Internet Engineering Task Force (IETF) M. Boucadair, Ed. Request for Comments: 9833 Orange Category: Standards Track R. Roberts, Ed. ISSN: 2070-1721 Juniper O. Gonzalez de Dios Telefonica S. Barguil Nokia B. Wu Huawei Technologies September 2025
The document specifies a common attachment circuits (ACs) YANG data model, which is designed to be reusable by other models. This design is meant to ensure consistent AC structures among models that manipulate ACs. For example, this common model can be reused by service models to expose ACs as a service, service models that require binding a service to a set of ACs, network and device models to provision ACs, etc.
このドキュメントは、他のモデルが再利用できるように設計された共通のアタッチメントサーキット(ACS)Yangデータモデルを指定します。この設計は、ACを操作するモデル間で一貫したAC構造を確保することを目的としています。たとえば、この共通モデルをサービスモデルで再利用して、ACSをサービスとして公開することができます。これは、ACS、ネットワーク、デバイスモデルのセットにサービスをバインドする必要があるサービスモデルを必要とします。
This is an Internet Standards Track document.
これは、インターネット標準トラックドキュメントです。
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
このドキュメントは、インターネットエンジニアリングタスクフォース(IETF)の製品です。IETFコミュニティのコンセンサスを表しています。公開レビューを受けており、インターネットエンジニアリングステアリンググループ(IESG)からの出版が承認されています。インターネット標準の詳細については、RFC 7841のセクション2で入手できます。
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9833.
このドキュメントの現在のステータス、任意のERRATA、およびそのフィードバックを提供する方法に関する情報は、https://www.rfc-editor.org/info/rfc9833で取得できます。
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights reserved.
著作権(c)2025 IETF Trustおよび文書著者として特定された人。無断転載を禁じます。
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.
このドキュメントは、BCP 78およびIETFドキュメント(https://trustee.ietf.org/license-info)に関連するIETF Trustの法的規定の対象となります。この文書に関するあなたの権利と制限を説明するので、これらの文書を注意深く確認してください。このドキュメントから抽出されたコードコンポーネントには、セクション4.Eで説明されている法的規定のセクション4.Eで説明されており、改訂されたBSDライセンスで説明されている保証なしで提供されるように、改訂されたBSDライセンステキストを含める必要があります。
1. Introduction 2. Conventions and Definitions 3. Relationship to Other AC Data Models 4. Description of the AC Common YANG Module 4.1. Features 4.2. Identities 4.3. Reusable Groupings 5. Common Attachment Circuit YANG Module 6. Security Considerations 7. IANA Considerations 8. References 8.1. Normative References 8.2. Informative References Appendix A. Full Tree Acknowledgments Contributors Authors' Addresses
Connectivity services are provided by networks to customers via dedicated terminating points (e.g., Service Functions (SFs), Customer Premises Equipment (CPE), Autonomous System Border Routers (ASBRs), data center gateways, or Internet Exchange Points (IXPs)). A connectivity service ensures data transfer from (or destined to) a given terminating point to (or originating from) other terminating points. Objectives for such a connectivity service may be negotiated and agreed upon between a customer and a network provider.
接続サービスは、専用の終端ポイント(サービス関数(SFS)、顧客施設機器(CPE)、自律システムボーダールーター(ASBR)、データセンターゲートウェイ、またはインターネット交換ポイント(IXPS))を介して顧客にネットワークによって提供されます。接続サービスは、特定の終端ポイントから他の終端ポイントから(または発信する)ポイントからデータ転送を保証します。このような接続サービスの目的は、顧客とネットワークプロバイダーの間で交渉され、合意される場合があります。
For that data transfer to take place within the provider network, it is assumed that adequate setup is provisioned over the links connecting the customer's terminating points to the provider network (typically, a Provider Edge (PE)), thereby enabling successful data exchange. This necessary provisioning is referred to in this document as an "attachment circuit" (AC), while the underlying link is referred to as the "bearer".
プロバイダーネットワーク内でそのデータ転送が行われると、顧客の終了ポイントをプロバイダーネットワーク(通常、プロバイダーエッジ(PE))に接続するリンクに適切なセットアップがプロビジョニングされ、それによりデータ交換が成功することが想定されています。この必要なプロビジョニングは、このドキュメントでは「アタッチメント回路」(AC)と呼ばれ、基礎となるリンクは「ベアラー」と呼ばれます。
When a customer requests a new service, that service can be associated with existing ACs or may require the instantiation of new ACs. Whether these ACs are dedicated to a particular service or shared among multiple services depends on the specific deployment.
顧客が新しいサービスを要求する場合、そのサービスは既存のACSに関連付けられるか、新しいACSのインスタンス化が必要になる場合があります。これらのACが特定のサービスに専念するか、複数のサービス間で共有されているかは、特定の展開に依存します。
Examples of ACs are depicted in Figure 1. A Customer Edge (CE) may be realized as a physical node or a logical entity. From the network's perspective, a CE is treated as a peer Service Attachment Point (SAP) [RFC9408]. CEs can be dedicated to a single service (e.g., Layer 3 Virtual Private Network (VPN) or Layer 2 VPN) or can host multiple services (e.g., SFs [RFC7665]). A single AC, as viewed by the network provider, may be bound to one or more peer SAPs (e.g., "CE1" and "CE2"). For instance, as discussed in [RFC4364], multiple CEs can attach to a PE over the same AC. This approach is typically deployed when the Layer 2 infrastructure between the CE and the network supports a multipoint service. A single CE may also terminate multiple ACs (e.g., "CE3" and "CE4"), which may be carried over the same or distinct bearers.
ACSの例を図1に示します。顧客エッジ(CE)は、物理ノードまたは論理エンティティとして実現される場合があります。ネットワークの観点から見ると、CEはピアサービスアタッチメントポイント(SAP)[RFC9408]として扱われます。CESは、単一のサービス(レイヤー3仮想プライベートネットワーク(VPN)またはレイヤー2 VPNなど)に専念するか、複数のサービス(SFS [RFC7665]など)をホストすることができます。ネットワークプロバイダーによって表示される単一のACは、1つ以上のピアSAP(「CE1」および「CE2」など)にバインドされる場合があります。たとえば、[RFC4364]で説明したように、複数のCESが同じACを介してPEに付着できます。このアプローチは通常、CEとネットワークの間のレイヤー2インフラストラクチャがマルチポイントサービスをサポートするときに展開されます。単一のCEは、複数のACS(「CE3」および「CE4」など)を終了する場合があります。
.--------------------. | | .------. | .--. (b1) .-----. | +----. | | +---AC---+ | | CE1 | | | |PE+---AC---+ CE3 | '------' | .--. '--' (b2) '-----' +---AC--+PE| Network | .------. | '--' .--. (b3) .-----. | | | | | +---AC---+ | | CE2 +----' | |PE+---AC---+ CE4 | '------' | '--' (b3) '---+-' | .--. | | '----------+PE+------' | '--' | | | '-----------AC----------' (bx) = bearer Id x
Figure 1: Examples of ACs
図1:ACSの例
This document specifies a common module ("ietf-ac-common") for ACs (Section 5). The module is designed to be reusable by other models, thereby ensuring consistent AC structures among modules that manipulate ACs. For example, the common module can be reused by service models to expose AC as a Service (ACaaS) (e.g., [RFC9834]) or by service models that require binding a service to a set of ACs (e.g., RFC 9543 Network Slice Service [YANG-NSS])). It can also be used by network models to provision ACs (e.g., [RFC9835]) and device models, among others.
このドキュメントは、ACS(セクション5)の共通モジュール(「IETF-AC-Common」)を指定します。このモジュールは、他のモデルで再利用可能になるように設計されているため、ACSを操作するモジュール間の一貫したAC構造を保証します。たとえば、一般的なモジュールは、サービスモデル(ACAAS)(例えば[RFC9834])としてACを露出させるサービスモデルによって再利用できます。または、サービスをACSのセット(RFC 9543ネットワークスライスサービス[YANG-NSS]など)にバインドする必要があるサービスモデルが必要です。また、ネットワークモデルで使用して、ACS([RFC9835]など)やデバイスモデルなどをプロビジョニングすることもできます。
The common AC module eases data inheritance between modules (e.g., from service to network models as per [RFC8969]).
一般的なACモジュールは、モジュール間のデータ継承を容易にします(たとえば、[RFC8969]に従ってサービスからネットワークモデルまで)。
The YANG data model in this document conforms to the Network Management Datastore Architecture (NMDA) defined in [RFC8342].
このドキュメントのYangデータモデルは、[RFC8342]で定義されているネットワーク管理データストアアーキテクチャ(NMDA)に準拠しています。
The meanings of the symbols in the YANG tree diagrams are defined in [RFC8340].
ヤンツリー図のシンボルの意味は、[RFC8340]で定義されています。
LxSM refers to both the L2VPN Service Model (L2SM) [RFC8466] and the L3VPN Service Model (L3SM) [RFC8299].
LXSMは、L2VPNサービスモデル(L2SM)[RFC8466]とL3VPNサービスモデル(L3SM)[RFC8299]の両方を指します。
LxNM refers to both the L2VPN Network Model (L2NM) [RFC9291] and the L3VPN Network Model (L3NM) [RFC9182].
LXNMは、L2VPNネットワークモデル(L2NM)[RFC9291]とL3VPNネットワークモデル(L3NM)[RFC9182]の両方を指します。
This document uses the following term:
このドキュメントでは、次の用語を使用しています。
Bearer:
ベアラー:
A physical or logical link that connects a CE (or site) to a provider network.
CE(またはサイト)をプロバイダーネットワークに接続する物理的または論理的なリンク。
A bearer can be a wireless or wired link. One or multiple technologies can be used to build a bearer. The bearer type can be specified by a customer.
ベアラーは、ワイヤレスまたは有線リンクにすることができます。1つまたは複数のテクノロジーを使用して、担い手を構築できます。ベアラーのタイプは、顧客が指定できます。
The operator allocates a unique bearer reference to identify a bearer within its network (e.g., customer line identifier). Such a reference can be retrieved by a customer and then used in subsequent service placement requests to unambiguously identify where a service is to be bound.
オペレーターは、ネットワーク内のベアラーを識別するためのユニークなベアラーの参照を割り当てます(例:カスタマーライン識別子)。このようなリファレンスは、顧客が取得し、その後のサービス配置リクエストで使用して、サービスがどこにバインドされるかを明確に識別できます。
The concept of bearer can be generalized to refer to the required underlying connection for the provisioning of an AC.
ベアラーの概念は、ACのプロビジョニングに必要な根本接続を参照するために一般化できます。
One or multiple ACs may be hosted over the same bearer (e.g., multiple Virtual Local Area Networks (VLANs) on the same bearer that is provided by a physical link).
1 つまたは複数の AC は、同じベアラ (たとえば、物理リンクによって提供される同じベアラ上の複数の仮想ローカル エリア ネットワーク (VLAN)) 上でホストされる場合があります。
The names of data nodes are prefixed using the prefix associated with the corresponding imported YANG module as shown in Table 1.
データノードの名前は、表1に示すように、対応するインポートされたYangモジュールに関連付けられたプレフィックスを使用してプレフィックスされます。
+============+==================+========================+ | Prefix | Module | Reference | +============+==================+========================+ | inet | ietf-inet-types | Section 4 of [RFC6991] | +------------+------------------+------------------------+ | key-chain | ietf-key-chain | [RFC8177] | +------------+------------------+------------------------+ | nacm | ietf-netconf-acm | [RFC8341] | +------------+------------------+------------------------+ | vpn-common | ietf-vpn-common | [RFC9181] | +------------+------------------+------------------------+ | yang | ietf-yang-types | Section 3 of [RFC6991] | +------------+------------------+------------------------+
Table 1: Modules and Their Associated Prefixes
表1:モジュールとそれに関連するプレフィックス
Figure 2 depicts the relationship between the various AC data models:
図2は、さまざまなACデータモデル間の関係を示しています。
* "ietf-ac-common" (Section 5)
* 「ietf-ac-common」(セクション5)
* "ietf-bearer-svc" (Section 6.1 of [RFC9834])
* 「IETF-BEARER-SVC」([RFC9834]のセクション6.1)
* "ietf-ac-svc" (Section 6.2 of [RFC9834])
* 「IETF-AC-SVC」([RFC9834]のセクション6.2)
* "ietf-ac-ntw" [RFC9835]
* 「IETF-AC-NTW」[RFC9835]
* "ietf-ac-glue" [RFC9836]
* 「ietf-ac-glue」[RFC9836]
ietf-ac-common ^ ^ ^ | | | .----------' | '----------. | | | | | | ietf-ac-svc <--- ietf-bearer-svc | ^ ^ | | | | | '------------------------ ietf-ac-ntw | ^ | | | | '------------ ietf-ac-glue ----------' X --> Y: X imports Y
Figure 2: AC Data Models
図2:ACデータモデル
The "ietf-ac-common" module is imported by the "ietf-bearer-svc", "ietf-ac-svc", and "ietf-ac-ntw" modules. Bearers managed using the "ietf-bearer-svc" module may be referenced by service ACs managed using the "ietf-ac-svc" module. Similarly, a bearer managed using the "ietf-bearer-svc" module may list the set of ACs that use that bearer. To facilitate correlation between an AC service request and the actual AC provisioned in the network, "ietf-ac-ntw" leverages the AC references exposed by the "ietf-ac-svc" module. Furthermore, to bind Layer 2 VPN or Layer 3 VPN services with ACs, the "ietf-ac-glue" module augments the LxSM and LxNM with AC service references exposed by the "ietf-ac-svc" module and AC network references exposed by the "ietf-ac-ntw" module.
「IETF-AC-Common」モジュールは、「IETF-Bearer-SVC」、「IETF-AC-SVC」、および「IETF-AC-NTW」モジュールによってインポートされます。「IETF-BEARER-SVC」モジュールを使用して管理されたベアラーは、「IETF-AC-SVC」モジュールを使用して管理されたサービスACSによって参照できます。同様に、「IETF-BEARER-SVC」モジュールを使用して管理したベアラーは、そのベアラーを使用するACSのセットをリストできます。ACサービスリクエストとネットワークでプロビジョニングされた実際のACとの相関を促進するために、「IETF-AC-NTW」が「IETF-AC-SVC」モジュールによって公開されたAC参照を活用します。さらに、ACSを使用したレイヤー2 VPNまたはレイヤー3 VPNサービスをバインドするために、「IETF-AC-GLUE」モジュールは、「IETF-AC-SVC」モジュールとACネットワーク参照によって「IETF-AC-SVC」モジュールとACネットワーク参照が「IETF-AC-NTW」モジュールによって公開されたACサービス参照を使用してLXSMとLXNMを増強します。
The full tree diagram of the module is provided in Appendix A. Subtrees are provided in the following subsections for the reader's convenience.
モジュールのフルツリー図は、付録Aに記載されています。サブツリーは、読者の利便性のために以下のサブセクションに記載されています。
The module defines the following features:
モジュールは次の機能を定義します。
'layer2-ac':
「layer2-ac」:
Used to indicate support of ACs with Layer 2 properties.
レイヤ 2 プロパティを持つ AC のサポートを示すために使用されます。
'layer3-ac':
「layer3-ac」:
Used to indicate support of ACs with Layer 3 properties.
レイヤー3プロパティのACSのサポートを示すために使用されます。
'server-assigned-reference':
「サーバー割り当て - 参照」:
Used to indicate support of server-generated references to access relevant resources. Typically, a server can be a network controller or a router in a provider network.
関連するリソースにアクセスするためのサーバーで生成された参照のサポートを示すために使用されます。通常、サーバーは、プロバイダーネットワークのネットワークコントローラーまたはルーターにすることができます。
For example, a bearer request is first created using a name that is assigned by the client, but if this feature is supported, the request will also include a server-generated reference. That reference can be used when requesting the creation of an AC over the existing bearer.
たとえば、Bearerリクエストは最初にクライアントによって割り当てられた名前を使用して作成されますが、この機能がサポートされている場合、リクエストにはサーバーが生成したリファレンスも含まれます。その参照は、既存のベアラーよりもACの作成を要求するときに使用できます。
The module defines a set of identities, including the following:
モジュールは、以下を含む一連のアイデンティティを定義します。
'address-allocation-type':
「アドレスアロケーションタイプ」:
Used to specify the IP address allocation type in an AC. For example, this identity is used to indicate whether the provider network provides DHCP service, DHCP relay, or static addressing. Note that for the IPv6 case, Stateless Address Autoconfiguration (SLAAC) [RFC4862] can be used.
ACのIPアドレス割り当てタイプを指定するために使用されます。たとえば、このIDは、プロバイダーネットワークがDHCPサービス、DHCPリレー、または静的アドレス指定を提供するかどうかを示すために使用されます。IPv6の場合、Stateless Address Autoconfiguration(SLAAC)[RFC4862]を使用できることに注意してください。
'local-defined-next-hop':
'Local-defined-next-hop':
Used to specify next-hop actions. For example, this identity can be used to indicate an action to discard traffic for a given destination or treat traffic towards addresses within the specified next-hop prefix as though they are connected to a local link.
次のホップアクションを指定するために使用されます。たとえば、このIDは、特定の宛先のトラフィックを破棄するアクションを示すために使用できます。
'l2-tunnel-type':
'l2-tunnel-type':
Used to control the Layer 2 tunnel selection for an AC. The current version supports indicating pseudowire, Virtual Private LAN Service (VPLS), and Virtual eXtensible Local Area Network (VXLAN).
ACのレイヤー2トンネル選択を制御するために使用されます。現在のバージョンは、擬似ワイヤー、仮想プライベートLANサービス(VPLS)、および仮想拡張可能なローカルエリアネットワーク(VXLAN)を示すことをサポートしています。
'l3-tunnel-type':
'l3-tunnel-type':
Used to control the Layer 3 tunnel selection for an AC. Examples of such type are: IP-in-IP [RFC2003], IPsec [RFC4301], and Generic Routing Encapsulation (GRE) [RFC1701][RFC1702][RFC7676].
ACのレイヤー3トンネル選択を制御するために使用されます。そのようなタイプの例は、IP-in-IP [RFC2003]、IPSEC [RFC4301]、および汎用ルーティングカプセル化(GRE)[RFC1701] [RFC1702] [RFC7676]です。
'precedence-type':
'Prence-Type':
Used to indicate the redundancy type when requesting ACs. For example, this identity can be used to tag primary and secondary ACs.
ACを要求するときに冗長タイプを示すために使用されます。たとえば、このアイデンティティは、プライマリおよびセカンダリACのタグに使用できます。
'role':
'役割':
Used to indicate the type of an AC: User-to-Network Interface (UNI), Network-to-Network Interface (NNI), or public NNI.
ACのタイプを示すために使用されます:ユーザー間インターフェイス(UNI)、ネットワーク間インターフェイス(NNI)、またはパブリックNNI。
The reader may refer to [MEF6], [MEF17], [RFC6004], or [RFC6215] for examples of discussions regarding the use of UNI and NNI reference points.
読者は、UNIおよびNNIの基準点の使用に関する議論の例については、[MEF6]、[MEF17]、[RFC6004]、または[RFC6215]を指すことができます。
New administrative status types:
新しい管理ステータスタイプ:
In addition to the status types already defined in [RFC9181], this document defines:
[RFC9181]で既に定義されているステータスタイプに加えて、このドキュメントは次のように定義しています。
* 'awaiting-validation' to report that a request is pending an administrator approval.
* 「Validationを待っている」ために、リクエストが管理者の承認が保留されていることを報告します。
* 'awaiting-processing' to report that a request was approved and validated but is awaiting more processing before activation.
* リクエストが承認され、検証されたが、アクティベーション前により多くの処理を待っていることを報告するために「待機処理」。
* 'admin-prohibited' to report that a request cannot be handled because of administrative policies.
* 「管理者は、管理ポリシーのためにリクエストを処理できないことを報告する」と報告します。
* 'rejected' to report that a request was rejected due to reasons not covered by the other status types.
* 他のステータスタイプでカバーされていない理由により、リクエストが拒否されたことを報告するために「拒否されました」。
'bgp-role':
「BGPロール」:
Used to indicate the BGP role when establishing a BGP session per [RFC9234].
[RFC9234]ごとにBGPセッションを確立する際にBGPの役割を示すために使用されます。
The module also defines a set of reusable groupings, including the following:
モジュールは、以下を含む一連の再利用可能なグループも定義します。
'service-status' (Figure 3):
'Service-status'(図3):
Controls the administrative service status and reports the operational service status.
管理サービスのステータスを制御し、運用サービスのステータスを報告します。
'ac-profile-cfg' (Figure 3):
「AC-Profile-CFG」(図3):
A grouping with a set of valid provider profile identifiers. The following profiles are supported:
有効なプロバイダープロファイル識別子のセットを備えたグループ。次のプロファイルがサポートされています。
'encryption-profile-identifier':
'暗号化プロファイル識別子':
Refers to a set of policies related to the encryption setup that can be applied when provisioning an AC.
ACをプロビジョニングするときに適用できる暗号化セットアップに関連する一連のポリシーを指します。
'qos-profile-identifier':
「Qos-Profile-Identifier」:
Refers to a set of policies, such as classification, marking, and actions (e.g., [RFC3644]).
分類、マーキング、アクションなどの一連のポリシーを指します(例:[RFC3644])。
'failure-detection-profile-identifier':
'故障検出と義理の識別子':
Refers to a set of failure detection policies (e.g., Bidirectional Forwarding Detection (BFD) policies [RFC5880]) that can be invoked when building an AC.
ACを構築するときに呼び出すことができる一連の障害検出ポリシー(例:双方向転送検出(BFD)ポリシー[RFC5880])を指します。
'forwarding-profile-identifier':
「フォワーディングプロファイル識別子」:
Refers to the policies that apply to the forwarding of packets conveyed within an AC. Such policies may consist, for example, of applying Access Control Lists (ACLs).
AC内で伝えられるパケットの転送に適用されるポリシーを指します。このようなポリシーは、たとえば、アクセス制御リスト(ACLS)を適用することで構成される場合があります。
'routing-profile-identifier':
'Routing-Profile-Identifier':
Refers to a set of routing policies that will be invoked (e.g., BGP policies) when building an AC.
ACを構築するときに呼び出される一連のルーティングポリシー(BGPポリシーなど)を指します。
'op-instructions' (Figure 3):
「op-instructions」(図3):
Defines a set of parameters to specify basic scheduling instructions and report related events for a service request (e.g., AC or bearer) ('service-status'). Advanced scheduling groupings are defined in [YANG-SCHEDULE].
基本的なスケジューリング命令を指定し、サービス要求 (AC またはベアラーなど) の関連イベントを報告するためのパラメーターのセットを定義します ('service-status')。高度なスケジュールのグループ化は [YANG-SCHEDULE] で定義されます。
grouping service-status: +-- status +-- admin-status | +-- status? identityref | +--ro last-change? yang:date-and-time +--ro oper-status +--ro status? identityref +--ro last-change? yang:date-and-time grouping ac-profile-cfg: +-- valid-provider-identifiers +-- encryption-profile-identifier* [id] | +-- id string +-- qos-profile-identifier* [id] | +-- id string +-- failure-detection-profile-identifier* [id] | +-- id string +-- forwarding-profile-identifier* [id] | +-- id string +-- routing-profile-identifier* [id] +-- id string grouping op-instructions: +-- requested-start? yang:date-and-time +-- requested-stop? yang:date-and-time +--ro actual-start? yang:date-and-time +--ro actual-stop? yang:date-and-time
Figure 3: Service Status, Profiles, and Operational Instructions Groupings
図3:サービスステータス、プロファイル、および運用手順グループ
Layer 2 encapsulations (Figure 4):
レイヤー2カプセル(図4):
Groupings for the following encapsulation schemes are supported: dot1Q, QinQ, and priority-tagged.
以下のカプセル化スキームのグループは、DOT1Q、QINQ、および優先度タグ付きのサポートされています。
Layer 2 tunnel services (Figure 4):
レイヤー2トンネルサービス(図4):
These groupings are used to define Layer 2 tunnel services that may be needed for the activation of an AC. Examples of supported Layer 2 services are the pseudowire (Section 6.1 of [RFC8077]), VPLS, or VXLAN [RFC7348].
これらのグループは、ACの活性化に必要なレイヤー2トンネルサービスを定義するために使用されます。サポートされているレイヤー2サービスの例は、擬似ワイヤ([RFC8077]のセクション6.1)、VPLS、またはVXLAN [RFC7348]です。
grouping dot1q: +-- tag-type? identityref +-- cvlan-id? uint16 grouping priority-tagged: +-- tag-type? identityref grouping qinq: +-- tag-type? identityref +-- svlan-id? uint16 +-- cvlan-id? uint16 grouping pseudowire: +-- vcid? uint32 +-- far-end? union grouping vpls: +-- vcid? uint32 +-- far-end* union grouping vxlan: +-- vni-id? uint32 +-- peer-mode? identityref +-- peer-ip-address* inet:ip-address grouping l2-tunnel-service: +-- type? identityref +-- pseudowire | +-- vcid? uint32 | +-- far-end? union +-- vpls | +-- vcid? uint32 | +-- far-end* union +-- vxlan +-- vni-id? uint32 +-- peer-mode? identityref +-- peer-ip-address* inet:ip-address
Figure 4: Layer 2 Connection Groupings
図4:レイヤー2接続グループ
Layer 3 address allocation (Figure 5):
レイヤー3アドレス割り当て(図5):
Defines both IPv4 and IPv6 groupings to specify IP address allocation over an AC. Both dynamic and static address schemes are supported.
IPv4グループとIPv6グループの両方を定義して、ACでIPアドレス割り当てを指定します。動的アドレススキームと静的アドレススキームの両方がサポートされています。
For both IPv4 and IPv6, 'address-allocation-type' is used to indicate the IP address allocation mode to activate. When 'address-allocation-type' is set to 'provider-dhcp', DHCP assignments can be made locally or by an external DHCP server. Such behavior is controlled by setting 'dhcp-service-type'.
IPv4とIPv6の両方で、「アドレスアロケーションタイプ」 'を使用して、アクティブになるIPアドレス割り当てモードを示します。「Address-Allocation-Type」が「プロバイダーDHCP」に設定されると、DHCPの割り当てはローカルまたは外部DHCPサーバーによって作成できます。このような動作は、「DHCP-Service-Type」を設定することにより制御されます。
Note that if 'address-allocation-type' is set to 'slaac', the Prefix Information option of Router Advertisements that will be issued for SLAAC purposes will carry the IPv6 prefix that is determined by 'local-address' and 'prefix-length'.
「Address-Allocation-Type」が「SLAAC」に設定されている場合、SLAAC目的で発行されるルーター広告のプレフィックス情報オプションは、「ローカルアドレス」と「プレフィックス長」によって決定されるIPv6プレフィックスを運ぶことに注意してください。
IP connections (Figure 5):
IP接続(図5):
Defines IPv4 and IPv6 groupings for managing Layer 3 connectivity over an AC. Both basic and more elaborated IP connection groupings are supported.
ACでレイヤー3接続を管理するためのIPv4およびIPv6グループを定義します。基本的およびより詳細なIP接続グループの両方がサポートされています。
grouping ipv4-allocation-type: +-- prefix-length? uint8 +-- address-allocation-type? identityref grouping ipv6-allocation-type: +-- prefix-length? uint8 +-- address-allocation-type? identityref grouping ipv4-connection-basic: +-- prefix-length? uint8 +-- address-allocation-type? identityref +-- (allocation-type)? +--:(dynamic) +-- (provider-dhcp)? | +--:(dhcp-service-type) | +-- dhcp-service-type? enumeration +-- (dhcp-relay)? +--:(customer-dhcp-servers) +-- customer-dhcp-servers +-- server-ip-address* inet:ipv4-address grouping ipv6-connection-basic: +-- prefix-length? uint8 +-- address-allocation-type? identityref +-- (allocation-type)? +--:(dynamic) +-- (provider-dhcp)? | +--:(dhcp-service-type) | +-- dhcp-service-type? enumeration +-- (dhcp-relay)? +--:(customer-dhcp-servers) +-- customer-dhcp-servers +-- server-ip-address* inet:ipv6-address grouping ipv4-connection: +-- local-address? inet:ipv4-address +-- virtual-address? inet:ipv4-address +-- prefix-length? uint8 +-- address-allocation-type? identityref +-- (allocation-type)? +--:(dynamic) | +-- (address-assign)? | | +--:(number) | | | +-- number-of-dynamic-address? uint16 | | +--:(explicit) | | +-- customer-addresses | | +-- address-pool* [pool-id] | | +-- pool-id string | | +-- start-address inet:ipv4-address | | +-- end-address? inet:ipv4-address | +-- (provider-dhcp)? | | +--:(dhcp-service-type) | | +-- dhcp-service-type? enumeration | +-- (dhcp-relay)? | +--:(customer-dhcp-servers) | +-- customer-dhcp-servers | +-- server-ip-address* inet:ipv4-address +--:(static-addresses) +-- address* [address-id] +-- address-id string +-- customer-address? inet:ipv4-address grouping ipv6-connection: +-- local-address? inet:ipv6-address +-- virtual-address? inet:ipv6-address +-- prefix-length? uint8 +-- address-allocation-type? identityref +-- (allocation-type)? +--:(dynamic) | +-- (address-assign)? | | +--:(number) | | | +-- number-of-dynamic-address? uint16 | | +--:(explicit) | | +-- customer-addresses | | +-- address-pool* [pool-id] | | +-- pool-id string | | +-- start-address inet:ipv6-address | | +-- end-address? inet:ipv6-address | +-- (provider-dhcp)? | | +--:(dhcp-service-type) | | +-- dhcp-service-type? enumeration | +-- (dhcp-relay)? | +--:(customer-dhcp-servers) | +-- customer-dhcp-servers | +-- server-ip-address* inet:ipv6-address +--:(static-addresses) +-- address* [address-id] +-- address-id string +-- customer-address? inet:ipv6-address
Figure 5: Layer 3 Connection Groupings
図5:レイヤー3接続グループ
Routing parameters & Operations, Administration, and Maintenance (OAM) (Figure 6):
ルーティングパラメーターと操作、管理、およびメンテナンス(OAM)(図6):
In addition to static routing, the module supports the following routing protocols: BGP [RFC4271], OSPF [RFC4577] [RFC6565], IS-IS [ISO10589][RFC1195][RFC5308], and RIP [RFC2453]. For all supported routing protocols, 'address-family' indicates whether IPv4, IPv6, or both address families are to be activated. For example, this parameter is used to determine whether RIPv2 [RFC2453], RIP Next Generation (RIPng), or both are to be enabled [RFC2080]. More details about supported routing groupings are provided hereafter:
静的ルーティングに加えて、モジュールは次のルーティング プロトコルをサポートします: BGP [RFC4271]、OSPF [RFC4577] [RFC6565]、IS-IS [ISO10589][RFC1195][RFC5308]、および RIP [RFC2453]。サポートされているすべてのルーティング プロトコルについて、「address-family」は、IPv4、IPv6、または両方のアドレス ファミリをアクティブにするかどうかを示します。たとえば、このパラメータは、RIPv2 [RFC2453]、RIP Next Generation (RIPng)、またはその両方を有効にするかどうかを決定するために使用されます [RFC2080]。サポートされているルーティング グループの詳細については、以下で説明します。
Authentication:
認証:
These groupings include the required information to manage the authentication of OSPF, IS-IS, BGP, and RIP. The groupings support local specification of authentication keys and the associated authentication algorithm to accommodate legacy implementations that do not support key chains [RFC8177].
これらのグループには、OSPF、IS-IS、BGP、およびRIPの認証を管理するために必要な情報が含まれます。グループは、認証キーと関連する認証アルゴリズムのローカル仕様をサポートして、キーチェーン[RFC8177]をサポートしないレガシーの実装に対応します。
Note that this version of the common AC model covers authentication options that are common to both OSPFv2 [RFC4577] and OSPFv3 [RFC6565]; as such, the model does not support [RFC4552].
一般的なACモデルのこのバージョンは、OSPFV2 [RFC4577]とOSPFV3 [RFC6565]の両方に共通の認証オプションをカバーしていることに注意してください。そのため、モデルは[RFC4552]をサポートしていません。
Similar to [RFC9182], this version of the common AC model assumes that parameters specific to the TCP Authentication Option (TCP-AO) are preconfigured as part of the key chain that is referenced in the model. No assumption is made about how such a key chain is preconfigured. However, the structure of the key chain should cover data nodes beyond those in [RFC8177], mainly SendID and RecvID (Section 3.1 of [RFC5925]).
[RFC9182]と同様に、このバージョンの共通ACモデルは、TCP認証オプション(TCP-AO)に固有のパラメーターが、モデルで参照されているキーチェーンの一部として事前に設定されていると仮定しています。このようなキーチェーンがどのように事前に構成されているかについての仮定はありません。ただし、キーチェーンの構造は、[RFC8177]の構造を超えてデータノードをカバーする必要があります。
BGP peer groups ('bgp-peer-group-without-name' and 'bgp-peer-group-with-name'):
BGPピアグループ( 'BGP-PEER-GROUP-WithOut-Name'および 'BGP-PEER-GROUP-WITH-NAME'):
Includes a set of parameters to identify a BGP peer group. Such a group can be defined by providing a local Autonomous System Number (ASN), a customer's ASN, and the address families to be activated for this group. BGP peer groups can be identified by a name ('bgp-peer-group-with-name').
BGPピアグループを識別するパラメーターのセットが含まれています。このようなグループは、ローカル自律システム番号(ASN)、顧客のASN、およびこのグループのアクティブ化される住所ファミリを提供することにより定義できます。BGPピアグループは、名前(「BGP-PEER-GROUP WITH-NAME」)で識別できます。
Basic OSPF and IS-IS parameters ('ospf-basic' and 'isis-basic'):
基本的なOSPFおよびIS-ISパラメーター(「OSPF-Basic」および「ISIS-Basic」):
These groupings include the minimal set of routing configuration that is required for the activation of OSPF and IS-IS.
これらのグループには、OSPFおよびIS-ISのアクティブ化に必要なルーティング構成の最小セットが含まれます。
Static routing:
静的ルーティング:
Parameters to configure an entry or a list of IP static routing entries.
エントリまたはIP staticルーティングエントリのリストを構成するパラメーター。
The 'redundancy-group' grouping lists the groups to which an AC belongs [RFC9181]. For example, the 'group-id' is used to associate redundancy or protection constraints of ACs.
「冗長グループ」グループには、ACが属するグループ[RFC9181]がリストされています。たとえば、「Group-ID」は、ACSの冗長性または保護の制約を関連付けるために使用されます。
grouping bgp-authentication: +-- authentication +-- enabled? boolean +-- keying-material +-- (option)? +--:(ao) | +-- enable-ao? boolean | +-- ao-keychain? key-chain:key-chain-ref +--:(md5) | +-- md5-keychain? key-chain:key-chain-ref +--:(explicit) +-- key-id? uint32 +-- key? string +-- crypto-algorithm? identityref grouping ospf-authentication: +-- authentication +-- enabled? boolean +-- keying-material +-- (option)? +--:(auth-key-chain) | +-- key-chain? key-chain:key-chain-ref +--:(auth-key-explicit) +-- key-id? uint32 +-- key? string +-- crypto-algorithm? identityref grouping isis-authentication: +-- authentication +-- enabled? boolean +-- keying-material +-- (option)? +--:(auth-key-chain) | +-- key-chain? key-chain:key-chain-ref +--:(auth-key-explicit) +-- key-id? uint32 +-- key? string +-- crypto-algorithm? identityref grouping rip-authentication: +-- authentication +-- enabled? boolean +-- keying-material +-- (option)? +--:(auth-key-chain) | +-- key-chain? key-chain:key-chain-ref +--:(auth-key-explicit) +-- key? string +-- crypto-algorithm? identityref grouping bgp-peer-group-without-name: +-- local-as? inet:as-number +-- peer-as? inet:as-number +-- address-family? identityref +-- role? identityref grouping bgp-peer-group-with-name: +-- name? string +-- local-as? inet:as-number +-- peer-as? inet:as-number +-- address-family? identityref +-- role? identityref grouping ospf-basic: +-- address-family? identityref +-- area-id yang:dotted-quad +-- metric? uint16 grouping isis-basic: +-- address-family? identityref +-- area-address area-address grouping ipv4-static-rtg-entry: +-- lan? inet:ipv4-prefix +-- lan-tag? string +-- next-hop? union +-- metric? uint32 grouping ipv4-static-rtg: +-- ipv4-lan-prefixes* [lan next-hop] {vpn-common:ipv4}? +-- lan inet:ipv4-prefix +-- lan-tag? string +-- next-hop union +-- metric? uint32 +-- status +-- admin-status | +-- status? identityref | +--ro last-change? yang:date-and-time +--ro oper-status +--ro status? identityref +--ro last-change? yang:date-and-time grouping ipv6-static-rtg-entry: +-- lan? inet:ipv6-prefix +-- lan-tag? string +-- next-hop? union +-- metric? uint32 grouping ipv6-static-rtg: +-- ipv6-lan-prefixes* [lan next-hop] {vpn-common:ipv6}? +-- lan inet:ipv6-prefix +-- lan-tag? string +-- next-hop union +-- metric? uint32 +-- status +-- admin-status | +-- status? identityref | +--ro last-change? yang:date-and-time +--ro oper-status +--ro status? identityref +--ro last-change? yang:date-and-time grouping bfd: +-- holdtime? uint32 grouping redundancy-group: +-- group* [group-id] +-- group-id? string +-- precedence? identityref
Figure 6: Routing & OAM Groupings
図6:ルーティングとOAMのグループ
Bandwidth parameters (Figure 7):
帯域幅パラメーター(図7):
Bandwidth parameters can be represented using the Committed Information Rate (CIR), the Excess Information Rate (EIR), or the Peak Information Rate (PIR).
帯域幅パラメータは、認定情報レート (CIR)、超過情報レート (EIR)、またはピーク情報レート (PIR) を使用して表すことができます。
These parameters can be provided per bandwidth type. Type values are taken from [RFC9181]. For example, the following values can be used:
これらのパラメーターは、帯域幅タイプごとに提供できます。タイプ値は[RFC9181]から取得されます。たとえば、次の値を使用できます。
'bw-per-cos':
'BW-Per-Cos':
The bandwidth is per Class of Service (CoS).
帯域幅はサービス クラス (CoS) ごとに異なります。
'bw-per-site':
「bw-per-site」:
The bandwidth is for all ACs that belong to the same site.
帯域幅は、同じサイトに属するすべてのACSのものです。
grouping bandwidth-parameters: +-- cir? uint64 +-- cbs? uint64 +-- eir? uint64 +-- ebs? uint64 +-- pir? uint64 +-- pbs? uint64 grouping bandwidth-per-type: +-- bandwidth* [bw-type] +-- bw-type identityref +-- (type)? +--:(per-cos) | +-- cos* [cos-id] | +-- cos-id uint8 | +-- cir? uint64 | +-- cbs? uint64 | +-- eir? uint64 | +-- ebs? uint64 | +-- pir? uint64 | +-- pbs? uint64 +--:(other) +-- cir? uint64 +-- cbs? uint64 +-- eir? uint64 +-- ebs? uint64 +-- pir? uint64 +-- pbs? uint64
Figure 7: Bandwidth Groupings
図7:帯域幅のグループ
This module uses types defined in [RFC6991], [RFC8177], [RFC9181], and [IEEE_802.1Q].
このモジュールは、[RFC6991]、[RFC8177]、[RFC9181]、および[IEEE_802.1Q]で定義されたタイプを使用します。
module ietf-ac-common { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-ac-common"; prefix ac-common; import ietf-vpn-common { prefix vpn-common; reference "RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3 VPNs"; } import ietf-netconf-acm { prefix nacm; reference "RFC 8341: Network Configuration Access Control Model"; } import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types, Section 4"; } import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types, Section 3"; } import ietf-key-chain { prefix key-chain; reference "RFC 8177: YANG Data Model for Key Chains"; } organization "IETF OPSAWG (Operations and Management Area Working Group)"; contact "WG Web: <https://datatracker.ietf.org/wg/opsawg/> WG List: <mailto:opsawg@ietf.org> Editor: Mohamed Boucadair <mailto:mohamed.boucadair@orange.com> Editor: Richard Roberts <mailto:rroberts@juniper.net> Author: Oscar Gonzalez de Dios <mailto:oscar.gonzalezdedios@telefonica.com> Author: Samier Barguil <mailto:ssamier.barguil_giraldo@nokia.com> Author: Bo Wu <mailto:lana.wubo@huawei.com>"; description "This YANG module defines a common attachment circuit (AC) YANG module with a set of reusable features, types, identities, and groupings. Copyright (c) 2025 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC 9833; see the RFC itself for full legal notices."; revision 2025-09-29 { description "Initial revision."; reference "RFC 9833: A Common YANG Data Model for Attachment Circuits"; } /****************************Features************************/ feature layer2-ac { description "Indicates support of Layer 2 ACs."; } feature layer3-ac { description "Indicates support of Layer 3 ACs."; } feature server-assigned-reference { description "Indicates support for server-generated references and use of such references to access related resources."; } /****************************Identities************************/ // IP address allocation types identity address-allocation-type { description "Base identity for address allocation type on the AC."; } identity provider-dhcp { base address-allocation-type; description "The provider's network provides a DHCP service to the customer."; } identity provider-dhcp-relay { base address-allocation-type; description "The provider's network provides a DHCP relay service to the customer."; } identity provider-dhcp-slaac { if-feature "vpn-common:ipv6"; base address-allocation-type; description "The provider's network provides a DHCP service to the customer as well as IPv6 Stateless Address Autoconfiguration (SLAAC)."; reference "RFC 4862: IPv6 Stateless Address Autoconfiguration"; } identity static-address { base address-allocation-type; description "The provider's network provides static IP addressing to the customer."; } identity slaac { if-feature "vpn-common:ipv6"; base address-allocation-type; description "The provider's network uses IPv6 SLAAC to provide addressing to the customer."; reference "RFC 4862: IPv6 Stateless Address Autoconfiguration"; } identity dynamic-infra { base address-allocation-type; description "The IP address is dynamically allocated by the hosting infrastructure."; } // next-hop actions identity local-defined-next-hop { description "Base identity of local defined next hops."; } identity discard { base local-defined-next-hop; description "Indicates an action to discard traffic for the corresponding destination."; } identity local-link { base local-defined-next-hop; description "Treat traffic towards addresses within the specified next-hop prefix as though they are connected to a local link."; } // Layer 2 tunnel types identity l2-tunnel-type { description "Base identity for Layer 2 tunnel selection for an AC."; } identity pseudowire { base l2-tunnel-type; description "Pseudowire tunnel termination for the AC."; } identity vpls { base l2-tunnel-type; description "Virtual Private LAN Service (VPLS) tunnel termination for the AC."; } identity vxlan { base l2-tunnel-type; description "Virtual eXtensible Local Area Network (VXLAN) tunnel termination for the AC."; } // Layer 3 tunnel types identity l3-tunnel-type { description "Base identity for Layer 3 tunnel selection for an AC."; } identity ip-in-ip { base l3-tunnel-type; description "IP-in-IP tunneling."; reference "RFC 2003: IP Encapsulation within IP"; } identity ipsec { base l3-tunnel-type; description "IP Security (IPsec)."; reference "RFC 4301: Security Architecture for the Internet Protocol"; } identity gre { base l3-tunnel-type; description "Generic Routing Encapsulation (GRE)."; reference "RFC 1701: Generic Routing Encapsulation (GRE) RFC 1702: Generic Routing Encapsulation over IPv4 networks RFC 7676: IPv6 Support for Generic Routing Encapsulation (GRE)"; } // Tagging precedence identity precedence-type { description "Redundancy type. Attachment to a network can be created with primary and secondary tagging."; } identity primary { base precedence-type; description "Identifies the main AC."; } identity secondary { base precedence-type; description "Identifies a secondary AC."; } // AC type identity role { description "Base identity for the network role of an AC."; } identity uni { base role; description "User-to-Network Interface (UNI)."; } identity nni { base role; description "Network-to-Network Interface (NNI)."; } identity public-nni { base role; description "Public peering. This is typically set using a shared network, such as an Internet Exchange Point (IXP)."; } // More Admin status types identity awaiting-validation { base vpn-common:administrative-status; description "This administrative status reflects that a request is pending an administrator approval."; } identity awaiting-processing { base vpn-common:administrative-status; description "This administrative status reflects that a request was approved and validated but is awaiting more processing before activation."; } identity admin-prohibited { base vpn-common:administrative-status; description "This administrative status reflects that a request cannot be handled because of administrative policies."; } identity rejected { base vpn-common:administrative-status; description "This administrative status reflects that a request was rejected because, e.g., there are no sufficient resources or other reasons not covered by the other status types."; } // BGP role identity bgp-role { description "Used to indicate the BGP role when establishing a BGP session."; reference "RFC 9234: Route Leak Prevention and Detection Using Roles in UPDATE and OPEN Messages, Section 4"; } identity provider { base bgp-role; description "The local AS is a transit provider of the remote AS."; } identity client { base bgp-role; description "The local AS is a transit customer of the remote AS."; } identity rs { base bgp-role; description "The local AS is a Route Server (RS)."; } identity rs-client { base bgp-role; description "The local AS is a client of an RS, and the RS is the remote AS."; } identity peer { base bgp-role; description "The local and remote ASes have a peering relationship."; } /****************************Typedefs************************/ typedef predefined-next-hop { type identityref { base local-defined-next-hop; } description "Predefined next-hop designation for locally generated routes."; } typedef area-address { type string { pattern '[0-9A-Fa-f]{2}(\.[0-9A-Fa-f]{4}){0,6}'; } description "This type defines the area address format."; } /************************Reusable groupings********************/ /**** Service Status ****/ grouping service-status { description "Service status grouping."; container status { description "Service status."; container admin-status { description "Administrative service status."; leaf status { type identityref { base vpn-common:administrative-status; } description "Administrative service status."; } leaf last-change { type yang:date-and-time; config false; description "Indicates the actual date and time of the service status change."; } } container oper-status { config false; description "Operational service status."; uses vpn-common:oper-status-timestamp; } } } /**** A set of profiles ****/ grouping ac-profile-cfg { description "Grouping for AC profile configuration."; container valid-provider-identifiers { description "Container for valid provider profile identifiers. The profiles only have significance within the service provider's administrative domain."; list encryption-profile-identifier { key "id"; description "List of encryption profile identifiers."; leaf id { type string; description "Identification of the encryption profile to be used."; } } list qos-profile-identifier { key "id"; description "List of QoS profile identifiers."; leaf id { type string; description "Identification of the QoS profile to be used."; } } list failure-detection-profile-identifier { key "id"; description "List of BFD profile identifiers."; leaf id { type string; description "Identification of the failure detection (e.g., BFD) profile to be used."; } } list forwarding-profile-identifier { key "id"; description "List of forwarding profile identifiers."; leaf id { type string; description "Identification of the forwarding profile to be used."; } } list routing-profile-identifier { key "id"; description "List of routing profile identifiers."; leaf id { type string; description "Identification of the routing profile to be used by the routing protocols over an AC."; } } nacm:default-deny-write; } } /**** Operational instructions ****/ grouping op-instructions { description "Scheduling instructions."; leaf requested-start { type yang:date-and-time; description "Indicates the requested date and time when the service is expected to be active."; } leaf requested-stop { type yang:date-and-time; description "Indicates the requested date and time when the service is expected to be disabled."; } leaf actual-start { type yang:date-and-time; config false; description "Indicates the actual date and time when the service actually was enabled."; } leaf actual-stop { type yang:date-and-time; config false; description "Indicates the actual date and time when the service actually was disabled."; } } /**** Layer 2 encapsulations ****/ // Dot1q grouping dot1q { description "Defines a grouping for tagged interfaces."; leaf tag-type { type identityref { base vpn-common:tag-type; } description "Tag type."; } leaf cvlan-id { type uint16 { range "1..4094"; } description "VLAN identifier."; } } // priority-tagged grouping priority-tagged { description "Priority tagged."; leaf tag-type { type identityref { base vpn-common:tag-type; } description "Tag type."; } } // QinQ grouping qinq { description "Includes QinQ parameters."; leaf tag-type { type identityref { base vpn-common:tag-type; } description "Tag type."; } leaf svlan-id { type uint16 { range "1..4094"; } description "Service VLAN (S-VLAN) identifier."; } leaf cvlan-id { type uint16 { range "1..4094"; } description "Customer VLAN (C-VLAN) identifier."; } } /**** Layer 2 tunnel services ****/ // pseudowire (PW) grouping pseudowire { description "Includes pseudowire termination parameters."; leaf vcid { type uint32; description "Indicates a PW or virtual circuit (VC) identifier."; } leaf far-end { type union { type uint32; type inet:ip-address; } description "Neighbor reference."; reference "RFC 8077: Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP), Section 6.1"; } } // VPLS grouping vpls { description "VPLS termination parameters."; leaf vcid { type uint32; description "VC identifier."; } leaf-list far-end { type union { type uint32; type inet:ip-address; } description "Neighbor reference."; } } // VXLAN grouping vxlan { description "VXLAN termination parameters."; leaf vni-id { type uint32; description "VXLAN Network Identifier (VNI)."; } leaf peer-mode { type identityref { base vpn-common:vxlan-peer-mode; } description "Specifies the VXLAN access mode. By default, the peer mode is set to 'static-mode'."; } leaf-list peer-ip-address { type inet:ip-address; description "List of a peer's IP addresses."; } } // Layer 2 Tunnel service grouping l2-tunnel-service { description "Defines a Layer 2 tunnel termination."; leaf type { type identityref { base l2-tunnel-type; } description "Selects the tunnel termination type for an AC."; } container pseudowire { when "derived-from-or-self(../type, 'ac-common:pseudowire')" { description "Only applies when the Layer 2 service type is 'pseudowire'."; } description "Includes pseudowire termination parameters."; uses pseudowire; } container vpls { when "derived-from-or-self(../type, 'ac-common:vpls')" { description "Only applies when the Layer 2 service type is 'vpls'."; } description "VPLS termination parameters."; uses vpls; } container vxlan { when "derived-from-or-self(../type, 'ac-common:vxlan')" { description "Only applies when the Layer 2 service type is 'vxlan'."; } description "VXLAN termination parameters."; uses vxlan; } } /**** Layer 3 connection *****/ // IPv4 allocation type grouping ipv4-allocation-type { description "IPv4-specific parameters."; leaf prefix-length { type uint8 { range "0..32"; } description "Subnet prefix length expressed in bits. It is applied to both local and customer addresses."; } leaf address-allocation-type { type identityref { base address-allocation-type; } must "not(derived-from-or-self(current(), 'ac-common:slaac') " + "or derived-from-or-self(current(), " + "'ac-common:provider-dhcp-slaac'))" { error-message "SLAAC is only applicable to IPv6."; } description "Defines how IPv4 addresses are allocated to the peer termination points."; } } // IPv6 allocation type grouping ipv6-allocation-type { description "IPv6-specific parameters."; leaf prefix-length { type uint8 { range "0..128"; } description "Subnet prefix length expressed in bits. It is applied to both local and customer addresses."; } leaf address-allocation-type { type identityref { base address-allocation-type; } description "Defines how IPv6 addresses are allocated to the peer termination points."; } } // Basic parameters for an IPv4 connection grouping ipv4-connection-basic { description "Basic set for IPv4-specific parameters for the connection."; uses ipv4-allocation-type; choice allocation-type { description "Choice of the IPv4 address allocation."; case dynamic { description "When the addresses are allocated by DHCP or other dynamic means local to the infrastructure."; choice provider-dhcp { description "Parameters related to DHCP-allocated addresses. IP addresses are allocated by DHCP, which is provided by the operator."; leaf dhcp-service-type { type enumeration { enum server { description "Local DHCP server."; } enum relay { description "Local DHCP relay. DHCP requests are relayed to a provider's server."; } } description "Indicates the type of DHCP service to be enabled on an AC."; } } choice dhcp-relay { description "The DHCP relay is provided by the operator."; container customer-dhcp-servers { description "Container for a list of the customer's DHCP servers."; leaf-list server-ip-address { type inet:ipv4-address; description "IPv4 addresses of the customer's DHCP server."; } } } } } } // Basic parameters for an IPv6 connection grouping ipv6-connection-basic { description "Basic set for IPv6-specific parameters for the connection."; uses ipv6-allocation-type; choice allocation-type { description "Choice of the IPv6 address allocation."; case dynamic { description "When the addresses are allocated by DHCP or other dynamic means local to the infrastructure."; choice provider-dhcp { description "Parameters related to DHCP-allocated addresses. IP addresses are allocated by DHCP, which is provided by the operator."; leaf dhcp-service-type { type enumeration { enum server { description "Local DHCP server."; } enum relay { description "Local DHCP relay. DHCP requests are relayed to a provider's server."; } } description "Indicates the type of DHCP service to be enabled on the AC."; } } choice dhcp-relay { description "The DHCP relay is provided by the operator."; container customer-dhcp-servers { description "Container for a list of the customer's DHCP servers."; leaf-list server-ip-address { type inet:ipv6-address; description "IPv6 addresses of the customer's DHCP server."; } } } } } } // Full parameters for the IPv4 connection grouping ipv4-connection { description "IPv4-specific connection parameters."; leaf local-address { type inet:ipv4-address; description "The IP address used at the provider's interface."; } leaf virtual-address { type inet:ipv4-address; description "This address may be used for redundancy purposes."; } uses ipv4-allocation-type; choice allocation-type { description "Choice of the IPv4 address allocation."; case dynamic { description "When the addresses are allocated by DHCP or other dynamic means local to the infrastructure."; choice address-assign { description "A choice for how IPv4 addresses are assigned."; case number { leaf number-of-dynamic-address { type uint16; description "Specifies the number of IP addresses to be assigned to the customer on the AC."; } } case explicit { container customer-addresses { description "Container for customer addresses to be allocated using DHCP."; list address-pool { key "pool-id"; description "Describes IP addresses to be dynamically allocated. When only 'start-address' is present, it represents a single address. When both 'start-address' and 'end-address' are specified, it implies a range inclusive of both addresses."; leaf pool-id { type string; description "A pool identifier for the address range from 'start-address' to 'end-address'."; } leaf start-address { type inet:ipv4-address; mandatory true; description "Indicates the first address in the pool."; } leaf end-address { type inet:ipv4-address; description "Indicates the last address in the pool."; } } } } } choice provider-dhcp { description "Parameters related to DHCP-allocated addresses. IP addresses are allocated by DHCP, which is provided by the operator."; leaf dhcp-service-type { type enumeration { enum server { description "Local DHCP server."; } enum relay { description "Local DHCP relay. DHCP requests are relayed to a provider's server."; } } description "Indicates the type of DHCP service to be enabled on this AC."; } } choice dhcp-relay { description "The DHCP relay is provided by the operator."; container customer-dhcp-servers { description "Container for a list of the customer's DHCP servers."; leaf-list server-ip-address { type inet:ipv4-address; description "IPv4 addresses of the customer's DHCP server."; } } } } case static-addresses { description "Lists the IPv4 addresses that are used."; list address { key "address-id"; ordered-by user; description "Lists the IPv4 addresses that are used. The first address of the list is the primary address of the connection."; leaf address-id { type string; description "An identifier of the static IPv4 address."; } leaf customer-address { type inet:ipv4-address; description "An IPv4 address of the customer side."; } } } } } // Full parameters for the IPv6 connection grouping ipv6-connection { description "IPv6-specific connection parameters."; leaf local-address { type inet:ipv6-address; description "IPv6 address of the provider side."; } leaf virtual-address { type inet:ipv6-address; description "This address may be used for redundancy purposes."; } uses ipv6-allocation-type; choice allocation-type { description "Choice of the IPv6 address allocation."; case dynamic { description "When the addresses are allocated by DHCP or other dynamic means local to the infrastructure."; choice address-assign { description "A choice for how IPv6 addresses are assigned."; case number { leaf number-of-dynamic-address { type uint16; description "Specifies the number of IP addresses to be assigned to the customer on this access."; } } case explicit { container customer-addresses { description "Container for customer addresses to be allocated using DHCP."; list address-pool { key "pool-id"; description "Describes IP addresses to be dynamically allocated. When only 'start-address' is present, it represents a single address. When both 'start-address' and 'end-address' are specified, it implies a range inclusive of both addresses."; leaf pool-id { type string; description "A pool identifier for the address range from 'start-address' to 'end-address'."; } leaf start-address { type inet:ipv6-address; mandatory true; description "Indicates the first address in the pool."; } leaf end-address { type inet:ipv6-address; description "Indicates the last address in the pool."; } } } } } choice provider-dhcp { description "Parameters related to DHCP-allocated addresses. IP addresses are allocated by DHCP, which is provided by the operator."; leaf dhcp-service-type { type enumeration { enum server { description "Local DHCP server."; } enum relay { description "Local DHCP relay. DHCP requests are relayed to a provider's server."; } } description "Indicates the type of DHCP service to be enabled on this access."; } } choice dhcp-relay { description "The DHCP relay is provided by the operator."; container customer-dhcp-servers { description "Container for a list of the customer's DHCP servers."; leaf-list server-ip-address { type inet:ipv6-address; description "IPv6 addresses of the customer's DHCP server."; } } } } case static-addresses { description "Lists the IPv6 addresses that are used by the customer."; list address { key "address-id"; ordered-by user; description "Lists the IPv6 addresses that are used. The first address of the list is the primary IP address of the connection."; leaf address-id { type string; description "An identifier of the static IPv6 address."; } leaf customer-address { type inet:ipv6-address; description "An IPv6 address of the customer side."; } } } } } /**** Routing ****/ // Routing authentication grouping bgp-authentication { description "Grouping for BGP authentication parameters."; container authentication { description "Container for BGP authentication parameters."; leaf enabled { type boolean; description "Enables or disables authentication."; } container keying-material { when "../enabled = 'true'"; description "Container for describing how a BGP routing session is to be secured on an AC."; choice option { description "Choice of authentication options."; case ao { description "Uses the TCP Authentication Option (TCP-AO)."; reference "RFC 5925: The TCP Authentication Option"; leaf enable-ao { type boolean; description "Enables the TCP-AO."; } leaf ao-keychain { type key-chain:key-chain-ref; description "Reference to the TCP-AO key chain."; reference "RFC 8177: YANG Data Model for Key Chains"; } } case md5 { description "Uses MD5 to secure the session."; reference "RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs), Section 13.2"; leaf md5-keychain { type key-chain:key-chain-ref; description "Specifies a reference to the MD5 key chain."; reference "RFC 8177: YANG Data Model for Key Chains"; } } case explicit { leaf key-id { type uint32; description "Specifies a key identifier."; } leaf key { type string; description "BGP authentication key. This model only supports the subset of keys that are representable as ASCII strings."; } leaf crypto-algorithm { type identityref { base key-chain:crypto-algorithm; } description "Indicates the cryptographic algorithm associated with the key."; } } } } } } grouping ospf-authentication { description "Authentication configuration."; container authentication { description "Container for OSPF authentication parameters."; leaf enabled { type boolean; description "Enables or disables authentication."; } container keying-material { when "../enabled = 'true'"; description "Container for describing how an OSPF session is to be secured for an AC."; choice option { description "Options for OSPF authentication."; case auth-key-chain { leaf key-chain { type key-chain:key-chain-ref; description "Specifies the name of the key chain."; } } case auth-key-explicit { leaf key-id { type uint32; description "Specifies a key identifier."; } leaf key { type string; description "OSPF authentication key. This model only supports the subset of keys that are representable as ASCII strings."; } leaf crypto-algorithm { type identityref { base key-chain:crypto-algorithm; } description "Indicates the cryptographic algorithm associated with the key."; } } } } } } grouping isis-authentication { description "IS-IS authentication configuration."; container authentication { description "Container for IS-IS authentication parameters."; leaf enabled { type boolean; description "Enables or disables authentication."; } container keying-material { when "../enabled = 'true'"; description "Describes how an IS-IS session is secured over an AC."; choice option { description "Options for IS-IS authentication."; case auth-key-chain { leaf key-chain { type key-chain:key-chain-ref; description "Specifies the name of the key chain."; } } case auth-key-explicit { leaf key-id { type uint32; description "Indicates a key identifier."; } leaf key { type string; description "IS-IS authentication key. This model only supports the subset of keys that are representable as ASCII strings."; } leaf crypto-algorithm { type identityref { base key-chain:crypto-algorithm; } description "Indicates the cryptographic algorithm associated with the key."; } } } } } } grouping rip-authentication { description "RIP authentication configuration."; container authentication { description "Includes RIP authentication parameters."; leaf enabled { type boolean; description "Enables or disables authentication."; } container keying-material { when "../enabled = 'true'"; description "Describes how a RIP session is to be secured on an AC."; choice option { description "Specifies the authentication scheme."; case auth-key-chain { leaf key-chain { type key-chain:key-chain-ref; description "Indicates the name of the key chain."; } } case auth-key-explicit { leaf key { type string; description "Specifies a RIP authentication key. This model only supports the subset of keys that are representable as ASCII strings."; } leaf crypto-algorithm { type identityref { base key-chain:crypto-algorithm; } description "Indicates the cryptographic algorithm associated with the key."; } } } } } } // Basic routing parameters grouping bgp-peer-group-without-name { description "Identifies a BGP peer-group configured on the local system."; leaf local-as { type inet:as-number; description "Indicates a local Autonomous System Number (ASN). This ASN is exposed to a customer so that it knows which ASN to use to set up a BGP session."; } leaf peer-as { type inet:as-number; description "Indicates the customer's ASN when the customer requests BGP routing."; } leaf address-family { type identityref { base vpn-common:address-family; } description "This node contains the address families to be activated. 'dual-stack' means that both IPv4 and IPv6 will be activated."; } leaf role { type identityref { base ac-common:bgp-role; } description "Specifies the BGP role (provider, customer, peer, etc.)."; reference "RFC 9234: Route Leak Prevention and Detection Using Roles in UPDATE and OPEN Messages, Section 4"; } } grouping bgp-peer-group-with-name { description "Identifies a BGP peer-group configured on the local system, identified by a peer-group name."; leaf name { type string; description "Specifies the name of the BGP peer-group."; } uses bgp-peer-group-without-name; } grouping ospf-basic { description "Includes configuration specific to OSPF."; leaf address-family { type identityref { base vpn-common:address-family; } description "Indicates whether IPv4, IPv6, or both are to be activated."; } leaf area-id { type yang:dotted-quad; mandatory true; description "Specifies an area ID."; reference "RFC 4577: OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs), Section 4.2.3 RFC 6565: OSPFv3 as a Provider Edge to Customer Edge (PE-CE) Routing Protocol, Section 4.2"; } leaf metric { type uint16; description "Metric of the AC. It is used in the routing state calculation and path selection."; } } grouping isis-basic { description "Basic configuration specific to IS-IS."; leaf address-family { type identityref { base vpn-common:address-family; } description "Indicates whether IPv4, IPv6, or both are to be activated."; } leaf area-address { type area-address; mandatory true; description "Specifies an area address."; } } // Static routing grouping ipv4-static-rtg-entry { description "Parameters to configure a specific IPv4 static routing entry."; leaf lan { type inet:ipv4-prefix; description "Indicates an IPv4 LAN prefix."; } leaf lan-tag { type string; description "Internal tag to be used in service policies."; } leaf next-hop { type union { type inet:ip-address; type predefined-next-hop; } description "The next hop that is to be used for the static route. This may be specified as an IP address or a predefined next-hop type (e.g., 'discard' or 'local-link')."; } leaf metric { type uint32; description "Indicates the metric associated with the static route."; } } grouping ipv4-static-rtg { description "A set of parameters specific to IPv4 static routing."; list ipv4-lan-prefixes { if-feature "vpn-common:ipv4"; key "lan next-hop"; description "List of LAN prefixes for the site."; uses ipv4-static-rtg-entry; uses ac-common:service-status; } } grouping ipv6-static-rtg-entry { description "Parameters to configure a specific IPv6 static routing entry."; leaf lan { type inet:ipv6-prefix; description "Indicates an IPv6 LAN prefix."; } leaf lan-tag { type string; description "Internal tag to be used in service (e.g., VPN) policies."; } leaf next-hop { type union { type inet:ip-address; type predefined-next-hop; } description "The next hop that is to be used for the static route. This may be specified as an IP address or a predefined next-hop type (e.g., 'discard' or 'local-link')."; } leaf metric { type uint32; description "Indicates the metric associated with the static route."; } } grouping ipv6-static-rtg { description "A set of parameters specific to IPv6 static routing."; list ipv6-lan-prefixes { if-feature "vpn-common:ipv6"; key "lan next-hop"; description "List of LAN prefixes for the customer-terminating points."; uses ipv6-static-rtg-entry; uses ac-common:service-status; } } // OAM grouping bfd { description "Groups a set of basic BFD parameters."; leaf holdtime { type uint32; units "milliseconds"; description "Specifies the expected BFD holdtime. The customer may impose some fixed values for the holdtime period if the provider allows the customer to use this function. If the provider doesn't allow the customer to use this function, fixed values will not be set."; reference "RFC 5880: Bidirectional Forwarding Detection (BFD), Section 6.8.18"; } } // redundancy grouping redundancy-group { description "A grouping for redundancy group."; list group { key "group-id"; description "Specifies a list of group identifiers."; leaf group-id { type string; description "Indicates the group-id to which an AC belongs."; } leaf precedence { type identityref { base ac-common:precedence-type; } description "Defines redundancy of an AC."; } } } // QoS grouping bandwidth-parameters { description "A grouping for bandwidth parameters."; leaf cir { type uint64; units "bps"; description "Committed Information Rate (CIR). The maximum number of bits that a port can receive or send during one second over an interface."; } leaf cbs { type uint64; units "bytes"; description "Committed Burst Size (CBS). CBS controls the bursty nature of the traffic. Traffic that does not use the configured CIR accumulates credits until the credits reach the configured CBS."; } leaf eir { type uint64; units "bps"; description "Excess Information Rate (EIR), i.e., excess frame delivery allowed not subject to a Service Level Agreement (SLA). The traffic rate can be limited by EIR."; } leaf ebs { type uint64; units "bytes"; description "Excess Burst Size (EBS). The bandwidth available for burst traffic from the EBS is subject to the amount of bandwidth that is accumulated during periods when traffic allocated by the EIR policy is not used."; } leaf pir { type uint64; units "bps"; description "Peak Information Rate (PIR), i.e., maximum frame delivery allowed. It is equal to or less than the sum of the CIR and EIR."; } leaf pbs { type uint64; units "bytes"; description "Peak Burst Size (PBS)."; } } grouping bandwidth-per-type { description "Grouping for bandwidth per type."; list bandwidth { key "bw-type"; description "List for bandwidth per type parameters."; leaf bw-type { type identityref { base vpn-common:bw-type; } description "Indicates the bandwidth type."; } choice type { description "Choice based upon bandwidth type."; case per-cos { description "Bandwidth per Class of Service (CoS)."; list cos { key "cos-id"; description "List of CoSes."; leaf cos-id { type uint8; description "Identifier of the CoS, indicated by a Differentiated Services Code Point (DSCP) or a CE-CLAN CoS (802.1p) value in the service frame."; reference "IEEE Std 802.1Q: Bridges and Bridged Networks"; } uses bandwidth-parameters; } } case other { description "Other bandwidth types."; uses bandwidth-parameters; } } } } }
The "ietf-ac-common" YANG module defines a data model that is designed to be accessed via YANG-based management protocols, such as NETCONF [RFC6241] and RESTCONF [RFC8040]. These protocols have to use a secure transport layer (e.g., SSH [RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and have to use mutual authentication.
「IETF-AC-Common」Yangモジュールは、NetConf [RFC6241]やRestConf [RFC8040]などのYangベースの管理プロトコルを介してアクセスできるように設計されたデータモデルを定義します。これらのプロトコルは、安全な輸送層(例:SSH [RFC4252]、TLS [RFC8446]、およびQUIC [RFC9000])を使用し、相互認証を使用する必要があります。
The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.
ネットワーク構成アクセス制御モデル(NACM)[RFC8341]は、利用可能なすべてのNetConfまたはRestConfプロトコル操作とコンテンツの事前に構成されたサブセットに特定のNetConfまたはRestConfユーザーのアクセスを制限する手段を提供します。
The YANG module defines a set of identities, types, and groupings. These nodes are intended to be reused by other YANG modules. The module by itself does not expose any data nodes that are writable, data nodes that contain read-only state, or RPCs. As such, there are no additional security issues related to the YANG module that need to be considered.
Yangモジュールは、一連のアイデンティティ、タイプ、およびグループ化を定義します。これらのノードは、他のヤンモジュールによって再利用されることを目的としています。モジュール自体は、書き込み可能なデータノード、読み取り専用状態を含むデータノード、またはRPCを公開しません。そのため、検討する必要があるYangモジュールに関連する追加のセキュリティ問題はありません。
Modules that use the groupings that are defined in this document should identify the corresponding security considerations. For example, reusing some of these groupings will expose privacy-related information (e.g., 'ipv6-lan-prefixes' or 'ipv4-lan-prefixes'). Disclosing such information may be considered a violation of the customer-provider trust relationship.
このドキュメントで定義されているグループを使用するモジュールは、対応するセキュリティ上の考慮事項を識別する必要があります。たとえば、これらのグループ化の一部を再利用すると、プライバシー関連の情報が公開されます(たとえば、「IPv6-Lan-Prefixes」または「IPv4-Lan-Prefixes」)。そのような情報の開示は、顧客プロバイダーの信頼関係の違反と見なされる場合があります。
Several groupings ('bgp-authentication', 'ospf-authentication', 'isis-authentication', and 'rip-authentication') rely upon [RFC8177] for authentication purposes. As such, modules that will reuse these groupings will inherit the security considerations discussed in Section 5 of [RFC8177]. Also, these groupings support supplying explicit keys as strings in ASCII format. The use of keys in hexadecimal string format would afford greater key entropy with the same number of key-string octets. However, such a format is not included in this version of the common AC model, because it is not supported by the underlying device modules (e.g., [RFC8695]).
いくつかのグループ(「bgp-authentication」、「ospf-authentication」、「isis-authentication」、および 'rip-authentication')は、認証を目的として[RFC8177]に依存しています。そのため、これらのグループ化を再利用するモジュールは、[RFC8177]のセクション5で説明されているセキュリティ上の考慮事項を継承します。また、これらのグループ化は、ASCII形式の文字列として明示的なキーを提供することをサポートします。ヘキサデシマルストリング形式でキーを使用すると、同じ数のキーストリングオクテットでより大きなキーエントロピーが得られます。ただし、このような形式は、基礎となるデバイスモジュール([RFC8695]など)によってサポートされていないため、このバージョンの一般的なACモデルには含まれていません。
IANA has registered the following URI in the "ns" subregistry within the "IETF XML Registry" [RFC3688]:
IANAは、「IETF XMLレジストリ」[RFC3688]内の「NS」サブレジストリに次のURIを登録しました。
URI:
URI:
urn:ietf:params:xml:ns:yang:ietf-ac-common
urn:ietf:params:xml:ns:yang:ietf-ac-common
Registrant Contact:
登録者の連絡先:
The IESG.
IESG。
XML:
XML:
N/A; the requested URI is an XML namespace.
n/a;要求されたURIはXMLネームスペースです。
IANA has registered the following YANG module in the "YANG Module Names" subregistry [RFC6020] within the "YANG Parameters" registry:
IANAは、「Yangパラメーター」レジストリ内で「Yangモジュール名」サブレジストリ[RFC6020]に次のYangモジュールを登録しました。
Name:
名前:
ietf-ac-common
IETF-ACコモン
Maintained by IANA?
イアナによって維持されていますか?
N
n
Namespace:
名前空間:
urn:ietf:params:xml:ns:yang:ietf-ac-common
urn:ietf:params:xml:ns:yang:ietf-ac-common
Prefix:
プレフィックス:
ac-common
ACコモン
Reference:
参照:
RFC 9833
RFC 9833
[IEEE_802.1Q] IEEE, "IEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks", IEEE Std 802.1Q- 2022, DOI 10.1109/IEEESTD.2022.10004498, December 2022, <https://doi.org/10.1109/IEEESTD.2022.10004498>.
[ISO10589] ISO/IEC, "Information technology - Telecommunications and information exchange between systems - Intermediate System to Intermediate System intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service (ISO8473)", ISO/IEC 10589:2002, November 2002, <https://www.iso.org/standard/30932.html>.
[RFC1195] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and dual environments", RFC 1195, DOI 10.17487/RFC1195, December 1990, <https://www.rfc-editor.org/info/rfc1195>.
[RFC2080] Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080, DOI 10.17487/RFC2080, January 1997, <https://www.rfc-editor.org/info/rfc2080>.
[RFC2453] Malkin, G., "RIP Version 2", STD 56, RFC 2453, DOI 10.17487/RFC2453, November 1998, <https://www.rfc-editor.org/info/rfc2453>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>.
[RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006, <https://www.rfc-editor.org/info/rfc4271>.
[RFC4577] Rosen, E., Psenak, P., and P. Pillay-Esnault, "OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4577, DOI 10.17487/RFC4577, June 2006, <https://www.rfc-editor.org/info/rfc4577>.
[RFC5308] Hopps, C., "Routing IPv6 with IS-IS", RFC 5308, DOI 10.17487/RFC5308, October 2008, <https://www.rfc-editor.org/info/rfc5308>.
[RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP Authentication Option", RFC 5925, DOI 10.17487/RFC5925, June 2010, <https://www.rfc-editor.org/info/rfc5925>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>.
[RFC6565] Pillay-Esnault, P., Moyer, P., Doyle, J., Ertekin, E., and M. Lundberg, "OSPFv3 as a Provider Edge to Customer Edge (PE-CE) Routing Protocol", RFC 6565, DOI 10.17487/RFC6565, June 2012, <https://www.rfc-editor.org/info/rfc6565>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>.
[RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, L., Sridhar, T., Bursell, M., and C. Wright, "Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, <https://www.rfc-editor.org/info/rfc7348>.
[RFC8077] Martini, L., Ed. and G. Heron, Ed., "Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)", STD 84, RFC 8077, DOI 10.17487/RFC8077, February 2017, <https://www.rfc-editor.org/info/rfc8077>.
[RFC8177] Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J. Zhang, "YANG Data Model for Key Chains", RFC 8177, DOI 10.17487/RFC8177, June 2017, <https://www.rfc-editor.org/info/rfc8177>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>.
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, <https://www.rfc-editor.org/info/rfc8342>.
[RFC9181] Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M., Ed., and Q. Wu, "A Common YANG Data Model for Layer 2 and Layer 3 VPNs", RFC 9181, DOI 10.17487/RFC9181, February 2022, <https://www.rfc-editor.org/info/rfc9181>.
[MEF17] The Metro Ethernet Forum, "Service OAM Requirements & Framework - Phase 1", MEF Technical Specification, MEF 17, April 2007, <https://www.mef.net/wp- content/uploads/2015/04/MEF-17.pdf>.
[MEF6] The Metro Ethernet Forum, "Ethernet Services Definitions - Phase I", MEF Technical Specification, MEF 6, August 2004, <https://www.mef.net/Assets/Technical_Specifications/PDF/ MEF_6.pdf>.
[RFC1701] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic Routing Encapsulation (GRE)", RFC 1701, DOI 10.17487/RFC1701, October 1994, <https://www.rfc-editor.org/info/rfc1701>.
[RFC1702] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic Routing Encapsulation over IPv4 networks", RFC 1702, DOI 10.17487/RFC1702, October 1994, <https://www.rfc-editor.org/info/rfc1702>.
[RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003, DOI 10.17487/RFC2003, October 1996, <https://www.rfc-editor.org/info/rfc2003>.
[RFC3644] Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., and B. Moore, "Policy Quality of Service (QoS) Information Model", RFC 3644, DOI 10.17487/RFC3644, November 2003, <https://www.rfc-editor.org/info/rfc3644>.
[RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH) Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252, January 2006, <https://www.rfc-editor.org/info/rfc4252>.
[RFC4301] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, DOI 10.17487/RFC4301, December 2005, <https://www.rfc-editor.org/info/rfc4301>.
[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February 2006, <https://www.rfc-editor.org/info/rfc4364>.
[RFC4552] Gupta, M. and N. Melam, "Authentication/Confidentiality for OSPFv3", RFC 4552, DOI 10.17487/RFC4552, June 2006, <https://www.rfc-editor.org/info/rfc4552>.
[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address Autoconfiguration", RFC 4862, DOI 10.17487/RFC4862, September 2007, <https://www.rfc-editor.org/info/rfc4862>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010, <https://www.rfc-editor.org/info/rfc5880>.
[RFC6004] Berger, L. and D. Fedyk, "Generalized MPLS (GMPLS) Support for Metro Ethernet Forum and G.8011 Ethernet Service Switching", RFC 6004, DOI 10.17487/RFC6004, October 2010, <https://www.rfc-editor.org/info/rfc6004>.
[RFC6215] Bocci, M., Levrau, L., and D. Frost, "MPLS Transport Profile User-to-Network and Network-to-Network Interfaces", RFC 6215, DOI 10.17487/RFC6215, April 2011, <https://www.rfc-editor.org/info/rfc6215>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.
[RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function Chaining (SFC) Architecture", RFC 7665, DOI 10.17487/RFC7665, October 2015, <https://www.rfc-editor.org/info/rfc7665>.
[RFC7676] Pignataro, C., Bonica, R., and S. Krishnan, "IPv6 Support for Generic Routing Encapsulation (GRE)", RFC 7676, DOI 10.17487/RFC7676, October 2015, <https://www.rfc-editor.org/info/rfc7676>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.
[RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki, "YANG Data Model for L3VPN Service Delivery", RFC 8299, DOI 10.17487/RFC8299, January 2018, <https://www.rfc-editor.org/info/rfc8299>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.
[RFC8466] Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG Data Model for Layer 2 Virtual Private Network (L2VPN) Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October 2018, <https://www.rfc-editor.org/info/rfc8466>.
[RFC8695] Liu, X., Sarda, P., and V. Choudhary, "A YANG Data Model for the Routing Information Protocol (RIP)", RFC 8695, DOI 10.17487/RFC8695, February 2020, <https://www.rfc-editor.org/info/rfc8695>.
[RFC8969] Wu, Q., Ed., Boucadair, M., Ed., Lopez, D., Xie, C., and L. Geng, "A Framework for Automating Service and Network Management with YANG", RFC 8969, DOI 10.17487/RFC8969, January 2021, <https://www.rfc-editor.org/info/rfc8969>.
[RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based Multiplexed and Secure Transport", RFC 9000, DOI 10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/info/rfc9000>.
[RFC9182] Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M., Ed., Munoz, L., and A. Aguado, "A YANG Network Data Model for Layer 3 VPNs", RFC 9182, DOI 10.17487/RFC9182, February 2022, <https://www.rfc-editor.org/info/rfc9182>.
[RFC9234] Azimov, A., Bogomazov, E., Bush, R., Patel, K., and K. Sriram, "Route Leak Prevention and Detection Using Roles in UPDATE and OPEN Messages", RFC 9234, DOI 10.17487/RFC9234, May 2022, <https://www.rfc-editor.org/info/rfc9234>.
[RFC9291] Boucadair, M., Ed., Gonzalez de Dios, O., Ed., Barguil, S., and L. Munoz, "A YANG Network Data Model for Layer 2 VPNs", RFC 9291, DOI 10.17487/RFC9291, September 2022, <https://www.rfc-editor.org/info/rfc9291>.
[RFC9408] Boucadair, M., Ed., Gonzalez de Dios, O., Barguil, S., Wu, Q., and V. Lopez, "A YANG Network Data Model for Service Attachment Points (SAPs)", RFC 9408, DOI 10.17487/RFC9408, June 2023, <https://www.rfc-editor.org/info/rfc9408>.
[RFC9834] Boucadair, M., Ed., Roberts, R., Ed., Gonzalez de Dios, O., Barguil, S., and B. Wu, "YANG Data Models for Bearers and Attachment Circuits as a Service (ACaaS)", RFC 9834, September 2025, <https://www.rfc-editor.org/info/rfc9834>.
[RFC9835] Boucadair, M., Ed., Roberts, R., Gonzalez de Dios, O., Barguil, S., and B. Wu, "A Network YANG Data Model for Attachment Circuits", RFC 9835, September 2025, <https://www.rfc-editor.org/info/rfc9835>.
[RFC9836] Boucadair, M., Ed., Roberts, R., Barguil, S., and O. Gonzalez de Dios, "A YANG Data Model for Augmenting VPN Service and Network Models with Attachment Circuits", RFC 9836, September 2025, <https://www.rfc-editor.org/info/rfc9836>.
[YANG-NSS] Wu, B., Dhody, D., Rokui, R., Saad, T., and J. Mullooly, "A YANG Data Model for the RFC 9543 Network Slice Service", Work in Progress, Internet-Draft, draft-ietf- teas-ietf-network-slice-nbi-yang-25, 9 May 2025, <https://datatracker.ietf.org/doc/html/draft-ietf-teas- ietf-network-slice-nbi-yang-25>.
[YANG-SCHEDULE] Ma, Q., Ed., Wu, Q., Boucadair, M., Ed., and D. King, "A Common YANG Data Model for Scheduling", Work in Progress, Internet-Draft, draft-ietf-netmod-schedule-yang-04, 7 February 2025, <https://datatracker.ietf.org/doc/html/ draft-ietf-netmod-schedule-yang-04>.
module: ietf-ac-common grouping service-status: +-- status +-- admin-status | +-- status? identityref | +--ro last-change? yang:date-and-time +--ro oper-status +--ro status? identityref +--ro last-change? yang:date-and-time grouping ac-profile-cfg: +-- valid-provider-identifiers +-- encryption-profile-identifier* [id] | +-- id string +-- qos-profile-identifier* [id] | +-- id string +-- failure-detection-profile-identifier* [id] | +-- id string +-- forwarding-profile-identifier* [id] | +-- id string +-- routing-profile-identifier* [id] +-- id string grouping op-instructions: +-- requested-start? yang:date-and-time +-- requested-stop? yang:date-and-time +--ro actual-start? yang:date-and-time +--ro actual-stop? yang:date-and-time grouping dot1q: +-- tag-type? identityref +-- cvlan-id? uint16 grouping priority-tagged: +-- tag-type? identityref grouping qinq: +-- tag-type? identityref +-- svlan-id uint16 +-- cvlan-id uint16 grouping pseudowire: +-- vcid? uint32 +-- far-end? union grouping vpls: +-- vcid? uint32 +-- far-end* union grouping vxlan: +-- vni-id uint32 +-- peer-mode? identityref +-- peer-ip-address* inet:ip-address grouping l2-tunnel-service: +-- type? identityref +-- pseudowire | +-- vcid? uint32 | +-- far-end? union +-- vpls | +-- vcid? uint32 | +-- far-end* union +-- vxlan +-- vni-id uint32 +-- peer-mode? identityref +-- peer-ip-address* inet:ip-address grouping ipv4-allocation-type: +-- prefix-length? uint8 +-- address-allocation-type? identityref grouping ipv6-allocation-type: +-- prefix-length? uint8 +-- address-allocation-type? identityref grouping ipv4-connection-basic: +-- prefix-length? uint8 +-- address-allocation-type? identityref +-- (allocation-type)? +--:(dynamic) +-- (provider-dhcp)? | +--:(dhcp-service-type) | +-- dhcp-service-type? enumeration +-- (dhcp-relay)? +--:(customer-dhcp-servers) +-- customer-dhcp-servers +-- server-ip-address* inet:ipv4-address grouping ipv6-connection-basic: +-- prefix-length? uint8 +-- address-allocation-type? identityref +-- (allocation-type)? +--:(dynamic) +-- (provider-dhcp)? | +--:(dhcp-service-type) | +-- dhcp-service-type? enumeration +-- (dhcp-relay)? +--:(customer-dhcp-servers) +-- customer-dhcp-servers +-- server-ip-address* inet:ipv6-address grouping ipv4-connection: +-- local-address? inet:ipv4-address +-- virtual-address? inet:ipv4-address +-- prefix-length? uint8 +-- address-allocation-type? identityref +-- (allocation-type)? +--:(dynamic) | +-- (address-assign)? | | +--:(number) | | | +-- number-of-dynamic-address? uint16 | | +--:(explicit) | | +-- customer-addresses | | +-- address-pool* [pool-id] | | +-- pool-id string | | +-- start-address inet:ipv4-address | | +-- end-address? inet:ipv4-address | +-- (provider-dhcp)? | | +--:(dhcp-service-type) | | +-- dhcp-service-type? enumeration | +-- (dhcp-relay)? | +--:(customer-dhcp-servers) | +-- customer-dhcp-servers | +-- server-ip-address* inet:ipv4-address +--:(static-addresses) +-- address* [address-id] +-- address-id string +-- customer-address? inet:ipv4-address grouping ipv6-connection: +-- local-address? inet:ipv6-address +-- virtual-address? inet:ipv6-address +-- prefix-length? uint8 +-- address-allocation-type? identityref +-- (allocation-type)? +--:(dynamic) | +-- (address-assign)? | | +--:(number) | | | +-- number-of-dynamic-address? uint16 | | +--:(explicit) | | +-- customer-addresses | | +-- address-pool* [pool-id] | | +-- pool-id string | | +-- start-address inet:ipv6-address | | +-- end-address? inet:ipv6-address | +-- (provider-dhcp)? | | +--:(dhcp-service-type) | | +-- dhcp-service-type? enumeration | +-- (dhcp-relay)? | +--:(customer-dhcp-servers) | +-- customer-dhcp-servers | +-- server-ip-address* inet:ipv6-address +--:(static-addresses) +-- address* [address-id] +-- address-id string +-- customer-address? inet:ipv6-address grouping bgp-authentication: +-- authentication +-- enabled? boolean +-- keying-material +-- (option)? +--:(ao) | +-- enable-ao? boolean | +-- ao-keychain? key-chain:key-chain-ref +--:(md5) | +-- md5-keychain? key-chain:key-chain-ref +--:(explicit) +-- key-id? uint32 +-- key? string +-- crypto-algorithm? identityref grouping ospf-authentication: +-- authentication +-- enabled? boolean +-- keying-material +-- (option)? +--:(auth-key-chain) | +-- key-chain? key-chain:key-chain-ref +--:(auth-key-explicit) +-- key-id? uint32 +-- key? string +-- crypto-algorithm? identityref grouping isis-authentication: +-- authentication +-- enabled? boolean +-- keying-material +-- (option)? +--:(auth-key-chain) | +-- key-chain? key-chain:key-chain-ref +--:(auth-key-explicit) +-- key-id? uint32 +-- key? string +-- crypto-algorithm? identityref grouping rip-authentication: +-- authentication +-- enabled? boolean +-- keying-material +-- (option)? +--:(auth-key-chain) | +-- key-chain? key-chain:key-chain-ref +--:(auth-key-explicit) +-- key? string +-- crypto-algorithm? identityref grouping bgp-peer-group-without-name: +-- local-as? inet:as-number +-- peer-as? inet:as-number +-- address-family? identityref +-- role? identityref grouping bgp-peer-group-with-name: +-- name? string +-- local-as? inet:as-number +-- peer-as? inet:as-number +-- address-family? identityref +-- role? identityref grouping ospf-basic: +-- address-family? identityref +-- area-id yang:dotted-quad +-- metric? uint16 grouping isis-basic: +-- address-family? identityref +-- area-address area-address grouping ipv4-static-rtg-entry: +-- lan? inet:ipv4-prefix +-- lan-tag? string +-- next-hop? union +-- metric? uint32 grouping ipv4-static-rtg: +-- ipv4-lan-prefixes* [lan next-hop] {vpn-common:ipv4}? +-- lan inet:ipv4-prefix +-- lan-tag? string +-- next-hop union +-- metric? uint32 +-- status +-- admin-status | +-- status? identityref | +--ro last-change? yang:date-and-time +--ro oper-status +--ro status? identityref +--ro last-change? yang:date-and-time grouping ipv6-static-rtg-entry: +-- lan? inet:ipv6-prefix +-- lan-tag? string +-- next-hop? union +-- metric? uint32 grouping ipv6-static-rtg: +-- ipv6-lan-prefixes* [lan next-hop] {vpn-common:ipv6}? +-- lan inet:ipv6-prefix +-- lan-tag? string +-- next-hop union +-- metric? uint32 +-- status +-- admin-status | +-- status? identityref | +--ro last-change? yang:date-and-time +--ro oper-status +--ro status? identityref +--ro last-change? yang:date-and-time grouping bfd: +-- holdtime? uint32 grouping redundancy-group: +-- group* [group-id] +-- group-id string +-- precedence? identityref grouping bandwidth-parameters: +-- cir? uint64 +-- cbs? uint64 +-- eir? uint64 +-- ebs? uint64 +-- pir? uint64 +-- pbs? uint64 grouping bandwidth-per-type: +-- bandwidth* [bw-type] +-- bw-type identityref +-- (type)? +--:(per-cos) | +-- cos* [cos-id] | +-- cos-id uint8 | +-- cir? uint64 | +-- cbs? uint64 | +-- eir? uint64 | +-- ebs? uint64 | +-- pir? uint64 | +-- pbs? uint64 +--:(other) +-- cir? uint64 +-- cbs? uint64 +-- eir? uint64 +-- ebs? uint64 +-- pir? uint64 +-- pbs? uint64
The document reuses many of the structures that were defined in [RFC9181] and [RFC9182].
この文書は、[RFC9181]および[RFC9182]で定義された多くの構造を再利用します。
Thanks to Ebben Aries for the YANG Doctors review, Andy Smith and Gyanh Mishra for the RTGDIR reviews, Watson Ladd for the SECDIR review, and Behcet Sarikaya for the GENART review.
Yang Doctors ReviewのEbben Aries、RtgdirレビューのAndy SmithとGyanh Mishra、Secdir ReviewのWatson Ladd、Genart ReviewのSarikayaに感謝します。
Thanks to Reza Rokui for the shepherd review.
羊飼いのレビューをしてくれたReza Rokuiに感謝します。
Thanks to Mahesh Jethanandani for the AD review.
広告レビューをしてくれたMahesh Jethanandaniに感謝します。
Thanks to Éric Vyncke, Gunter Van de Velde, Orie Steele, and Paul Wouters for the IESG review.
ERICH Vyncke、Gunter Van de Velde、Orie Steele、Paul WoutersのIESGレビューに感謝します。
Victor Lopez Nokia Email: victor.lopez@nokia.com
Ivan Bykov Ribbon Communications Email: Ivan.Bykov@rbbn.com
Qin Wu Huawei Email: bill.wu@huawei.com
Kenichi Ogaki KDDI Email: ke-oogaki@kddi.com
Luis Angel Munoz Vodafone Email: luis-angel.munoz@vodafone.com
Mohamed Boucadair (editor) Orange Email: mohamed.boucadair@orange.com
Richard Roberts (editor) Juniper Email: rroberts@juniper.net
Oscar Gonzalez de Dios Telefonica Email: oscar.gonzalezdedios@telefonica.com
Samier Barguil Nokia Email: samier.barguil_giraldo@nokia.com
Bo Wu Huawei Technologies Email: lana.wubo@huawei.com