Internet Engineering Task Force (IETF)                          C. Hopps
Request for Comments: 9179                       LabN Consulting, L.L.C.
Category: Standards Track                                  February 2022
ISSN: 2070-1721

A YANG Grouping for Geographic Locations




This document defines a generic geographical location YANG grouping. The geographical location grouping is intended to be used in YANG data models for specifying a location on or in reference to Earth or any other astronomical object.


Status of This Memo


This is an Internet Standards Track document.


This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

この文書はインターネットエンジニアリングタスクフォース(IETF)の製品です。IETFコミュニティのコンセンサスを表します。それはパブリックレビューを受け、インターネットエンジニアリングステアリンググループ(IESG)による出版の承認を受けました。インターネット規格に関する詳細情報は、RFC 7841のセクション2で利用できます。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at


Copyright Notice


Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

著作権(c)2022 IETF信頼と文書の著者として識別された人。全著作権所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents ( in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

この文書は、この文書の公開日に有効なIETF文書(に関するBCP 78およびIETF信頼の法的規定の対象となります。この文書に関してあなたの権利と制限を説明するので、これらの文書をよくレビューしてください。この文書から抽出されたコードコンポーネントには、信託法定規定のセクション4。

Table of Contents


   1.  Introduction
     1.1.  Terminology
   2.  The Geolocation Object
     2.1.  Frame of Reference
     2.2.  Location
     2.3.  Motion
     2.4.  Nested Locations
     2.5.  Non-location Attributes
     2.6.  Tree
   3.  YANG Module
   4.  ISO 6709:2008 Conformance
   5.  Usability
     5.1.  Portability
       5.1.1.  IETF URI Value
       5.1.2.  W3C
       5.1.3.  Geography Markup Language (GML)
       5.1.4.  KML
   6.  IANA Considerations
     6.1.  Geodetic System Values Registry
     6.2.  Updates to the IETF XML Registry
     6.3.  Updates to the YANG Module Names Registry
   7.  Security Considerations
   8.  Normative References
   9.  Informative References
   Appendix A.  Examples
   Author's Address
1. Introduction
1. はじめに

In many applications, we would like to specify the location of something geographically. Some examples of locations in networking might be the location of data centers, a rack in an Internet exchange point, a router, a firewall, a port on some device, or it could be the endpoints of a fiber, or perhaps the failure point along a fiber.


Additionally, while this location is typically relative to Earth, it does not need to be. Indeed, it is easy to imagine a network or device located on the Moon, on Mars, on Enceladus (the moon of Saturn), or even on a comet (e.g., 67p/churyumov-gerasimenko).

さらに、この位置は典型的には地球に対してあるが、それはする必要はない。確かに、月、マーク、エンセラード(土星の月)、あるいは彗星(例えば67p / Churyumov-Gerasimenko)であるネットワークやデバイスを想像するのは簡単です。

Finally, one can imagine defining locations using different frames of reference or even alternate systems (e.g., simulations or virtual realities).


This document defines a 'geo-location' YANG grouping that allows for all the above data to be captured.


This specification conforms to [ISO.6709.2008].


The YANG data model described in this document conforms to the Network Management Datastore Architecture (NMDA) defined in [RFC8342].


1.1. Terminology
1.1. 用語

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

この文書のキーワード "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", および "OPTIONAL" はBCP 14 [RFC2119] [RFC8174]で説明されているように、すべて大文字の場合にのみ解釈されます。

2. The Geolocation Object
2. 地理化オブジェクト
2.1. Frame of Reference
2.1. 参照枠

The frame of reference ('reference-frame') defines what the location values refer to and their meaning. The referred-to object can be any astronomical body. It could be a planet such as Earth or Mars, a moon such as Enceladus, an asteroid such as Ceres, or even a comet such as 1P/Halley. This value is specified in 'astronomical-body' and is defined by the International Astronomical Union <>. The default 'astronomical-body' value is 'earth'.

参照フレーム( '参照フレーム')は、位置の値がどのように指すものとその意味を定義します。紹介されたオブジェクトは、任意の天文学的な体であり得る。それは、地球や火星、エンセラドゥスなどの月、Ceresなどの小惑星、または1P / Halleyなどの彗星でさえも惑星である可能性があります。この値は「天文-be-body」で指定されており、国際天文学的なUnion <>によって定義されています。デフォルトの「天文 - ボディ」の値は「地球」です。

In addition to identifying the astronomical body, we also need to define the meaning of the coordinates (e.g., latitude and longitude) and the definition of 0-height. This is done with a 'geodetic-datum' value. The default value for 'geodetic-datum' is 'wgs-84' (i.e., the World Geodetic System [WGS84]), which is used by the Global Positioning System (GPS) among many others. We define an IANA registry for specifying standard values for the 'geodetic-datum'.

天文学を識別することに加えて、我々はまた、座標の意味(例えば、緯度および経度)および0高さの定義を定義する必要がある。これは「測地データ」値を使用して行われます。「GeoDetic-Datum」のデフォルト値は、Global Positioning System(GPS)によって使用されている「WGS-84」(すなわち、世界測地システム[WGS84])です。「測地データ」の標準値を指定するためのIANAレジストリを定義します。

In addition to the 'geodetic-datum' value, we allow overriding the coordinate and height accuracy using 'coord-accuracy' and 'height-accuracy', respectively. When specified, these values override the defaults implied by the 'geodetic-datum' value.

「測地測地基準」の値に加えて、それぞれ 'CORD-PRECTIAL'と '高さ精度'を使用して座標と高さ精度を上書きすることができます。指定されると、これらの値は「測地的なデータ」値によって暗黙のデフォルトを上書きします。

Finally, we define an optional feature that allows for changing the system for which the above values are defined. This optional feature adds an 'alternate-system' value to the reference frame. This value is normally not present, which implies the natural universe is the system. The use of this value is intended to allow for creating virtual realities or perhaps alternate coordinate systems. The definition of alternate systems is outside the scope of this document.

最後に、上記の値が定義されているシステムを変更できるようにするオプションの機能を定義します。このオプションの機能は、参照フレームに '代替システム'値を追加します。この値は通常存在しません。これは自然宇宙がシステムです。この値を使用することは、仮想現実またはおそらく代替座標系の作成を可能にすることを目的としています。代替システムの定義はこの文書の範囲外です。

2.2. Location
2.2. 位置

This is the location on, or relative to, the astronomical object. It is specified using two or three coordinate values. These values are given either as 'latitude', 'longitude', and an optional 'height', or as Cartesian coordinates of 'x', 'y', and 'z'. For the standard location choice, 'latitude' and 'longitude' are specified as decimal degrees, and the 'height' value is in fractions of meters. For the Cartesian choice, 'x', 'y', and 'z' are in fractions of meters. In both choices, the exact meanings of all the values are defined by the 'geodetic-datum' value in Section 2.1.

これは、天文学的オブジェクトの場所、または相対的なものです。2つまたは3つの座標値を使用して指定されます。これらの値は、「緯度」、「経度」、およびオプションの「高さ」、または「X」、「y」、および 'z'のデカルト座標として与えられます。標準的な場所の選択の場合、「緯度」と「経度」は10進数°として指定され、「高さ」の値はメーターの分数です。デカルト選択のために、 'x'、 'y'、および 'z'はメーターの画分にあります。どちらの選択でも、すべての値の正確な意味はセクション2.1の「測地的なデータ」値によって定義されます。

2.3. Motion
2.3. モーション

Support is added for objects in relatively stable motion. For objects in relatively stable motion, the grouping provides a three-dimensional vector value. The components of the vector are 'v-north', 'v-east', and 'v-up', which are all given in fractional meters per second. The values 'v-north' and 'v-east' are relative to true north as defined by the reference frame for the astronomical body; 'v-up' is perpendicular to the plane defined by 'v-north' and 'v-east', and is pointed away from the center of mass.

比較的安定した動きでオブジェクトのサポートが追加されています。比較的安定した動きのオブジェクトの場合、グループ化は3次元ベクトル値を提供します。ベクトルの構成要素は、「V-NORTH」、「V-EAST」、および「V-UP」であり、これはすべて分数メートルで毎秒与えられています。値「V-North」と「V-East」は、天文学の参照フレームによって定義されている真の北に相対的です。'v up'は、 'V-North'と 'V-East'によって定義された平面に垂直であり、塊の中心から離れています。

To derive the two-dimensional heading and speed, one would use the following formulas:


       speed =  V  v_{north}^{2} + v_{east}^{2}
       heading = arctan(v_{east} / v_{north})

For some applications that demand high accuracy and where the data is infrequently updated, this velocity vector can track very slow movement such as continental drift.


Tracking more complex forms of motion is outside the scope of this work. The intent of the grouping being defined here is to identify where something is located, and generally this is expected to be somewhere on, or relative to, Earth (or another astronomical body). At least two options are available to YANG data models that wish to use this grouping with objects that are changing location frequently in non-simple ways. A data model can either add additional motion data to its model directly, or if the application allows, it can require more frequent queries to keep the location data current.


2.4. Nested Locations
2.4. 入れ子になった場所

When locations are nested (e.g., a building may have a location that houses routers that also have locations), the module using this grouping is free to indicate in its definition that the 'reference-frame' is inherited from the containing object so that the 'reference-frame' need not be repeated in every instance of location data.

場所が入れ子になっている場合(例えば、建物には位置もあるルータを収容する場所がある場合があります)、このグループ化を使用しているモジュールは、その定義で 'reference-frame'が包含オブジェクトから継承されていることを自由に示すことができます。'frame-frame'は、位置データのすべてのインスタンスで繰り返される必要はありません。

2.5. Non-location Attributes
2.5. 非ロケーション属性

During the development of this module, the question of whether it would support data such as orientation arose. These types of attributes are outside the scope of this grouping because they do not deal with a location but rather describe something more about the object that is at the location. Module authors are free to add these non-location attributes along with their use of this location grouping.


2.6. Tree
2.6. 木

The following is the YANG tree diagram [RFC8340] for the geo-location grouping.

Geo-Location GroupingのYangツリー図[RFC8340]です。

     module: ietf-geo-location
       grouping geo-location:
         +-- geo-location
            +-- reference-frame
            |  +-- alternate-system?    string {alternate-systems}?
            |  +-- astronomical-body?   string
            |  +-- geodetic-system
            |     +-- geodetic-datum?    string
            |     +-- coord-accuracy?    decimal64
            |     +-- height-accuracy?   decimal64
            +-- (location)?
            |  +--:(ellipsoid)
            |  |  +-- latitude?    decimal64
            |  |  +-- longitude?   decimal64
            |  |  +-- height?      decimal64
            |  +--:(cartesian)
            |     +-- x?           decimal64
            |     +-- y?           decimal64
            |     +-- z?           decimal64
            +-- velocity
            |  +-- v-north?   decimal64
            |  +-- v-east?    decimal64
            |  +-- v-up?      decimal64
            +-- timestamp?         yang:date-and-time
            +-- valid-until?       yang:date-and-time
3. YANG Module
3. ヤンモジュール

This model imports Common YANG Data Types [RFC6991]. It uses YANG version 1.1 [RFC7950].

このモデルは一般的なYANGデータ型[RFC6991]をインポートします。Yangバージョン1.1 [RFC7950]を使用しています。

   <CODE BEGINS> file "ietf-geo-location@2022-02-11.yang"
   module ietf-geo-location {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-geo-location";
     prefix geo;
     import ietf-yang-types {
       prefix yang;
       reference "RFC 6991: Common YANG Data Types";
       "IETF NETMOD Working Group (NETMOD)";
      "WG Web:   <>
       WG List:  <>
       Editor:   Christian Hopps

description "This module defines a grouping of a container object for specifying a location on or around an astronomical object (e.g., 'earth').

説明 "このモジュールは、天文学的オブジェクトの上または周囲の場所を指定するためのコンテナオブジェクトのグループ化を定義します(例えば、「Earth」)。

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here.

「必須」、「必須」、「SEQL」、「推奨する」、「推奨する」、「推奨」、「推奨」、「推奨する」、「推奨」、「推奨」、「推奨」、「推奨」、「推奨する」、「推奨」、「推奨」、「推奨する」、「推奨」、「推奨」、「推奨」、「推奨」、「推奨」、「推奨」、「推奨」、「オプション」、'この文書では、BCP 14(RFC 2119)(RFC 8174)に記載されているように解釈されるべきです。

Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.

Copyright(C)2022 IETF信頼とコードの著者として識別された人。全著作権所有。

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (


        This version of this YANG module is part of RFC 9179
        (; see the RFC itself
        for full legal notices.";
     revision 2022-02-11 {
         "Initial Revision";
         "RFC 9179: A YANG Grouping for Geographic Locations";
     feature alternate-systems {
         "This feature means the device supports specifying locations
          using alternate systems for reference frames.";
     grouping geo-location {
         "Grouping to identify a location on an astronomical object.";
       container geo-location {
           "A location on an astronomical body (e.g., 'earth')
            somewhere in a universe.";
         container reference-frame {
             "The Frame of Reference for the location values.";
           leaf alternate-system {
             if-feature "alternate-systems";
             type string;
               "The system in which the astronomical body and
                geodetic-datum is defined.  Normally, this value is not
                present and the system is the natural universe; however,
                when present, this value allows for specifying alternate
                systems (e.g., virtual realities).  An alternate-system
                modifies the definition (but not the type) of the other
                values in the reference frame.";
           leaf astronomical-body {
             type string {
               pattern '[ -@\[-\^_-~]*';
             default "earth";
               "An astronomical body as named by the International
                Astronomical Union (IAU) or according to the alternate
                system if specified.  Examples include 'sun' (our star),
                'earth' (our planet), 'moon' (our moon), 'enceladus' (a
                moon of Saturn), 'ceres' (an asteroid), and
                '67p/churyumov-gerasimenko (a comet).  The ASCII value
                SHOULD have uppercase converted to lowercase and not
                include control characters (i.e., values 32..64, and
                91..126).  Any preceding 'the' in the name SHOULD NOT be
           container geodetic-system {
               "The geodetic system of the location data.";
             leaf geodetic-datum {
               type string {
                 pattern '[ -@\[-\^_-~]*';
                 "A geodetic-datum defining the meaning of latitude,
                  longitude, and height.  The default when the
                  astronomical body is 'earth' is 'wgs-84', which is
                  used by the Global Positioning System (GPS).  The
                  ASCII value SHOULD have uppercase converted to
                  lowercase and not include control characters
                  (i.e., values 32..64, and 91..126).  The IANA registry
                  further restricts the value by converting all spaces
                  (' ') to dashes ('-').
                  The specification for the geodetic-datum indicates
                  how accurately it models the astronomical body in
                  question, both for the 'horizontal'
                  latitude/longitude coordinates and for height
                 "RFC 9179: A YANG Grouping for Geographic Locations,
                  Section 6.1";
             leaf coord-accuracy {
               type decimal64 {
                 fraction-digits 6;
                 "The accuracy of the latitude/longitude pair for
                  ellipsoidal coordinates, or the X, Y, and Z components
                  for Cartesian coordinates.  When coord-accuracy is
                  specified, it indicates how precisely the coordinates
                  in the associated list of locations have been
                  determined with respect to the coordinate system
                  defined by the geodetic-datum.  For example, there
                  might be uncertainty due to measurement error if an
                  experimental measurement was made to determine each
             leaf height-accuracy {
               type decimal64 {
                 fraction-digits 6;
               units "meters";
                 "The accuracy of the height value for ellipsoidal
                  coordinates; this value is not used with Cartesian
                  coordinates.  When height-accuracy is specified, it
                  indicates how precisely the heights in the
                  associated list of locations have been determined
                  with respect to the coordinate system defined by the
                  geodetic-datum.  For example, there might be
                  uncertainty due to measurement error if an
                  experimental measurement was made to determine each
         choice location {
             "The location data either in latitude/longitude or
              Cartesian values";
           case ellipsoid {
             leaf latitude {
               type decimal64 {
                 fraction-digits 16;
               units "decimal degrees";
                 "The latitude value on the astronomical body.  The
                  definition and precision of this measurement is
                  indicated by the reference-frame.";
             leaf longitude {
               type decimal64 {
                 fraction-digits 16;
               units "decimal degrees";
                 "The longitude value on the astronomical body.  The
                  definition and precision of this measurement is
                  indicated by the reference-frame.";
             leaf height {
               type decimal64 {
                 fraction-digits 6;
               units "meters";
                 "Height from a reference 0 value.  The precision and
                  '0' value is defined by the reference-frame.";
           case cartesian {
             leaf x {
               type decimal64 {
                 fraction-digits 6;
               units "meters";
                 "The X value as defined by the reference-frame.";
             leaf y {
               type decimal64 {
                 fraction-digits 6;
               units "meters";
                 "The Y value as defined by the reference-frame.";
             leaf z {
               type decimal64 {
                 fraction-digits 6;
               units "meters";
                 "The Z value as defined by the reference-frame.";
         container velocity {
             "If the object is in motion, the velocity vector describes
              this motion at the time given by the timestamp.  For a
              formula to convert these values to speed and heading, see
              RFC 9179.";
             "RFC 9179: A YANG Grouping for Geographic Locations";
           leaf v-north {
             type decimal64 {
               fraction-digits 12;
             units "meters per second";
               "v-north is the rate of change (i.e., speed) towards
                true north as defined by the geodetic-system.";
           leaf v-east {
             type decimal64 {
               fraction-digits 12;
             units "meters per second";
               "v-east is the rate of change (i.e., speed) perpendicular
                to the right of true north as defined by
                the geodetic-system.";
           leaf v-up {
             type decimal64 {
               fraction-digits 12;
             units "meters per second";
               "v-up is the rate of change (i.e., speed) away from the
                center of mass.";
         leaf timestamp {
           type yang:date-and-time;
             "Reference time when location was recorded.";
         leaf valid-until {
           type yang:date-and-time;
             "The timestamp for which this geo-location is valid until.
              If unspecified, the geo-location has no specific
              expiration time.";
4. ISO 6709:2008 Conformance
4. ISO 6709:2008準拠

[ISO.6709.2008] provides an appendix with a set of tests for conformance to the standard. The tests and results are given in the following table along with an explanation of inapplicable tests.


       | Test    | Description               | Pass Explanation   |
       | A.1.2.1 | elements required for a   | CRS is always      |
       |         | geographic point location | indicated          |
       | A.1.2.2 | description of a CRS from | CRS register is    |
       |         | a register                | defined            |
       | A.1.2.3 | definition of CRS         | N/A - Don't define |
       |         |                           | CRS                |
       | A.1.2.4 | representation of         | latitude/longitude |
       |         | horizontal position       | values conform     |
       | A.1.2.5 | representation of         | height value       |
       |         | vertical position         | conforms           |
       | A.1.2.6 | text string               | N/A - No string    |
       |         | representation            | format             |

Table 1: Conformance Test Results


For test 'A.1.2.1', the YANG geo-location object either includes a Coordinate Reference System (CRS) ('reference-frame') or has a default defined [WGS84].

テスト「A.1.2.1」の場合、Yang Geo-Locationオブジェクトは座標参照システム(CRS)( 'Reference-Frame')を含むか、デフォルトの定義された[WGS84]を含みます。

For 'A.1.2.3', we do not define our own CRS, and doing so is not required for conformance.


For 'A.1.2.6', we do not define a text string representation, which is also not required for conformance.


5. Usability
5. 使いやすさ

The geo-location object defined in this document and YANG module has been designed to be usable in a very broad set of applications. This includes the ability to locate things on astronomical bodies other than Earth, and to utilize entirely different coordinate systems and realities.


5.1. Portability
5.1. 携帯性

In order to verify portability while developing this module, the following standards and standard APIs were considered.


5.1.1. IETF URI Value
5.1.1. IETF URI値

[RFC5870] defines a standard URI value for geographic location data. It includes the ability to specify the 'geodetic-value' (it calls this 'crs') with the default being 'wgs-84' [WGS84]. For the location data, it allows two to three coordinates defined by the 'crs' value. For accuracy, it has a single 'u' parameter for specifying uncertainty. The 'u' value is in fractions of meters and applies to all the location values. As the URI is a string, all values are specified as strings and so are capable of as much precision as required.

[RFC5870]地理的位置データの標準的なURI値を定義します。デフォルトが 'WGS-84' [WGS84]で、「GeoDetic-Value」(この「CRS」を呼び出す)を指定する機能が含まれています。位置データの場合、それは 'CRS'値によって定義された2つの最大3座標を可能にします。正確さのために、不確実性を指定するための単一の「u」パラメータがあります。'u'の値はメーターの画分にあり、すべての位置値に適用されます。URIが文字列であるため、すべての値は文字列として指定されているので、必要に応じて高精度にできます。

URI values can be mapped to and from the YANG grouping with the caveat that some loss of precision (in the extremes) may occur due to the YANG grouping using decimal64 values rather than strings.


5.1.2. W3C
5.1.2. w3c

W3C defines a geolocation API in [W3CGEO]. We show a snippet of code below that defines the geolocation data for this API. This is used by many applications (e.g., Google Maps API).

W3C [W3CGEO]のGeOrocation APIを定義します。このAPIのGeoLocationデータを定義するコードのスニペットを表示します。これは多くのアプリケーション(例えば、Google Maps API)によって使用されます。

   interface GeolocationPosition {
     readonly attribute GeolocationCoordinates coords;
     readonly attribute DOMTimeStamp timestamp;
   interface GeolocationCoordinates {
     readonly attribute double latitude;
     readonly attribute double longitude;
     readonly attribute double? altitude;
     readonly attribute double accuracy;
     readonly attribute double? altitudeAccuracy;
     readonly attribute double? heading;
     readonly attribute double? speed;

Figure 1: Snippet Showing Geolocation Definition

図1:地理位置情報を示すスニペット Comparison with YANG Data Model Yangデータモデルとの比較
    | Field            | Type         | YANG            | Type        |
    | accuracy         | double       | coord-accuracy  | dec64 fr 6  |
    | altitude         | double       | height          | dec64 fr 6  |
    | altitudeAccuracy | double       | height-accuracy | dec64 fr 6  |
    | heading          | double       | v-north, v-east | dec64 fr 12 |
    | latitude         | double       | latitude        | dec64 fr 16 |
    | longitude        | double       | longitude       | dec64 fr 16 |
    | speed            | double       | v-north, v-east | dec64 fr 12 |
    | timestamp        | DOMTimeStamp | timestamp       | string      |

Table 2


accuracy (double): Accuracy of 'latitude' and 'longitude' values in meters.


altitude (double): Optional height in meters above the [WGS84] ellipsoid.


altitudeAccuracy (double): Optional accuracy of 'altitude' value in meters.


heading (double): Optional direction in decimal degrees from true north increasing clockwise.


latitude, longitude (double): Standard latitude/longitude values in decimal degrees.


speed (double): Speed along the heading in meters per second.


timestamp (DOMTimeStamp): Specifies milliseconds since the UNIX Epoch in a 64-bit unsigned integer. The YANG data model defines the timestamp with arbitrarily large precision by using a string that encompasses all representable values of this timestamp value.


W3C API values can be mapped to the YANG grouping with the caveat that some loss of precision (in the extremes) may occur due to the YANG grouping using decimal64 values rather than doubles.

W3C APIの値は、DECIMAL64の値を使用したYANGグループ化が2倍ではなくYANGグループ化のために(極端)の損失が発生する可能性があるという警告を使用して、YANG Groupingにマッピングできます。

Conversely, only YANG values for Earth using the default 'wgs-84' [WGS84] as the 'geodetic-datum' can be directly mapped to the W3C values as W3C does not provide the extra features necessary to map the broader set of values supported by the YANG grouping.


5.1.3. Geography Markup Language (GML)
5.1.3. 地理的マークアップ言語(GML)

ISO adopted the Geography Markup Language (GML) defined by OGC 07-036 [OGC] as [ISO.19136.2007]. GML defines, among many other things, a position type 'gml:pos', which is a sequence of 'double' values. This sequence of values represents coordinates in a given CRS. The CRS is either inherited from containing elements or directly specified as attributes 'srsName' and optionally 'srsDimension' on the 'gml:pos'.

ISOは、OGC 07-036 [OGC]で定義された地理マークアップ言語(GML)を[ISO.19136.2007]。GMLは、他の多くのことの中で、「Double」値のシーケンスである位置タイプの「GML:POS」を定義します。この値のシーケンスは、特定のCRSにおける座標を表します。CRSは、CONDING要素から継承されるか、「GML:POS」の属性 'srsname'とオプションで 'srsdimension'として直接指定されています。

GML defines an Abstract CRS type from which Concrete CRS types are derived. This allows for many types of CRS definitions. We are concerned with the Geodetic CRS type, which can have either ellipsoidal or Cartesian coordinates. We believe that other non-Earth-based CRSs as well as virtual CRSs should also be representable by the GML CRS types.

GMLは、具体的なCRSタイプが派生した抽象CRSタイプを定義します。これにより、多くの種類のCRS定義が可能になります。楕円体またはデカルト座標のいずれかを持つことができる測地CRSタイプに関係しています。私たちは、他の非地球ベースのCRSと仮想CRSSもGML CRSタイプによって表現可能であると考えています。

Thus, GML 'gml:pos' values can be mapped directly to the YANG grouping with the caveat that some loss of precision (in the extremes) may occur due to the YANG grouping using decimal64 values rather than doubles.

したがって、GML 'GML:POS'の値は、Decimal64の値をダブルでむしろ使用しているYangのグループ化により、(極端)の損失が発生する可能性があるという警告を使用してYANGグループに直接マッピングできます。

Conversely, mapping YANG grouping values to GML is fully supported for Earth-based geodetic systems.


GML also defines an observation value in 'gml:Observation', which includes a timestamp value 'gml:validTime' in addition to other components such as 'gml:using', 'gml:target', and 'gml:resultOf'. Only the timestamp is mappable to and from the YANG grouping. Furthermore, 'gml:validTime' can either be an instantaneous measure ('gml:TimeInstant') or a time period ('gml:TimePeriod'). The instantaneous 'gml:TimeInstant' is mappable to and from the YANG grouping 'timestamp' value, and values down to the resolution of seconds for 'gml:TimePeriod' can be mapped using the 'valid-until' node of the YANG grouping.

GMLは、「gml:observation」の観測値を定義しています。これには、 'gml:using'、 'gml:target'、 'gml:gml:gml:gml:gml:gml:gml:gml:validtime'が含まれます。タイムスタンプのみがYangのグループ化との間でマッピング可能です。さらに、 'gml:validtime'は瞬間的なメジャー( 'gml:timeinstant')または期間( 'gml:timeperiod')のいずれかです。瞬時の 'gml:timeInstant'は、yangのグループ化された "timestamp 'の値との間でマッピング可能で、' gml:timeperiod 'の秒数の解像度までの値は、ヤングループの'有効 - まで"ノードを使ってマッピングできます。

5.1.4. KML
5.1.4. kml.

KML 2.2 [KML22] (formerly Keyhole Markup Language) was submitted by Google to the Open Geospatial Consortium ( and was adopted. The latest version as of this writing is KML 2.3 [KML23]. This schema includes geographic location data in some of its objects (e.g., 'kml:Point' or 'kml:Camera' objects). This data is provided in string format and corresponds to the values specified in [W3CGEO]. The timestamp value is also specified as a string as in our YANG grouping.

KML 2.2 [KML22](旧KML22](旧KEYHOLEマークアップ言語)は、GoogleからOpen GeoSpatial Consortium(に提出され、採用されました。この書き込みの最新バージョンはKML 2.3 [KML23]です。このスキーマには、そのオブジェクトのいくつかの地理的位置データ(例えば、「kml:point」または 'kml:camera'オブジェクト)が含まれています。このデータは文字列形式で提供され、[W3CGEO]で指定された値に対応しています。タイムスタンプ値は、Yangのグループ化のように文字列として指定されています。

KML has some special handling for the height value that is useful for visualization software, 'kml:altitudeMode'. The values for 'kml:altitudeMode' include 'clampToGround', which indicates the height is ignored; 'relativeToGround', which indicates the height value is relative to the location's ground level; or 'absolute', which indicates the height value is an absolute value within the geodetic datum. The YANG grouping can directly map the ignored and absolute cases but not the relative-to-ground case.

KMLには、視覚化ソフトウェアの「KML:AltitudeMode」に役立つ高さ値の特別な処理がいくつかあります。'kml:altitudeMode'の値は 'clamptoground'を含みます。これは高さが無視されます。「RelativeToGround」。高さの値は、場所のグランドレベルに対する相対的なものです。または「絶対」を示す高さ値は測地測地データ内の絶対値です。Yangのグループ化は無視された絶対的なケースを直接マッピングすることができますが、親しみのないケースではありません。

In addition to the 'kml:altitudeMode', KML also defines two seafloor height values using 'kml:seaFloorAltitudeMode'. One value is to ignore the height value ('clampToSeaFloor') and the other is relative ('relativeToSeaFloor'). As with the 'kml:altitudeMode' value, the YANG grouping supports the ignore case but not the relative case.

'KML:AltitudeMode'に加えて、KMLは 'KML:SeaflooraltitudeMode'を使用して2つの海底の高さの値を定義しています。1つの値は、高さ値( 'clamptoseafloor')を無視することであり、もう1つは相対的です( 'relativetoseafloor')。「kml:altitudeMode」の値と同様に、Yangのグループ化はignoreケースをサポートしますが、相対的な場合はサポートしていません。

The KML location values use a geodetic datum defined in Annex A of [ISO.19136.2007] with identifier 'LonLat84_5773'. The altitude value for KML absolute height mode is measured from the vertical datum specified by [WGS84].

KML位置値は、識別子 'Lonlat84_5773'を使用して、[ISO.19136.2007]の附属書Aで定義されている測地データを使用しています。KML絶対高値モードの高度値は、[WGS84]で指定された垂直データから測定されます。

Thus, the YANG grouping and KML values can be directly mapped in both directions (when using a supported altitude mode) with the caveat that some loss of precision (in the extremes) may occur due to the YANG grouping using decimal64 values rather than strings. For the relative height cases, the application doing the transformation is expected to have the data available to transform the relative height into an absolute height, which can then be expressed using the YANG grouping.


6. IANA Considerations
6. IANAの考慮事項
6.1. Geodetic System Values Registry
6.1. 測地システム値レジストリ

IANA has created the "Geodetic System Values" registry under the "YANG Geographic Location Parameters" registry.


This registry allocates names for standard geodetic systems. Often, these values are referred to using multiple names (e.g., full names or multiple acronyms). The intent of this registry is to provide a single standard value for any given geodetic system.


The values SHOULD use an acronym when available, they MUST be converted to lowercase, and spaces MUST be changed to dashes "-".

値は利用可能なときにAcronymを使用する必要がありますが、それらは小文字に変換する必要があり、スペースをダッシュ " - "に変更する必要があります。

Each entry should be sufficient to define the two coordinate values and to define height if height is required. So, for example, the 'wgs-84' is defined as WGS-84 with the geoid updated by at least [EGM96] for height values. Specific entries for [EGM96] and [EGM08] are present if a more precise definition of the data is required.

各エントリは、2つの座標値を定義し、高さが必要な場合に高さを定義するのに十分です。したがって、例えば、「WGS - 84」は、Geoidが高さ値のために少なくとも[EGM96]によって更新された状態でWGS - 84として定義される。データのより正確な定義が必要な場合は、[EGM96]と[EGM08]の具体的なエントリが存在します。

It should be noted that [RFC5870] also created a registry for geodetic systems (the "'geo' URI 'crs' Parameter Values" registry); however, this registry has a very strict modification policy. The authors of [RFC5870] have the stated goal of making CRS registration hard to avoid proliferation of CRS values. As our module defines alternate systems and has a broader scope (i.e., beyond Earth), the registry defined below is meant to be more easily modified.

[RFC5870]は、測地システム用のレジストリも作成されました(「Geo」URI 'CRS'パラメータ値 "レジストリ)。ただし、このレジストリには非常に厳密な修正ポリシーがあります。[RFC5870]の著者は、CRS値の急増を避けるためにCRS登録を困難にするという述べた目標を持っています。私たちのモジュールが代替システムを定義し、より広い範囲(すなわち、地球を超えて)を有するので、以下に定義されたレジストリはより容易に修正されることを意味する。

The allocation policy for this registry is First Come First Served [RFC8126], as the intent is simply to avoid duplicate values.


The Reference value can either be a document or a contact person as defined in [RFC8126]. The Change Controller (i.e., Owner) is also defined by [RFC8126].


The initial values for this registry are as follows. They include the non-Earth-based geodetic-datum value for the Moon based on [MEAN-EARTH].


     | Name      | Description      | Reference | Change Controller |
     | me        | Mean Earth/Polar | RFC 9179  | IETF              |
     |           | Axis (Moon)      |           |                   |
     | wgs-84-96 | World Geodetic   | RFC 9179  | IETF              |
     |           | System 1984      |           |                   |
     | wgs-84-08 | World Geodetic   | RFC 9179  | IETF              |
     |           | System 1984      |           |                   |
     | wgs-84    | World Geodetic   | RFC 9179  | IETF              |
     |           | System 1984      |           |                   |

Table 3


6.2. Updates to the IETF XML Registry
6.2. IETF XMLレジストリに更新されます

This document registers a URI in the "IETF XML Registry" [RFC3688]. Following the format in [RFC3688], the following registration has been made:

このドキュメントは「IETF XMLレジストリ」[RFC3688]にURIを登録します。[RFC3688]の形式に従って、次の登録が行われました。

URI: urn:ietf:params:xml:ns:yang:ietf-geo-location Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace.

URI:URN:IETF:PARAMS:XML:NS:YANG:IETF-Geo-Location Response連絡先:IESG。XML:n / a;要求されたURIはXMLネームスペースです。

6.3. Updates to the YANG Module Names Registry
6.3. Yang Module Names Registryの更新

This document registers one YANG module in the "YANG Module Names" registry [RFC6020]. Following the format in [RFC6020], the following registration has been made:

このドキュメントでは、「Yang Module Names」レジストリ[RFC6020]に1つのYANGモジュールを登録します。[RFC6020]の形式に従って、次の登録が行われました。

   Name:  ietf-geo-location
   Maintained by IANA:  N
   Namespace:  urn:ietf:params:xml:ns:yang:ietf-geo-location
   Prefix:  geo
   Reference:  RFC 9179
7. Security Considerations
7. セキュリティに関する考慮事項

The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as the Network Configuration Protocol (NETCONF) [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

このドキュメントで指定されたYANGモジュールは、ネットワーク構成プロトコル(NETCONF)[RFC6241]またはRESTCONF [RFC8040]などのネットワーク管理プロトコルを介してアクセスするように設計されているデータのスキーマを定義しています。最低のNETCONFレイヤーはセキュアトランスポート層であり、必須のセキュアトランスポートはSecure Shell(SSH)[RFC6242]です。最低のRETCONFレイヤーはhttpsで、必須のセキュアトランスポートはTLS [RFC8446]です。

The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.


Since the modules defined in this document only define groupings, these considerations are primarily for the designers of other modules that use these groupings.


All the data nodes defined in this YANG module are writable/creatable/deletable (i.e., "config true", which is the default).

このYANGモジュールで定義されているすべてのデータノードは、書き込み可能/作成可能/削除可能です(すなわち、デフォルトである「config true」。

None of the writable/creatable/deletable data nodes in the YANG module defined in this document are by themselves considered more sensitive or vulnerable than standard configuration.


Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes.


Since the grouping defined in this module identifies locations, authors using this grouping SHOULD consider any privacy issues that may arise when the data is readable (e.g., customer device locations, etc).


8. Normative References
8. 引用文献

[EGM08] Pavlis, N., Holmes, S., Kenyon, S., and J. Factor, "An Earth Gravitational Model to Degree 2160: EGM08.", Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, April 2008.

[EGM08] Pavlis、N.、Holmes、S.、Kenyon、S.、およびJ.Facter、「EGM08への地球の重力モデル:EGM08。2008年4月。

[EGM96] Lemoine, F., Kenyon, S., Factor, J., Trimmer, R., Pavlis, N., Chinn, D., Cox, C., Klosko, S., Luthcke, S., Torrence, M., Wang, Y., Williamson, R., Pavlis, E., Rapp, R., and T. Olson, "The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96.", NASA/TP-1998-206861, July 1998.

[EGM96]レモイン、F.、Kenyon、S.、Factor、J.、Trimmer、R.、Pavlis、N.、Chinn、D.、COX、C.、Klosko、S.、Luthcke、S.、Torrence、M.、Wang、Y.、Williamson、R.、Pavlis、E.、Rapp、R.、およびT. Olson、「共同NASA GSFCおよび国立画像およびマッピング機関(NIMA)幾何学モデルEGM96。「、NASA / TP-1998-206861、1998年7月。

[ISO.6709.2008] International Organization for Standardization, "Standard representation of geographic point location by coordinates", ISO 6709:2008, 2008.

[ISO.6709.2008]国際標準化のための国際機関、「座標による地理的ポイント位置の標準表現」、ISO 6709:2008年、2008年。

[MEAN-EARTH] NASA, "A Standardized Lunar Coordinate System for the Lunar Reconnaissance Orbiter", Version 4, Goddard Space Flight Center, May 2008.

[平均地球] NASA、「月偵察用の標準化された月座標系」、2008年5月5日のGoddard Space Flight Center。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <>.

[RFC2119] BRADNER、S、「RFCで使用するためのキーワード」、BCP 14、RFC 2119、DOI 10.17487 / RFC2119、1997年3月、<>。

[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <>.

[RFC6241] ENNS、R.、ED。、Bjorklund、M.、Ed。、Schoenwaelder、J.、Ed。、およびA. Bierman、ED。、「ネットワーク構成プロトコル(NetConf)」、RFC 6241、DOI 10.17487 /RFC6241、2011年6月、<>。

[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <>.

[RFC6242] Wasserman、M.、「Secure Shell(SSH)を介したNetConfプロトコルの使用」、RFC 6242、DOI 10.17487 / RFC6242、2011年6月、<>。

[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <>.

[RFC6991] Schoenwaelder、J.、Ed。、「共通ヤンデータ型」、RFC 6991、DOI 10.17487 / RFC6991、2013年7月、<>。

[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <>.

[RFC8040] Bierman、A.、Bjorklund、M.、K。Watsen、RESTCONFプロトコル、RFC 8040、DOI 10.17487 / RFC8040、2017年1月、<>。

[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, <>.

[RFC8126]コットン、M.、Leiba、B.およびT.Narten、「RFCSのIANAに関する考察のためのガイドライン」、BCP 26、RFC 8126、DOI 10.17487 / RFC8126、2017年6月、<https:// / info / rfc8126>。

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <>.

[RFC8174] Leiba、B.、RFC 2119キーワードの「大文字の曖昧さ」、BCP 14、RFC 8174、DOI 10.17487 / RFC8174、2017年5月、<>。

[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <>.

[RFC8341] Bierman、A.およびM.Bjorklund、「ネットワーク構成アクセス制御モデル」、STD 91、RFC 8341、DOI 10.17487 / RFC8341、2018年3月、<>。

[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, <>.

[RFC8342] Bjorklund、M.、Schoenwaelder、J.、Shafer、P.、Watsen、K.、およびR.Wilton、「ネットワーク管理データストアアーキテクチャ(NMDA)」、RFC 8342、DOI 10.17487 / RFC8342、2018年3月、<>。

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <>.

[RFC8446] RESCORLA、E。、「トランスポート層セキュリティ(TLS)プロトコルバージョン1.3」、RFC 8446、DOI 10.17487 / RFC8446、<>。

[WGS84] National Imagery and Mapping Agency, "Department of Defense World Geodetic System 1984", NIMA TR8350.2, Third Edition, January 2000.

[WGS84]国立画像とマッピング機関「国防総省世界地理学科1984」、NiMA TR8350.2、第3版、2000年1月。

9. Informative References
9. 参考引用

[ISO.19136.2007] International Organization for Standardization, "Geographic information -- Geography Markup Language (GML)", ISO 19136:2007.

[ISO.19136.2007]国際標準化機関、「地理情報 - 地理マークアップ言語(GML)」、ISO 19136:2007。

[KML22] Wilson, T., Ed., "OGC KML", Version 2.2, April 2008, < files/?artifact_id=27810>.

[KML22] Wilson、T.、ED。、「OGC KML」、バージョン2.2、2008年4月、< files /?artifact_id = 27810>。

[KML23] Burggraf, D., Ed., "OGC KML", Version 2.3, August 2015, < is/12-007r2/12-007r2.html>.

[KML23] BurgGraf、D.、ED。、「OGC KML」、バージョン2.3、2015年8月、<は/ 12-007R2 / 12-007R2.html>です。

[OGC] OpenGIS, "OpenGIS Geography Markup Language (GML) Encoding Standard", Version: 3.2.1, OGC 07-036, August 2007, <>.

[OGC] OKSGIS、「Opengis Geography Markup Language(GML)エンコード標準」、バージョン:3.2.1、OGC 07-036、< = 20509>。

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <>.

[RFC3688] Mealling、M.、 "IETF XML Registry"、BCP 81、RFC 3688、DOI 10.17487 / RFC3688、2004年1月、<>。

[RFC5870] Mayrhofer, A. and C. Spanring, "A Uniform Resource Identifier for Geographic Locations ('geo' URI)", RFC 5870, DOI 10.17487/RFC5870, June 2010, <>.

[RFC5870] Mayrhofer、A.およびC.Spanring、「地理的位置の統一資源識別子」( 'Geo' Uri) "、RFC 5870、DOI 10.17487 / RFC5870、2010年6月、<https://www.rfc-編集者。ORG / INFO / RFC5870>。

[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <>.

[RFC6020] Bjorklund、M.、Ed。、 "Yang - ネットワーク構成プロトコルのデータモデリング言語(NetConf)"、RFC 6020、DOI 10.17487 / RFC6020、2010年10月、<https://www.rfc-編集者。org / info / rfc6020>。

[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <>.

[RFC7950] Bjorklund、M.、Ed。、「Yang 1.1データモデリング言語」、RFC 7950、DOI 10.17487 / RFC7950、2016年8月、<>。

[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <>.

[RFC8340] Bjorklund、M.およびL. Berger、Ed。、「Yang Tree Diagress」、BCP 215、RFC 8340、DOI 10.17487 / RFC8340、2018年3月、<>。

[W3CGEO] Popescu, A., "Geolocation API Specification", 2nd Edition, November 2016, <>.

[W3CGGEO] Popescu、A.、「Geolocation API仕様」、第2版、2016年11月、<>。

Appendix A. Examples

Below is a fictitious module that uses the geo-location grouping.


   module example-uses-geo-location {
     prefix ugeo;
     import ietf-geo-location { prefix geo; }
     organization "Empty Org";
     contact "Example Author <>";
       "Example use of geo-location";
     revision 2022-02-11 { reference "None"; }
     container locatable-items {
         "The container of locatable items";
       list locatable-item {
         key name;
           "A locatable item";
         leaf name {
           type string;
             "The name of locatable item";
         uses geo:geo-location;

Figure 2: Example YANG Module Using Geolocation


Below is the YANG tree for the fictitious module that uses the geo-location grouping.

Geo-Location Groupingを使用する架空のモジュールのYangツリーです。

     module: example-uses-geo-location
       +--rw locatable-items
          +--rw locatable-item* [name]
             +--rw name            string
             +--rw geo-location
                +--rw reference-frame
                |  +--rw alternate-system?    string
                |  |       {alternate-systems}?
                |  +--rw astronomical-body?   string
                |  +--rw geodetic-system
                |     +--rw geodetic-datum?    string
                |     +--rw coord-accuracy?    decimal64
                |     +--rw height-accuracy?   decimal64
                +--rw (location)?
                |  +--:(ellipsoid)
                |  |  +--rw latitude?    decimal64
                |  |  +--rw longitude?   decimal64
                |  |  +--rw height?      decimal64
                |  +--:(cartesian)
                |     +--rw x?           decimal64
                |     +--rw y?           decimal64
                |     +--rw z?           decimal64
                +--rw velocity
                |  +--rw v-north?   decimal64
                |  +--rw v-east?    decimal64
                |  +--rw v-up?      decimal64
                +--rw timestamp?         yang:date-and-time
                +--rw valid-until?       yang:date-and-time

Figure 3: Example YANG Tree Using Geolocation


Below is some example YANG XML data for the fictitious module that uses the geo-location grouping.

以下は、地理位置グループ化を使用する架空のモジュールのYANG XMLデータの例です。

   <locatable-items xmlns="urn:example:example-uses-geo-location">
       <name>Pont des Arts</name>
       <name>Saint Louis Cathedral</name>
       <name>Apollo 11 Landing Site</name>
       <name>Reference Frame Only</name>

Figure 4: Example XML Data of Geolocation Use




We would like to thank Jim Biard and Ben Koziol for their reviews and suggested improvements. We would also like to thank Peter Lothberg for the motivation as well as help in defining a broadly useful geographic location object as well as Acee Lindem and Qin Wu for their work on a geographic location object that led to this document's creation. We would also like to thank the Document Shepherd Kent Watsen.

私たちは彼らのレビューのためにJim BiardとBen Koziolに感謝します。また、この文書の創造につながった地理的な場所オブジェクトの作業には、徹底的に有用な地理的なロケーションオブジェクトとAcee LindemとQin WUを定義するのに役立ちます。羊飼いケント・ワトスを文書に感謝します。

Author's Address


Christian Hopps LabN Consulting, L.L.C.

クリスチャンHopps Labn Consulting、L.L.c。