[要約] RFC 9340 - Architectural Principles for a Quantum Internet は、地球上の任意の2点間で量子通信を可能にするために、新しい量子エンタングルメントの性質を考慮した量子ネットワークスタックを構築するための基本的な枠組みと原則を提供するものです。この文書は、物理学者とネットワーク専門家の間での議論の基盤となることを意図しています。

Internet Research Task Force (IRTF)                         W. Kozlowski
Request for Comments: 9340                                     S. Wehner
Category: Informational                                           QuTech
ISSN: 2070-1721                                             R. Van Meter
                                                         Keio University
                                                              B. Rijsman
                                                              Individual
                                                       A. S. Cacciapuoti
                                                              M. Caleffi
                                        University of Naples Federico II
                                                             S. Nagayama
                                                           Mercari, Inc.
                                                              March 2023
        
Architectural Principles for a Quantum Internet
量子インターネットのアーキテクチャの原則
Abstract
概要

The vision of a quantum internet is to enhance existing Internet technology by enabling quantum communication between any two points on Earth. To achieve this goal, a quantum network stack should be built from the ground up to account for the fundamentally new properties of quantum entanglement. The first quantum entanglement networks have been realised, but there is no practical proposal for how to organise, utilise, and manage such networks. In this document, we attempt to lay down the framework and introduce some basic architectural principles for a quantum internet. This is intended for general guidance and general interest. It is also intended to provide a foundation for discussion between physicists and network specialists. This document is a product of the Quantum Internet Research Group (QIRG).

量子インターネットのビジョンは、地球上の任意の2つのポイント間の量子通信を可能にすることにより、既存のインターネットテクノロジーを強化することです。この目標を達成するには、量子エンタングルメントの根本的に新しい特性を説明するために、Quantum Network Stackをゼロから構築する必要があります。最初の量子エンタングルメントネットワークは実現されていますが、そのようなネットワークを整理、利用、および管理する方法についての実用的な提案はありません。このドキュメントでは、フレームワークを定めて、量子インターネットの基本的なアーキテクチャの原則を紹介しようとします。これは、一般的なガイダンスと一般的な関心を目的としています。また、物理学者とネットワークスペシャリストの間の議論の基盤を提供することも目的としています。このドキュメントは、Quantum Internet Research Group(QIRG)の製品です。

Status of This Memo
本文書の位置付け

This document is not an Internet Standards Track specification; it is published for informational purposes.

このドキュメントは、インターネット標準の追跡仕様ではありません。情報目的で公開されています。

This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the results of Internet-related research and development activities. These results might not be suitable for deployment. This RFC represents the consensus of the Quantum Internet Research Group of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are not candidates for any level of Internet Standard; see Section 2 of RFC 7841.

このドキュメントは、インターネット研究タスクフォース(IRTF)の製品です。IRTFは、インターネット関連の研究開発活動の結果を公開しています。これらの結果は、展開に適していない場合があります。このRFCは、インターネット研究タスクフォース(IRTF)の量子インターネット研究グループのコンセンサスを表しています。IRSGによって公開されたことが承認された文書は、インターネット標準のレベルの候補者ではありません。RFC 7841のセクション2を参照してください。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9340.

このドキュメントの現在のステータス、任意のERRATA、およびそのフィードバックを提供する方法に関する情報は、https://www.rfc-editor.org/info/rfc9340で取得できます。

著作権表示

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.

著作権(c)2023 IETF Trustおよび文書著者として特定された人。無断転載を禁じます。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

このドキュメントは、BCP 78およびIETFドキュメント(https://trustee.ietf.org/license-info)に関連するIETF Trustの法的規定の対象となります。この文書に関するあなたの権利と制限を説明するので、これらの文書を注意深く確認してください。

Table of Contents
目次
   1.  Introduction
   2.  Quantum Information
     2.1.  Quantum State
     2.2.  Qubit
     2.3.  Multiple Qubits
   3.  Entanglement as the Fundamental Resource
   4.  Achieving Quantum Connectivity
     4.1.  Challenges
       4.1.1.  The Measurement Problem
       4.1.2.  No-Cloning Theorem
       4.1.3.  Fidelity
       4.1.4.  Inadequacy of Direct Transmission
     4.2.  Bell Pairs
     4.3.  Teleportation
     4.4.  The Life Cycle of Entanglement
       4.4.1.  Elementary Link Generation
       4.4.2.  Entanglement Swapping
       4.4.3.  Error Management
       4.4.4.  Delivery
   5.  Architecture of a Quantum Internet
     5.1.  Challenges
     5.2.  Classical Communication
     5.3.  Abstract Model of the Network
       5.3.1.  The Control Plane and the Data Plane
       5.3.2.  Elements of a Quantum Network
       5.3.3.  Putting It All Together
     5.4.  Physical Constraints
       5.4.1.  Memory Lifetimes
       5.4.2.  Rates
       5.4.3.  Communication Qubits
       5.4.4.  Homogeneity
   6.  Architectural Principles
     6.1.  Goals of a Quantum Internet
     6.2.  The Principles of a Quantum Internet
   7.  A Thought Experiment Inspired by Classical Networks
   8.  Security Considerations
   9.  IANA Considerations
   10. Informative References
   Acknowledgements
   Authors' Addresses
        
1. Introduction
1. はじめに

Quantum networks are distributed systems of quantum devices that utilise fundamental quantum mechanical phenomena such as superposition, entanglement, and quantum measurement to achieve capabilities beyond what is possible with non-quantum (classical) networks [Kimble08]. Depending on the stage of a quantum network [Wehner18], such devices may range from simple photonic devices capable of preparing and measuring only one quantum bit (qubit) at a time all the way to large-scale quantum computers of the future. A quantum network is not meant to replace classical networks but rather to form an overall hybrid classical-quantum network supporting new capabilities that are otherwise impossible to realise [VanMeterBook]. For example, the most well-known application of quantum communication, Quantum Key Distribution (QKD) [QKD], can create and distribute a pair of symmetric encryption keys in such a way that the security of the entire process relies on the laws of physics (and thus can be mathematically proven to be unbreakable) rather than the intractability of certain mathematical problems [Bennett14] [Ekert91]. Small networks capable of QKD have even already been deployed at short (roughly 100-kilometre) distances [Elliott03] [Peev09] [Aguado19] [Joshi20].

量子ネットワークは、非質量(Classical)ネットワーク[Kimble08]で可能なものを超えて機能を達成するために、重ね合わせ、絡み合い、量子測定などの基本的な量子機械的現象を利用する量子デバイスの分散システムです[Kimble08]。量子ネットワーク[Wehner18]の段階に応じて、このようなデバイスは、将来の大規模な量子コンピューターまで、一度に1つの量子ビット(qubit)のみを準備および測定できる単純なフォトニックデバイスから範囲です。量子ネットワークは、古典的なネットワークを置き換えることではなく、それ以外の場合は[VanMeterBook]を実現することが不可能な新しい機能をサポートするハイブリッドクラシック四分位ネットワーク全体を形成することを目的としています。たとえば、量子通信の最もよく知られているアプリケーションである量子キー分布(QKD)[QKD]は、プロセス全体のセキュリティが物理学の法則に依存するように、一対の対称暗号化キーを作成および配布できます。(したがって、したがって、数学的に壊れないことが証明される可能性があります)特定の数学的問題の扱いやすさではなく[Bennett14] [Ekert91]。QKDが可能な小さなネットワークは、既に短い(約100キロメートル)距離で展開されています[Elliott03] [PEEV09] [Aguado19] [Joshi20]。

The quantum networking paradigm also offers promise for a range of new applications beyond quantum cryptography, such as distributed quantum computation [Cirac99] [Crepeau02]; secure quantum computing in the cloud [Fitzsimons17]; quantum-enhanced measurement networks [Giovannetti04]; or higher-precision, long-baseline telescopes [Gottesman12]. These applications are much more demanding than QKD, and networks capable of executing them are in their infancy. The first fully quantum, multinode network capable of sending, receiving, and manipulating distributed quantum information has only recently been realised [Pompili21.1].

量子ネットワーキングパラダイムは、分散型量子計算[CIRAC99] [CREPEAU02]など、量子暗号を超えたさまざまな新しいアプリケーションにも約束を提供します。クラウドでの安全な量子コンピューティング[Fitzsimons17];量子強化測定ネットワーク[Giovannetti04];または高精度、ロングベースライン望遠鏡[Gottesman12]。これらのアプリケーションはQKDよりもはるかに厳しいものであり、それらを実行できるネットワークは初期段階にあります。分散型量子情報を送信、受信、および操作できる最初の完全な量子、マルチノードネットワークは、最近実現されたのです[pompili21.1]。

Whilst a lot of effort has gone into physically realising and connecting such devices, and making improvements to their speed and error tolerance, no proposals for how to run these networks have been worked out at the time of this writing. To draw an analogy with a classical network, we are at a stage where we can start to physically connect our devices and send data, but all sending, receiving, buffer management, connection synchronisation, and so on must be managed by the application directly by using low-level, custom-built, and hardware-specific interfaces, rather than being managed by a network stack that exposes a convenient high-level interface, such as sockets. Only recently was the first-ever attempt at such a network stack experimentally demonstrated in a laboratory setting [Pompili21.2]. Furthermore, whilst physical mechanisms for transmitting quantum information exist, there are no robust protocols for managing such transmissions.

そのようなデバイスを物理的に実現して接続し、スピードとエラーの許容度を改善することに多くの努力が払われていますが、これらのネットワークを実行する方法の提案は、この執筆時点で解決されていません。古典的なネットワークで類似性を描くために、私たちはデバイスを物理的に接続してデータを送信し始めることができる段階にありますが、すべての送信、受信、バッファ管理、接続の同期などは、アプリケーションによって直接管理する必要があります。ソケットなどの便利な高レベルインターフェイスを公開するネットワークスタックによって管理されるのではなく、低レベル、カスタムビルド、およびハードウェア固有のインターフェイスを使用します。最近になって、研究室の設定で実験的に実証されたこのようなネットワークスタックでの初めての試みでした[pompili21.2]。さらに、量子情報を送信するための物理的メカニズムが存在しますが、そのような送信を管理するための堅牢なプロトコルはありません。

This document, produced by the Quantum Internet Research Group (QIRG), introduces quantum networks and presents general guidelines for the design and construction of such networks. Overall, it is intended as an introduction to the subject for network engineers and researchers. It should not be considered as a conclusive statement on how quantum networks should or will be implemented. This document was discussed on the QIRG mailing list and several IETF meetings. It represents the consensus of the QIRG members, of both experts in the subject matter (from the quantum and networking domains) and newcomers who are the target audience.

このドキュメントは、Quantum Internet Research Group(QIRG)が作成し、量子ネットワークを紹介し、そのようなネットワークの設計と構築に関する一般的なガイドラインを提示します。全体として、ネットワークエンジニアと研究者のテーマの紹介として意図されています。量子ネットワークがどのように実装されるか、または実装されるべきかについての決定的な声明と見なされるべきではありません。このドキュメントは、QIRGメーリングリストといくつかのIETF会議で説明されています。これは、QIRGメンバーのコンセンサス、主題(量子およびネットワークドメインから)の専門家とターゲットオーディエンスである新人の両方のコンセンサスを表しています。

2. Quantum Information
2. 量子情報

In order to understand the framework for quantum networking, a basic understanding of quantum information theory is necessary. The following sections aim to introduce the minimum amount of knowledge necessary to understand the principles of operation of a quantum network. This exposition was written with a classical networking audience in mind. It is assumed that the reader has never before been exposed to any quantum physics. We refer the reader to [SutorBook] and [NielsenChuang] for an in-depth introduction to quantum information systems.

量子ネットワーキングのフレームワークを理解するには、量子情報理論の基本的な理解が必要です。次のセクションは、量子ネットワークの運用の原則を理解するために必要な最小の知識の量を導入することを目的としています。この博覧会は、古典的なネットワーキングオーディエンスを念頭に置いて書かれました。読者がこれまでに量子物理学にさらされたことがないと想定されています。Quantum Information Systemsの詳細な紹介については、読者を[sutorbook]と[nielsenchuang]に紹介します。

2.1. Quantum State
2.1. 量子状態

A quantum mechanical system is described by its quantum state. A quantum state is an abstract object that provides a complete description of the system at that particular moment. When combined with the rules of the system's evolution in time, such as a quantum circuit, it also then provides a complete description of the system at all times. For the purposes of computing and networking, the classical equivalent of a quantum state would be a string or stream of logical bit values. These bits provide a complete description of what values we can read out from that string at that particular moment, and when combined with its rules for evolution in time, such as a logical circuit, we will also know its value at any other time.

量子機械システムは、その量子状態によって記述されています。量子状態は、その特定の瞬間にシステムの完全な説明を提供する抽象的なオブジェクトです。量子回路など、時間内のシステムの進化のルールと組み合わせると、常にシステムの完全な説明を提供します。コンピューティングとネットワーキングの目的のために、量子状態に相当する古典的なものは、論理ビット値の文字列またはストリームです。これらのビットは、その特定の瞬間にその文字列から読み出すことができる値の完全な説明を提供し、論理回路など、時間内の進化のルールと組み合わせると、その価値も他の時間で知ります。

Just like a single classical bit, a quantum mechanical system can be simple and consist of a single particle, e.g., an atom or a photon of light. In this case, the quantum state provides the complete description of that one particle. Similarly, just like a string of bits consists of multiple bits, a single quantum state can be used to also describe an ensemble of many particles. However, because quantum states are governed by the laws of quantum mechanics, their behaviour is significantly different to that of a string of bits. In this section, we will summarise the key concepts to understand these differences. We will then explain their consequences for networking in the rest of this document.

単一の古典的なビットと同様に、量子機械システムはシンプルで、たとえば原子または光の光子で構成されます。この場合、量子状態はその1つの粒子の完全な説明を提供します。同様に、一連のビットが複数のビットで構成されているように、単一の量子状態を使用して、多くの粒子のアンサンブルも記述できます。ただし、量子状態は量子力学の法則に準拠しているため、その行動は一連のビットの行動とは大きく異なります。このセクションでは、これらの違いを理解するために重要な概念を要約します。次に、このドキュメントの残りの部分でのネットワーキングに対する彼らの結果を説明します。

2.2. Qubit
2.2. qubit

The differences between quantum computation and classical computation begin at the bit level. A classical computer operates on the binary alphabet { 0, 1 }. A quantum bit, called a qubit, exists over the same binary space, but unlike the classical bit, its state can exist in a superposition of the two possibilities:

量子計算と古典的な計算の違いは、ビットレベルで始まります。クラシックコンピューターは、バイナリアルファベット{0、1}で動作します。qubitと呼ばれる量子ビットは同じバイナリ空間に存在しますが、古典的なビットとは異なり、その状態は2つの可能性の重ね合わせに存在する可能性があります。

|qubit⟩ = a |0⟩ + b |1⟩,

|qubit⟩= a |0⟩b |1⟩

where |X⟩ is Dirac's ket notation for a quantum state (the value that a qubit holds) -- here, the binary 0 and 1 -- and the coefficients a and b are complex numbers called probability amplitudes. Physically, such a state can be realised using a variety of different technologies such as electron spin, photon polarisation, atomic energy levels, and so on.

ここで、|x⟩は量子状態(qubitが保持する値)のdiracのケット表記です - ここでは、バイナリ0および1-係数aとbは確率振幅と呼ばれる複雑な数値です。物理的には、そのような状態は、電子スピン、光子偏光、原子エネルギーレベルなど、さまざまな技術を使用して実現できます。

Upon measurement, the qubit loses its superposition and irreversibly collapses into one of the two basis states, either |0⟩ or |1⟩. Which of the two states it ends up in may not be deterministic but can be determined from the readout of the measurement. The measurement result is a classical bit, 0 or 1, corresponding to |0⟩ and |1⟩, respectively. The probability of measuring the state in the |0⟩ state is |a|^2; similarly, the probability of measuring the state in the |1⟩ state is |b|^2, where |a|^2 + |b|^2 = 1. This randomness is not due to our ignorance of the underlying mechanisms but rather is a fundamental feature of a quantum mechanical system [Aspect81].

測定すると、qubitはその重ね合わせを失い、| 0 bateの2つの基底状態のいずれかのいずれかのいずれかに不可逆的に崩壊します。それが終わる2つの州のどれが決定論的ではないかもしれませんが、測定の読み取りから決定できます。測定の結果は、それぞれ|0⟩と| 1℃に対応する古典的なビット0または1です。|0⟩状態で状態を測定する確率は| a |^2です。同様に、| 1℃の状態を測定する確率は| b |^2です。ここで、| a |^2 | b |^2 = 1です。量子機械システムの基本的な特徴[Aspect81]。

The superposition property plays an important role in fundamental gate operations on qubits. Since a qubit can exist in a superposition of its basis states, the elementary quantum gates are able to act on all states of the superposition at the same time. For example, consider the NOT gate:

重ね合わせ特性は、Qubitsの基本的なゲート操作において重要な役割を果たしています。その基底状態の重ね合わせにキットが存在する可能性があるため、基本的な量子ゲートは、重ね合わせのすべての状態に同時に作用することができます。たとえば、NOTゲートを考えてみましょう。

NOT (a |0⟩ + b |1⟩) → a |1⟩ + b |0⟩.

NOT(A |0⟩B|1⟩)→A |1⟩B|0⟩。

It is important to note that "qubit" can have two meanings. In the first meaning, "qubit" refers to a physical quantum *system* whose quantum state can be expressed as a superposition of two basis states, which we often label |0⟩ and |1⟩. Here, "qubit" refers to a physical implementation akin to what a flip-flop, switch, voltage, or current would be for a classical bit. In the second meaning, "qubit" refers to the abstract quantum *state* of a quantum system with such two basis states. In this case, the meaning of "qubit" is akin to the logical value of a bit, from classical computing, i.e., "logical 0" or "logical 1". The two concepts are related, because a physical "qubit" (first meaning) can be used to store the abstract "qubit" (second meaning). Both meanings are used interchangeably in literature, and the meaning is generally clear from the context.

「qubit」には2つの意味があることに注意することが重要です。最初の意味では、「qubit」とは、量子状態を2つの基底状態の重ねとして表現できる物理量子 *システム *を指します。ここで、「Qubit」とは、フリップフロップ、スイッチ、電圧、または電流が古典的なビットであるものに似た物理的な実装を指します。2番目の意味では、「qubit」とは、このような2つの基底状態を持つ量子システムの抽象的な量子 *状態 *を指します。この場合、「qubit」の意味は、古典的なコンピューティング、つまり「論理0」または「論理1」から、少しの論理値に似ています。物理的な「qubit」(最初の意味)を使用して抽象的な「qubit」(2番目の意味)を保存できるため、2つの概念が関連しています。どちらの意味も文献では交換可能に使用されており、意味は一般に文脈から明らかです。

2.3. Multiple Qubits
2.3. 複数のキュービット

When multiple qubits are combined in a single quantum state, the space of possible states grows exponentially and all these states can coexist in a superposition. For example, the general form of a two-qubit register is

単一の量子状態で複数のキュービットが組み合わされると、考えられる状態の空間が指数関数的に成長し、これらすべての状態が重ね合わせで共存できます。たとえば、2 qubitレジスタの一般的な形式は

a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩,

a |00⟩b| 01℃| 10 d | 11℃、

where the coefficients have the same probability amplitude interpretation as for the single-qubit state. Each state represents a possible outcome of a measurement of the two-qubit register. For example, |01⟩ denotes a state in which the first qubit is in the state |0⟩ and the second is in the state |1⟩.

係数は、単一のキット状態と同じ確率振幅解釈を持っています。各状態は、2キットレジスタの測定の可能な結果を表しています。たとえば、| 01が最初のキュービットが状態にある状態を示します| 0℃、2番目は状態|1⟩にあります。

Performing single-qubit gates affects the relevant qubit in each of the superposition states. Similarly, two-qubit gates also act on all the relevant superposition states, but their outcome is far more interesting.

単一のキットゲートを実行すると、各重ね合わせ状態の関連するキュービットに影響します。同様に、2キットのゲートも関連するすべての重ね合わせ状態に作用しますが、その結果ははるかに興味深いものです。

Consider a two-qubit register where the first qubit is in the superposed state (|0⟩ + |1⟩)/sqrt(2) and the other is in the state |0⟩. This combined state can be written as

最初のqubitが重ね合わせ状態(|0⟩|1⟩)/sqrt(2)にある2 qubitレジスタを考えてみてください。この組み合わせ状態は、と書くことができます

(|0⟩ + |1⟩)/sqrt(2) x |0⟩ = (|00⟩ + |10⟩)/sqrt(2),

(|0⟩|1⟩)/sqrt(2)x |0⟩=(|00⟩|10⟩)/sqrt(2)、

where x denotes a tensor product (the mathematical mechanism for combining quantum states together).

ここで、Xはテンソル製品(量子状態を結合するための数学的メカニズム)を示します。

The constant 1/sqrt(2) is called the normalisation factor and reflects the fact that the probabilities of measuring either a |0⟩ or a |1⟩ for the first qubit add up to one.

定数1/sqrt(2)は正規化係数と呼ばれ、最初のqubitが1つに加算されるa |0⟩またはa | 1が測定する確率が1つになるという事実を反映しています。

Let us now consider the two-qubit Controlled NOT, or CNOT, gate. The CNOT gate takes as input two qubits -- a control and a target -- and applies the NOT gate to the target if the control qubit is set. The truth table looks like

次に、2 quit制御されていない、またはcnotのゲートを考えてみましょう。CNOTゲートは、入力として2つのキュービット(コントロールとターゲット)を取得し、コントロールのキュービットが設定されている場合、ターゲットにNOTゲートを適用します。真実のテーブルのように見えます

                               +====+=====+
                               | IN | OUT |
                               +====+=====+
                               | 00 |  00 |
                               +----+-----+
                               | 01 |  01 |
                               +----+-----+
                               | 10 |  11 |
                               +----+-----+
                               | 11 |  10 |
                               +----+-----+
        

Table 1: CNOT Truth Table

表1:真実のテーブルをcnot

Now, consider performing a CNOT gate on the state with the first qubit being the control. We apply a two-qubit gate on all the superposition states:

次に、最初のqubitがコントロールである状態でCNOTゲートを実行することを検討します。すべての重ね合わせ状態に2 quitゲートを適用します。

CNOT (|00⟩ + |10⟩)/sqrt(2) → (|00⟩ + |11⟩)/sqrt(2).

cnot(|00⟩|10⟩)/sqrt(2)→(|00⟩|11⟩)/sqrt(2)。

What is so interesting about this two-qubit gate operation? The final state is *entangled*. There is no possible way of representing that quantum state as a product of two individual qubits; they are no longer independent. That is, it is not possible to describe the quantum state of either of the individual qubits in a way that is independent of the other qubit. Only the quantum state of the system that consists of both qubits provides a physically complete description of the two-qubit system. The states of the two individual qubits are now correlated beyond what is possible to achieve classically. Neither qubit is in a definite |0⟩ or |1⟩ state, but if we perform a measurement on either one, the outcome of the partner qubit will *always* yield the exact same outcome. The final state, whether it's |00⟩ or |11⟩, is fundamentally random as before, but the states of the two qubits following a measurement will always be identical. One can think of this as flipping two coins, but both coins always land on "heads" or both land on "tails" together -- something that we know is impossible classically.

この2 quitゲート操作の何がそんなに興味深いのですか?最終状態は *絡み合っています。その量子状態を2つの個々のキュービットの積として表す方法はありません。彼らはもはや独立していません。つまり、個々のキュービットのいずれかの量子状態を、他のキュービットから独立した方法で説明することはできません。両方のキュービットで構成されるシステムの量子状態のみが、2キットシステムの物理的に完全な説明を提供します。2つの個々のキュービットの状態は、現在、古典的に達成できるものを超えて相関しています。どちらのqubitも明確な|0⟩または| 1°の状態ではありませんが、いずれかで測定を実行すると、パートナーのqubitの結果は、常に *まったく同じ結果が得られます。最終状態は、それが|00⟩であろうと| 11℃であろうと、以前と同じように基本的にランダムですが、測定後の2つのキュービットの状態は常に同一です。これは2つのコインをひっくり返すと考えることができますが、両方のコインは常に「頭」に着地するか、両方のコインが「尾」に一緒に着地します - 私たちが知っていることは古典的に不可能です。

Once a measurement is performed, the two qubits are once again independent. The final state is either |00⟩ or |11⟩, and both of these states can be trivially decomposed into a product of two individual qubits. The entanglement has been consumed, and the entangled state must be prepared again.

測定が実行されると、2つのキュービットが再び独立します。最終状態は|00⟩または| 11℃であり、これらの状態は両方とも2つの個々のキュービットの積に簡単に分解できます。絡み合いは消費され、絡み合った状態は再び準備されなければなりません。

3. Entanglement as the Fundamental Resource
3. 基本的な資源としてのエンタングルメント

Entanglement is the fundamental building block of quantum networks. Consider the state from the previous section:

エンタングルメントは、量子ネットワークの基本的な構成要素です。前のセクションの状態を考えてみましょう。

(|00⟩ + |11⟩)/sqrt(2).

(|00⟩|11⟩)/sqrt(2)。

Neither of the two qubits is in a definite |0⟩ or |1⟩ state, and we need to know the state of the entire register to be able to fully describe the behaviour of the two qubits.

2つのキュービットのいずれも明確な| 0がありません。または| 1°の状態であり、2つのキュービットの動作を完全に説明できるように、レジスタ全体の状態を知る必要があります。

Entangled qubits have interesting non-local properties. Consider sending one of the qubits to another device. This device could in principle be anywhere: on the other side of the room, in a different country, or even on a different planet. Provided negligible noise has been introduced, the two qubits will forever remain in the entangled state until a measurement is performed. The physical distance does not matter at all for entanglement.

絡み合ったキュービットには、興味深い非ローカル特性があります。キュービットの1つを別のデバイスに送信することを検討してください。このデバイスは、原則としてどこにでもある可能性があります。部屋の反対側、別の国、または別の惑星でさえ。無視できるノイズが導入されている場合、測定が実行されるまで、2つのキュービットは絡み合った状態に永久に残ります。エンタングルメントのためには、物理的な距離はまったく関係ありません。

This lies at the heart of quantum networking, because it is possible to leverage the non-classical correlations provided by entanglement in order to design completely new types of application protocols that are not possible to achieve with just classical communication. Examples of such applications are quantum cryptography [Bennett14] [Ekert91], blind quantum computation [Fitzsimons17], or distributed quantum computation [Crepeau02].

これは量子ネットワーキングの中心にあります。これは、古典的な通信だけで達成できない完全に新しいタイプのアプリケーションプロトコルを設計するために、エンタングルメントによって提供される非古典的な相関を活用することが可能であるためです。このようなアプリケーションの例は、量子暗号化[Bennett14] [EKERT91]、ブラインド量子計算[FITZSIMONS17]、または分布量子計算[CREPEAU02]です。

Entanglement has two very special features from which one can derive some intuition about the types of applications enabled by a quantum network.

Entanglementには、量子ネットワークによって有効なアプリケーションの種類に関する直感を導き出すことができる2つの非常に特別な機能があります。

The first stems from the fact that entanglement enables stronger-than-classical correlations, leading to opportunities for tasks that require coordination. As a trivial example, consider the problem of consensus between two nodes who want to agree on the value of a single bit. They can use the quantum network to prepare the state (|00⟩ + |11⟩)/sqrt(2) with each node holding one of the two qubits. Once either of the two nodes performs a measurement, the state of the two qubits collapses to either |00⟩ or |11⟩, so whilst the outcome is random and does not exist before measurement, the two nodes will always measure the same value. We can also build the more general multi-qubit state (|00...⟩ + |11...⟩)/sqrt(2) and perform the same algorithm between an arbitrary number of nodes. These stronger-than-classical correlations generalise to measurement schemes that are more complicated as well.

最初のものは、エンタングルメントが古典的な相関をより強くすることを可能にし、調整を必要とするタスクの機会につながるという事実に由来します。些細な例として、単一のビットの値に同意したい2つのノード間のコンセンサスの問題を考慮してください。Quantum Networkを使用して、各ノードが2つのキュービットのいずれかを保持して状態(|00⟩|11⟩)/SQRT(2)を準備できます。2つのノードのいずれかが測定値を実行すると、2つのキュービットの状態が|00⟩または| 11℃のいずれかに崩壊するため、結果はランダムで測定前に存在しませんが、2つのノードは常に同じ値を測定します。また、より一般的なマルチキット状態(| 00 ... | 11 ...⟩)/sqrt(2)を構築し、任意の数のノード間で同じアルゴリズムを実行することもできます。これらのより強力な古典的な相関は、同様に複雑な測定スキームに一般的になります。

The second feature of entanglement is that it cannot be shared, in the sense that if two qubits are maximally entangled with each other, then it is physically impossible for these two qubits to also be entangled with a third qubit [Terhal04]. Hence, entanglement forms a sort of private and inherently untappable connection between two nodes once established.

エンタングルメントの2番目の特徴は、2つのキュービットが互いに最大限に絡み合っている場合、これら2つのキュービットが3番目のキュービットに絡み合っても物理的に不可能であるという意味で、共有できないということです[Terhal04]。したがって、エンタングルメントは、一度確立された2つのノード間の一種のプライベートで本質的に手に負えない接続を形成します。

Entanglement is created through local interactions between two qubits or as a product of the way the qubits were created (e.g., entangled photon pairs). To create a distributed entangled state, one can then physically send one of the qubits to a remote node. It is also possible to directly entangle qubits that are physically separated, but this still requires local interactions between some other qubits that the separated qubits are initially entangled with. Therefore, it is the transmission of qubits that draws the line between a genuine quantum network and a collection of quantum computers connected over a classical network.

エンタングルメントは、2つのキュービット間の局所的な相互作用、またはキュービットの作成方法の積として作成されます(例えば、絡み合った光子ペア)。分散された絡み合った状態を作成するには、キュービットの1つをリモートノードに物理的に送信できます。また、物理的に分離されたキュービットを直接巻き込むことも可能ですが、これには、分離されたキュービットが最初に絡み合っている他のキュービット間の局所的な相互作用が必要です。したがって、本物の量子ネットワークと古典的なネットワークで接続された量子コンピューターのコレクションとの間に境界線を引き出すのは、Qubitsの送信です。

A quantum network is defined as a collection of nodes that is able to exchange qubits and distribute entangled states amongst themselves. A quantum node that is able only to communicate classically with another quantum node is not a member of a quantum network.

量子ネットワークは、キュービットを交換し、絡み合った状態を自分自身に分配できるノードのコレクションとして定義されます。別の量子ノードと古典的にのみ通信できる量子ノードは、量子ネットワークのメンバーではありません。

Services and applications that are more complex can be built on top of entangled states distributed by the network; for example, see [ZOO].

より複雑なサービスとアプリケーションは、ネットワークによって配布される絡み合った状態の上に構築できます。たとえば、[動物園]を参照してください。

4. Achieving Quantum Connectivity
4. 量子接続の達成

This section explains the meaning of quantum connectivity and the necessary physical processes at an abstract level.

このセクションでは、量子接続の意味と抽象的なレベルでの必要な物理プロセスについて説明します。

4.1. Challenges
4.1. 課題

A quantum network cannot be built by simply extrapolating all the classical models to their quantum analogues. Sending qubits over a wire like we send classical bits is simply not as easy to do. There are several technological as well as fundamental challenges that make classical approaches unsuitable in a quantum context.

すべての古典的なモデルを量子類似体に単純に推定するだけで、量子ネットワークを構築することはできません。古典的なビットを送信するように、ワイヤーにキュービットを送信するのは簡単ではありません。量子コンテキストで古典的なアプローチを不適切にするためのいくつかの技術的および基本的な課題があります。

4.1.1. The Measurement Problem
4.1.1. 測定問題

In classical computers and networks, we can read out the bits stored in memory at any time. This is helpful for a variety of purposes such as copying, error detection and correction, and so on. This is not possible with qubits.

古典的なコンピューターとネットワークでは、いつでもメモリに保存されているビットを読み取ることができます。これは、コピー、エラーの検出、修正など、さまざまな目的に役立ちます。これはqubitsでは不可能です。

A measurement of a qubit's state will destroy its superposition and with it any entanglement it may have been part of. Once a qubit is being processed, it cannot be read out until a suitable point in the computation, determined by the protocol handling the qubit, has been reached. Therefore, we cannot use the same methods known from classical computing for the purposes of error detection and correction. Nevertheless, quantum error detection and correction schemes exist that take this problem into account, and how a network chooses to manage errors will have an impact on its architecture.

Qubitの状態を測定すると、その重ね合わせが破壊され、それが一部であった可能性があります。qubitが処理されると、qubitを処理するプロトコルによって決定される計算の適切なポイントが到達するまで読み取ることができません。したがって、エラーの検出と修正の目的で、古典的なコンピューティングから既知の同じ方法を使用することはできません。それにもかかわらず、この問題を考慮に入れる量子エラーの検出および修正スキームが存在し、ネットワークがエラーを管理することを選択する方法は、そのアーキテクチャに影響を与えます。

4.1.2. No-Cloning Theorem
4.1.2. ノークローニング定理

Since directly reading the state of a qubit is not possible, one could ask if we can simply copy a qubit without looking at it. Unfortunately, this is fundamentally not possible in quantum mechanics [Park70] [Wootters82].

qubitの状態を直接読み取ることは不可能なので、見かけずにキットを単にコピーできるかどうかを尋ねることができます。残念ながら、これは基本的に量子力学[PARK70] [Wootters82]では不可能です。

The no-cloning theorem states that it is impossible to create an identical copy of an arbitrary, unknown quantum state. Therefore, it is also impossible to use the same mechanisms that worked for classical networks for signal amplification, retransmission, and so on, as they all rely on the ability to copy the underlying data. Since any physical channel will always be lossy, connecting nodes within a quantum network is a challenging endeavour, and its architecture must at its core address this very issue.

ノークローン定理は、任意の未知の量子状態の同一のコピーを作成することは不可能であると述べています。したがって、基礎となるデータをコピーする能力に依存しているため、信号増幅、再送信などのために古典的なネットワークで働いたのと同じメカニズムを使用することも不可能です。物理チャネルは常に損失があるため、量子ネットワーク内のノードを接続することは挑戦的な努力であり、そのアーキテクチャはこのまさにこの問題に対処する必要があります。

4.1.3. Fidelity
4.1.3. 忠実

In general, it is expected that a classical packet arrives at its destination without any errors introduced by hardware noise along the way. This is verified at various levels through a variety of error detection and correction mechanisms. Since we cannot read or copy a quantum state, error detection and correction are more involved.

一般に、クラシックパケットは、途中でハードウェアノイズによって導入されたエラーなしで目的地に到着することが予想されます。これは、さまざまなエラー検出および修正メカニズムを通じて、さまざまなレベルで検証されます。量子状態を読み取ったりコピーしたりすることはできないため、エラーの検出と修正がより複雑になります。

To describe the quality of a quantum state, a physical quantity called fidelity is used [NielsenChuang]. Fidelity takes a value between 0 and 1 -- higher is better, and less than 0.5 means the state is unusable. It measures how close a quantum state is to the state we have tried to create. It expresses the probability that the state will behave exactly the same as our desired state. Fidelity is an important property of a quantum system that allows us to quantify how much a particular state has been affected by noise from various sources (gate errors, channel losses, environment noise).

量子状態の品質を説明するために、忠実度と呼ばれる物理的量が使用されます[nielsenchuang]。Fidelityは0〜1の値を取得します。高い方が優れており、0.5未満は状態が使用できないことを意味します。それは、私たちが作成しようとした状態に量子状態がどれほど近いかを測定します。それは、国家が私たちの希望する状態とまったく同じ振る舞いをする確率を表しています。忠実度は、特定の状態がさまざまなソースからの騒音(ゲートエラー、チャネル損失、環境ノイズ)の影響をどの程度受けているかを定量化できる量子システムの重要な特性です。

Interestingly, quantum applications do not need perfect fidelity to be able to execute -- as long as the fidelity is above some application-specific threshold, they will simply operate at lower rates. Therefore, rather than trying to ensure that we always deliver perfect states (a technologically challenging task), applications will specify a minimum threshold for the fidelity, and the network will try its best to deliver it. A higher fidelity can be achieved by either having hardware produce states of better fidelity (sometimes one can sacrifice rate for higher fidelity) or employing quantum error detection and correction mechanisms (see [Mural16] and Chapter 11 of [VanMeterBook]).

興味深いことに、Quantumアプリケーションは実行できるようにするために完全な忠実度を必要としません。忠実度がある程度のアプリケーション固有のしきい値を超えている限り、それらは単に低いレートで動作します。したがって、私たちが常に完全な状態(技術的に挑戦的なタスク)を常に提供することを保証しようとするのではなく、アプリケーションは忠実度の最小しきい値を指定し、ネットワークはそれを提供するために最善を尽くします。ハードウェアをより良い忠実度の状態(より高い忠実度のために犠牲にすることができる場合もある)を生成するか、量子誤差検出および修正メカニズムを使用することで、より高い忠実度を達成できます([vanmeterbook]の[mural16]および第11章を参照)。

4.1.4. Inadequacy of Direct Transmission
4.1.4. 直接送信の不十分さ

Conceptually, the most straightforward way to distribute an entangled state is to simply transmit one of the qubits directly to the other end across a series of nodes while performing sufficient forward Quantum Error Correction (QEC) (Section 4.4.3.2) to bring losses down to an acceptable level. Despite the no-cloning theorem and the inability to directly measure a quantum state, error-correcting mechanisms for quantum communication exist [Jiang09] [Fowler10] [Devitt13] [Mural16]. However, QEC makes very high demands on both resources (physical qubits needed) and their initial fidelity. Implementation is very challenging, and QEC is not expected to be used until later generations of quantum networks are possible (see Figure 2 of [Mural16] and Section 4.4.3.3 of this document). Until then, quantum networks rely on entanglement swapping (Section 4.4.2) and teleportation (Section 4.3). This alternative relies on the observation that we do not need to be able to distribute any arbitrary entangled quantum state. We only need to be able to distribute any one of what are known as the Bell pair states [Briegel98].

概念的には、絡み合った状態を配布する最も簡単な方法は、十分な前方量子誤差補正(QEC)(セクション4.4.3.2)を実行しながら、一連のノード全体で一方のキッツの1つを一連のノード全体に直接反対側に直接送信することです。許容可能なレベル。ノークローン定理と量子状態を直接測定できないことにもかかわらず、量子通信のエラー修正メカニズムが存在します[Jiang09] [fowler10] [devitt13] [mural16]。ただし、QECは、リソース(物理的なキュービットが必要)と最初の忠実度の両方に対して非常に高い要求をしています。実装は非常に困難であり、QECは、その後の量子ネットワークの世代が可能になるまで使用されることは期待されていません([Mural16]の図2およびこのドキュメントのセクション4.4.3.3を参照)。それまでは、量子ネットワークはエンタングルメントスワッピング(セクション4.4.2)とテレポーテーション(セクション4.3)に依存しています。この代替案は、任意の絡み合った量子状態を分配できる必要はないという観察に依存しています。Bell Pair States [Briegel98]として知られているもののいずれかを配布できる必要があります。

4.2. Bell Pairs
4.2. ベルペア

Bell pair states are the entangled two-qubit states:

ベルペアの状態は、絡み合った2キット状態です。

            |00⟩ + |11⟩,
            |00⟩ - |11⟩,
            |01⟩ + |10⟩,
            |01⟩ - |10⟩,
        

where the constant 1/sqrt(2) normalisation factor has been ignored for clarity. Any of the four Bell pair states above will do, as it is possible to transform any Bell pair into another Bell pair with local operations performed on only one of the qubits. When each qubit in a Bell pair is held by a separate node, either node can apply a series of single-qubit gates to their qubit alone in order to transform the state between the different variants.

ここで、定数1/SQRT(2)正規化係数が明確に無視されています。上記の4つのベルペア状態のいずれかは、任意のベルペアを別のベルペアに変換することが可能であるため、Qubitsの1つだけで実行されるローカル操作を使用します。ベルペアの各qubitが個別のノードによって保持される場合、いずれかのノードが異なるバリアント間で状態を変換するために、一連の単一qubitゲートを単独に適用できます。

Distributing a Bell pair between two nodes is much easier than transmitting an arbitrary quantum state over a network. Since the state is known, handling errors becomes easier, and small-scale error correction (such as entanglement distillation, as discussed in Section 4.4.3.1), combined with reattempts, becomes a valid strategy.

ベルペアを2つのノード間に分配することは、ネットワーク上で任意の量子状態を送信するよりもはるかに簡単です。状態が知られているため、取り扱いエラーが容易になり、小規模なエラー補正(セクション4.4.3.1で説明したように、エンタングルメント蒸留など)と再試験を組み合わせることが有効な戦略になります。

The reason for using Bell pairs specifically as opposed to any other two-qubit state is that they are the maximally entangled two-qubit set of basis states. Maximal entanglement means that these states have the strongest non-classical correlations of all possible two-qubit states. Furthermore, since single-qubit local operations can never increase entanglement, states that are less entangled would impose some constraints on distributed quantum algorithms. This makes Bell pairs particularly useful as a generic building block for distributed quantum applications.

他の2 quit状態とは対照的に、特にベルペアを使用する理由は、それらが最大限に絡み合った2キットの基底状態セットであるためです。最大のエンタングルメントとは、これらの状態が、考えられるすべての2キット状態の最も強力な非古典的相関を持っていることを意味します。さらに、単一のキットのローカル操作はエンタングルメントを増加させることはできないため、絡み合っていない状態は、分散型量子アルゴリズムにいくつかの制約を課します。これにより、ベルペアは、分散型量子アプリケーションの一般的なビルディングブロックとして特に役立ちます。

4.3. Teleportation
4.3. テレポーテーション

The observation that we only need to be able to distribute Bell pairs relies on the fact that this enables the distribution of any other arbitrary entangled state. This can be achieved via quantum state teleportation [Bennett93]. Quantum state teleportation consumes an unknown qubit state that we want to transmit and recreates it at the desired destination. This does not violate the no-cloning theorem, as the original state is destroyed in the process.

ベルペアを分配できるだけであるという観察は、これが他の任意の絡み合った状態の分布を可能にするという事実に依存しています。これは、Quantum State Teleportation [Bennett93]を介して達成できます。Quantum State Teleportationは、希望の目的地で送信して再現したいという未知のqubit状態を消費します。これは、元の状態がその過程で破壊されているため、ノークローニング定理に違反しません。

To achieve this, an entangled pair needs to be distributed between the source and destination before teleportation commences. The source then entangles the transmission qubit with its end of the pair and performs a readout of the two qubits (the sum of these operations is called a Bell state measurement). This consumes the Bell pair's entanglement, turning the source and destination qubits into independent states. The measurement yields two classical bits, which the source sends to the destination over a classical channel. Based on the value of the received two classical bits, the destination performs one of four possible corrections (called the Pauli corrections) on its end of the pair, which turns it into the unknown qubit state that we wanted to transmit. This requirement to communicate the measurement readout over a classical channel unfortunately means that entanglement cannot be used to transmit information faster than the speed of light.

これを達成するには、テレポーテーションが始まる前に、ソースと宛先の間に絡み合ったペアを配布する必要があります。その後、ソースはペアの終わりでトランスミッションキュービットを巻き込み、2つのキュービットの読み取りを実行します(これらの操作の合計は、ベル状態測定と呼ばれます)。これにより、ベルペアのエンタングルメントが消費され、ソースと目的地が独立した状態に変わります。測定により、2つの古典的なビットが生成され、ソースがクラシックチャネル上で宛先に送信します。受信した2つの古典的なビットの値に基づいて、目的地はペアの端で4つの可能な修正(パウリ補正と呼ばれる)のいずれかを実行します。残念ながら、古典的なチャネルで測定の読み取り値を通信するためのこの要件は、絡み合いを使用して光の速度よりも速く情報を送信できないことを意味します。

The unknown quantum state that was transmitted was never fed into the network itself. Therefore, the network needs to only be able to reliably produce Bell pairs between any two nodes in the network. Thus, a key difference between a classical data plane and a quantum data plane is that a classical data plane carries user data but a quantum data plane provides the resources for the user to transmit user data themselves without further involvement of the network.

送信された未知の量子状態は、ネットワーク自体に決して供給されませんでした。したがって、ネットワークは、ネットワーク内の任意の2つのノードの間にベルペアを確実に生成できる必要があります。したがって、古典的なデータプレーンと量子データプレーンの重要な違いは、古典的なデータプレーンにユーザーデータが搭載されていることですが、量子データプレーンは、ユーザーがネットワークをさらに関与させることなくユーザーデータを送信するリソースを提供することです。

4.4. The Life Cycle of Entanglement
4.4. エンタングルメントのライフサイクル

Reducing the problem of quantum connectivity to one of generating a Bell pair has reduced the problem to a simpler, more fundamental case, but it has not solved it. In this section, we discuss how these entangled pairs are generated in the first place and how their two qubits are delivered to the end-points.

量子接続の問題をベルペアの生成の1つに減らすことで、問題はよりシンプルでより基本的なケースに減少しましたが、それは解決していません。このセクションでは、これらの絡み合ったペアがそもそもどのように生成されるか、そしてそれらの2つのキュービットがエンドポイントにどのように配信されるかについて説明します。

4.4.1. 初等リンク生成

In a quantum network, entanglement is always first generated locally (at a node or an auxiliary element), followed by a movement of one or both of the entangled qubits across the link through quantum channels. In this context, photons (particles of light) are the natural candidate for entanglement carriers. Because these photons carry quantum states from place to place at high speed, we call them flying qubits. The rationale for this choice is related to the advantages provided by photons, such as moderate interaction with the environment leading to moderate decoherence; convenient control with standard optical components; and high-speed, low-loss transmissions. However, since photons are hard to store, a transducer must transfer the flying qubit's state to a qubit suitable for information processing and/or storage (often referred to as a matter qubit).

量子ネットワークでは、エンタングルメントは常に最初に局所的に(ノードまたは補助要素で)生成され、その後、量子チャネルを介してリンク全体に絡み合ったキビットの一方または両方が移動します。これに関連して、光子(光の粒子)は、エンタングルメントキャリアの自然候補です。これらの光子は量子状態を高速で場所に配置するため、それらを飛行qubitsと呼びます。この選択の理論的根拠は、環境との中程度の相互作用が中程度のデコヒェンスにつながるなど、光子によって提供される利点に関連しています。標準の光学コンポーネントを備えた便利な制御。高速、低下の送信。ただし、光子を保存するのは難しいため、トランスデューサーはフライングクビットの状態を情報処理および/または保管に適したQubitに移す必要があります(多くの場合、問題と呼ばれます)。

Since this process may fail, in order to generate and store entanglement efficiently, we must be able to distinguish successful attempts from failures. Entanglement generation schemes that are able to announce successful generation are called heralded entanglement generation schemes.

このプロセスが失敗する可能性があるため、エンタングルメントを効率的に生成および保存するためには、成功した試みを障害と区別できる必要があります。成功した生成を発表できるエンタングルメント生成スキームは、告知されたエンタングルメント生成スキームと呼ばれます。

There exist three basic schemes for heralded entanglement generation on a link through coordinated action of the two nodes at the two ends of the link [Cacciapuoti19]:

リンク[Cacciapuoti19]の2つの端で2つのノードの調整されたアクションを介して、リンクに告知されたエンタングルメント生成のための3つの基本的なスキームが存在します。

"At mid-point":

「ミッドポイントで」:

In this scheme, an entangled photon pair source sitting midway between the two nodes with matter qubits sends an entangled photon through a quantum channel to each of the nodes. There, transducers are invoked to transfer the entanglement from the flying qubits to the matter qubits. In this scheme, the transducers know if the transfers succeeded and are able to herald successful entanglement generation via a message exchange over the classical channel.

このスキームでは、2つのノードの間にある絡み合った光子ペアソースが、物質キクを使用して2つのノードの間に座っているため、各ノードに量子チャネルを介して絡み合った光子を送信します。そこで、トランスデューサーが呼び出されて、エンタングルメントを空飛ぶqubitsから問題のキュービットに伝達します。このスキームでは、トランスデューサーは、転送が成功したかどうかを知っており、古典的なチャネルを介したメッセージ交換を介してエンタングルメントの生成を成功させることができます。

"At source":

「ソースで」:

In this scheme, one of the two nodes sends a flying qubit that is entangled with one of its matter qubits. A transducer at the other end of the link will transfer the entanglement from the flying qubit to one of its matter qubits. Just like in the previous scheme, the transducer knows if its transfer succeeded and is able to herald successful entanglement generation with a classical message sent to the other node.

このスキームでは、2つのノードのうちの1つが、その問題の1つに絡み合った空飛ぶqubitを送信します。リンクのもう一方の端にあるトランスデューサーは、エンタングルメントを空飛ぶqubitからその問題の1つに伝達します。前のスキームと同じように、トランスデューサーはその転送が成功したかどうかを知っており、他のノードに送信された古典的なメッセージでエンタングルメントの成功を告げることができます。

"At both end-points":

「両方のエンドポイントで」:

In this scheme, both nodes send a flying qubit that is entangled with one of their matter qubits. A detector somewhere in between the nodes performs a joint measurement on the flying qubits, which stochastically projects the remote matter qubits into an entangled quantum state. The detector knows if the entanglement succeeded and is able to herald successful entanglement generation by sending a message to each node over the classical channel.

このスキームでは、両方のノードは、問題の1つに絡み合った空飛ぶqubitを送信します。ノードの間のどこかで検出器が飛ぶqubitsで共同測定を実行します。これにより、リモートマタンは絡み合った量子状態にqubitsを確率的に投影します。検出器は、エンタングルメントが成功したかどうかを知っており、クラシックチャネルを介して各ノードにメッセージを送信することにより、エンタングルメントの生成を成功させることができます。

The "mid-point source" scheme is more robust to photon loss, but in the other schemes, the nodes retain greater control over the entangled pair generation.

「ミッドポイントソース」スキームは光子損失に対してより堅牢ですが、他のスキームでは、ノードは絡み合ったペア生成に対するより大きな制御を維持します。

Note that whilst photons travel in a particular direction through the quantum channel the resulting entangled pair of qubits does not have a direction associated with it. Physically, there is no upstream or downstream end of the pair.

光子は量子チャネルを介して特定の方向に移動する一方で、結果として得られる絡み合ったキュビットのペアにはそれに関連する方向がないことに注意してください。物理的には、ペアの上流または下流の端はありません。

4.4.2. Entanglement Swapping
4.4.2. エンタングルメントスワッピング

The problem with generating entangled pairs directly across a link is that efficiency decreases with channel length. Beyond a few tens of kilometres in optical fibre or 1000 kilometres in free space (via satellite), the rate is effectively zero, and due to the no-cloning theorem we cannot simply amplify the signal. The solution is entanglement swapping [Briegel98].

リンク全体に直接絡み合ったペアを生成することの問題は、チャネルの長さとともに効率が低下することです。光ファイバーで数十キロメートルまたは自由空間で1000キロメートル(衛星を介して)を超えて、速度は事実上ゼロであり、ノークローン定理のために信号を単純に増幅することはできません。解決策はエンタングルメントスワッピングです[briegel98]。

A Bell pair between any two nodes in the network can be constructed by combining the pairs generated along each individual link on a path between the two end-points. Each node along the path can consume the two pairs on the two links to which it is connected, in order to produce a new entangled pair between the two remote ends. This process is known as entanglement swapping. It can be represented pictorially as follows:

ネットワーク内の任意の2つのノード間のベルペアは、2つのエンドポイント間のパス上の個々のリンクに沿って生成されたペアを組み合わせることで構築できます。パスに沿った各ノードは、2つのリモートエンドの間に新しい絡み合ったペアを生成するために、接続されている2つのリンクの2つのペアを消費できます。このプロセスは、エンタングルメントスワッピングとして知られています。次のように絵で表現できます。

   +---------+      +---------+      +---------+
   |    A    |      |    B    |      |    C    |
   |         |------|         |------|         |
   |      X1~~~~~~~~~~X2   Y1~~~~~~~~~~Y2      |
   +---------+      +---------+      +---------+
        

where X1 and X2 are the qubits of the entangled pair X and Y1 and Y2 are the qubits of entangled pair Y. The entanglement is denoted with ~~. In the diagram above, nodes A and B share the pair X and nodes B and C share the pair Y, but we want entanglement between A and C.

ここで、x1とx2は絡み合ったペアxとy1とy2のキュービットです。上の図では、ノードAとBがペアxとノードBとCを共有し、Cを共有し、ペアyを共有しますが、AとCの間の絡み合いが必要です。

To achieve this goal, we simply teleport the qubit X2 using the pair Y. This requires node B to perform a Bell state measurement on the qubits X2 and Y1 that results in the destruction of the entanglement between Y1 and Y2. However, X2 is recreated in Y2's place, carrying with it its entanglement with X1. The end result is shown below:

この目標を達成するために、ペアYを使用してQubit X2をテレポートするだけです。これには、Y1とY2の間の絡み合いが破壊されるQubits X2およびY1でベル状態測定を実行するためにノードBが必要です。ただし、X2はY2の場所で再現され、X1での絡み合いを運びます。最終結果を以下に示します。

   +---------+      +---------+      +---------+
   |    A    |      |    B    |      |    C    |
   |         |------|         |------|         |
   |      X1~~~~~~~~~~~~~~~~~~~~~~~~~~~X2      |
   +---------+      +---------+      +---------+
        

Depending on the needs of the network and/or application, a final Pauli correction at the recipient node may not be necessary, since the result of this operation is also a Bell pair. However, the two classical bits that form the readout from the measurement at node B must still be communicated, because they carry information about which of the four Bell pairs was actually produced. If a correction is not performed, the recipient must be informed which Bell pair was received.

ネットワークやアプリケーションのニーズに応じて、この操作の結果もベルペアであるため、受信者ノードでの最終的なパウリ補正は必要ない場合があります。ただし、ノードBの測定から読み出しを形成する2つの古典的なビットは、4つのベルペアのどれが実際に生成されたかについての情報を伝えているため、まだ通信する必要があります。修正が実行されない場合、受信者にどのベルペアが受信されたかを通知する必要があります。

This process of teleporting Bell pairs using other entangled pairs is called entanglement swapping. Quantum nodes that create long-distance entangled pairs via entanglement swapping are called quantum repeaters in academic literature [Briegel98]. We will use the same terminology in this document.

他の絡み合ったペアを使用してベルペアをテレポートするこのプロセスは、エンタングルメントスワッピングと呼ばれます。エンタングルメントスワッピングを介して長距離絡み合ったペアを作成する量子ノードは、学術文献の量子リピーターと呼ばれます[briegel98]。このドキュメントでは同じ用語を使用します。

4.4.3. Error Management
4.4.3. エラー管理
4.4.3.1. Distillation
4.4.3.1. 蒸留

Neither the generation of Bell pairs nor the swapping operations are noiseless operations. Therefore, with each link and each swap, the fidelity of the state degrades. However, it is possible to create higher-fidelity Bell pair states from two or more lower-fidelity pairs through a process called distillation (sometimes also referred to as purification) [Dur07].

ベルペアの生成もスワッピング操作もノイズレス操作ではありません。したがって、各リンクと各スワップで、状態の忠実度は劣化します。ただし、蒸留と呼ばれるプロセス(時には精製とも呼ばれる)[DUR07]を通じて、2つ以上の低忠実度ペアからより忠実度の高いベルペア状態を作成することができます。

To distil a quantum state, a second (and sometimes third) quantum state is used as a "test tool" to test a proposition about the first state, e.g., "the parity of the two qubits in the first state is even." When the test succeeds, confidence in the state is improved, and thus the fidelity is improved. The test tool states are destroyed in the process, so resource demands increase substantially when distillation is used. When the test fails, the tested state must also be discarded. Distillation makes low demands on fidelity and resources compared to QEC, but distributed protocols incur round-trip delays due to classical communication [Bennett96].

量子状態を蒸留するために、2番目の(場合によっては3番目の)量子状態が「テストツール」として使用され、最初の状態、例えば「最初の状態の2つのQubitsのパリティは偶数である」という命題をテストします。テストが成功すると、状態に対する信頼が改善され、忠実度が向上します。テストツールの状態はその過程で破壊されるため、蒸留を使用するとリソースの要求が大幅に増加します。テストが失敗した場合、テストされた状態も破棄する必要があります。蒸留はQECと比較して忠実度とリソースに対して低い要求をもたらしますが、分散プロトコルは古典的なコミュニケーションによる往復遅延が発生します[Bennett96]。

4.4.3.2. Quantum Error Correction (QEC)
4.4.3.2. 量子エラー補正(QEC)

Just like classical error correction, QEC encodes logical qubits using several physical (raw) qubits to protect them from the errors described in Section 4.1.3 [Jiang09] [Fowler10] [Devitt13] [Mural16]. Furthermore, similarly to its classical counterpart, QEC can not only correct state errors but also account for lost qubits. Additionally, if all physical qubits that encode a logical qubit are located at the same node, the correction procedure can be executed locally, even if the logical qubit is entangled with remote qubits.

古典的なエラー補正と同様に、QECは、いくつかの物理的(RAW)キクを使用して論理キキットをエンコードして、セクション4.1.3 [Jiang09] [fowler10] [devitt13] [mural16]で説明したエラーからそれらを保護します。さらに、その古典的なカウンターパートと同様に、QECは状態エラーを修正するだけでなく、失われたキュービットを説明できます。さらに、論理Qubitをエンコードするすべての物理キッツが同じノードに配置されている場合、修正手順は、ロジカルなキュービットがリモートキッビットに絡み合っている場合でも、ローカルで実行できます。

Although QEC was originally a scheme proposed to protect a qubit from noise, QEC can also be applied to entanglement distillation. Such QEC-applied distillation is cost effective but requires a higher base fidelity.

QECはもともと、騒音からキュービットを保護するために提案されたスキームでしたが、QECはエンタングルメント蒸留にも適用できます。このようなQECに適用される蒸留は費用対効果が高いですが、より高い基地の忠実度が必要です。

4.4.3.3. Error Management Schemes
4.4.3.3. エラー管理スキーム

Quantum networks have been categorised into three "generations" based on the error management scheme they employ [Mural16]. Note that these "generations" are more like categories; they do not necessarily imply a time progression and do not obsolete each other, though the later generations do require technologies that are more advanced. Which generation is used depends on the hardware platform and network design choices.

量子ネットワークは、採用するエラー管理スキームに基づいて、3つの「世代」に分類されています[mural16]。これらの「世代」はカテゴリに似ていることに注意してください。それらは必ずしも時間の進行を暗示しているわけではなく、お互いを廃止することはありませんが、後の世代はより高度な技術を必要とします。使用される生成は、ハードウェアプラットフォームとネットワーク設計の選択に依存します。

Table 2 summarises the generations.

表2は世代をまとめたものです。

   +===========+================+=======================+=============+
   |           |     First      |   Second generation   |    Third    |
   |           |   generation   |                       |  generation |
   +===========+================+=======================+=============+
   |    Loss   |    Heralded    | Heralded entanglement |   QEC (no   |
   | tolerance |  entanglement  |       generation      |  classical  |
   |           |   generation   |     (bidirectional    | signalling) |
   |           | (bidirectional | classical signalling) |             |
   |           |   classical    |                       |             |
   |           |  signalling)   |                       |             |
   +-----------+----------------+-----------------------+-------------+
   +-----------+----------------+-----------------------+-------------+
   |   Error   |  Entanglement  |      Entanglement     |   QEC (no   |
   | tolerance |  distillation  |      distillation     |  classical  |
   |           | (bidirectional |    (unidirectional    | signalling) |
   |           |   classical    | classical signalling) |             |
   |           |  signalling)   |  or QEC (no classical |             |
   |           |                |      signalling)      |             |
   +-----------+----------------+-----------------------+-------------+
        

Table 2: Classical Signalling and Generations

表2:古典的なシグナル伝達と世代

Generations are defined by the directions of classical signalling required in their distributed protocols for loss tolerance and error tolerance. Classical signalling carries the classical bits, incurring round-trip delays. As described in Section 4.4.3.1, these delays affect the performance of quantum networks, especially as the distance between the communicating nodes increases.

世代は、損失許容度とエラー許容度のために分散プロトコルで必要な古典的なシグナル伝達の方向によって定義されます。古典的なシグナル伝達には、往復の遅延が発生し、古典的なビットが搭載されています。セクション4.4.3.1で説明されているように、これらの遅延は、特に通信ノード間の距離が増加するにつれて、量子ネットワークのパフォーマンスに影響します。

Loss tolerance is about tolerating qubit transmission losses between nodes. Heralded entanglement generation, as described in Section 4.4.1, confirms the receipt of an entangled qubit using a heralding signal. A pair of directly connected quantum nodes repeatedly attempt to generate an entangled pair until the heralding signal is received. As described in Section 4.4.3.2, QEC can be applied to complement lost qubits, eliminating the need for reattempts. Furthermore, since the correction procedure is composed of local operations, it does not require a heralding signal. However, it is possible only when the photon loss rate from transmission to measurement is less than 50%.

損失耐性とは、ノード間のキット伝送損失を許容することです。セクション4.4.1に記載されているように、告知されたエンタングルメントの生成は、告発信号を使用して絡み合ったキットの受領を確認します。直接接続された量子ノードのペアは、告発信号を受信するまで、絡み合ったペアを繰り返し生成しようとします。セクション4.4.3.2で説明されているように、QECを適用して失われたキュービットを補完し、再試行の必要性を排除できます。さらに、修正手順はローカル操作で構成されているため、告知信号は必要ありません。ただし、伝送から測定までの光子損失率が50%未満の場合にのみ可能です。

Error tolerance is about tolerating quantum state errors. Entanglement distillation is the easiest mechanism to implement for improved error tolerance, but it incurs round-trip delays due to the requirement for bidirectional classical signalling. The alternative, QEC, is able to correct state errors locally so that it does not need any classical signalling between the quantum nodes. In between these two extremes, there is also QEC-applied distillation, which requires unidirectional classical signalling.

エラートレランスとは、量子状態のエラーを許容することです。エンタングルメント蒸留は、改善されたエラー許容度のために実装する最も簡単なメカニズムですが、双方向の古典的シグナル伝達の要件により、往復遅延が発生します。代替案であるQECは、状態エラーをローカルで修正できるため、量子ノード間の古典的なシグナル伝達は必要ありません。これらの両極端の間には、QECが適用した蒸留もあり、一方向の古典的なシグナル伝達が必要です。

The three "generations" summarised:

3つの「世代」が要約されています。

1. First-generation quantum networks use heralding for loss tolerance and entanglement distillation for error tolerance. These networks can be implemented even with a limited set of available quantum gates.

1. 第一世代の量子ネットワークは、損失の許容範囲と絡み合いの蒸留のために告発を使用します。これらのネットワークは、利用可能な量子ゲートの限られたセットでも実装できます。

2. Second-generation quantum networks improve upon the first generation with QEC codes for error tolerance (but not loss tolerance). At first, QEC will be applied to entanglement distillation only, which requires unidirectional classical signalling. Later, QEC codes will be used to create logical Bell pairs that no longer require any classical signalling for the purposes of error tolerance. Heralding is still used to compensate for transmission losses.

2. 第2世代の量子ネットワークは、エラートレランスのためにQECコードを使用して第1世代を改善します(ただし、損失トレランスではありません)。最初は、QECは絡み合いのみに適用され、一方向の古典的なシグナル伝達が必要です。その後、QECコードを使用して、エラー許容度の目的で古典的なシグナル伝達を必要としなくなる論理ベルペアを作成します。Heraldingは、送信の損失を補うためにまだ使用されています。

3. Third-generation quantum networks directly transmit QEC-encoded qubits to adjacent nodes, as discussed in Section 4.1.4. Elementary link Bell pairs can now be created without heralding or any other classical signalling. Furthermore, this also enables direct transmission architectures in which qubits are forwarded end to end like classical packets rather than relying on Bell pairs and entanglement swapping.

3. 第3世代の量子ネットワークは、セクション4.1.4で説明したように、QECエンコードされたキビットを隣接するノードに直接送信します。初等リンクのベルペアは、ヘルディングやその他の古典的なシグナリングなしで作成できるようになりました。さらに、これにより、ベルペアやエンタングルメントスワッピングに依存するのではなく、Qubitがクラシックパケットのように端から端まで転送される直接送信アーキテクチャも可能になります。

Despite the fact that there are important distinctions in how errors will be managed in the different generations, it is unlikely that all quantum networks will consistently use the same method. This is due to different hardware requirements of the different generations and the practical reality of network upgrades. Therefore, it is unavoidable that eventually boundaries between different error management schemes start forming. This will affect the content and semantics of messages that must cross those boundaries -- for both connection setup and real-time operation [Nagayama16].

異なる世代でエラーがどのように管理されるかに重要な区別があるという事実にもかかわらず、すべての量子ネットワークが一貫して同じ方法を使用することはまずありません。これは、さまざまな世代のさまざまなハードウェア要件と、ネットワークのアップグレードの実際的な現実によるものです。したがって、最終的に異なるエラー管理スキーム間の境界が形成されることは避けられません。これは、接続のセットアップとリアルタイム操作の両方について、それらの境界を越えなければならないメッセージのコンテンツとセマンティクスに影響します[Nagayama16]。

4.4.4. Delivery
4.4.4. 配達

Eventually, the Bell pairs must be delivered to an application (or higher-layer protocol) at the two end nodes. A detailed list of such requirements is beyond the scope of this document. At minimum, the end nodes require information to map a particular Bell pair to the qubit in their local memory that is part of this entangled pair.

最終的に、ベルペアは、2つの端ノードのアプリケーション(または高層プロトコル)に配信する必要があります。このような要件の詳細なリストは、このドキュメントの範囲を超えています。少なくとも、エンドノードでは、特定のベルペアをこの絡み合ったペアの一部であるローカルメモリのqubitにマッピングするための情報が必要です。

5. Architecture of a Quantum Internet
5. 量子インターネットのアーキテクチャ

It is evident from the previous sections that the fundamental service provided by a quantum network significantly differs from that of a classical network. Therefore, it is not surprising that the architecture of a quantum internet will itself be very different from that of the classical Internet.

以前のセクションから、量子ネットワークが提供する基本的なサービスは、古典的なネットワークの基本的なサービスとは大きく異なることが明らかです。したがって、量子インターネットのアーキテクチャ自体が古典的なインターネットのアーキテクチャ自体とは大きく異なることは驚くことではありません。

5.1. Challenges
5.1. 課題

This subsection covers the major fundamental challenges involved in building quantum networks. Here, we only describe the fundamental differences. Technological limitations are described in Section 5.4.

このサブセクションは、量子ネットワークの構築に伴う主要な基本的な課題をカバーしています。ここでは、基本的な違いのみを説明します。技術の制限については、セクション5.4で説明します。

1. Bell pairs are not equivalent to packets that carry payload.

1. ベルペアは、ペイロードを運ぶパケットと同等ではありません。

In most classical networks, including Ethernet, Internet Protocol (IP), and Multi-Protocol Label Switching (MPLS) networks, user data is grouped into packets. In addition to the user data, each packet also contains a series of headers that contain the control information that lets routers and switches forward it towards its destination. Packets are the fundamental unit in a classical network.

イーサネット、インターネットプロトコル(IP)、マルチプロトコルラベルスイッチング(MPLS)ネットワークなどのほとんどのクラシックネットワークでは、ユーザーデータがパケットにグループ化されます。ユーザーデータに加えて、各パケットには、ルーターが宛先に向かって転送される制御情報を含む一連のヘッダーも含まれています。パケットは、古典的なネットワークの基本ユニットです。

In a quantum network, the entangled pairs of qubits are the basic unit of networking. These qubits themselves do not carry any headers. Therefore, quantum networks will have to send all control information via separate classical channels, which the repeaters will have to correlate with the qubits stored in their memory. Furthermore, unlike a classical packet, which is located at a single node, a Bell pair consists of two qubits distributed across two nodes. This has a fundamental impact on how quantum networks will be managed and how protocols need to be designed. To make long-distance Bell pairs, the nodes may have to keep their qubits in their quantum memories and wait until control information is exchanged before proceeding with the next operation. This signalling will result in additional latency, which will depend on the distance between the nodes holding the two ends of the Bell pair. Error management, such as entanglement distillation, is a typical example of such control information exchange [Nagayama21] (see also Section 4.4.3.3).

量子ネットワークでは、キュービットの絡み合ったペアがネットワークの基本単位です。これらのキッツ自体はヘッダーを持ちません。したがって、Quantum Networksは、すべての制御情報を個別のクラシックチャネルを介して送信する必要があります。これは、リピーターがメモリに保存されているQubitsと相関する必要があります。さらに、単一のノードにある古典的なパケットとは異なり、ベルペアは2つのノードに分布した2つのキュービットで構成されています。これは、量子ネットワークの管理方法と、プロトコルをどのように設計する必要があるかに根本的な影響を与えます。長距離ベルのペアを作成するには、ノードは量子記憶にキュビットを維持し、次の操作に進む前に制御情報が交換されるまで待つ必要がある場合があります。このシグナル伝達は追加のレイテンシをもたらし、これはベルペアの両端を保持するノード間の距離に依存します。エンタングルメント蒸留などのエラー管理は、そのような制御情報交換の典型的な例です[Nagayama21](セクション4.4.3.3も参照)。

2. "Store and forward" and "store and swap" quantum networks require different state management techniques.

2. 「ストアアンドフォワード」と「保存およびスワップ」量子ネットワークには、さまざまな州の管理手法が必要です。

As described in Section 4.4.1, quantum links provide Bell pairs that are undirected network resources, in contrast to directed frames of classical networks. This phenomenological distinction leads to architectural differences between quantum networks and classical networks. Quantum networks combine multiple elementary link Bell pairs together to create one end-to-end Bell pair, whereas classical networks deliver messages from one end to the other end hop by hop.

セクション4.4.1で説明されているように、Quantum Linksは、古典的なネットワークの方向性フレームとは対照的に、無向ネットワークリソースのベルペアを提供します。この現象学的な区別は、量子ネットワークと古典的なネットワークの間の建築的な違いにつながります。Quantum Networksは、複数の小学校リンクベルペアを組み合わせて1つのエンドツーエンドベルペアを作成しますが、クラシックネットワークは、一方の端からもう一方のエンドホップまでのメッセージをホップごとに送信します。

Classical networks receive data on one interface, store it in local buffers, and then forward the data to another appropriate interface. Quantum networks store Bell pairs and then execute entanglement swapping instead of forwarding in the data plane. Such quantum networks are "store and swap" networks. In "store and swap" networks, we do not need to care about the order in which the Bell pairs were generated, since they are undirected. However, whilst the ordering does not matter, it is very important that the right entangled pairs get swapped, and that the intermediate measurement outcomes (see Section 4.4.2) are signalled to and correlated with the correct qubits at the other nodes. Otherwise, the final end-to-end entangled pair will not be created between the expected end-points or will be in a different quantum state than expected. For example, rather than Alice receiving a qubit that is entangled with Bob's qubit, her qubit is entangled with Charlie's qubit. This distinction makes control algorithms and optimisation of quantum networks different from those for classical networks, in the sense that swapping is stateful in contrast to stateless packet-by-packet forwarding. Note that, as described in Section 4.4.3.3, third-generation quantum networks will be able to support a "store and forward" architecture in addition to "store and swap".

クラシックネットワークは、1つのインターフェイス上のデータを受信し、ローカルバッファーに保存してから、データを別の適切なインターフェイスに転送します。Quantum Networksはベルペアを保存し、データプレーンで転送する代わりにエンタングルメントスワッピングを実行します。このような量子ネットワークは、「ストアとスワップ」ネットワークです。「ストアとスワップ」ネットワークでは、ベルペアが生成された順序が発生したため、気分が良くなるため、気にする必要はありません。ただし、順序は問題ではありませんが、右に絡み合ったペアが交換され、中間測定の結果(セクション4.4.2を参照)が他のノードの正しいキュービットに合図され、相関することが非常に重要です。それ以外の場合、最終的なエンドツーエンドのエンタングルドペアは、予想されるエンドポイント間に作成されないか、予想とは異なる量子状態になります。たとえば、アリスがボブのqubitに巻き込まれたキュービットを受け取るのではなく、彼女のqubitはチャーリーのqubitに絡み合っています。この区別により、スワッピングはパケットごとのフォワーディングとは対照的に、スワッピングがステートフルであるという意味で、クラシックネットワークのコントムネットワークとは異なるコントロールアルゴリズムと最適化が行われます。セクション4.4.3.3で説明したように、第3世代の量子ネットワークは、「ストアとスワップ」に加えて「ストアとフォワード」アーキテクチャをサポートできることに注意してください。

3. An entangled pair is only useful if the locations of both qubits are known.

3. 絡み合ったペアは、両方のキュービットの位置がわかっている場合にのみ便利です。

A classical network packet logically exists only at one location at any point in time. If a packet is modified in some way, whether headers or payload, this information does not need to be conveyed to anybody else in the network. The packet can be simply forwarded as before.

クラシックネットワークパケットは、任意の時点で1つの場所に論理的に存在します。ヘッダーであろうとペイロードであろうと、パケットが何らかの方法で変更されている場合、この情報をネットワーク内の他の人に伝える必要はありません。パケットは、以前と同じように単純に転送できます。

In contrast, entanglement is a phenomenon in which two or more qubits exist in a physically distributed state. Operations on one of the qubits change the mutual state of the pair. Since the owner of a particular qubit cannot just read out its state, it must coordinate all its actions with the owner of the pair's other qubit. Therefore, the owner of any qubit that is part of an entangled pair must know the location of its counterpart. Location, in this context, need not be the explicit spatial location. A relevant pair identifier, a means of communication between the pair owners, and an association between the pair ID and the individual qubits will be sufficient.

対照的に、エンタングルメントは、物理的に分布した状態に2つ以上のキュービットが存在する現象です。Qubitsの1つでの操作は、ペアの相互の状態を変更します。特定のQubitの所有者は、その状態を読み出すだけではないため、ペアの他のQubitの所有者とすべての行動を調整する必要があります。したがって、絡み合ったペアの一部である任意のqubitの所有者は、そのカウンターパートの位置を知っている必要があります。このコンテキストでは、明示的な空間位置である必要はありません。関連するペア識別子、ペアの所有者間の通信手段、およびペアIDと個々のキュービットとの関連で十分です。

4. Generating entanglement requires temporary state.

4. エンタングルメントを生成するには、一時的な状態が必要です。

Packet forwarding in a classical network is largely a stateless operation. When a packet is received, the router does a lookup in its forwarding table and sends the packet out of the appropriate output. There is no need to keep any memory of the packet any more.

古典的なネットワークでのパケット転送は、主に無国籍操作です。パケットが受信されると、ルーターは転送テーブルを検索し、適切な出力からパケットを送信します。パケットのメモリをこれ以上保持する必要はありません。

A quantum node must be able to make decisions about qubits that it receives and is holding in its memory. Since qubits do not carry headers, the receipt of an entangled pair conveys no control information based on which the repeater can make a decision. The relevant control information will arrive separately over a classical channel. This implies that a repeater must store temporary state, as the control information and the qubit it pertains to will, in general, not arrive at the same time.

量子ノードは、メモリを受け取って保持しているキュービットについて決定を下すことができなければなりません。Qubitsはヘッダーを携帯していないため、絡み合ったペアの受領は、リピーターが決定を下すことができるかどうかに基づいて制御情報を伝えません。関連する制御情報は、古典的なチャネルを介して個別に届きます。これは、コントロール情報とそれが関係するqubitが一般的に同時に到達しないように、リピーターが一時的な状態を保存する必要があることを意味します。

5.2. Classical Communication
5.2. 古典的なコミュニケーション

In this document, we have already covered two different roles that classical communication must perform the following:

このドキュメントでは、古典的なコミュニケーションが次のように実行する必要があるという2つの異なる役割を既にカバーしています。

* Communicate classical bits of information as part of distributed protocols such as entanglement swapping and teleportation.

* エンタングルメントスワッピングやテレポーテーションなどの分散プロトコルの一部として、古典的な情報を伝えます。

* Communicate control information within a network, including background protocols such as routing, as well as signalling protocols to set up end-to-end entanglement generation.

* ルーティングなどのバックグラウンドプロトコルや、エンドツーエンドのエンタングルメント生成をセットアップするためのシグナリングプロトコルを含む、ネットワーク内の制御情報を通知します。

Classical communication is a crucial building block of any quantum network. All nodes in a quantum network are assumed to have classical connectivity with each other (within typical administrative domain limits). Therefore, quantum nodes will need to manage two data planes in parallel: a classical data plane and a quantum data plane. Additionally, a node must be able to correlate information between the two planes so that the control information received on a classical channel can be applied to the qubits managed by the quantum data plane.

古典的なコミュニケーションは、あらゆる量子ネットワークの重要な構成要素です。量子ネットワーク内のすべてのノードは、互いに古典的な接続性があると想定されています(一般的な管理ドメイン制限内)。したがって、量子ノードは、古典的なデータプレーンと量子データプレーンの2つのデータプレーンを並行して管理する必要があります。さらに、ノードは、2つの平面間の情報を相関させることができ、古典的なチャネルで受信された制御情報を量子データプレーンによって管理されるキュービットに適用できるようにする必要があります。

5.3. Abstract Model of the Network
5.3. ネットワークの抽象モデル
5.3.1. The Control Plane and the Data Plane
5.3.1. コントロールプレーンとデータプレーン

Control plane protocols for quantum networks will have many responsibilities similar to their classical counterparts, namely discovering the network topology, resource management, populating data plane tables, etc. Most of these protocols do not require the manipulation of quantum data and can operate simply by exchanging classical messages only. There may also be some control plane functionality that does require the handling of quantum data [QI-Scenarios]. As it is not clear if there is much benefit in defining a separate quantum control plane given the significant overlap in responsibilities with its classical counterpart, the question of whether there should be a separate quantum control plane is beyond the scope of this document.

量子ネットワークのコントロールプレーンプロトコルには、古典的なカウンターパート、つまりネットワークトポロジ、リソース管理、データプレーンテーブルの居住などの発見と同様の多くの責任があります。これらのプロトコルのほとんどは、量子データの操作を必要とせず、交換するだけで動作することができます。古典的なメッセージのみ。また、量子データの処理を必要とするコントロールプレーン機能がある場合があります[Qi-Scenarios]。古典的なカウンターパートとの責任の有意な重複を考えると、別の量子制御プレーンを定義することに大きな利点があるかどうかは明らかではないため、別の量子制御プレーンがあるべきかどうかの問題は、このドキュメントの範囲を超えています。

However, the data plane separation is much more distinct, and there will be two data planes: a classical data plane and a quantum data plane. The classical data plane processes and forwards classical packets. The quantum data plane processes and swaps entangled pairs. Third-generation quantum networks may also forward qubits in addition to swapping Bell pairs.

ただし、データプレーンの分離ははるかに明確であり、2つのデータプレーンがあります。クラシックデータプレーンと量子データプレーンです。古典的なデータプレーンは、クラシックパケットを処理および転送します。量子データプレーンのプロセスとスワップが絡み合ったペア。第3世代の量子ネットワークは、ベルペアを交換することに加えて、Qubitsを転送することもできます。

In addition to control plane messages, there will also be control information messages that operate at the granularity of individual entangled pairs, such as heralding messages used for elementary link generation (Section 4.4.1). In terms of functionality, these messages are closer to classical packet headers than control plane messages, and thus we consider them to be part of the quantum data plane. Therefore, a quantum data plane also includes the exchange of classical control information at the granularity of individual qubits and entangled pairs.

コントロールプレーンのメッセージに加えて、基本リンクの生成に使用される告知メッセージなど、個々の絡み合ったペアの粒度で動作するコントロール情報メッセージもあります(セクション4.4.1)。機能の観点から、これらのメッセージはコントロールプレーンメッセージよりも古典的なパケットヘッダーに近いため、量子データプレーンの一部であると考えています。したがって、量子データプレーンには、個々のキュービットと絡み合ったペアの粒度での古典的な制御情報の交換も含まれます。

5.3.2. Elements of a Quantum Network
5.3.2. 量子ネットワークの要素

We have identified quantum repeaters as the core building block of a quantum network. However, a quantum repeater will have to do more than just entanglement swapping in a functional quantum network. Its key responsibilities will include the following:

量子リピーターを量子ネットワークのコアビルディングブロックとして特定しました。ただし、Quantum Repeaterは、機能的な量子ネットワークでの単なるエンタングルメントスワッピング以上のことを行う必要があります。その主な責任には、以下が含まれます。

1. Creating link-local entanglement between neighbouring nodes.

1. 隣接するノード間のリンクローカルエンタングルメントを作成します。

2. Extending entanglement from link-local pairs to long-range pairs through entanglement swapping.

2. エンタングルメントスワッピングを通じて、リンクローカルペアから長距離ペアへの絡み合いを拡大します。

3. Performing distillation to manage the fidelity of the produced pairs.

3. 生成されたペアの忠実度を管理するために蒸留を実行します。

4. Participating in the management of the network (routing, etc.).

4. ネットワークの管理(ルーティングなど)に参加します。

Not all quantum repeaters in the network will be the same; here, we break them down further:

ネットワーク内のすべての量子リピーターが同じではありません。ここで、私たちはそれらをさらに分解します:

Quantum routers (controllable quantum nodes):

量子ルーター(制御可能な量子ノード):

A quantum router is a quantum repeater with a control plane that participates in the management of the network and will make decisions about which qubits to swap to generate the requested end-to-end pairs.

Quantum Routerは、ネットワークの管理に参加するコントロールプレーンを備えた量子リピーターであり、スワップするQubitsを決定して要求されたエンドツーエンドペアを生成します。

Automated quantum nodes:

自動Quantumノード:

An automated quantum node is a data-plane-only quantum repeater that does not participate in the network control plane. Since the no-cloning theorem precludes the use of amplification, long-range links will be established by chaining multiple such automated nodes together.

自動Quantumノードは、ネットワーク制御プレーンに参加しないデータプレーンのみの量子リピーターです。ノークローニング定理は増幅の使用を排除するため、複数のそのような自動化されたノードを一緒にチェーンすることにより、長距離リンクが確立されます。

End nodes:

エンドノード:

End nodes in a quantum network must be able to receive and handle an entangled pair, but they do not need to be able to perform an entanglement swap (and thus are not necessarily quantum repeaters). End nodes are also not required to have any quantum memory, as certain quantum applications can be realised by having the end node measure its qubit as soon as it is received.

量子ネットワークのエンドノードは、絡み合ったペアを受信して処理できる必要がありますが、エンタングルメントスワップを実行できる必要はありません(したがって、必ずしも量子リピーターではありません)。また、特定の量子アプリケーションを受信するとすぐに、エンドノードを測定することで特定の量子アプリケーションを実現できるため、エンドノードは量子メモリを持つ必要はありません。

Non-quantum nodes:

非Quantumノード:

Not all nodes in a quantum network need to have a quantum data plane. A non-quantum node is any device that can handle classical network traffic.

量子ネットワーク内のすべてのノードが量子データプレーンを持つ必要があるわけではありません。非質量ノードは、古典的なネットワークトラフィックを処理できるデバイスです。

Additionally, we need to identify two kinds of links that will be used in a quantum network:

さらに、量子ネットワークで使用される2種類のリンクを特定する必要があります。

Quantum links:

量子リンク:

A quantum link is a link that can be used to generate an entangled pair between two directly connected quantum repeaters. This may include additional mid-point elements as described in Section 4.4.1. It may also include a dedicated classical channel that is to be used solely for the purpose of coordinating the entanglement generation on this quantum link.

量子リンクは、2つの直接接続された量子リピーター間で絡み合ったペアを生成するために使用できるリンクです。これには、セクション4.4.1で説明されている追加の中間点要素が含まれる場合があります。また、この量子リンクでエンタングルメント生成を調整する目的でのみ使用するために使用される専用の古典的なチャネルも含まれる場合があります。

Classical links:

古典的なリンク:

A classical link is a link between any node in the network that is capable of carrying classical network traffic.

古典的なリンクは、古典的なネットワークトラフィックを運ぶことができるネットワーク内の任意のノード間のリンクです。

Note that passive elements, such as optical switches, do not destroy the quantum state. Therefore, it is possible to connect multiple quantum nodes with each other over an optical network and perform optical switching rather than routing via entanglement swapping at quantum routers. This does require coordination with the elementary link entanglement generation process, and it still requires repeaters to overcome the short-distance limitations. However, this is a potentially feasible architecture for local area networks.

光スイッチなどの受動的要素は、量子状態を破壊しないことに注意してください。したがって、複数の量子ノードを光学ネットワーク上で互いに接続し、量子ルーターでのエンタングルメントスワッピングを介してルーティングするのではなく、光スイッチングを実行することができます。これには、初等のリンクエンタングルメント生成プロセスとの調整が必要であり、短距離制限を克服するためにリピーターが必要です。ただし、これはローカルエリアネットワークにとって潜在的に実行可能なアーキテクチャです。

5.3.3. Putting It All Together
5.3.3. すべてを一緒に入れて

A two-hop path in a generic quantum network can be represented as follows:

一般的な量子ネットワークの2ホップパスは、次のように表現できます。

   +-----+                                        +-----+
   | App |- - - - - - - - - -CC- - - - - - - - - -| App |
   +-----+                +------+                +-----+
   | EN  |------ CL ------|  QR  |------ CL ------| EN  |
   |     |------ QL ------|      |------ QL ------|     |
   +-----+                +------+                +-----+

   App - user-level application
   EN - End Node
   QL - Quantum Link
   CL - Classical Link
   CC - Classical Channel (traverses one or more CLs)
   QR - Quantum Repeater
        

An application (App) running on two End Nodes (ENs) attached to a network will at some point need the network to generate entangled pairs for its use. This may require negotiation between the ENs (possibly ahead of time), because they must both open a communication end-point that the network can use to identify the two ends of the connection. The two ENs use a Classical Channel (CC) available in the network to achieve this goal.

ネットワークに接続された2つのエンドノード(ENS)で実行されるアプリケーション(APP)は、ある時点で、使用するために絡み合ったペアを生成するためにネットワークを必要とします。これには、ENS間の交渉が必要になる場合があります(おそらく事前に)。これらは、ネットワークが接続の両端を識別するために使用できる通信エンドポイントを開く必要があるためです。2つのENSは、ネットワークで利用可能なクラシックチャネル(CC)を使用して、この目標を達成します。

When the network receives a request to generate end-to-end entangled pairs, it uses the Classical Links (CLs) to coordinate and claim the resources necessary to fulfill this request. This may be some combination of prior control information (e.g., routing tables) and signalling protocols, but the details of how this is achieved are an active research question. A thought experiment on what this might look like be can be found in Section 7.

ネットワークがエンドツーエンドのエンタングルドペアを生成するリクエストを受信すると、クラシックリンク(CLS)を使用して、このリクエストを満たすために必要なリソースを調整および請求します。これは、以前の制御情報(例:ルーティングテーブル)とシグナリングプロトコルの組み合わせかもしれませんが、これがどのように達成されるかの詳細は積極的な研究の質問です。これがどのように見えるかについての思考実験は、セクション7で見つけることができます。

During or after the distribution of control information, the network performs the necessary quantum operations, such as generating entanglement over individual Quantum Links (QLs), performing entanglement swaps at Quantum Repeaters (QRs), and further signalling to transmit the swap outcomes and other control information. Since Bell pairs do not carry any user data, some of these operations can be performed before the request is received, in anticipation of the demand.

制御情報の配布中またはその後、ネットワークは、個々の量子リンク(QLS)を介したエンタングルメントの生成、量子リピーター(QRS)でエンタングルメントスワップを実行するなど、必要な量子操作を実行し、スワップアウトカムとその他のコントロールを送信するためのさらなるシグナル伝達など情報。ベルペアにはユーザーデータが含まれていないため、これらの操作の一部は、需要を見越して、リクエストを受信する前に実行できます。

Note that here, "signalling" is used in a very broad sense and covers many different types of messaging necessary for entanglement generation control. For example, heralded entanglement generation requires very precise timing synchronisation between the neighbouring nodes, and thus the triggering of entanglement generation and heralding may happen over its own, perhaps physically separate, CL, as was the case in the network stack demonstration described in [Pompili21.2]. Higher-level signalling with timing requirements that are less stringent (e.g., control plane signalling) may then happen over its own CL.

ここでは、「シグナリング」は非常に広範な意味で使用され、エンタングルメント生成制御に必要なさまざまなタイプのメッセージングをカバーしています。たとえば、告知されたエンタングルメントの生成には、隣接するノード間の非常に正確なタイミングの同期が必要であるため、絡み合いの生成と告発のトリガーは、[pompili21で説明されているネットワークスタックデモの場合のように、それ自体が、おそらく物理的に分離されたCLで起こる可能性があります。.2]。それほど厳しくないタイミング要件を備えた高レベルの信号(コントロールプレーンシグナル伝達など)は、独自のCLで発生する可能性があります。

The entangled pair is delivered to the application once it is ready, together with the relevant pair identifier. However, being ready does not necessarily mean that all link pairs and entanglement swaps are complete, as some applications can start executing on an incomplete pair. In this case, the remaining entanglement swaps will propagate the actions across the network to the other end, sometimes necessitating fixup operations at the EN.

絡み合ったペアは、関連するペア識別子とともに、準備ができたらアプリケーションに配信されます。ただし、一部のアプリケーションが不完全なペアで実行を開始できるため、準備ができていることは必ずしもすべてのリンクペアとエンタングルメントスワップが完全であることを意味するわけではありません。この場合、残りのエンタングルメントスワップは、ネットワークを介したアクションを反対側に伝播し、ENでの修正操作を必要とする場合があります。

5.4. Physical Constraints
5.4. 物理的な制約

The model above has effectively abstracted away the particulars of the hardware implementation. However, certain physical constraints need to be considered in order to build a practical network. Some of these are fundamental constraints, and no matter how much the technology improves, they will always need to be addressed. Others are artifacts of the early stages of a new technology. Here, we consider a highly abstract scenario and refer to [Wehner18] for pointers to the physics literature.

上記のモデルは、ハードウェアの実装の詳細を効果的に抽出しました。ただし、実用的なネットワークを構築するには、特定の物理的制約を考慮する必要があります。これらのいくつかは基本的な制約であり、テクノロジーがどれだけ改善しても、常に対処する必要があります。その他は、新しいテクノロジーの初期段階のアーティファクトです。ここでは、非常に抽象的なシナリオを検討し、物理学の文献へのポインターについては[Wehner18]を参照します。

5.4.1. Memory Lifetimes
5.4.1. メモリの寿命

In addition to discrete operations being imperfect, storing a qubit in memory is also highly non-trivial. The main difficulty in achieving persistent storage is that it is extremely challenging to isolate a quantum system from the environment. The environment introduces an uncontrollable source of noise into the system, which affects the fidelity of the state. This process is known as decoherence. Eventually, the state has to be discarded once its fidelity degrades too much.

離散操作が不完全であることに加えて、メモリにキュービットを保存することも非常に重要ではありません。永続的なストレージを達成することの主な難しさは、環境から量子システムを分離することが非常に困難であることです。この環境は、システムに制御できないノイズの原因を導入します。これは、状態の忠実度に影響します。このプロセスは、デコヒーレンスとして知られています。最終的には、忠実度があまりにも多く劣化したら、状態を破棄する必要があります。

The memory lifetime depends on the particular physical setup, but the highest achievable values in quantum network hardware are, as of 2020, on the order of seconds [Abobeih18], although a lifetime of a minute has also been demonstrated for qubits not connected to a quantum network [Bradley19]. These values have increased tremendously over the lifetime of the different technologies and are bound to keep increasing. However, if quantum networks are to be realised in the near future, they need to be able to handle short memory lifetimes -- for example, by reducing latency on critical paths.

メモリの寿命は特定の物理セットアップに依存しますが、量子ネットワークハードウェアで最高の達成可能な値は、2020年の時点で、秒程度です[abobeih18]ですが、寿命の寿命もaに接続されていない1分間も実証されています。量子ネットワーク[Bradley19]。これらの値は、さまざまなテクノロジーの生涯にわたって大幅に増加しており、増加を続けることになります。ただし、近い将来に量子ネットワークを実現する場合、たとえば重要なパスでの遅延を減らすことにより、短いメモリの寿命を処理できる必要があります。

5.4.2. Rates
5.4.2. 料金

Entanglement generation on a link between two connected nodes is not a very efficient process, and it requires many attempts to succeed [Hensen15] [Dahlberg19]. For example, the highest achievable rates of success between nitrogen-vacancy center nodes -- which, in addition to entanglement generation are also capable of storing and processing the resulting qubits -- are on the order of 10 Hz. Combined with short memory lifetimes, this leads to very tight timing windows to build up network-wide connectivity.

2つの接続されたノード間のリンク上のエンタングルメント生成は、非常に効率的なプロセスではなく、成功するために多くの試みが必要です[Hensen15] [Dahlberg19]。たとえば、窒素空因性センターノード間の最高の達成可能な成功率(エンタングルメントの生成も得られるキュービットを保存および処理することができます)は10 Hzのオーダーです。短いメモリの寿命と組み合わせることで、これにより、非常にタイトなタイミングウィンドウがあり、ネットワーク全体の接続を構築します。

Other platforms have shown higher entanglement rates, but this usually comes at the cost of other hardware capabilities, such as no quantum memory and/or limited processing capabilities [Wei22]. Nevertheless, the current rates are not sufficient for practical applications beyond simple experimental proofs of concept. However, they are expected to improve over time as quantum network technology evolves [Wei22].

他のプラットフォームはより高いエンタングルメントレートを示していますが、これは通常、量子メモリや制限された処理機能など、他のハードウェア機能のコストで提供されます[WEI22]。それにもかかわらず、現在のレートは、単純な実験的証明を超えた実用的なアプリケーションには十分ではありません。ただし、量子ネットワークテクノロジーが進化するにつれて、時間の経過とともに改善することが期待されています[WEI22]。

5.4.3. Communication Qubits
5.4.3. コミュニケーションのキュービット

Most physical architectures capable of storing qubits are only able to generate entanglement using only a subset of available qubits called communication qubits [Dahlberg19]. Once a Bell pair has been generated using a communication qubit, its state can be transferred into memory. This may impose additional limitations on the network. In particular, if a given node has only one communication qubit, it cannot simultaneously generate Bell pairs over two links. It must generate entanglement over the links one at a time.

キュービットを保存できるほとんどの物理アーキテクチャは、通信キュービットと呼ばれる利用可能なキュービットのサブセットのみを使用して、エンタングルメントを生成することのみができます[dahlberg19]。通信qubitを使用してベルペアが生成されると、その状態をメモリに転送できます。これにより、ネットワークに追加の制限が課される場合があります。特に、特定のノードに1つの通信qubitのみがある場合、2つのリンクでベルペアを同時に生成することはできません。リンクの上に1つずつエンタングルメントを生成する必要があります。

5.4.4. Homogeneity
5.4.4. 均一性

At present, all existing quantum network implementations are homogeneous, and they do not interface with each other. In general, it is very challenging to combine different quantum information processing technologies.

現在、既存の量子ネットワークの実装はすべて均一であり、互いにインターフェイスしません。一般に、さまざまな量子情報処理技術を組み合わせることは非常に困難です。

There are many different physical hardware platforms for implementing quantum networking hardware. The different technologies differ in how they store and manipulate qubits in memory and how they generate entanglement across a link with their neighbours. For example, hardware based on optical elements and atomic ensembles [Sangouard11] is very efficient at generating entanglement at high rates but provides limited processing capabilities once the entanglement is generated. On the other hand, nitrogen-vacancy-based platforms [Hensen15] or trapped ion platforms [Moehring07] offer a much greater degree of control over the qubits but have a harder time generating entanglement at high rates.

量子ネットワーキングハードウェアを実装するためのさまざまな物理ハードウェアプラットフォームがあります。さまざまなテクノロジーは、Qubitsをメモリに保存および操作する方法と、隣人とのリンク全体に絡み合いを生成する方法が異なります。たとえば、光学要素とアトミックアンサンブル[Sangouard11]に基づくハードウェアは、エンタングルメントを高いレートで生成するのに非常に効率的ですが、エンタングルメントが生成されると、制限された処理機能を提供します。一方、窒素と視力ベースのプラットフォーム[Hensen15]または閉じ込められたイオンプラットフォーム[Moehring07]は、Qubitsをはるかに高度に制御できますが、高速でエンタングルメントを生成するのに苦労しています。

In order to overcome the weaknesses of the different platforms, coupling the different technologies will help to build fully functional networks. For example, end nodes may be implemented using technology with good qubit processing capabilities to enable complex applications, but automated quantum nodes that serve only to "repeat" along a linear chain, where the processing logic is much simpler, can be implemented with technologies that sacrifice processing capabilities for higher entanglement rates at long distances [Askarani21].

さまざまなプラットフォームの弱点を克服するために、さまざまなテクノロジーを結合することで、完全に機能するネットワークの構築に役立ちます。たとえば、エンドノードは、優れたキュービット処理機能を備えたテクノロジーを使用して複雑なアプリケーションを有効にすることができますが、処理ロジックがはるかにシンプルである線形チェーンに沿って「繰り返す」だけの自動化された量子ノードは、テクノロジーで実装できます。長距離でのより高いエンタングルメント速度の処理能力を犠牲にします[Askarani21]。

This point is further exacerbated by the fact that quantum computers (i.e., end nodes in a quantum network) are often based on different hardware platforms than quantum repeaters, thus requiring a coupling (transduction) between the two. This is especially true for quantum computers based on superconducting technology, which are challenging to connect to optical networks. However, even trapped ion quantum computers, which make up a platform that has shown promise for quantum networking, will still need to connect to other platforms that are better at creating entanglement at high rates over long distances (hundreds of kilometres).

この点は、量子コンピューター(つまり、量子ネットワーク内のエンドノード)が量子リピーターとは異なるハードウェアプラットフォームに基づいているため、2つの間に結合(変換)を必要とするという事実によってさらに悪化しています。これは、光学ネットワークに接続するのが難しい超伝導技術に基づいた量子コンピューターに特に当てはまります。ただし、量子ネットワーキングの可能性を示しているプラットフォームを構成するトラップされたイオン量子コンピューターでさえ、長距離(数百キロメートル)にわたって高いレートでエンタングルメントを作成するのに優れた他のプラットフォームに接続する必要があります。

6. Architectural Principles
6. 建築原則

Given that the most practical way of realising quantum network connectivity is using Bell pair and entanglement-swapping repeater technology, what sort of principles should guide us in assembling such networks such that they are functional, robust, efficient, and, most importantly, will work? Furthermore, how do we design networks so that they work under the constraints imposed by the hardware available today but do not impose unnecessary burdens on future technology?

量子ネットワーク接続を実現する最も実用的な方法は、Bellペアとエンタングルメントスワッピングリピーターテクノロジーを使用することであることを考えると、機能的で、堅牢で、効率的で、最も重要なことは機能するようなネットワークを組み立てる際にどのような原則を導くべきですか。?さらに、ネットワークは、今日利用可能なハードウェアによって課された制約の下で動作するようにネットワークをどのように設計しますか?

As quantum networking is a completely new technology that is likely to see many iterations over its lifetime, this document must not serve as a definitive set of rules but merely as a general set of recommended guidelines for the first generations of quantum networks based on principles and observations made by the community. The benefit of having a community-built document at this early stage is that expertise in both quantum information and network architecture is needed in order to successfully build a quantum internet.

量子ネットワーキングは、その生涯にわたって多くの反復を見る可能性が高い完全に新しいテクノロジーであるため、このドキュメントは決定的なルールのセットとしてではなく、単に原則と原則に基づいた量子ネットワークの最初の世代の一般的な推奨ガイドラインとして役立つものであってはなりません。コミュニティが行った観察。この初期段階でコミュニティで構築されたドキュメントを作成することの利点は、量子情報とネットワークアーキテクチャの両方の専門知識が量子インターネットを正常に構築するために必要であることです。

6.1. Goals of a Quantum Internet
6.1. 量子インターネットの目標

When outlining any set of principles, we must ask ourselves what goals we want to achieve, as inevitably trade-offs must be made. So, what sort of goals should drive a quantum network architecture? The following list has been inspired by the history of computer networking, and thus it is inevitably very similar to one that could be produced for the classical Internet [Clark88]. However, whilst the goals may be similar, the challenges involved are often fundamentally different. The list will also most likely evolve with time and the needs of its users.

一連の原則を概説するときは、必然的にトレードオフを行う必要があるため、達成したい目標を自問する必要があります。それでは、どのような目標が量子ネットワークアーキテクチャを推進すべきでしょうか?次のリストは、コンピューターネットワーキングの歴史に触発されているため、古典的なインターネット[Clark88]で生産できるものと必然的に非常に似ています。ただし、目標は似ているかもしれませんが、関係する課題はしばしば根本的に異なります。また、このリストは、ユーザーの時間とニーズとともに進化する可能性が最も高くなります。

1. Support distributed quantum applications.

1. 分散型量子アプリケーションをサポートします。

This goal seems trivially obvious, but it makes a subtle, but important, point that highlights a key difference between quantum and classical networks. Ultimately, quantum data transmission is not the goal of a quantum network -- it is only one possible component of quantum application protocols that are more advanced [Wehner18]. Whilst transmission certainly could be used as a building block for all quantum applications, it is not the most basic one possible. For example, entanglement-based QKD, the most well-known quantum application protocol, only relies on the stronger-than-classical correlations and inherent secrecy of entangled Bell pairs and does not have to transmit arbitrary quantum states [Ekert91].

この目標は簡単には明白に見えますが、量子ネットワークと古典的なネットワークの重要な違いを強調する微妙であるが重要なポイントを作ります。最終的に、量子データ送信は量子ネットワークの目標ではありません。これは、より高度な量子アプリケーションプロトコルの可能なコンポーネントの1つにすぎません[Wehner18]。確かにすべての量子アプリケーションのビルディングブロックとして伝送を使用できますが、可能な限り最も基本的なアプリケーションではありません。たとえば、最もよく知られている量子アプリケーションプロトコルであるEntanglementベースのQKDは、古典的な相関関係と絡み合ったベルペアの固有の秘密にのみ依存しており、任意の量子状態を送信する必要はありません[EKERT91]。

The primary purpose of a quantum internet is to support distributed quantum application protocols, and it is of utmost importance that they can run well and efficiently. Thus, it is important to develop performance metrics meaningful to applications to drive the development of quantum network protocols. For example, the Bell pair generation rate is meaningless if one does not also consider their fidelity. It is generally much easier to generate pairs of lower fidelity, but quantum applications may have to make multiple reattempts or even abort if the fidelity is too low. A review of the requirements for different known quantum applications can be found in [Wehner18], and an overview of use cases can be found in [QI-Scenarios].

量子インターネットの主な目的は、分散型の量子アプリケーションプロトコルをサポートすることであり、それらがうまく実行できることが最も重要です。したがって、量子ネットワークプロトコルの開発を促進するために、アプリケーションにとって意味のあるパフォーマンスメトリックを開発することが重要です。たとえば、ベルペアの生成率は、忠実度も考慮しない場合、意味がありません。一般に、より低い忠実度のペアを生成するのははるかに簡単ですが、忠実度が低すぎる場合、量子アプリケーションは複数の反応または中止する必要がある場合があります。さまざまな既知の量子アプリケーションの要件のレビューは[Wehner18]に記載されており、ユースケースの概要は[Qi-scenarios]に記載されています。

2. Support tomorrow's distributed quantum applications.

2. 明日の分散型量子アプリケーションをサポートします。

The only principle of the Internet that should survive indefinitely is the principle of constant change [RFC1958]. Technical change is continuous, and the size and capabilities of the quantum internet will change by orders of magnitude. Therefore, it is an explicit goal that a quantum internet architecture be able to embrace this change. We have the benefit of having been witness to the evolution of the classical Internet over several decades, and we have seen what worked and what did not. It is vital for a quantum internet to avoid the need for flag days (e.g., NCP to TCP/IP) or upgrades that take decades to roll out (e.g., IPv4 to IPv6).

無期限に生き残るべきインターネットの唯一の原則は、絶え間ない変化の原則です[RFC1958]。技術的な変化は継続的であり、量子インターネットのサイズと機能は桁違いに変化します。したがって、量子インターネットアーキテクチャがこの変化を受け入れることができることは明確な目標です。私たちは数十年にわたって古典的なインターネットの進化を目撃したという利点があり、何が機能し、何が機能しなかったかを見てきました。量子インターネットがフラグの日(たとえば、NCPからTCP/IPなど)の必要性を回避したり、数十年かかるアップグレード(例:IPv4からIPv6など)を回避することが重要です。

Therefore, it is important that any proposed architecture for general-purpose quantum repeater networks can integrate new devices and solutions as they become available. The architecture should not be constrained due to considerations for early-stage hardware and applications. For example, it is already possible to run QKD efficiently on metropolitan-scale networks, and such networks are already commercially available. However, they are not based on quantum repeaters and thus will not be able to easily transition to applications that are more sophisticated.

したがって、汎用量子リピーターネットワークのための提案されたアーキテクチャが、利用可能になったときに新しいデバイスとソリューションを統合できることが重要です。アーキテクチャは、初期段階のハードウェアとアプリケーションの考慮事項のために制約されるべきではありません。たとえば、メトロポリタンスケールネットワークでQKDを効率的に実行することはすでに可能であり、そのようなネットワークはすでに市販されています。ただし、それらは量子リピーターに基づいていないため、より洗練されたアプリケーションに簡単に移行することはできません。

3. Support heterogeneity.

3. 不均一性をサポートします。

There are multiple proposals for realising practical quantum repeater hardware, and they all have their advantages and disadvantages. Some may offer higher Bell pair generation rates on individual links at the cost of entanglement swap operations that are more difficult. Other platforms may be good all around but are more difficult to build.

実用的な量子リピーターハードウェアを実現するための複数の提案があり、それらにはすべての利点と短所があります。より困難なエンタングルメントスワップ操作のコストで、個々のリンクでより高いベルペア生成率を提供する場合があります。他のプラットフォームはあちこちで優れているかもしれませんが、構築がより困難です。

In addition to physical boundaries, there may be distinctions in how errors are managed (Section 4.4.3.3). These differences will affect the content and semantics of messages that cross these boundaries -- for both connection setup and real-time operation.

物理的境界に加えて、エラーの管理方法には区別がある場合があります(セクション4.4.3.3)。これらの違いは、接続のセットアップとリアルタイム操作の両方について、これらの境界を越えるメッセージのコンテンツとセマンティクスに影響します。

The optimal network configuration will likely leverage the advantages of multiple platforms to optimise the provided service. Therefore, it is an explicit goal to incorporate varied hardware and technology support from the beginning.

最適なネットワーク構成により、複数のプラットフォームの利点を活用して提供されたサービスを最適化する可能性があります。したがって、さまざまなハードウェアとテクノロジーのサポートを最初から組み込むことは明確な目標です。

4. Ensure security at the network level.

4. ネットワークレベルでセキュリティを確保します。

The question of security in quantum networks is just as critical as it is in the classical Internet, especially since enhanced security offered by quantum entanglement is one of the key driving factors.

量子ネットワークのセキュリティの問題は、特に量子エンタングルメントによって提供されるセキュリティの強化が重要な推進要因の1つであるため、古典的なインターネットと同じくらい重要です。

Fortunately, from an application's point of view, as long as the underlying implementation corresponds to (or sufficiently approximates) theoretical models of quantum cryptography, quantum cryptographic protocols do not need the network to provide any guarantees about the confidentiality or integrity of the transmitted qubits or the generated entanglement (though they may impose requirements on the classical channel, e.g., to be authenticated [Wang21]). Instead, applications will leverage the classical networks to establish the end-to-end security of the results obtained from the processing of entangled qubits. However, it is important to note that whilst classical networks are necessary to establish these end-to-end guarantees, the security relies on the properties of quantum entanglement. For example, QKD uses classical information reconciliation [Tang19] for error correction and privacy amplification [Elkouss11] for generating the final secure key, but the raw bits that are fed into these protocols must come from measuring entangled qubits [Ekert91]. In another application, secure delegated quantum computing, the client hides its computation from the server by sending qubits to the server and then requesting (in a classical message) that the server measure them in an encoded basis. The client then decodes the results it receives from the server to obtain the result of the computation [Broadbent10]. Once again, whilst a classical network is used to achieve the goal of secure computation, the remote computation is strictly quantum.

幸いなことに、根本的な実装が量子暗号化の理論モデルに対応する(または十分に近似)している限り、アプリケーションの観点から、量子暗号化プロトコルは、送信されたクビットまたは送信されたクビットの機密性または完全性に関する保証を提供するためにネットワークを必要としません。生成されたエンタングルメント(ただし、古典的なチャネルに要件を課す可能性があります。たとえば、認証される[wang21])。代わりに、アプリケーションは古典的なネットワークを活用して、絡み合ったキュービットの処理から得られた結果のエンドツーエンドのセキュリティを確立します。ただし、これらのエンドツーエンドの保証を確立するには古典的なネットワークが必要であるが、セキュリティは量子エンタングルメントの特性に依存していることに注意することが重要です。たとえば、QKDは古典的な情報調整[Tang19]を使用して、エラー補正とプライバシー増幅[Elkous11]に最終的なセキュアキーを生成しますが、これらのプロトコルに供給される生のビットは、絡み合ったQubits [EKERT91]を測定することから来なければなりません。別のアプリケーションである安全な委任Quantumコンピューティングでは、クライアントはサーバーにQubitsを送信し、サーバーがエンコードされたベースでそれらを測定することを(古典的なメッセージで)要求することにより、サーバーから計算を隠します。次に、クライアントは、計算の結果を取得するために、サーバーから受信した結果を解読します[BroadBent10]。繰り返しますが、クラシックネットワークを使用して安全な計算の目標を達成しますが、リモート計算は厳密に量子です。

Nevertheless, whilst applications can ensure their own end-to-end security, network protocols themselves should be security aware in order to protect the network itself and limit disruption. Whilst the applications remain secure, they are not necessarily operational or as efficient in the presence of an attacker. For example, if an attacker can measure every qubit between two parties trying to establish a key using QKD, no secret key can be generated. Security concerns in quantum networks are described in more detail in [Satoh17] and [Satoh20].

それにもかかわらず、アプリケーションは独自のエンドツーエンドのセキュリティを確保することができますが、ネットワークプロトコル自体は、ネットワーク自体を保護し、混乱を制限するためにセキュリティを認識する必要があります。アプリケーションは安全なままですが、攻撃者の存在下では必ずしも運用上でも効率的でもありません。たとえば、攻撃者がQKDを使用してキーを確立しようとする2つの当事者間のすべてのキュービットを測定できる場合、秘密キーを生成することはできません。量子ネットワークにおけるセキュリティの懸念については、[SATOH17]および[SATOH20]でより詳細に説明されています。

5. Make them easy to monitor.

5. 監視しやすくします。

In order to manage, evaluate the performance of, or debug a network, it is necessary to have the ability to monitor the network while ensuring that there will be mechanisms in place to protect the confidentiality and integrity of the devices connected to it. Quantum networks bring new challenges in this area, so it should be a goal of a quantum network architecture to make this task easy.

ネットワークのパフォーマンスを管理、評価、またはデバッグするには、ネットワークを監視しながら、デバイスに接続されたデバイスの機密性と整合性を保護するためのメカニズムが存在するようにする必要があります。Quantum Networksは、この分野に新たな課題をもたらすため、このタスクを簡単にすることは量子ネットワークアーキテクチャの目標である必要があります。

The fundamental unit of quantum information, the qubit, cannot be actively monitored, as any readout irreversibly destroys its contents. One of the implications of this fact is that measuring an individual pair's fidelity is impossible. Fidelity is meaningful only as a statistical quantity that requires constant monitoring of generated Bell pairs, achieved by sacrificing some Bell pairs for use in tomography or other methods.

量子情報の基本単位であるqubitは、読み出しが不可逆的にその内容を破壊するため、積極的に監視することはできません。この事実の意味の1つは、個々のペアの忠実度を測定することは不可能であるということです。忠実度は、断層撮影やその他の方法で使用するためにベルペアを犠牲にすることによって達成される生成されたベルペアの一定の監視を必要とする統計量としてのみ意味があります。

Furthermore, given one end of an entangled pair, it is impossible to tell where the other qubit is without any additional classical metadata. It is impossible to extract this information from the qubits themselves. This implies that tracking entangled pairs necessitates some exchange of classical information. This information might include (i) a reference to the entangled pair that allows distributed applications to coordinate actions on qubits of the same pair and (ii) the two bits from each entanglement swap necessary to identify the final state of the Bell pair (Section 4.4.2).

さらに、絡み合ったペアの一方の端を考えると、追加の古典的なメタデータがない他のキットがどこにあるかを知ることは不可能です。この情報をQubits自体から抽出することは不可能です。これは、絡み合ったペアを追跡するには、古典的な情報の交換が必要であることを意味します。この情報には、(i)分散アプリケーションが同じペアのキュービットでアクションを調整できるようにする絡み合ったペアへの参照、および(ii)ベルペアの最終状態を識別するために必要な各エンタングルメントスワップからの2つのビットが含まれます(セクション4.4.2)。

6. Ensure availability and resilience.

6. 可用性と回復力を確保します。

Any practical and usable network, classical or quantum, must be able to continue to operate despite losses and failures and be robust to malicious actors trying to disable connectivity. A difference between quantum and classical networks is that quantum networks are composed of two types of data planes (quantum and classical) and two types of channels (quantum and classical) that must be considered. Therefore, availability and resilience will most likely require a more advanced treatment than they do in classical networks.

実用的で使用可能なネットワーク、古典的または量子は、損失と失敗にもかかわらず動作を続けることができ、接続性を無効にしようとする悪意のある俳優に堅牢でなければなりません。量子ネットワークと古典的なネットワークの違いは、量子ネットワークが2種類のデータプレーン(量子および古典)と2種類のチャネル(量子および古典)で構成されていることです。したがって、可用性と回復力は、おそらく古典的なネットワークよりも高度な治療を必要とするでしょう。

Note that privacy, whilst related to security, is not listed as an explicit goal, because the privacy benefits will depend on the use case. For example, QKD only provides increased security for the distribution of symmetric keys [Bennett14] [Ekert91]. The handling, manipulation, sharing, encryption, and decryption of data will remain entirely classical, limiting the benefits to privacy that can be gained from using a quantum network. On the other hand, there are applications like blind quantum computation, which provides the user with the ability to execute a quantum computation on a remote server without the server knowing what the computation was or its input and output [Fitzsimons17]. Therefore, privacy must be considered on a per-application basis. An overview of quantum network use cases can be found in [QI-Scenarios].

プライバシーは、プライバシーの利点がユースケースに依存するため、セキュリティに関連しているが、明示的な目標としてリストされていないことに注意してください。たとえば、QKDは、対称キー[Bennett14] [EKERT91]の分布のセキュリティの増加のみを提供します。データの取り扱い、操作、共有、暗号化、および復号化は完全に古典的なままであり、量子ネットワークの使用から得られるプライバシーの利点を制限します。一方、ブラインド量子計算のようなアプリケーションがあります。これにより、ユーザーは、計算が何であるか、またはその入力と出力[Fitzsimons17]を把握せずにリモートサーバーで量子計算を実行する機能をユーザーに提供します。したがって、アプリケーションごとにプライバシーを考慮する必要があります。量子ネットワークユースケースの概要は、[Qi-Scenarios]にあります。

6.2. The Principles of a Quantum Internet
6.2. 量子インターネットの原則

The principles support the goals but are not goals themselves. The goals define what we want to build, and the principles provide a guideline for how we might achieve this. The goals will also be the foundation for defining any metric of success for a network architecture, whereas the principles in themselves do not distinguish between success and failure. For more information about design considerations for quantum networks, see [VanMeter13.1] and [Dahlberg19].

原則は目標をサポートしていますが、目標自体ではありません。目標は、私たちが構築したいものを定義し、原則はこれをどのように達成するかについてのガイドラインを提供します。目標は、ネットワークアーキテクチャの成功のメトリックを定義するための基盤でもありますが、それ自体の原則は成功と失敗を区別しません。量子ネットワークの設計上の考慮事項の詳細については、[vanmeter13.1]および[dahlberg19]を参照してください。

1. Entanglement is the fundamental service.

1. エンタングルメントは基本的なサービスです。

The key service that a quantum network provides is the distribution of entanglement between the nodes in a network. All distributed quantum applications are built on top of this key resource. Applications such as clustered quantum computing, distributed quantum computing, distributed quantum sensing networks, and certain kinds of quantum secure networks all consume quantum entanglement as a resource. Some applications (e.g., QKD) simply measure the entangled qubits to obtain a shared secret key [QKD]. Other applications (e.g., distributed quantum computing) build abstractions and operations that are more complex on the entangled qubits, e.g., distributed CNOT gates [DistCNOT] or teleportation of arbitrary qubit states [Teleportation].

Quantum Networkが提供する重要なサービスは、ネットワーク内のノード間のエンタングルメントの分布です。すべての分散型量子アプリケーションは、この重要なリソースの上に構築されています。クラスター化された量子コンピューティング、分散型量子コンピューティング、分散型量子センシングネットワーク、特定の種類の量子安全なネットワークなどのアプリケーションはすべて、リソースとして量子エンタングルメントを消費します。一部のアプリケーション(QKDなど)は、絡み合ったキービットを単純に測定して、共有秘密キー[QKD]を取得します。他のアプリケーション(例:分散型量子コンピューティング)は、絡み合ったキュービット(例えば分散型CNOTゲート[distcnot]または任意のキット状態[テレポーテーション])でより複雑な抽象と操作を構築します。

A quantum network may also distribute multipartite entangled states (entangled states of three or more qubits) [Meignant19], which are useful for applications such as conference key agreement [Murta20], distributed quantum computing [Cirac99], secret sharing [Qin17], and clock synchronisation [Komar14], though it is worth noting that multipartite entangled states can also be constructed from multiple entangled pairs distributed between the end nodes.

量子ネットワークは、マルチパルタイトの絡み合い状態(3つ以上のキュービットの絡み合った状態)[Meignant19]を配布することもできます。これは、会議キー契約[MURTA20]、分散型量子コンピューティング[CIRAC99]、秘密共有[QIN17]、および分散型の共有[QIN17]、および分散)に役立ちます。クロック同期[komar14]。ただし、マルチパルタイトの絡み合った状態は、エンドノードの間に分布した複数の絡み合ったペアから構築できることは注目に値します。

2. Bell pairs are indistinguishable.

2. ベルペアは区別できません。

Any two Bell pairs between the same two nodes are indistinguishable for the purposes of an application, provided they both satisfy its required fidelity threshold. This observation is likely to be key in enabling a more optimal allocation of resources in a network, e.g., for the purposes of provisioning resources to meet application demand. However, the qubits that make up the pair themselves are not indistinguishable, and the two nodes operating on a pair must coordinate to make sure they are operating on qubits that belong to the same Bell pair.

同じ2つのノード間の2つのベルペアは、必要な忠実度のしきい値を満たしていれば、アプリケーションの目的では区別できません。この観察結果は、アプリケーションの需要を満たすためのリソースを提供する目的で、ネットワーク内のリソースのより最適な割り当てを可能にする上で重要である可能性があります。ただし、ペア自体を構成するキュービットは区別できず、ペアで動作する2つのノードは、同じベルペアに属するQubitsで動作していることを確認する必要があります。

3. Fidelity is part of the service.

3. 忠実度はサービスの一部です。

In addition to being able to deliver Bell pairs to the communication end-points, the Bell pairs must be of sufficient fidelity. Unlike in classical networks, where most errors are effectively eliminated before reaching the application, many quantum applications only need imperfect entanglement to function. However, quantum applications will generally have a threshold for Bell pair fidelity below which they are no longer able to operate. Different applications will have different requirements for what fidelity they can work with. It is the network's responsibility to balance the resource usage with respect to the applications' requirements. It may be that it is cheaper for the network to provide lower-fidelity pairs that are just above the threshold required by the application than it is to guarantee high-fidelity pairs to all applications regardless of their requirements.

通信エンドポイントにベルペアを届けることができることに加えて、ベルペアは十分な忠実度でなければなりません。アプリケーションに到達する前にほとんどのエラーが効果的に排除される古典的なネットワークとは異なり、多くの量子アプリケーションは機能するための不完全なエンタングルメントのみを必要とします。ただし、量子アプリケーションには、通常、ベルペアの忠実度のしきい値があり、以下では操作できなくなります。さまざまなアプリケーションには、忠実度がどのように機能するかについてさまざまな要件があります。アプリケーションの要件に関するリソースの使用のバランスをとるのは、ネットワークの責任です。要件に関係なく、すべてのアプリケーションに高忠実度ペアを保証するよりも、アプリケーションが必要とするしきい値を上回る低忠実度ペアをネットワークが提供する方が安価である可能性があります。

4. Time is an expensive resource.

4. 時間は高価なリソースです。

Time is not the only resource that is in short supply (communication qubits and memory are as well), but ultimately it is the lifetime of quantum memories that imposes some of the most difficult conditions for operating an extended network of quantum nodes. Current hardware has low rates of Bell pair generation, short memory lifetimes, and access to a limited number of communication qubits. All these factors combined mean that even a short waiting queue at some node could be enough for a Bell pair to decohere or result in an end-to-end pair below an application's fidelity threshold. Therefore, managing the idle time of qubits holding live quantum states should be done carefully -- ideally by minimising the idle time, but potentially also by moving the quantum state for temporary storage to a quantum memory with a longer lifetime.

短い供給の唯一のリソースではありません(通信のqubitsとメモリも同様です)が、最終的には、量子ノードの拡張ネットワークを操作するために最も難しい条件のいくつかを課すのは量子記憶の寿命です。現在のハードウェアは、ベルペアの生成率が低く、メモリの寿命が短く、限られた数の通信キクへのアクセスがあります。これらの要因はすべて、一部のノードでの短い待機キューでさえ、ベルペアがデコをデコホールしたり、アプリケーションの忠実度のしきい値を下回ったりするのに十分である可能性があることを意味します。したがって、ライブ量子状態を保持するQubitsのアイドル時間を管理することは慎重に行う必要があります - 理想的にはアイドル時間を最小限に抑えることにより、潜在的には一時的な保管のために量子状態をより長い寿命で量子メモリに移動することによっても潜在的に行う必要があります。

5. Be flexible with regards to capabilities and limitations.

5. 能力と制限に関して柔軟に対応してください。

This goal encompasses two important points:

この目標には、2つの重要なポイントが含まれます。

* First, the architecture should be able to function under the physical constraints imposed by the current-generation hardware. Near-future hardware will have low entanglement generation rates, quantum memories able to hold a handful of qubits at best, and decoherence rates that will render many generated pairs unusable.

* 第一に、アーキテクチャは、現在の世代のハードウェアによって課される物理的制約の下で機能できるはずです。近距離のハードウェアは、エンタングルメントの生成率が低く、量の少数のキュービットを保持できる量子記憶、および多くの生成されたペアを使用できなくなるデコヒーレンス率があります。

* Second, the architecture should not make it difficult to run the network over any hardware that may come along in the future. The physical capabilities of repeaters will improve, and redeploying a technology is extremely challenging.

* 第二に、アーキテクチャは、将来的に登場する可能性のあるハードウェア上でネットワークを実行することを難しくしてはなりません。リピーターの物理的能力は改善され、技術の再配置は非常に困難です。

7. A Thought Experiment Inspired by Classical Networks
7. 古典的なネットワークに触発された思考実験

To conclude, we discuss a plausible quantum network architecture inspired by MPLS. This is not an architecture proposal but rather a thought experiment to give the reader an idea of what components are necessary for a functional quantum network. We use classical MPLS as a basis, as it is well known and understood in the networking community.

結論として、MPLSに触発されたもっともらしい量子ネットワークアーキテクチャについて説明します。これはアーキテクチャの提案ではなく、機能的な量子ネットワークに必要なコンポーネントを読者にアイデアを与えるための思考実験です。ネットワーキングコミュニティでよく知られ、理解されているため、古典的なMPLを基礎として使用します。

Creating end-to-end Bell pairs between remote end-points is a stateful distributed task that requires a lot of a priori coordination. Therefore, a connection-oriented approach seems the most natural for quantum networks. In connection-oriented quantum networks, when two quantum application end-points wish to start creating end-to-end Bell pairs, they must first create a Quantum Virtual Circuit (QVC). As an analogy, in MPLS networks, end-points must establish a Label Switched Path (LSP) before exchanging traffic. Connection-oriented quantum networks may also support virtual circuits with multiple end-points for creating multipartite entanglement. As an analogy, MPLS networks have the concept of multipoint LSPs for multicast.

リモートエンドポイント間にエンドツーエンドのベルペアを作成することは、多くの先験的な調整を必要とするステートフルな分散タスクです。したがって、接続指向のアプローチは、量子ネットワークにとって最も自然なアプローチのようです。接続指向の量子ネットワークでは、2つの量子アプリケーションエンドポイントがエンドツーエンドベルペアの作成を開始したい場合、最初に量子仮想回路(QVC)を作成する必要があります。類推として、MPLSネットワークでは、エンドポイントは、トラフィックを交換する前に、ラベルスイッチ付きパス(LSP)を確立する必要があります。接続指向の量子ネットワークは、マルチパルタイトエンタングルメントを作成するための複数のエンドポイントを備えた仮想回路をサポートする場合があります。類推として、MPLSネットワークには、マルチキャスト用のマルチポイントLSPの概念があります。

When a quantum application creates a QVC, it can indicate Quality of Service (QoS) parameters such as the required capacity in end-to-end Bell Pairs Per Second (BPPS) and the required fidelity of the Bell pairs. As an analogy, in MPLS networks, applications specify the required bandwidth in Bits Per Second (BPS) and other constraints when they create a new LSP.

量子アプリケーションがQVCを作成すると、エンドツーエンドベルペア(BPP)やベルペアの必要な忠実度などの必要な容量などのサービス品質(QOS)パラメーターを示すことができます。Analogyとして、MPLSネットワークでは、アプリケーションは、新しいLSPを作成するときに、1秒あたりのビット(BPS)の帯域幅(BPS)とその他の制約を指定します。

Different applications will have different QoS requirements. For example, applications such as QKD that don't need to process the entangled qubits, and only need measure them and store the resulting outcome, may require a large volume of entanglement but will be tolerant of delay and jitter for individual pairs. On the other hand, distributed/cloud quantum computing applications may need fewer entangled pairs but instead may need all of them to be generated in one go so that they can all be processed together before any of them decohere.

さまざまなアプリケーションには、QoS要件が異なります。たとえば、絡み合ったキュービットを処理する必要がなく、それらを測定して結果の結果を保存する必要があるQKDなどのアプリケーションは、大量の絡み合いが必要になる場合がありますが、個々のペアの遅延とジッターに耐性があります。一方、分散型/クラウド量子コンピューティングアプリケーションは、絡み合ったペアが少なくなる必要がある場合がありますが、代わりに、それらをすべて装飾する前にすべて一緒に処理できるように、それらのすべてを一度に生成する必要がある場合があります。

Quantum networks need a routing function to compute the optimal path (i.e., the best sequence of routers and links) for each new QVC. The routing function may be centralised or distributed. In the latter case, the quantum network needs a distributed routing protocol. As an analogy, classical networks use routing protocols such as Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS). However, note that the definition of "shortest path" / "least cost" may be different in a quantum network to account for its non-classical features, such as fidelity [VanMeter13.2].

Quantum Networksには、新しいQVCごとに最適なパス(つまり、ルーターとリンクの最適なシーケンス)を計算するためのルーティング関数が必要です。ルーティング関数は集中または分布することができます。後者の場合、Quantum Networkには分散ルーティングプロトコルが必要です。アナロジーとして、古典的なネットワークは、最初のオープン最短パス(OSPF)や中間システムへの中間システム(IS-IS)などのルーティングプロトコルを使用します。ただし、「最短パス」 /「最小コスト」の定義は、Qidelity [VanMeter13.2]などの非古典的な機能を説明するために、量子ネットワークで異なる場合があることに注意してください。

Given the very scarce availability of resources in early quantum networks, a Traffic Engineering (TE) function is likely to be beneficial. Without TE, QVCs always use the shortest path. In this case, the quantum network cannot guarantee that each quantum end-point will get its Bell pairs at the required rate or fidelity. This is analogous to "best effort" service in classical networks.

初期の量子ネットワークでのリソースが非常に不足していることを考えると、トラフィックエンジニアリング(TE)機能が有益である可能性があります。TEがなければ、QVCは常に最短パスを使用します。この場合、量子ネットワークは、各量子エンドポイントが必要な速度または忠実度でベルペアを取得することを保証することはできません。これは、古典的なネットワークでの「最善の努力」サービスに類似しています。

With TE, QVCs choose a path that is guaranteed to have the requested resources (e.g., bandwidth in BPPS) available, taking into account the capacity of the routers and links and also taking into account the resources already consumed by other virtual circuits. As an analogy, both OSPF and IS-IS have TE extensions to keep track of used and available resources and can use Constrained Shortest Path First (CSPF) to take resource availability and other constraints into account when computing the optimal path.

TEを使用すると、QVCは、ルーターとリンクの容量を考慮に入れて、他の仮想回路ですでに消費されているリソースを考慮して、要求されたリソース(BPPSの帯域幅など)を利用できるように保証されているパスを選択します。類推として、OSPFとIS-ISの両方は、使用可能なリソースと利用可能なリソースを追跡するための拡張機能を備えており、最適なパスを計算する際にリソースの可用性やその他の制約を考慮に入れるために、制約された最短パス(CSPF)を使用できます。

The use of TE implies the use of Call Admission Control (CAC): the network denies any virtual circuits for which it cannot guarantee the requested quality of service a priori. Alternatively, the network preempts lower-priority circuits to make room for a new circuit.

TEの使用は、コール入学制御(CAC)の使用を意味します。ネットワークは、要求されたサービスの品質を事前に保証できない仮想回路を拒否します。あるいは、ネットワークはより低優先度回路を先取りして、新しいサーキットのスペースを確保します。

Quantum networks need a signalling function: once the path for a QVC has been computed, signalling is used to install the "forwarding rules" into the data plane of each quantum router on the path. The signalling may be distributed, analogous to the Resource Reservation Protocol (RSVP) in MPLS. Or, the signalling may be centralised, similar to OpenFlow.

Quantum Networksにはシグナリング機能が必要です。QVCのパスが計算されたら、シグナリングを使用して「転送ルール」をパス上の各量子ルーターのデータプレーンにインストールします。シグナリングは、MPLSのリソース予約プロトコル(RSVP)に類似して分布する場合があります。または、SignalingはOpenFlowと同様に集中化される場合があります。

Quantum networks need an abstraction of the hardware for specifying the forwarding rules. This allows us to decouple the control plane (routing and signalling) from the data plane (actual creation of Bell pairs). The forwarding rules are specified using abstract building blocks such as "creating local Bell pairs", "swapping Bell pairs", or "distillation of Bell pairs". As an analogy, classical networks use abstractions that are based on match conditions (e.g., looking up header fields in tables) and actions (e.g., modifying fields or forwarding a packet to a specific interface). The data plane abstractions in quantum networks will be very different from those in classical networks due to the fundamental differences in technology and the stateful nature of quantum networks. In fact, choosing the right abstractions will be one of the biggest challenges when designing interoperable quantum network protocols.

Quantum Networksは、転送ルールを指定するためにハードウェアを抽象化する必要があります。これにより、データプレーン(ベルペアの実際の作成)からコントロールプレーン(ルーティングとシグナリング)を切り離すことができます。転送ルールは、「ローカルベルペアの作成」、「ベルペアの交換」、または「ベルペアの蒸留」などの抽象的なビルディングブロックを使用して指定されています。類推として、古典的なネットワークは、一致条件(例えば、テーブルのヘッダーフィールドの検索)とアクション(たとえば、フィールドの変更または特定のインターフェイスにパケットを転送する)に基づいた抽象化を使用します。量子ネットワークのデータプレーンの抽象化は、テクノロジーの根本的な違いと量子ネットワークのステートフルな性質により、古典的なネットワークのデータとは大きく異なります。実際、相互運用可能な量子ネットワークプロトコルを設計する際の適切な抽象化を選択することは、最大の課題の1つです。

In quantum networks, control plane traffic (routing and signalling messages) is exchanged over a classical channel, whereas data plane traffic (the actual Bell pair qubits) is exchanged over a separate quantum channel. This is in contrast to most classical networks, where control plane traffic and data plane traffic share the same channel and where a single packet contains both user fields and header fields. There is, however, a classical analogy to the way quantum networks work: generalised MPLS (GMPLS) networks use separate channels for control plane traffic and data plane traffic. Furthermore, GMPLS networks support data planes where there is no such thing as data plane headers (e.g., Dense Wavelength Division Multiplexing (DWDM) or Time-Division Multiplexing (TDM) networks).

量子ネットワークでは、コントロールプレーントラフィック(ルーティングとシグナリングメッセージ)が古典的なチャネルで交換されますが、データプレーントラフィック(実際のベルペアのQUBITS)は別の量子チャネルで交換されます。これは、ほとんどの古典的なネットワークとは対照的です。このネットワークでは、コントロールプレーントラフィックとデータプレーントラフィックが同じチャネルを共有し、単一のパケットにユーザーフィールドとヘッダーフィールドの両方が含まれています。ただし、量子ネットワークの仕組みには古典的な類似性があります。一般化されたMPLS(GMPLS)ネットワークは、制御プレーントラフィックとデータプレーントラフィックに個別のチャネルを使用します。さらに、GMPLSネットワークは、データプレーンヘッダーのようなものがないデータプレーンをサポートします(たとえば、密度波長分割多重化(DWDM)または時間分割マルチプレックス(TDM)ネットワーク)。

8. Security Considerations
8. セキュリティに関する考慮事項

Security is listed as an explicit goal for the architecture; this issue is addressed in Section 6.1. However, as this is an Informational document, it does not propose any concrete mechanisms to achieve these goals.

セキュリティは、アーキテクチャの明示的な目標としてリストされています。この問題は、セクション6.1で説明されています。ただし、これは情報文書であるため、これらの目標を達成するための具体的なメカニズムを提案していません。

9. IANA Considerations
9. IANAの考慮事項

This document has no IANA actions.

このドキュメントにはIANAアクションがありません。

10. Informative References
10. 参考引用
   [Abobeih18]
              Abobeih, M.H., Cramer, J., Bakker, M.A., Kalb, N.,
              Markham, M., Twitchen, D.J., and T.H. Taminiau, "One-
              second coherence for a single electron spin coupled to a
              multi-qubit nuclear-spin environment", Nature
              communications Vol. 9, Iss. 1, pp. 1-8,
              DOI 10.1038/s41467-018-04916-z, June 2018,
              <https://www.nature.com/articles/s41467-018-04916-z>.
        
   [Aguado19] Aguado, A., Lopez, V., Lopez, D., Peev, M., Poppe, A.,
              Pastor, A., Folgueira, J., and V. Martin, "The Engineering
              of Software-Defined Quantum Key Distribution Networks",
              IEEE Communications Magazine Vol. 57, Iss. 7, pp. 20-26,
              DOI 10.1109/MCOM.2019.1800763, July 2019,
              <https://ieeexplore.ieee.org/document/8767074>.
        
   [Askarani21]
              Askarani, M.F., Chakraborty, K., and G.C. do Amaral,
              "Entanglement distribution in multi-platform buffered-
              router-assisted frequency-multiplexed automated repeater
              chains", New Journal of Physics Vol. 23, Iss. 6, 063078,
              DOI 10.1088/1367-2630/ac0a35, June 2021,
              <https://iopscience.iop.org/article/10.1088/1367-2630/
              ac0a35>.
        
   [Aspect81] Aspect, A., Grangier, P., and G. Roger, "Experimental
              Tests of Realistic local Theories via Bell's Theorem",
              Physical Review Letters Vol. 47, Iss. 7, pp. 460-463,
              DOI 10.1103/PhysRevLett.47.460, August 1981,
              <https://journals.aps.org/prl/abstract/10.1103/
              PhysRevLett.47.460>.
        
   [Bennett14]
              Bennett, C.H. and G. Brassard, "Quantum cryptography:
              Public key distribution and coin tossing", Theoretical
              Computer Science Vol. 560 (Part 1), pp. 7-11,
              DOI 10.1016/j.tcs.2014.05.025, December 2014,
              <https://www.sciencedirect.com/science/article/pii/
              S0304397514004241?via%3Dihub>.
        
   [Bennett93]
              Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R.,
              Peres, A., and W.K. Wootters, "Teleporting an unknown
              quantum state via dual classical and Einstein-Podolsky-
              Rosen channels", Physical Review Letters Vol. 70, Iss. 13,
              pp. 1895-1899, DOI 10.1103/PhysRevLett.70.1895, March
              1993, <https://journals.aps.org/prl/abstract/10.1103/
              PhysRevLett.70.1895>.
        
   [Bennett96]
              Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., and W.K.
              Wootters, "Mixed-state entanglement and quantum error
              correction", Physical Review A Vol. 54, Iss. 5, pp.
              3824-3851, DOI 10.1103/PhysRevA.54.3824, November 1996,
              <https://journals.aps.org/pra/abstract/10.1103/
              PhysRevA.54.3824>.
        
   [Bradley19]
              Bradley, C.E., Randall, J., Abobeih, M.H., Berrevoets,
              R.C., Degen, M.J., Bakker, M.A., Markham, M., Twitchen,
              D.J., and T.H. Taminiau, "A Ten-Qubit Solid-State Spin
              Register with Quantum Memory up to One Minute", Physical
              Review X Vol. 9, Iss. 3, 031045,
              DOI 10.1103/PhysRevX.9.031045, September 2019,
              <https://journals.aps.org/prx/abstract/10.1103/
              PhysRevX.9.031045>.
        
   [Briegel98]
              Briegel, H.-J., Dür, W., Cirac, J.I., and P. Zoller,
              "Quantum Repeaters: The Role of Imperfect Local Operations
              in Quantum Communication", Physical Review Letters Vol.
              81, Iss. 26, pp. 5932-5935,
              DOI 10.1103/PhysRevLett.81.5932, December 1998,
              <https://journals.aps.org/prl/abstract/10.1103/
              PhysRevLett.81.5932>.
        
   [Broadbent10]
              Broadbent, A., Fitzsimons, J., and E. Kashefi,
              "Measurement-Based and Universal Blind Quantum
              Computation", Springer-Verlag 978-3-642-13678-8,
              DOI 10.1007/978-3-642-13678-8_2, June 2010,
              <https://link.springer.com/
              chapter/10.1007/978-3-642-13678-8_2>.
        
   [Cacciapuoti19]
              Cacciapuoti, A.S., Caleffi, M., Van Meter, R., and L.
              Hanzo, "When Entanglement Meets Classical Communications:
              Quantum Teleportation for the Quantum Internet", IEEE
              Transactions on Communications Vol. 68, Iss. 6, pp.
              3808-3833, DOI 10.1109/TCOMM.2020.2978071, June 2020,
              <https://ieeexplore.ieee.org/document/9023997>.
        
   [Cirac99]  Cirac, J.I., Ekert, A.K., Huelga, S.F., and C.
              Macchiavello, "Distributed quantum computation over noisy
              channels", Physical Review A Vol. 59, Iss. 6, 4249,
              DOI 10.1103/PhysRevA.59.4249, June 1999,
              <https://journals.aps.org/pra/abstract/10.1103/
              PhysRevA.59.4249>.
        
   [Clark88]  Clark, D., "The design philosophy of the DARPA internet
              protocols", SIGCOMM '88: Symposium proceedings on
              Communications architectures and protocols, pp. 106-114,
              DOI 10.1145/52324.52336, August 1988,
              <https://dl.acm.org/doi/abs/10.1145/52324.52336>.
        
   [Crepeau02]
              Crépeau, C., Gottesman, D., and A. Smith, "Secure multi-
              party quantum computation", STOC '02: Proceedings of the
              thiry-fourth [sic] annual ACM symposium on Theory of
              computing, pp. 643-652, DOI 10.1145/509907.510000, May
              2002, <https://dl.acm.org/doi/10.1145/509907.510000>.
        
   [Dahlberg19]
              Dahlberg, A., Skrzypczyk, M., Coopmans, T., Wubben, L.,
              Rozpędek, F., Pompili, M., Stolk, A., Pawełczak, P.,
              Knegjens, R., de Oliveira Filho, J., Hanson, R., and S.
              Wehner, "A link layer protocol for quantum networks",
              SIGCOMM '19 Proceedings of the ACM Special Interest Group
              on Data Communication, pp. 159-173,
              DOI 10.1145/3341302.3342070, August 2019,
              <https://dl.acm.org/doi/10.1145/3341302.3342070>.
        
   [Devitt13] Devitt, S.J., Munro, W.J., and K. Nemoto, "Quantum error
              correction for beginners", Reports on Progress in Physics
              Vol. 76, Iss. 7, 076001,
              DOI 10.1088/0034-4885/76/7/076001, June 2013,
              <https://iopscience.iop.org/
              article/10.1088/0034-4885/76/7/076001>.
        
   [DistCNOT] "Distributed CNOT", Quantum Network Explorer by QuTech,
              2023, <https://www.quantum-network.com/applications/7/>.
        
   [Dur07]    Dür, W. and H.J. Briegel, "Entanglement purification and
              quantum error correction", Reports on Progress in Physics
              Vol. 70, Iss. 8, pp. 1381-1424,
              DOI 10.1088/0034-4885/70/8/R03, July 2007,
              <https://iopscience.iop.org/article/10.1088/0034-
              4885/70/8/R03>.
        
   [Ekert91]  Ekert, A.K., "Quantum cryptography based on Bell's
              theorem", Physical Review Letters Vol. 67, Iss. 6, pp.
              661-663, DOI 10.1103/PhysRevLett.67.661, August 1991,
              <https://journals.aps.org/prl/abstract/10.1103/
              PhysRevLett.67.661>.
        
   [Elkouss11]
              Elkouss, D., Martinez-Mateo, J., and V. Martin,
              "Information Reconciliation for Quantum Key Distribution",
              Quantum Information and Computation Vol. 11, No. 3 and 4,
              pp. 0226-0238, DOI 10.48550/arXiv.1007.1616, March 2011,
              <https://arxiv.org/abs/1007.1616>.
        
   [Elliott03]
              Elliott, C., Pearson, D., and G. Troxel, "Quantum
              cryptography in practice", SIGCOMM 2003: Proceedings of
              the 2003 conference on Applications, technologies,
              architectures, and protocols for computer communications,
              pp. 227-238, DOI 10.1145/863955.863982, August 2003,
              <https://dl.acm.org/doi/abs/10.1145/863955.863982>.
        
   [Fitzsimons17]
              Fitzsimons, J.F. and E. Kashefi, "Unconditionally
              verifiable blind quantum computation", Physical Review A
              Vol. 96, Iss. 1, 012303, DOI 10.1103/PhysRevA.96.012303,
              July 2017, <https://journals.aps.org/pra/abstract/10.1103/
              PhysRevA.96.012303>.
        
   [Fowler10] Fowler, A.G., Wang, D.S., Hill, C.D., Ladd, T.D., Van
              Meter, R., and L.C.L. Hollenberg, "Surface Code Quantum
              Communication", Physical Review Letters Vol. 104, Iss. 18,
              180503, DOI 10.1103/PhysRevLett.104.180503, May 2010,
              <https://journals.aps.org/prl/abstract/10.1103/
              PhysRevLett.104.180503>.
        
   [Giovannetti04]
              Giovannetti, V., Lloyd, S., and L. Maccone, "Quantum-
              Enhanced Measurements: Beating the Standard Quantum
              Limit", Science Vol. 306, Iss. 5700, pp. 1330-1336,
              DOI 10.1126/science.1104149, November 2004,
              <https://www.science.org/doi/10.1126/science.1104149>.
        
   [Gottesman12]
              Gottesman, D., Jennewein, T., and S. Croke, "Longer-
              Baseline Telescopes Using Quantum Repeaters", Physical
              Review Letters Vol. 109, Iss. 7, 070503,
              DOI 10.1103/PhysRevLett.109.070503, August 2012,
              <https://journals.aps.org/prl/abstract/10.1103/
              PhysRevLett.109.070503>.
        
   [Hensen15] Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb,
              N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L.,
              Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V.,
              Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D.,
              Wehner, S., Taminiau, T.H., and R. Hanson, "Loophole-free
              Bell inequality violation using electron spins separated
              by 1.3 kilometres", Nature Vol. 526, pp. 682-686,
              DOI 10.1038/nature15759, October 2015,
              <https://www.nature.com/articles/nature15759>.
        
   [Jiang09]  Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Van
              Meter, R., and M.D. Lukin, "Quantum repeater with
              encoding", Physical Review A Vol. 79, Iss. 3, 032325,
              DOI 10.1103/PhysRevA.79.032325, March 2009,
              <https://journals.aps.org/pra/abstract/10.1103/
              PhysRevA.79.032325>.
        
   [Joshi20]  Joshi, S.K., Aktas, D., Wengerowsky, S., Lončarić, M.,
              Neumann, S.P., Liu, B., Scheidl, T., Currás-Lorenzo, G.,
              Samec, Z., Kling, L., Qiu, A., Razavi, M., Stipčević, M.,
              Rarity, J.G., and R. Ursin, "A trusted node-free eight-
              user metropolitan quantum communication network", Science
              Advances Vol. 6, no. 36, eaba0959,
              DOI 10.1126/sciadv.aba0959, September 2020,
              <https://www.science.org/doi/10.1126/sciadv.aba0959>.
        
   [Kimble08] Kimble, H.J., "The quantum internet", Nature Vol. 453,
              Iss. 7198, pp. 1023-1030, DOI 10.1038/nature07127, June
              2008, <https://www.nature.com/articles/nature07127>.
        
   [Komar14]  Kómár, P., Kessler, E.M., Bishof, M., Jiang, L., Sørensen,
              A.S., Ye, J., and M.D. Lukin, "A quantum network of
              clocks", Nature Physics Vol. 10, Iss. 8, pp. 582-587,
              DOI 10.1038/nphys3000, June 2014,
              <https://www.nature.com/articles/nphys3000>.
        
   [Meignant19]
              Meignant, C., Markham, D., and F. Grosshans, "Distributing
              graph states over arbitrary quantum networks", Physical
              Review A Vol. 100, Iss. 5, 052333,
              DOI 10.1103/PhysRevA.100.052333, November 2019,
              <https://journals.aps.org/pra/abstract/10.1103/
              PhysRevA.100.052333>.
        
   [Moehring07]
              Moehring, D.L., Maunz, P., Olmschenk, S., Younge, K.C.,
              Matsukevich, D.N., Duan, L.-M., and C. Monroe,
              "Entanglement of single-atom quantum bits at a distance",
              Nature Vol. 449, Iss. 7158, pp. 68-71,
              DOI 10.1038/nature06118, September 2007,
              <https://www.nature.com/articles/nature06118>.
        
   [Mural16]  Muralidharan, S., Li, L., Kim, J., Lütkenhaus, N., Lukin,
              M.D., and L. Jiang, "Optimal architectures for long
              distance quantum communication", Scientific Reports Vol.
              6, pp. 1-10, DOI 10.1038/srep20463, February 2016,
              <https://www.nature.com/articles/srep20463>.
        
   [Murta20]  Murta, G., Grasselli, F., Kampermann, H., and D. Bruß,
              "Quantum Conference Key Agreement: A Review", Advanced
              Quantum Technologies Vol. 3, Iss. 11, 2000025,
              DOI 10.1002/qute.202000025, September 2020,
              <https://onlinelibrary.wiley.com/doi/10.1002/
              qute.202000025>.
        
   [Nagayama16]
              Nagayama, S., Choi, B.-S., Devitt, S., Suzuki, S., and R.
              Van Meter, "Interoperability in encoded quantum repeater
              networks", Physical Review A Vol. 93, Iss. 4, 042338,
              DOI 10.1103/PhysRevA.93.042338, April 2016,
              <https://journals.aps.org/pra/abstract/10.1103/
              PhysRevA.93.042338>.
        
   [Nagayama21]
              Nagayama, S., "Towards End-to-End Error Management for a
              Quantum Internet", arXiv 2112.07185,
              DOI 10.48550/arXiv.2112.07185, December 2021,
              <https://arxiv.org/abs/2112.07185>.
        
   [NielsenChuang]
              Nielsen, M.A. and I.L. Chuang, "Quantum Computation and
              Quantum Information", Cambridge University Press, 2010,
              <http://mmrc.amss.cas.cn/tlb/201702/
              W020170224608149940643.pdf>.
        
   [Park70]   Park, J.L., "The concept of transition in quantum
              mechanics", Foundations of Physics Vol. 1, Iss. 1, pp.
              23-33, DOI 10.1007/BF00708652, March 1970,
              <https://link.springer.com/article/10.1007/BF00708652>.
        
   [Peev09]   Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda,
              J., Boxleitner, W., Debuisschert, T., Diamanti, E.,
              Dianati, M., Dynes, J.F., Fasel, S., Fossier, S., Fürst,
              M., Gautier, J.-D., Gay, O., Gisin, N., Grangier, P.,
              Happe, A., Hasani, Y., Hentschel, M., Hübel, H., Humer,
              G., Länger, T., Legré, M., Lieger, R., Lodewyck, J.,
              Lorünser, T., Lütkenhaus, N., Marhold, A., Matyus, T.,
              Maurhart, O., Monat, L., Nauerth, S., Page, J.-B., Poppe,
              A., Querasser, E., Ribordy, G., Robyr, S., Salvail, L.,
              Sharpe, A.W., Shields, A.J., Stucki, D., Suda, M., Tamas,
              C., Themel, T., Thew, R.T., Thoma, Y., Treiber, A.,
              Trinkler, P., Tualle-Brouri, R., Vannel, F., Walenta, N.,
              Weier, H., Weinfurter, H., Wimberger, I., Yuan, Z.L.,
              Zbinden, H., and A. Zeilinger, "The SECOQC quantum key
              distribution network in Vienna", New Journal of Physics
              Vol. 11, Iss. 7, 075001,
              DOI 10.1088/1367-2630/11/7/075001, July 2009,
              <https://iopscience.iop.org/
              article/10.1088/1367-2630/11/7/075001>.
        
   [Pompili21.1]
              Pompili, M., Hermans, S.L.N., Baier, S., Beukers, H.K.C.,
              Humphreys, P.C., Schouten, R.N., Vermeulen, R.F.L.,
              Tiggelman, M.J., dos Santos Martins, L., Dirkse, B.,
              Wehner, S., and R. Hanson, "Realization of a multinode
              quantum network of remote solid-state qubits", Science
              Vol. 372, No. 6539, pp. 259-264,
              DOI 10.1126/science.abg1919, April 2021,
              <https://www.science.org/doi/10.1126/science.abg1919>.
        
   [Pompili21.2]
              Pompili, M., Delle Donne, C., te Raa, I., van der Vecht,
              B., Skrzypczyk, M., Ferreira, G., de Kluijver, L., Stolk,
              A.J., Hermans, S.L.N., Pawełczak, P., Kozlowski, W.,
              Hanson, R., and S. Wehner, "Experimental demonstration of
              entanglement delivery using a quantum network stack", npj
              Quantum Information Vol. 8, 121, DOI 10.4121/16912522,
              October 2022,
              <https://www.nature.com/articles/s41534-022-00631-2>.
        
   [QI-Scenarios]
              Wang, C., Rahman, A., Li, R., Aelmans, M., and K.
              Chakraborty, "Application Scenarios for the Quantum
              Internet", Work in Progress, Internet-Draft, draft-irtf-
              qirg-quantum-internet-use-cases-15, 10 March 2023,
              <https://datatracker.ietf.org/doc/html/draft-irtf-qirg-
              quantum-internet-use-cases-15>.
        
   [Qin17]    Qin, H. and Y. Dai, "Dynamic quantum secret sharing by
              using d-dimensional GHZ state", Quantum information
              processing Vol. 16, Iss. 3, 64,
              DOI 10.1007/s11128-017-1525-y, January 2017,
              <https://link.springer.com/article/10.1007/
              s11128-017-1525-y>.
        
   [QKD]      "Quantum Key Distribution", Quantum Network Explorer by
              QuTech, 2023,
              <https://www.quantum-network.com/applications/5/>.
        
   [RFC1958]  Carpenter, B., Ed., "Architectural Principles of the
              Internet", RFC 1958, DOI 10.17487/RFC1958, June 1996,
              <https://www.rfc-editor.org/info/rfc1958>.
        
   [Sangouard11]
              Sangouard, N., Simon, C., de Riedmatten, H., and N. Gisin,
              "Quantum repeaters based on atomic ensembles and linear
              optics", Reviews of Modern Physics Vol. 83, Iss. 1, pp.
              33-80, DOI 10.1103/RevModPhys.83.33, March 2011,
              <https://journals.aps.org/rmp/abstract/10.1103/
              RevModPhys.83.33>.
        
   [Satoh17]  Satoh, T., Nagayama, S., Oka, T., and R. Van Meter, "The
              network impact of hijacking a quantum repeater", Quantum
              Science and Technology Vol. 3, Iss. 3, 034008,
              DOI 10.1088/2058-9565/aac11f, May 2018,
              <https://iopscience.iop.org/article/10.1088/2058-9565/
              aac11f>.
        
   [Satoh20]  Satoh, T., Nagayama, S., Suzuki, S., Matsuo, T., Hajdušek,
              M., and R. Van Meter, "Attacking the Quantum Internet",
              IEEE Transactions on Quantum Engineering, vol. 2, pp.
              1-17, DOI 10.1109/TQE.2021.3094983, September 2021,
              <https://ieeexplore.ieee.org/document/9477172>.
        
   [SutorBook]
              Sutor, R.S., "Dancing with Qubits", Packt Publishing,
              November 2019, <https://www.packtpub.com/product/dancing-
              with-qubits/9781838827366>.
        
   [Tang19]   Tang, B.-Y., Liu, B., Zhai, Y.-P., Wu, C.-Q., and W.-R.
              Yu, "High-speed and Large-scale Privacy Amplification
              Scheme for Quantum Key Distribution", Scientific Reports
              Vol. 9, DOI 10.1038/s41598-019-50290-1, October 2019,
              <https://www.nature.com/articles/s41598-019-50290-1>.
        
   [Teleportation]
              "State teleportation", Quantum Network Explorer by QuTech,
              2023, <https://www.quantum-network.com/applications/1/>.
        
   [Terhal04] Terhal, B.M., "Is entanglement monogamous?", IBM Journal
              of Research and Development Vol. 48, Iss. 1, pp. 71-78,
              DOI 10.1147/rd.481.0071, January 2004,
              <https://ieeexplore.ieee.org/document/5388928>.
        
   [VanMeter13.1]
              Van Meter, R. and J. Touch, "Designing quantum repeater
              networks", IEEE Communications Magazine Vol. 51, Iss. 8,
              pp. 64-71, DOI 10.1109/MCOM.2013.6576340, August 2013,
              <https://ieeexplore.ieee.org/document/6576340>.
        
   [VanMeter13.2]
              Van Meter, R., Satoh, T., Ladd, T.D., Munro, W.J., and K.
              Nemoto, "Path selection for quantum repeater networks",
              Networking Science Vol. 3, Iss. 1-4, pp. 82-95,
              DOI 10.1007/s13119-013-0026-2, December 2013,
              <https://link.springer.com/article/10.1007/
              s13119-013-0026-2>.
        
   [VanMeterBook]
              Van Meter, R., "Quantum Networking", ISTE Ltd/John Wiley
              and Sons. Inc., Print ISBN 978-1-84821-537-5,
              DOI 10.1002/9781118648919, April 2014,
              <https://onlinelibrary.wiley.com/doi/
              book/10.1002/9781118648919>.
        
   [Wang21]   Wang, L.-J., Zhang, K.-Y., Wang, J.-Y., Cheng, J., Yang,
              Y.-H., Tang, S.-B., Yan, D., Tang, Y.-L., Liu, Z., Yu, Y.,
              Zhang, Q., and J.-W. Pan, "Experimental authentication of
              quantum key distribution with post-quantum cryptography",
              npj Quantum Information Vol. 7, pp. 1-7,
              DOI 10.1038/s41534-021-00400-7, May 2021,
              <https://www.nature.com/articles/s41534-021-00400-7>.
        
   [Wehner18] Wehner, S., Elkouss, D., and R. Hanson, "Quantum internet:
              A vision for the road ahead", Science Vol. 362, Iss. 6412,
              DOI 10.1126/science.aam9288, October 2018,
              <https://www.science.org/doi/full/10.1126/
              science.aam9288>.
        
   [Wei22]    Wei, S.-H., Jing, B., Zhang, X.-Y., Liao, J.-Y., Yuan, C.-
              Z., Fan, B.-Y., Lyu, C., Zhou, D.-L., Wang, Y., Deng, G.-
              W., Song, H.-Z., Oblak, D., Guo, G.-C., and Q. Zhou,
              "Towards Real-World Quantum Networks: A Review", Laser and
              Photonics Reviews Vol. 16, 2100219,
              DOI 10.1002/lpor.202100219, January 2022,
              <https://onlinelibrary.wiley.com/doi/10.1002/
              lpor.202100219>.
        
   [Wootters82]
              Wootters, W.K. and W.H. Zurek, "A single quantum cannot be
              cloned", Nature Vol. 299, Iss. 5886, pp. 802-803,
              DOI 10.1038/299802a0, October 1982,
              <https://www.nature.com/articles/299802a0>.
        
   [ZOO]      "The Quantum Protocol Zoo", November 2019,
              <https://wiki.veriqloud.fr/>.
        
Acknowledgements
謝辞

The authors want to thank Carlo Delle Donne, Matthew Skrzypczyk, Axel Dahlberg, Mathias van den Bossche, Patrick Gelard, Chonggang Wang, Scott Fluhrer, Joey Salazar, Joseph Touch, and the rest of the QIRG community as a whole for their very useful reviews and comments on this document.

著者は、Carlo Delle Donne、Matthew Skrzypczyk、Axel Dahlberg、Mathias van Den Bossche、Patrick Gelard、Chonggang Wang、Scott Fluhrer、Joey Salazar、Joey Salazar、Joey Salazar、その他のQIRGコミュニティ全体として、彼らの非常に有用なレビューとしての残りのレビューとして感謝したいと考えています。このドキュメントに関するコメント。

WK and SW acknowledge funding received from the EU Flagship on Quantum Technologies, Quantum Internet Alliance (No. 820445).

WKとSWは、Quantum Internet Alliance(No。820445)のQuantum TechnologiesのEUフラッグシップから受け取った資金を認めています。

rdv acknowledges support by the Air Force Office of Scientific Research under award number FA2386-19-1-4038.

RDVは、賞番号FA2386-19-1-4038に基づく空軍科学研究局による支援を認めています。

Authors' Addresses
著者のアドレス
   Wojciech Kozlowski
   QuTech
   Building 22
   Lorentzweg 1
   2628 CJ Delft
   Netherlands
   Email: w.kozlowski@tudelft.nl
        
   Stephanie Wehner
   QuTech
   Building 22
   Lorentzweg 1
   2628 CJ Delft
   Netherlands
   Email: s.d.c.wehner@tudelft.nl
        
   Rodney Van Meter
   Keio University
   5322 Endo, Fujisawa, Kanagawa
   252-0882
   Japan
   Email: rdv@sfc.wide.ad.jp
        
   Bruno Rijsman
   Individual
   Email: brunorijsman@gmail.com
        
   Angela Sara Cacciapuoti
   University of Naples Federico II
   Department of Electrical Engineering and Information Technologies
   Claudio 21
   80125 Naples
   Italy
   Email: angelasara.cacciapuoti@unina.it
        
   Marcello Caleffi
   University of Naples Federico II
   Department of Electrical Engineering and Information Technologies
   Claudio 21
   80125 Naples
   Italy
   Email: marcello.caleffi@unina.it
        
   Shota Nagayama
   Mercari, Inc.
   Roppongi Hills Mori Tower 18F
   6-10-1 Roppongi, Minato-ku, Tokyo
   106-6118
   Japan
   Email: shota.nagayama@mercari.com