ipv6-address; description "RP address."; } uses rp-mapping-state-attributes; } } // rp-mappings } // rp } // augment
/* * Notifications */
notification pim-rp-event { description "Notification event for an RP."; leaf event-type { type rp-event-type; description "Event type."; } uses pim-base:pim-instance-af-state-ref; leaf group { type rt-types:ip-multicast-group-address; description "Group address."; } leaf rp-address { type inet:ip-address; description "RP address."; } leaf is-rpt { type boolean; description "'true' if the tree is an RPT (Rendezvous Point Tree)."; } leaf mode { type identityref { base pim-base:pim-mode; } description "PIM mode."; } leaf message-origin { type inet:ip-address; description "Where the message originated."; } } } <CODE ENDS>
This module references [RFC4607], [RFC6991], [RFC7761], and [RFC8349].
このモジュールは、[RFC4607]、[RFC6991]、[RFC7761]、および[RFC8349]を参照しています。
<CODE BEGINS> file "ietf-pim-sm@2022-10-19.yang" module ietf-pim-sm { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-pim-sm"; prefix pim-sm;
import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types"; } import ietf-routing { prefix rt; reference "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)"; } import ietf-pim-base { prefix pim-base; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; } import ietf-pim-rp { prefix pim-rp; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; }
organization "IETF PIM Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/pim/> WG List: <mailto:pim@ietf.org>
Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com>
Editor: Pete McAllister <mailto:pete.mcallister@metaswitch.com>
Editor: Anish Peter <mailto:anish.ietf@gmail.com>
Editor: Mahesh Sivakumar <mailto:sivakumar.mahesh@gmail.com>
Editor: Yisong Liu <mailto:liuyisong@chinamobile.com>
Editor: Fangwei Hu <mailto:hufwei@gmail.com>"; description "This YANG module defines a PIM (Protocol Independent Multicast) SM (Sparse Mode) model.
編集者:fangwei hu <mailto:hufwei@gmail.com> ";説明"このYangモジュールは、PIM(プロトコル独立マルチキャスト)SM(スパースモード)モデルを定義します。
Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.
Copyright(c)2022 IETF TrustおよびCodeの著者として特定された人。全著作権所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).
変更とバイナリ形式での再配布と使用は、変更の有無にかかわらず、IETF Trustの法的規定(IETFドキュメントに関する法的規定)のセクション4.Cに記載されている修正されたBSDライセンスに基づいて許可されており、ライセンス条件に従います。https://trustee.ietf.org/license-info)。
This version of this YANG module is part of RFC 9128; see the RFC itself for full legal notices.";
このYangモジュールのこのバージョンは、RFC 9128の一部です。完全な法的通知については、RFC自体を参照してください。」;
revision 2022-10-19 { description "Initial revision."; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; }
/* * Features */
feature spt-switch-infinity { description "This feature indicates that the system supports the configuration choice of whether to trigger switchover from the RPT (Rendezvous Point Tree) to the SPT (Shortest Path Tree)."; reference "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.2"; }
feature spt-switch-policy { description "This feature indicates that the system supports configuring the policy for switchover from the RPT to the SPT."; reference "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), Section 4.2"; }
/* * Identities */
identity rp-sm { base pim-rp:rp-mode; description "SM (Sparse Mode)."; }
/* * Groupings */
grouping static-rp-sm-container { description "Grouping that contains SM attributes for static RPs."; container sm { presence "Indicates support for PIM-SM."; description "PIM-SM configuration data."; uses pim-rp:static-rp-attributes; } // sm } // static-rp-sm-container
/* * Configuration data nodes */
augment "/rt:routing/rt:control-plane-protocols/pim-base:pim/" + "pim-base:address-family" { description "PIM-SM augmentation."; container sm { description "PIM-SM configuration data."; container asm { description "ASM (Any-Source Multicast) attributes."; container anycast-rp { presence "Present to enable an Anycast-RP (Rendezvous Point)."; description "Anycast-RP attributes."; list ipv4-anycast-rp { when "../../../../pim-base:address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } key "anycast-address rp-address"; description "A list of IPv4 Anycast-RP settings. Only applicable when 'pim-base:address-family' is IPv4."; leaf anycast-address { type inet:ipv4-address; description "IP address of the Anycast-RP set. This IP address is used by the multicast groups or sources to join or register."; } leaf rp-address { type inet:ipv4-address; description "IP address of the router configured with an Anycast-RP. This is the IP address where the Register messages are forwarded."; } } list ipv6-anycast-rp { when "../../../../pim-base:address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } key "anycast-address rp-address"; description "A list of IPv6 Anycast-RP settings. Only applicable when 'pim-base:address-family' is IPv6."; leaf anycast-address { type inet:ipv6-address; description "IP address of the Anycast-RP set. This IP address is used by the multicast groups or sources to join or register."; } leaf rp-address { type inet:ipv6-address; description "IP address of the router configured with an Anycast-RP. This is the IP address where the Register messages are forwarded."; } } } container spt-switch { description "SPT (Shortest Path Tree) switching attributes."; container infinity { if-feature "spt-switch-infinity"; presence "Present if the SPT switchover threshold is set to infinity, according to the policy specified below."; description "The receiver's DR (Designated Router) never triggers switchover from the RPT to the SPT."; leaf policy-name { if-feature "spt-switch-policy"; type string; description "The string value is the name to uniquely identify a policy that contains one or more policy rules used to accept or reject certain multicast groups. The groups accepted by this policy have the SPT switchover threshold set to infinity, meaning that they will stay on the shared tree forever. If a policy is not specified, the entire multicast address space is accepted. The definition of such a policy is outside the scope of this document."; } } // infinity } } // asm container ssm { presence "Present to enable SSM (Source-Specific Multicast)."; description "SSM attributes."; leaf range-policy { type string; description "The string value is the name to uniquely identify a policy that contains one or more policy rules used to accept or reject certain multicast groups. The groups accepted by this policy define the multicast group range used by SSM. If a policy is not specified, the default SSM multicast group range is used. The default SSM multicast group range is 232.0.0.0/8 for IPv4 and ff3x::/96 for IPv6, where x represents any valid scope identifier. The definition of such a policy is outside the scope of this document."; reference "RFC 4607: Source-Specific Multicast for IP"; } } // ssm } // sm } // augment
augment "/rt:routing/rt:control-plane-protocols/pim-base:pim/" + "pim-base:interfaces/pim-base:interface/" + "pim-base:address-family" { description "PIM-SM augmentation."; container sm { presence "Present to enable PIM-SM."; description "PIM-SM configuration data."; leaf passive { type empty; description "Specifies that no PIM messages are sent or accepted on this PIM interface, but the interface can be included in a multicast forwarding entry."; } } // sm } // augment
augment "/rt:routing/rt:control-plane-protocols/pim-base:pim/" + "pim-base:address-family/pim-rp:rp/" + "pim-rp:static-rp/pim-rp:ipv4-rp" { description "PIM-SM augmentation."; uses static-rp-sm-container; } // augment
augment "/rt:routing/rt:control-plane-protocols/pim-base:pim/" + "pim-base:address-family/pim-rp:rp/" + "pim-rp:static-rp/pim-rp:ipv6-rp" { description "PIM-SM augmentation."; uses static-rp-sm-container; } // augment
} <CODE ENDS>
} <Code End>
This module references [RFC3973] and [RFC8349].
このモジュールは[RFC3973]および[RFC8349]を参照します。
<CODE BEGINS> file "ietf-pim-dm@2022-10-19.yang" module ietf-pim-dm { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-pim-dm"; prefix pim-dm;
import ietf-routing { prefix rt; reference "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)"; } import ietf-pim-base { prefix pim-base; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; }
organization "IETF PIM Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/pim/> WG List: <mailto:pim@ietf.org>
Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com>
Editor: Pete McAllister <mailto:pete.mcallister@metaswitch.com>
Editor: Anish Peter <mailto:anish.ietf@gmail.com>
Editor: Mahesh Sivakumar <mailto:sivakumar.mahesh@gmail.com>
Editor: Yisong Liu <mailto:liuyisong@chinamobile.com>
Editor: Fangwei Hu <mailto:hufwei@gmail.com>"; description "This YANG module defines a PIM (Protocol Independent Multicast) DM (Dense Mode) model.
編集者:fangwei hu <mailto:hufwei@gmail.com> ";説明"このYangモジュールは、PIM(プロトコル独立マルチキャスト)DM(密度モード)モデルを定義します。
Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.
Copyright(c)2022 IETF TrustおよびCodeの著者として特定された人。全著作権所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).
変更とバイナリ形式での再配布と使用は、変更の有無にかかわらず、IETF Trustの法的規定(IETFドキュメントに関する法的規定)のセクション4.Cに記載されている修正されたBSDライセンスに基づいて許可されており、ライセンス条件に従います。https://trustee.ietf.org/license-info)。
This version of this YANG module is part of RFC 9128; see the RFC itself for full legal notices.";
このYangモジュールのこのバージョンは、RFC 9128の一部です。完全な法的通知については、RFC自体を参照してください。」;
revision 2022-10-19 { description "Initial revision."; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; }
/* * Configuration data nodes */
augment "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:address-family" { description "PIM-DM augmentation."; container dm { presence "Present to enable PIM-DM."; description "PIM-DM configuration data."; } // dm } // augment
augment "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:interfaces/pim-base:interface/" + "pim-base:address-family" { description "PIM-DM augmentation to 'pim-base:interface'."; container dm { presence "Present to enable PIM-DM."; description "PIM-DM configuration data."; } // dm } // augment
} <CODE ENDS>
} <Code End>
This module references [RFC5015], [RFC6991], [RFC8294], [RFC8343], and [RFC8349].
このモジュールは、[RFC5015]、[RFC6991]、[RFC8294]、[RFC8343]、および[RFC8349]を参照しています。
<CODE BEGINS> file "ietf-pim-bidir@2022-10-19.yang" module ietf-pim-bidir { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-pim-bidir"; prefix pim-bidir;
import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types"; } import ietf-routing-types { prefix rt-types; reference "RFC 8294: Common YANG Data Types for the Routing Area"; } import ietf-interfaces { prefix if; reference "RFC 8343: A YANG Data Model for Interface Management"; } import ietf-routing { prefix rt; reference "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)"; } import ietf-pim-base { prefix pim-base; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; } import ietf-pim-rp { prefix pim-rp; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; }
organization "IETF PIM Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/pim/> WG List: <mailto:pim@ietf.org>
Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com>
Editor: Pete McAllister <mailto:pete.mcallister@metaswitch.com>
Editor: Anish Peter <mailto:anish.ietf@gmail.com>
Editor: Mahesh Sivakumar <mailto:sivakumar.mahesh@gmail.com>
Editor: Yisong Liu <mailto:liuyisong@chinamobile.com>
Editor: Fangwei Hu <mailto:hufwei@gmail.com>"; description "This YANG module defines a PIM (Protocol Independent Multicast) BIDIR (Bidirectional) mode model.
編集者:fangwei hu <mailto:hufwei@gmail.com> ";説明"このYangモジュールは、PIM(プロトコル独立マルチキャスト)Bidir(双方向)モードモデルを定義します。
Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.
Copyright(c)2022 IETF TrustおよびCodeの著者として特定された人。全著作権所有。
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).
変更とバイナリ形式での再配布と使用は、変更の有無にかかわらず、IETF Trustの法的規定(IETFドキュメントに関する法的規定)のセクション4.Cに記載されている修正されたBSDライセンスに基づいて許可されており、ライセンス条件に従います。https://trustee.ietf.org/license-info)。
This version of this YANG module is part of RFC 9128; see the RFC itself for full legal notices.";
このYangモジュールのこのバージョンは、RFC 9128の一部です。完全な法的通知については、RFC自体を参照してください。」;
revision 2022-10-19 { description "Initial revision."; reference "RFC 9128: A YANG Data Model for Protocol Independent Multicast (PIM)"; }
/* * Features */
feature intf-df-election { description "Supports configuration of interface DF election."; reference "RFC 5015: Bidirectional Protocol Independent Multicast (BIDIR-PIM), Section 3.5"; }
/* * Identities */
identity rp-bidir { base pim-rp:rp-mode; description "BIDIR mode."; }
identity df-state { description "DF (Designated Forwarder) election state type."; reference "RFC 5015: Bidirectional Protocol Independent Multicast (BIDIR-PIM)"; }
identity df-state-offer { base df-state; description "Initial election state. When in the Offer state, a router thinks it can eventually become the winner and periodically generates Offer messages."; }
identity df-state-lose { base df-state; description "Either (1) there is a different election winner or (2) no router on the link has a path to the RPA (Rendezvous Point Address)."; }
identity df-state-win { base df-state; description "The router is the acting DF without any contest."; }
identity df-state-backoff { base df-state; description "The router is the acting DF, but another router has made a bid to take over."; }
/* * Groupings */
grouping static-rp-bidir-container { description "Grouping that contains BIDIR attributes for a static RP (Rendezvous Point)."; container bidir { presence "Indicates support for BIDIR mode."; description "PIM-BIDIR configuration data."; uses pim-rp:static-rp-attributes; } // bidir } // static-rp-bidir-container
grouping interface-df-election-state-attributes { description "Grouping that contains the state attributes of a DF election on an interface."; leaf interface-state { type identityref { base df-state; } description "Interface state with respect to the DF election."; } leaf up-time { type rt-types:timeticks64; description "The number of time ticks (hundredths of a second) since the current DF has been elected as the winner."; } leaf winner-metric { type uint32; description "The unicast routing metric used by the DF to reach the RP. The value is announced by the DF."; } leaf winner-metric-preference { type uint32; description "The preference value assigned to the unicast routing protocol that the DF used to obtain the route to the RP. The value is announced by the DF."; } } // interface-df-election-state-attributes
/* * Configuration data and operational state data nodes */
augment "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:address-family" { description "PIM-BIDIR augmentation."; container bidir { presence "Present to enable BIDIR mode."; description "PIM-BIDIR configuration data."; } // bidir } // augment
augment "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:interfaces/pim-base:interface/" + "pim-base:address-family" { description "PIM-BIDIR augmentation."; container bidir { presence "Present to enable BIDIR mode."; description "PIM-BIDIR configuration data."; container df-election { if-feature "intf-df-election"; description "DF election attributes."; leaf offer-interval { type uint16; units "milliseconds"; default "100"; description "Offer interval. Specifies the interval between repeated DF election messages."; } leaf backoff-interval { type uint16; units "milliseconds"; default "1000"; description "This is the interval that the acting DF waits between receiving a better DF Offer and sending the Pass message to transfer DF responsibility."; } leaf offer-multiplier { type uint8; default "3"; description "This is the number of transmission attempts for DF election messages. When a DF election Offer or Winner message fails to be received, the message is retransmitted. 'offer-multiplier' sets the minimum number of DF election messages that must fail to be received for DF election to fail. If a router receives from a neighbor a better offer than its own, the router stops participating in the election for a period of 'offer-multiplier' * 'offer-interval'. Eventually, all routers except the best candidate stop sending Offer messages."; } } // df-election } // bidir } // augment
augment "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:address-family/pim-rp:rp/" + "pim-rp:static-rp/pim-rp:ipv4-rp" { description "PIM-BIDIR augmentation."; uses static-rp-bidir-container; } // augment
augment "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:address-family/pim-rp:rp/" + "pim-rp:static-rp/pim-rp:ipv6-rp" { description "PIM-BIDIR augmentation."; uses static-rp-bidir-container; } // augment
/* * Operational state data nodes */
augment "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:address-family/pim-rp:rp" { description "PIM-BIDIR augmentation to RP state data."; container bidir { config false; description "PIM-BIDIR state data."; container df-election { description "DF election data."; list ipv4-rp { when "../../../../pim-base:address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } key "rp-address"; description "A list of IPv4 RP addresses."; leaf rp-address { type inet:ipv4-address; description "The address of the RP."; } } // ipv4-rp list ipv6-rp { when "../../../../pim-base:address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } key "rp-address"; description "A list of IPv6 RP addresses."; leaf rp-address { type inet:ipv6-address; description "The address of the RP."; } } // ipv6-rp } // df-election container interface-df-election { description "Interface DF election data."; list ipv4-rp { when "../../../../pim-base:address-family = 'rt:ipv4'" { description "Only applicable to an IPv4 address family."; } key "rp-address interface-name"; description "A list of IPv4 RP addresses."; leaf rp-address { type inet:ipv4-address; description "The address of the RP."; } leaf interface-name { type if:interface-ref; description "The name of the interface for which the DF state is being maintained."; } leaf df-address { type inet:ipv4-address; description "The address of the elected DF, which is the winner of the DF election process."; } uses interface-df-election-state-attributes; } // ipv4-rp list ipv6-rp { when "../../../../pim-base:address-family = 'rt:ipv6'" { description "Only applicable to an IPv6 address family."; } key "rp-address interface-name"; description "A list of IPv6 RP addresses."; leaf rp-address { type inet:ipv6-address; description "The address of the RP."; } leaf interface-name { type if:interface-ref; description "The name of the interface for which the DF state is being maintained."; } leaf df-address { type inet:ipv6-address; description "DF address."; } uses interface-df-election-state-attributes; } // ipv6-rp } // interface-df-election } } // augment
augment "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:interfaces/pim-base:interface/" + "pim-base:address-family/pim-base:neighbors/" + "pim-base:ipv4-neighbor" { description "PIM-BIDIR augmentation to the IPv4 neighbor state data."; leaf bidir-capable { type boolean; description "'true' if the neighbor is using the Bidirectional Capable option in the last Hello message."; } } // augment
augment "/rt:routing/rt:control-plane-protocols/" + "pim-base:pim/pim-base:interfaces/pim-base:interface/" + "pim-base:address-family/pim-base:neighbors/" + "pim-base:ipv6-neighbor" { description "PIM-BIDIR augmentation to the IPv6 neighbor state data."; leaf bidir-capable { type boolean; description "'true' if the neighbor is using the Bidirectional Capable option in the last Hello message."; } } // augment
} <CODE ENDS>
} <Code End>
The YANG modules specified in this document define a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].
このドキュメントで指定されたYangモジュールは、NetConf [RFC6241]やRestConf [RFC8040]などのネットワーク管理プロトコルを介してアクセスするように設計されたデータのスキーマを定義します。最低のネットコン層は安全な輸送層であり、実装から実装の安全な輸送は安全なシェル(SSH)[RFC6242]です。最も低いRESTCONFレイヤーはHTTPSであり、実装対象の安全な輸送はTLS [RFC8446]です。
The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.
ネットワーク構成アクセス制御モデル(NACM)[RFC8341]は、利用可能なすべてのNetConfまたはRestConfプロトコル操作とコンテンツの事前に設定されたサブセットに特定のNetConfまたはRestConfユーザーのアクセスを制限する手段を提供します。
There are a number of data nodes defined in these YANG modules that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:
これらのYangモジュールには、書き込み可能/クリエーション/削除可能なもの(つまり、デフォルトである構成)である多くのデータノードが定義されています。これらのデータノードは、一部のネットワーク環境で敏感または脆弱と見なされる場合があります。適切な保護なしにこれらのデータノードに操作を書き込む(例:編集Config)は、ネットワーク操作に悪影響を与える可能性があります。これらは、サブツリーとデータノードとその感度/脆弱性です。
pim-base:graceful-restart This subtree specifies the configuration for PIM graceful restart at the global level on a device. Modifying the configuration can cause temporary interruption to the multicast routing during restart.
Pim-base:Graceful-Restartこのサブツリーは、デバイス上のグローバルレベルでPIM Graceful Restartの構成を指定します。構成を変更すると、再起動中にマルチキャストルーティングが一時的に中断される可能性があります。
pim-base:address-family/pim-base:graceful-restart This subtree specifies the per-address-family configuration for PIM graceful restart on a device. Modifying the configuration can cause temporary interruption to the multicast routing during restart.
PIMベース:アドレスファミリー/PIMベース:Graceful-Restartこのサブツリーは、デバイス上のPIM Graceful Restart用のアドレスごとのファミリーごとの構成を指定します。構成を変更すると、再起動中にマルチキャストルーティングが一時的に中断される可能性があります。
pim-base:address-family/pim-rp:pim-rp:rp This subtree specifies the configuration for the PIM Rendezvous Point (RP) on a device. Modifying the configuration can cause RP malfunctions.
PIMベース:アドレスファミリー/PIM-RP:PIM-RP:RPこのサブツリーは、デバイス上のPIM Rendezvous Point(RP)の構成を指定します。構成を変更すると、RPの誤動作を引き起こす可能性があります。
pim-base:address-family/pim-sm:sm This subtree specifies the configuration for PIM Sparse Mode (PIM-SM) on a device. Modifying the configuration can cause multicast traffic to be disabled or rerouted in PIM-SM.
PIMベース:アドレスファミリー/PIM-SM:SMこのサブツリーは、デバイス上のPIMスパースモード(PIM-SM)の構成を指定します。構成を変更すると、マルチキャストトラフィックがPIM-SMで無効になったり、再ルーティングされたりする可能性があります。
pim-base:address-family/pim-dm:dm This subtree specifies the configuration for PIM Dense Mode (PIM-DM) on a device. Modifying the configuration can cause multicast traffic to be disabled or rerouted in PIM-DM.
PIMベース:アドレスファミリー/PIM-DM:DMこのサブツリーは、デバイス上のPIM密度モード(PIM-DM)の構成を指定します。構成を変更すると、マルチキャストトラフィックがPIM-DMで無効になったり、再ルーティングされたりする可能性があります。
pim-base:address-family/pim-bidir:bidir This subtree specifies the configuration for PIM Bidirectional Mode (BIDIR-PIM) on a device. Modifying the configuration can cause multicast traffic to be disabled or rerouted in BIDIR-PIM.
PIMベース:アドレスファミリー/PIM-ビディール:Bidirこのサブツリーは、デバイス上のPIM双方向モード(Bidir-PIM)の構成を指定します。構成を変更すると、マルチキャストトラフィックが無効になったり、Bidir-PIMで再ルーティングされたりする可能性があります。
pim-base:interfaces This subtree specifies the configuration for the PIM interfaces on a device. Modifying the configuration can cause the PIM protocol to get insufficient or incorrect information.
PIMベース:インターフェースこのサブツリーは、デバイス上のPIMインターフェイスの構成を指定します。構成を変更すると、PIMプロトコルが不十分または不正確な情報を取得する可能性があります。
These subtrees are all under "/rt:routing/rt:control-plane-protocols/ pim-base:pim".
これらのサブツリーはすべて「/rt:ルーティング/RT:コントロールプレーンプロトコル/PIMベース:PIM」の下にあります。
Unauthorized access to any data node of these subtrees can adversely affect the multicast routing subsystem of both the local device and the network. This may lead to network malfunctions, delivery of packets to inappropriate destinations, and other problems.
これらのサブツリーのデータノードへの不正アクセスは、ローカルデバイスとネットワークの両方のマルチキャストルーティングサブシステムに悪影響を与える可能性があります。これにより、ネットワークの誤動作、不適切な目的地へのパケットの配信、およびその他の問題につながる可能性があります。
Some of the readable data nodes in these YANG modules may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:
これらのYangモジュールの読み取り可能なデータノードの一部は、一部のネットワーク環境で敏感または脆弱と見なされる場合があります。したがって、これらのデータノードへの読み取りアクセス(get、get config、または通知を介して)を制御することが重要です。これらは、サブツリーとデータノードとその感度/脆弱性です。
/rt:routing/rt:control-plane-protocols/pim-base:pim
Unauthorized access to any data node of the above subtree can disclose the operational state information of PIM on this device.
上記のサブツリーのデータノードへの不正アクセスは、このデバイス上のPIMの動作状態情報を開示できます。
IANA has registered the following namespace URIs in the "IETF XML Registry" [RFC3688]:
IANAは、「IETF XMLレジストリ」[RFC3688]に次の名前空間URIを登録しました。
URI: urn:ietf:params:xml:ns:yang:ietf-pim-base Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
uri:urn:ietf:params:xml:ns:yang:ietf-pim-base登録者の連絡先:iesg。XML:n/a;要求されたURIはXMLネームスペースです。
URI: urn:ietf:params:xml:ns:yang:ietf-pim-bidir Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
uri:urn:ietf:params:xml:ns:yang:ietf-pim-bidir登録者の連絡先:iesg。XML:n/a;要求されたURIはXMLネームスペースです。
URI: urn:ietf:params:xml:ns:yang:ietf-pim-dm Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
uri:urn:ietf:params:xml:ns:yang:ietf-pim-dm登録者の連絡先:iesg。XML:n/a;要求されたURIはXMLネームスペースです。
URI: urn:ietf:params:xml:ns:yang:ietf-pim-rp Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
uri:urn:ietf:params:xml:ns:yang:ietf-pim-rp登録者の連絡先:iesg。XML:n/a;要求されたURIはXMLネームスペースです。
URI: urn:ietf:params:xml:ns:yang:ietf-pim-sm Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.
uri:urn:ietf:params:xml:ns:yang:ietf-pim-sm登録者の連絡先:iesg。XML:n/a;要求されたURIはXMLネームスペースです。
IANA has registered the following YANG modules in the "YANG Module Names" registry [RFC6020]:
IANAは、「Yangモジュール名」レジストリ[RFC6020]に次のYangモジュールを登録しています。
Name: ietf-pim-base Namespace: urn:ietf:params:xml:ns:yang:ietf-pim-base Prefix: pim-base Reference: RFC 9128
Name: ietf-pim-bidir Namespace: urn:ietf:params:xml:ns:yang:ietf-pim-bidir Prefix: pim-bidir Reference: RFC 9128
Name: ietf-pim-dm Namespace: urn:ietf:params:xml:ns:yang:ietf-pim-dm Prefix: pim-dm Reference: RFC 9128
Name: ietf-pim-rp Namespace: urn:ietf:params:xml:ns:yang:ietf-pim-rp Prefix: pim-rp Reference: RFC 9128
Name: ietf-pim-sm Namespace: urn:ietf:params:xml:ns:yang:ietf-pim-sm Prefix: pim-sm Reference: RFC 9128
[RFC3569] Bhattacharyya, S., Ed., "An Overview of Source-Specific Multicast (SSM)", RFC 3569, DOI 10.17487/RFC3569, July 2003, <https://www.rfc-editor.org/info/rfc3569>.
[RFC3569] Bhattacharyya、S.、ed。、「ソース固有のマルチキャスト(SSM)の概要」、RFC 3569、DOI 10.17487/RFC3569、2003年7月、<https://www.rfc-editor.org/info/RFC3569>。
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>.
[RFC3688] Mealling、M。、「IETF XMLレジストリ」、BCP 81、RFC 3688、DOI 10.17487/RFC3688、2004年1月、<https://www.rfc-editor.org/info/rfc3688>
[RFC3973] Adams, A., Nicholas, J., and W. Siadak, "Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised)", RFC 3973, DOI 10.17487/RFC3973, January 2005, <https://www.rfc-editor.org/info/rfc3973>.
[RFC3973] Adams、A.、Nicholas、J.、およびW. Siadak、「プロトコル独立マルチキャスト - 密度モード(PIM -DM):プロトコル仕様(改訂)、RFC 3973、DOI 10.17487/RFC3973、2005年1月、<<<<<https://www.rfc-editor.org/info/rfc3973>。
[RFC4607] Holbrook, H. and B. Cain, "Source-Specific Multicast for IP", RFC 4607, DOI 10.17487/RFC4607, August 2006, <https://www.rfc-editor.org/info/rfc4607>.
[RFC4607] Holbrook、H。およびB. Cain、「IP用のソース固有のマルチキャスト」、RFC 4607、DOI 10.17487/RFC4607、2006年8月、<https://www.rfc-editor.org/info/rfc4607>
[RFC4610] Farinacci, D. and Y. Cai, "Anycast-RP Using Protocol Independent Multicast (PIM)", RFC 4610, DOI 10.17487/RFC4610, August 2006, <https://www.rfc-editor.org/info/rfc4610>.
[RFC4610] Farinacci、D。およびY. Cai、「プロトコル独立マルチキャスト(PIM)を使用したAnycast-RP」、RFC 4610、DOI 10.17487/RFC4610、2006年8月、<https://www.rfc-editor.org/info/RFC4610>。
[RFC5015] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano, "Bidirectional Protocol Independent Multicast (BIDIR-PIM)", RFC 5015, DOI 10.17487/RFC5015, October 2007, <https://www.rfc-editor.org/info/rfc5015>.
[RFC5015] Handley、M.、Kouvelas、I.、Speakman、T.、およびL. Vicisano、「双方向プロトコル独立マルチキャスト(Bidir-PIM)」、RFC 5015、DOI 10.17487/RFC5015、2007年10月、<https:/<https://www.rfc-editor.org/info/rfc5015>。
[RFC5059] Bhaskar, N., Gall, A., Lingard, J., and S. Venaas, "Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM)", RFC 5059, DOI 10.17487/RFC5059, January 2008, <https://www.rfc-editor.org/info/rfc5059>.
[RFC5059] Bhaskar、N.、Gall、A.、Lingard、J。、およびS. Venaas、「ブートストラップルーター(BSR)プロトコル独立マルチキャスト(PIM)のメカニズム」、RFC 5059、DOI 10.17487/RFC5059、2008年1月、<https://www.rfc-editor.org/info/rfc5059>。
[RFC5060] Sivaramu, R., Lingard, J., McWalter, D., Joshi, B., and A. Kessler, "Protocol Independent Multicast MIB", RFC 5060, DOI 10.17487/RFC5060, January 2008, <https://www.rfc-editor.org/info/rfc5060>.
[RFC5060] Sivaramu、R.、Lingard、J.、McWalter、D.、Joshi、B。、およびA. Kessler、「Protocol Independent Multicast MIB」、RFC 5060、DOI 10.17487/RFC5060、2008年1月、<https://www.rfc-editor.org/info/rfc5060>。
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>.
[RFC6020] Bjorklund、M.、ed。、 "Yang -Yang-ネットワーク構成プロトコル(NetConf)のデータモデリング言語、RFC 6020、DOI 10.17487/RFC6020、2010年10月、<https://www.rfc -editor。org/info/rfc6020>。
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.
[RFC6241] Enns、R.、ed。、ed。、Bjorklund、M.、ed。、Schoenwaelder、J.、ed。、およびA. Bierman、ed。、「ネットワーク構成プロトコル(NetConf)」、RFC 6241、DOI 10.17487/RFC6241、2011年6月、<https://www.rfc-editor.org/info/rfc6241>。
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/info/rfc6242>.
[RFC6242] Wasserman、M。、「セキュアシェル(SSH)を介してNetConfプロトコルを使用」、RFC 6242、DOI 10.17487/RFC6242、2011年6月、<https://www.rfc-editor.org/info/rfc6242>。
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.
[RFC6991] Schoenwaelder、J.、ed。、 "Common Yang Data型"、RFC 6991、DOI 10.17487/RFC6991、2013年7月、<https://www.rfc-editor.org/info/rfc6991>。
[RFC7761] Fenner, B., Handley, M., Holbrook, H., Kouvelas, I., Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March 2016, <https://www.rfc-editor.org/info/rfc7761>.
[RFC7761] Fenner、B.、B.、Handley、M.、Holbrook、H.、Kouvelas、I.、Parekh、R.、Zhang、Z.、およびL. Zheng、 "Protocol Independent Multicast -Sparse Mode(PIM -SM):プロトコル仕様(改訂) "、STD 83、RFC 7761、DOI 10.17487/RFC7761、2016年3月、<https://www.rfc-editor.org/info/rfc7761>。
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.
[RFC7950] Bjorklund、M.、ed。、「Yang 1.1 Data Modeling Language」、RFC 7950、DOI 10.17487/RFC7950、2016年8月、<https://www.rfc-editor.org/info/rfc7950>。
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.
[RFC8040] Bierman、A.、Bjorklund、M。、およびK. Watsen、「RestConf Protocol」、RFC 8040、DOI 10.17487/RFC8040、2017年1月、<https://www.rfc-editor.org/info/rfc8040>。
[RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger, "Common YANG Data Types for the Routing Area", RFC 8294, DOI 10.17487/RFC8294, December 2017, <https://www.rfc-editor.org/info/rfc8294>.
[RFC8294] Liu、X.、Qu、Y.、Lindem、A.、Hopps、C。、およびL. Berger、「ルーティングエリアの一般的なYangデータ型」、RFC 8294、DOI 10.17487/RFC8294、2017年12月、RFC8294、<https://www.rfc-editor.org/info/rfc8294>。
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>.
[RFC8341] Bierman、A。and M. Bjorklund、「ネットワーク構成アクセス制御モデル」、STD 91、RFC 8341、DOI 10.17487/RFC8341、2018年3月、<https://www.rfc-editor.org/info/RFC8341>。
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, <https://www.rfc-editor.org/info/rfc8342>.
[RFC8342] Bjorklund、M.、Schoenwaelder、J.、Shafer、P.、Watsen、K。、およびR. Wilton、「ネットワーク管理データストアアーキテクチャ(NMDA)」、RFC 8342、DOI 10.17487/RFC8342、2018年3月、<<<<<https://www.rfc-editor.org/info/rfc8342>。
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>.
[RFC8343] Bjorklund、M。、「インターフェイス管理のためのYangデータモデル」、RFC 8343、DOI 10.17487/RFC8343、2018年3月、<https://www.rfc-editor.org/info/rfc8343>。
[RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for Routing Management (NMDA Version)", RFC 8349, DOI 10.17487/RFC8349, March 2018, <https://www.rfc-editor.org/info/rfc8349>.
[RFC8349] Lhotka、L.、Lindem、A。、およびY. Qu、「ルーティング管理のためのYangデータモデル(NMDAバージョン)」、RFC 8349、DOI 10.17487/RFC8349、2018年3月、<https:// www。rfc-editor.org/info/rfc8349>。
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.
[RFC8446] Rescorla、E。、「輸送層セキュリティ(TLS)プロトコルバージョン1.3」、RFC 8446、DOI 10.17487/RFC8446、2018年8月、<https://www.rfc-editor.org/info/rfc846>
[RFC9314] Jethanandani, M., Ed., Rahman, R., Ed., Zheng, L., Ed., Pallagatti, S., and G. Mirsky, "YANG Data Model for Bidirectional Forwarding Detection (BFD)", RFC 9314, DOI 10.17487/RFC9314, September 2022, <https://www.rfc-editor.org/info/rfc9314>.
[RFC9314] Jethanandani、M.、ed。、Rahman、R.、ed。、Zheng、L.、ed。、Pallagatti、S.、およびG. Mirsky、「双方向転送検出(BFD)のYangデータモデル」、RFC 9314、DOI 10.17487/RFC9314、2022年9月、<https://www.rfc-editor.org/info/rfc9314>。
[RFC3376] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A. Thyagarajan, "Internet Group Management Protocol, Version 3", RFC 3376, DOI 10.17487/RFC3376, October 2002, <https://www.rfc-editor.org/info/rfc3376>.
[RFC3376] Cain、B.、Deering、S.、Kouvelas、I.、Fenner、B.、およびA. Thyagarajan、 "Internet Group Management Protocol、バージョン3"、RFC 3376、DOI 10.17487/RFC3376、2002年10月、<<https://www.rfc-editor.org/info/rfc3376>。
[RFC3618] Fenner, B., Ed. and D. Meyer, Ed., "Multicast Source Discovery Protocol (MSDP)", RFC 3618, DOI 10.17487/RFC3618, October 2003, <https://www.rfc-editor.org/info/rfc3618>.
[RFC3618] Fenner、B.、ed。and D. Meyer、ed。、「マルチキャストソースディスカバリープロトコル(MSDP)」、RFC 3618、DOI 10.17487/RFC3618、2003年10月、<https://www.rfc-editor.org/info/rfc3618>。
[RFC3810] Vida, R., Ed. and L. Costa, Ed., "Multicast Listener Discovery Version 2 (MLDv2) for IPv6", RFC 3810, DOI 10.17487/RFC3810, June 2004, <https://www.rfc-editor.org/info/rfc3810>.
[RFC3810] Vida、R.、ed。and L. Costa、ed。、「IPv6のマルチキャストリスナーディスカバリーバージョン2(MLDV2)」、RFC 3810、DOI 10.17487/RFC3810、2004年6月、<https://www.rfc-editor.org/info/rfc3810>。
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010, <https://www.rfc-editor.org/info/rfc5880>.
[RFC5880] Katz、D。およびD. Ward、「双方向転送検出(BFD)」、RFC 5880、DOI 10.17487/RFC5880、2010年6月、<https://www.rfc-editor.org/info/rfc5880>
[RFC6388] Wijnands, IJ., Ed., Minei, I., Ed., Kompella, K., and B. Thomas, "Label Distribution Protocol Extensions for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths", RFC 6388, DOI 10.17487/RFC6388, November 2011, <https://www.rfc-editor.org/info/rfc6388>.
[RFC6388] Wijnands、IJ。、ed。、Misei、I.、ed。、Kompella、K。、およびB. Thomas、「ポイントツーマルチポイントおよびマルチポイントツーマルチポイントラベルスイッチされたパスのラベル分布プロトコル拡張」、RFC 6388、DOI 10.17487/RFC6388、2011年11月、<https://www.rfc-editor.org/info/rfc6388>。
[RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG", RFC 7951, DOI 10.17487/RFC7951, August 2016, <https://www.rfc-editor.org/info/rfc7951>.
[RFC7951] Lhotka、L。、「Yangでモデル化されたデータのJSONエンコード」、RFC 7951、DOI 10.17487/RFC7951、2016年8月、<https://www.rfc-editor.org/info/rfc7951>。
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>.
[RFC8340] Bjorklund、M。and L. Berger、ed。、「Yang Tree Diagrams」、BCP 215、RFC 8340、DOI 10.17487/RFC8340、2018年3月、<https://www.rfc-editor.org/info/RFC8340>。
[RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of Documents Containing YANG Data Models", BCP 216, RFC 8407, DOI 10.17487/RFC8407, October 2018, <https://www.rfc-editor.org/info/rfc8407>.
[RFC8407] Bierman、A。、「Yang Data Modelsを含む文書の著者およびレビュアーのガイドライン」、BCP 216、RFC 8407、DOI 10.17487/RFC8407、2018年10月、<https://www.rfc-editor.org/info/rfc8407>。
[RFC8706] Ginsberg, L. and P. Wells, "Restart Signaling for IS-IS", RFC 8706, DOI 10.17487/RFC8706, February 2020, <https://www.rfc-editor.org/info/rfc8706>.
[RFC8706]ギンズバーグ、L。およびP.ウェルズ、「IS-ISの再起動シグナリング」、RFC 8706、DOI 10.17487/RFC8706、2020年2月、<https://www.rfc-editor.org/info/rfc8706>
This appendix contains an example of an instance data tree, in JSON encoding [RFC7951], containing both configuration data and state data.
この付録には、構成データと状態データの両方を含む[RFC7951]をエンコードするJSONのインスタンスデータツリーの例が含まれています。
lo0: 2001:db8:0:200::1 (RP address) | +-------+ | | | Router| | eth21 +---+ R2 +---+ eth23 | | (RP) | | | +-------+ | lo0: 2001:db8:0:300::1 | +-------+ | | +-------+ | | | Router| | | | Router| | eth10 +--+ R1 +---+ eth12 eth32 +---+ R3 +--+ eth30 | | | | | | | | | +-------+ | +-------+ | +-------+ | | +-------+ | +-------+ | | | | | Router| | | | | | +--+ +---+ R4 +---+ +-------+ +--+ | | | | | | | | | Router| | | | +-------+ | | +-------+ +---+ R5 | | +-------+ Source | | | Receiver | +-------+
The configuration instance data tree for Router R3 in the above figure could be as follows:
上記の図のルーターR3の構成インスタンスデータツリーは次のとおりです。
{ "ietf-interfaces:interfaces": { "interface": [ { "name": "lo0", "description": "R3 loopback interface.", "type": "iana-if-type:softwareLoopback", "ietf-ip:ipv6": { "address": [ { "ip": "2001:db8:0:300::1", "prefix-length": 64 } ] } }, { "name": "eth30", "description": "An interface connected to the receiver.", "type": "iana-if-type:ethernetCsmacd", "ietf-ip:ipv6": { "forwarding": true } }, { "name": "eth32", "description": "An interface connected to the RP (R2).", "type": "iana-if-type:ethernetCsmacd", "ietf-ip:ipv6": { "forwarding": true } } ] }, "ietf-routing:routing": { "router-id": "203.0.113.3", "control-plane-protocols": { "ietf-pim-base:pim": { "address-family": [ { "address-family": "ietf-routing:ipv6", "ietf-pim-rp:rp": { "static-rp": { "ipv6-rp": [ { "rp-address": "2001:db8:0:200::1", "ietf-pim-sm:sm": { } } ] } } } ], "interfaces": { "interface": [ { "name": "lo0", "address-family": [ { "address-family": "ietf-routing:ipv6", "hello-interval": "infinity", "ietf-pim-sm:sm": { } } ] }, { "name": "eth30", "address-family": [ { "address-family": "ietf-routing:ipv6", "ietf-pim-sm:sm": { } } ] }, { "name": "eth32", "address-family": [ { "address-family": "ietf-routing:ipv6", "ietf-pim-sm:sm": { } } ] } ] } } } } }
The corresponding operational state data for Router R3 could be as follows:
ルーターR3の対応する動作状態データは次のとおりです。
{ "ietf-interfaces:interfaces": { "interface": [ { "name": "lo0", "description": "R3 loopback interface.", "type": "iana-if-type:softwareLoopback", "phys-address": "00:00:5e:00:53:03", "oper-status": "up", "statistics": { "discontinuity-time": "2018-01-23T12:34:56-05:00" }, "ietf-ip:ipv6": { "mtu": 1500, "address": [ { "ip": "2001:db8:0:300::1", "prefix-length": 64, "origin": "static", "status": "preferred" }, { "ip": "fe80::200:5eff:fe00:5303", "prefix-length": 64, "origin": "link-layer", "status": "preferred" } ], "neighbor": [ ] } }, { "name": "eth30", "description": "An interface connected to the receiver.", "type": "iana-if-type:ethernetCsmacd", "phys-address": "00:00:5e:00:53:30", "oper-status": "up", "statistics": { "discontinuity-time": "2018-01-23T12:34:56-05:00" }, "ietf-ip:ipv6": { "forwarding": true, "mtu": 1500, "address": [ { "ip": "fe80::200:5eff:fe00:5330", "prefix-length": 64, "origin": "link-layer", "status": "preferred" } ], "neighbor": [ ] } }, { "name": "eth32", "description": "An interface connected to the RP (R2).", "type": "iana-if-type:ethernetCsmacd", "phys-address": "00:00:5e:00:53:32", "oper-status": "up", "statistics": { "discontinuity-time": "2018-01-23T12:34:56-05:00" }, "ietf-ip:ipv6": { "forwarding": true, "mtu": 1500, "address": [ { "ip": "fe80::200:5eff:fe00:5332", "prefix-length": 64, "origin": "link-layer", "status": "preferred" } ], "neighbor": [ { "ip": "fe80::200:5eff:fe00:5323", "link-layer-address": "00:00:5e:00:53:23", "origin": "dynamic", "is-router": [null], "state": "reachable" } ] } } ] }, "ietf-routing:routing": { "router-id": "203.0.113.1", "interfaces": { "interface": [ "lo0", "eth30", "eth32" ] }, "control-plane-protocols": { "ietf-pim-base:pim": { "address-family": [ { "address-family": "ietf-routing:ipv6", "statistics": { "discontinuity-time": "2018-01-23T12:34:56-05:00" }, "topology-tree-info": { "ipv6-route": [ { "group": "ff06::1", "source-address": "*", "is-rpt": true, "expiration": 16, "incoming-interface": "eth32", "is-spt": false, "mode": "pim-asm", "msdp-learned": false, "rp-address": "2001:db8:0:200::1", "rpf-neighbor": "fe80::200:5eff:fe00:5323", "up-time": 123400, "outgoing-interface": [ { "name": "eth30", "expiration": 36, "up-time": 223400, "jp-state": "join" } ] }, { "group": "ff06::1", "source-address": "2001:db8:1:1::100", "is-rpt": false, "expiration": 8, "incoming-interface": "eth32", "is-spt": true, "mode": "pim-asm", "msdp-learned": false, "rp-address": "2001:db8:0:200::1", "rpf-neighbor": "fe80::200:5eff:fe00:5323", "up-time": 5200, "outgoing-interface": [ { "name": "eth30", "expiration": 6, "up-time": 5600, "jp-state": "join" } ] } ] }, "ietf-pim-rp:rp": { "static-rp": { "ipv6-rp": [ { "rp-address": "2001:db8:0:200::1", "ietf-pim-sm:sm": { } } ] }, "rp-list": { "ipv6-rp": [ { "rp-address": "2001:db8:0:200::1", "mode": "ietf-pim-sm:rp-sm", "info-source-type": "static", "up-time": 323400, "expiration": "not-set" } ] }, "rp-mappings": { "ipv6-rp": [ { "group-range": "ff06::1/128", "rp-address": "2001:db8:0:200::1", "up-time": 123400, "expiration": "36" } ] } } } ], "interfaces": { "interface": [ { "name": "lo0", "address-family": [ { "address-family": "ietf-routing:ipv6", "hello-interval": "infinity", "ietf-pim-sm:sm": { }, "oper-status": "up", "gen-id": 103689, "hello-expiration": "infinity", "ipv6": { "address": [ "fe80::200:5eff:fe00:5303" ], "dr-address": "fe80::200:5eff:fe00:5303" }, "neighbors": { "ipv6-neighbor": [ ] } } ] }, { "name": "eth30", "address-family": [ { "address-family": "ietf-routing:ipv6", "ietf-pim-sm:sm": { }, "oper-status": "up", "gen-id": 203689, "hello-expiration": 18, "ipv6": { "address": [ "fe80::200:5eff:fe00:5330" ], "dr-address": "fe80::200:5eff:fe00:5330" }, "neighbors": { "ipv6-neighbor": [ ] } } ] }, { "name": "eth32", "address-family": [ { "address-family": "ietf-routing:ipv6", "ietf-pim-sm:sm": { }, "oper-status": "up", "gen-id": 303689, "hello-expiration": 21, "ipv6": { "address": [ "fe80::200:5eff:fe00:5332" ], "dr-address": "fe80::200:5eff:fe00:5332" }, "neighbors": { "ipv6-neighbor": [ { "address": "fe80::200:5eff:fe00:5323", "expiration": 28, "dr-priority": 1, "gen-id": 102, "lan-prune-delay": { "present": false }, "up-time": 323500 } ] } } ] } ] } } } } }
Acknowledgments
謝辞
The authors would like to thank Steve Baillargeon, Feng Guo, Robert Kebler, Tanmoy Kundu, and Stig Venaas for their valuable contributions.
著者は、Steve Baillargeon、Feng Guo、Robert Kebler、Tanmoy Kundu、Stig Venaasの貴重な貢献に感謝したいと思います。
Authors' Addresses
著者のアドレス
Xufeng Liu IBM Corporation 2300 Dulles Station Blvd. Herndon, VA 20171 United States of America Email: xufeng.liu.ietf@gmail.com
Xufeng Liu IBM Corporation 2300 Dulles Station Blvd.バージニア州ハーンドン20171アメリカ合衆国電子メール:xufeng.liu.ietf@gmail.com
Pete McAllister Metaswitch Networks 100 Church Street Enfield EN2 6BQ United Kingdom Email: pete.mcallister@metaswitch.com
Pete McAllister Metaswitch Networks 100 Church Street Enfield EN2 6BQ United Kingdom Email:pete.mcallister@metaswitch.com
Anish Peter Individual Email: anish.ietf@gmail.com
Anish Peter個人メール:anish.ietf@gmail.com
Mahesh Sivakumar Juniper Networks 1133 Innovation Way Sunnyvale, California United States of America Email: sivakumar.mahesh@gmail.com
Mahesh Sivakumar Juniper Networks 1133 Innovation Way Sunnyvale、California United States of America Email:sivakumar.mahesh@gmail.com
Yisong Liu China Mobile China Mobile Innovation Building 32 Xuanwumen West Street Beijing 100053 China Email: liuyisong@chinamobile.com
Yisong Liu china Mobile China Mobile Innovation Building 32 Xuanwumen West Street Beijing 100053 China Email:liuyisong@chinamobile.com
Fangwei Hu Individual Contributor 86 Bohang Road Shanghai Shanghai, 200126 China Email: hufwei@gmail.com
Fangwei Hu個人貢献者86 Bohang Road Shanghai Shanghai、200126 China Email:hufwei@gmail.com